JP2019157549A - Joint structure, and construction method of joint structure - Google Patents

Joint structure, and construction method of joint structure Download PDF

Info

Publication number
JP2019157549A
JP2019157549A JP2018047585A JP2018047585A JP2019157549A JP 2019157549 A JP2019157549 A JP 2019157549A JP 2018047585 A JP2018047585 A JP 2018047585A JP 2018047585 A JP2018047585 A JP 2018047585A JP 2019157549 A JP2019157549 A JP 2019157549A
Authority
JP
Japan
Prior art keywords
graphite
concrete
pile
layer
graphite powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018047585A
Other languages
Japanese (ja)
Other versions
JP6967476B2 (en
Inventor
真規子 引田
Makiko Hikita
真規子 引田
章 宮田
Akira Miyata
章 宮田
俊憲 親本
Toshinori Chikamoto
俊憲 親本
泰輔 藤嶋
Taisuke Fujishima
泰輔 藤嶋
武之 井川
Takeyuki Igawa
武之 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2018047585A priority Critical patent/JP6967476B2/en
Publication of JP2019157549A publication Critical patent/JP2019157549A/en
Application granted granted Critical
Publication of JP6967476B2 publication Critical patent/JP6967476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Foundations (AREA)

Abstract

To provide a joint structure and the like with high sliding performance and simple configuration.SOLUTION: A joint structure 1 joins a pile 3 that is an under structure to a foundation skeleton 5 that is an upper structure. A sliding layer 4 comprising graphite concrete 7 and graphite powder layer 9 is provided between the pile 3 and the foundation skeleton 5. A lower end portion of a reinforcement 11 is buried in a pile head 3a, and a part above the lower end portion of the reinforcement 11 is buried in the sliding layer 4. A rust preventive layer 13 is formed around a part inside the sliding layer 4 of the reinforcement 11, thus rust development on the reinforcement 11 is prevented.SELECTED DRAWING: Figure 1

Description

本発明は、構造体の接合構造およびその構築方法に関する。   The present invention relates to a structure joining structure and a construction method thereof.

一般的な鉄筋コンクリートによる杭と基礎躯体の接合部では、杭から延びた鉄筋を基礎躯体のコンクリートに埋設して杭と基礎躯体を一体化させている。   In joints between piles and foundation frames made of ordinary reinforced concrete, the reinforcing bars extending from the piles are buried in the concrete of the foundation frame to integrate the piles and foundation frame.

しかしながら、こうして杭と基礎躯体を剛接合すると、地震時では基礎躯体から杭頭に過大な水平力が伝達され、杭の損傷につながる。そのため、接合部において杭と基礎躯体の間を縁切りし、砂状の滑り材を設けたり(例えば特許文献1)、転がり支承として球体を設けたり(例えば特許文献2)することにより、杭頭に過大な水平力が作用するのを防ぐ対策が提案されている。   However, when the pile and the foundation frame are rigidly joined in this way, an excessive horizontal force is transmitted from the foundation frame to the pile head at the time of an earthquake, leading to damage to the pile. Therefore, by cutting the edge between the pile and the foundation frame at the joint, providing a sand-like sliding material (for example, Patent Document 1), or providing a sphere as a rolling bearing (for example, Patent Document 2), Measures have been proposed to prevent excessive horizontal force from acting.

特開2013−224535号公報JP 2013-224535 A 特開2000−220151号公報Japanese Unexamined Patent Publication No. 2000-220151

現在、このような接合部として、より滑り性能が高い構造が求められている。例えば特許文献1では杭と基礎躯体の間に砂状体を設けるが、より滑り性能を高くする工夫があると望ましい。   Currently, there is a demand for a structure with higher sliding performance as such a joint. For example, in Patent Document 1, a sand-like body is provided between a pile and a foundation frame, but it is desirable if there is a device for improving the sliding performance.

また、接合部は簡易な構成であることも望ましい。例えば特許文献2は球体の転がりによる水平力の低減を目指したものであるが、当該球体と流体、およびこれらを収容する収容体が必要となる。   Moreover, it is also desirable that the joining portion has a simple configuration. For example, Patent Document 2 aims to reduce the horizontal force due to rolling of a sphere, but the sphere and fluid, and a container for housing them are required.

本発明は上記の問題に鑑みてなされたものであり、滑り性能が高く、且つ簡易な構成の接合構造等を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a joining structure or the like having a high sliding performance and a simple configuration.

前述した課題を解決するための第1の発明は、杭または柱である下部構造体とその上部構造体の接合構造であって、前記上部構造体と前記下部構造体の間に、黒鉛を含み、前記上部構造体または前記下部構造体に対して滑動する滑り層を設けたことを特徴とする接合構造である。   1st invention for solving the subject mentioned above is the joining structure of the lower structure which is a pile or a pillar, and its upper structure, Comprising: Between the said upper structure and the said lower structure, graphite is included. The joint structure is characterized in that a sliding layer that slides relative to the upper structure or the lower structure is provided.

本発明では、上部構造体と下部構造体の間に、固体潤滑性を有する黒鉛を含むことにより摩擦係数を低減した滑り層を設けることで、上部構造体と下部構造体との間で伝達される水平力の低減効果が得られる。本発明では、黒鉛の素材自体が持つ潤滑性を利用した滑り層を設けることで、滑り性能が高く簡易な構成の接合構造を実現でき、前記のような転がり支承としての球体を含む構成等も不要になり低コストである。   In the present invention, by providing a sliding layer having a reduced friction coefficient by including solid lubricating graphite between the upper structure and the lower structure, it is transmitted between the upper structure and the lower structure. The horizontal force can be reduced. In the present invention, by providing a sliding layer using the lubricity of the graphite material itself, it is possible to realize a joining structure with a high sliding performance and a simple configuration, including a configuration including a sphere as a rolling bearing as described above. It becomes unnecessary and low cost.

前記滑り層は、黒鉛を含むコンクリートを有することが望ましい。
このように、滑り層として黒鉛を含み自己潤滑性のあるコンクリートを適用することで、水平力低減効果が得られる。
The sliding layer preferably includes concrete containing graphite.
Thus, the horizontal force reduction effect is acquired by applying the concrete which contains graphite as a sliding layer and has self-lubricating property.

前記コンクリートは、細骨材のうち、黒鉛粉末の粒径に対応する粒径の細骨材を、前記黒鉛粉末に置き換えたものであることが望ましい。
これにより、コンクリートの強度等を維持しつつ、摩擦係数の低いコンクリートを実現できる。
It is desirable that the concrete is obtained by replacing the fine aggregate having a particle size corresponding to the particle size of the graphite powder with the graphite powder.
Thereby, concrete with a low friction coefficient is realizable, maintaining the intensity | strength etc. of concrete.

前記上部構造体または前記下部構造体から延びる鉄筋が前記滑り層に埋設され、前記鉄筋の前記滑り層内の部分に防錆層が設けられることが望ましい。
これにより上部構造体または下部構造体と滑り層との一体性を高めることができる。この際、滑り層の黒鉛が鉄筋と接触すると発錆する恐れがあるため、鉄筋に防錆層を形成して発錆を防ぐことができる。
It is desirable that a reinforcing bar extending from the upper structure or the lower structure is embedded in the sliding layer, and a rust prevention layer is provided in a portion of the reinforcing bar in the sliding layer.
Thereby, the integrity of the upper structure or the lower structure and the sliding layer can be enhanced. At this time, since the graphite of the sliding layer may rust when it comes into contact with the reinforcing bar, a rust preventive layer can be formed on the reinforcing bar to prevent rusting.

前記滑り層は、黒鉛粉末を散布して形成された黒鉛粉末層を有することも望ましい。
このように、黒鉛粉末を散布して黒鉛粉末層を形成することによっても高い水平力低減効果が得られる。
It is also desirable that the sliding layer has a graphite powder layer formed by spraying graphite powder.
Thus, a high horizontal force reduction effect can also be obtained by spraying graphite powder to form a graphite powder layer.

第2の発明は、杭または柱である下部構造体とその上部構造体の接合構造の構築方法であって、前記上部構造体と前記下部構造体の間に、黒鉛を含み、前記上部構造体または前記下部構造体に対して滑動する滑り層を設けることを特徴とする接合構造の構築方法である。   2nd invention is the construction method of the joining structure of the lower structure which is a pile or a pillar, and its upper structure, Comprising: Between the said upper structure and the said lower structure, graphite is included, The said upper structure Or it is the construction method of the junction structure characterized by providing the sliding layer which slides with respect to the said lower structure.

本発明により、滑り性能が高く、且つ簡易な構成の接合構造等を提供することができる。   According to the present invention, it is possible to provide a joining structure or the like having a high sliding performance and a simple configuration.

接合構造1を示す図。The figure which shows the junction structure 1. FIG. 接合構造1の構築方法を示す図。The figure which shows the construction method of the junction structure 1. FIG. 接合構造1の構築方法を示す図。The figure which shows the construction method of the junction structure 1. FIG. 接合構造1’を示す図。The figure which shows joining structure 1 '. 接合構造1aを示す図。The figure which shows the junction structure 1a. 接合構造1aの構築方法を示す図。The figure which shows the construction method of the joining structure 1a. 接合構造1aの構築方法を示す図。The figure which shows the construction method of the joining structure 1a. 動的2軸スライド装置100を示す図。The figure which shows the dynamic 2 axis | shaft slide apparatus 100. FIG. 摩擦係数測定試験の結果を示すグラフ。The graph which shows the result of a friction coefficient measurement test.

以下、図面に基づいて本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

[第1の実施形態]
(1.接合構造1)
図1は本発明の実施形態に係る接合構造1を示す図である。図に示すように、本実施形態の接合構造1は、下部構造体である杭3と上部構造体である基礎躯体5を接合するものであり、コンクリート製の杭3と基礎躯体5の間に黒鉛コンクリート7と黒鉛粉末層9が設けられる。黒鉛コンクリート7と黒鉛粉末層9は滑り層4を構成する。
[First Embodiment]
(1. Joining structure 1)
FIG. 1 is a view showing a joint structure 1 according to an embodiment of the present invention. As shown in the figure, the joining structure 1 of the present embodiment joins a pile 3 that is a lower structure and a foundation frame 5 that is an upper structure, and between the concrete pile 3 and the foundation frame 5. A graphite concrete 7 and a graphite powder layer 9 are provided. The graphite concrete 7 and the graphite powder layer 9 constitute the sliding layer 4.

黒鉛コンクリート7は黒鉛を含むコンクリートであり、自己潤滑性を有する固形層である。黒鉛コンクリート7は杭頭3aに打設して杭3と一体に設けられる。杭頭3aを目荒らしして凹凸を形成し、杭3と黒鉛コンクリート7の一体性を高めてもよい。   The graphite concrete 7 is a concrete containing graphite and is a solid layer having self-lubricating properties. The graphite concrete 7 is cast on the pile head 3 a and is provided integrally with the pile 3. The pile head 3a may be roughened to form irregularities, and the integrity of the pile 3 and the graphite concrete 7 may be enhanced.

黒鉛コンクリート7は、例えば普通骨材を使用した普通コンクリートの調合段階で、細骨材の一部または全部を黒鉛粉末に置換するか、もしくは普通コンクリートの調合に黒鉛粉末を単に(細骨材と置換することなく)追加し、その後注水を行ってセメントや混和剤等との練り混ぜを行うことで製造できる。あるいは、普通コンクリート(生コン)の製造後、黒鉛粉末を普通コンクリートに後から添加して練混ぜてもよい。その際、黒鉛粉末を混和剤等とともに添加してもよい。   For example, graphite concrete 7 is prepared by replacing a part or the whole of fine aggregate with graphite powder at the stage of mixing ordinary concrete using ordinary aggregate, or simply adding graphite powder (with fine aggregate and It can be manufactured by adding water (without replacement), and then pouring water and mixing with cement or admixture. Alternatively, after the production of ordinary concrete (green concrete), graphite powder may be added to ordinary concrete later and mixed. At that time, graphite powder may be added together with an admixture or the like.

また細骨材を黒鉛粉末に置換する場合、細骨材をふるって、黒鉛粉末の粒径に対応する粒径の細骨材を除去してこれを黒鉛粉末に置換し、その他の粒径の細骨材は置換せずそのままとすることで、コンクリートの強度等を維持しつつ、コンクリートに自己潤滑性を付加できる。この時、コンクリート(黒鉛コンクリート)中には黒鉛粉末の粒径に対応する粒径の細骨材が存在せず、その他の粒径の細骨材が存在する状態となる。   In addition, when replacing the fine aggregate with graphite powder, the fine aggregate is screened to remove the fine aggregate having a particle size corresponding to the particle size of the graphite powder and replacing it with the graphite powder. By leaving the aggregate unchanged, self-lubricating property can be added to the concrete while maintaining the strength of the concrete. At this time, in the concrete (graphite concrete), there is no fine aggregate having a particle size corresponding to the particle size of the graphite powder, and there is a fine aggregate having another particle size.

黒鉛粉末層9は黒鉛単体の粉末による層であり、例えば黒鉛コンクリート7の打設直後に黒鉛粉末を黒鉛コンクリート7の上に散布し、コテで黒鉛粉末を押えるなどして、黒鉛コンクリート7と一体に形成される。黒鉛粉末は黒鉛コンクリート7と一体化されているので球体のようには転がらず、滑り層4は基礎躯体5に対して滑動することとなる。   The graphite powder layer 9 is a layer made of graphite alone. For example, the graphite powder 7 is sprinkled on the graphite concrete 7 immediately after the graphite concrete 7 is placed, and the graphite powder 7 is pressed with the iron to integrate the graphite powder 7 with the graphite concrete 7. Formed. Since the graphite powder is integrated with the graphite concrete 7, the graphite powder does not roll like a sphere, and the sliding layer 4 slides with respect to the foundation housing 5.

杭3と基礎躯体5の間には鉄筋11を設けることができる。鉄筋11の下端部は杭頭3aに埋設され、鉄筋11の下端部より上方の部分は杭頭3aから延びて滑り層4の黒鉛コンクリート7に埋設され定着される。鉄筋11は1又は複数本配置される。   A reinforcing bar 11 can be provided between the pile 3 and the foundation frame 5. A lower end portion of the reinforcing bar 11 is embedded in the pile head 3 a, and a portion above the lower end portion of the reinforcing bar 11 extends from the pile head 3 a and is embedded and fixed in the graphite concrete 7 of the sliding layer 4. One or a plurality of reinforcing bars 11 are arranged.

滑り層4の黒鉛が鉄筋11と接触すると、鉄筋11が発錆する恐れがあるが、本実施形態では鉄筋11の滑り層4内の部分の周囲に防錆層13が形成されており、これにより鉄筋11の防錆を行うことができる。防錆層13の形成方法としては、鉄筋11にテープやゴムシートを巻き付ける、鉄筋11に錆止め材、エポキシ樹脂、石膏を塗布する、鉄筋11に溶融亜鉛メッキ加工を行う等が考えられる。ただし防錆層13の形成方法はこれに限らない。   When the graphite of the sliding layer 4 comes into contact with the reinforcing bar 11, the reinforcing bar 11 may rust, but in this embodiment, the antirust layer 13 is formed around the portion of the reinforcing bar 11 in the sliding layer 4. Thus, the reinforcing bars 11 can be rust-prevented. Possible methods for forming the rust prevention layer 13 include winding a tape or rubber sheet around the reinforcing bar 11, applying a rust inhibitor, epoxy resin, or gypsum to the reinforcing bar 11, or performing hot dip galvanizing on the reinforcing bar 11. However, the formation method of the rust prevention layer 13 is not restricted to this.

図1の31、33は杭3の鉄筋であり、それぞれ杭3の主筋と帯筋である。本実施形態では、杭頭3aに露出した主筋31の頂部にも防錆層13と同様の防錆層15が設けられる。   Reference numerals 31 and 33 in FIG. 1 are reinforcing bars of the pile 3, which are a main reinforcing bar and a reinforcing bar of the pile 3, respectively. In this embodiment, the rust prevention layer 15 similar to the rust prevention layer 13 is provided also in the top part of the main reinforcement 31 exposed to the pile head 3a.

(2.接合構造1の構築方法)
図2、3は接合構造1の構築方法を示す図である。本実施形態では、既存躯体を解体した後、既存躯体の杭3(既存杭)を新設の基礎躯体5に接合する例を説明する。
(2. Construction method of joint structure 1)
2 and 3 are diagrams showing a method for constructing the joint structure 1. FIG. This embodiment demonstrates the example which joins the pile 3 (existing pile) of the existing frame to the newly installed foundation frame 5 after dismantling the existing frame.

すなわち、本実施形態ではまず図2(a)に示すように杭3の上部の既存躯体を解体する。図2(a)の上図は杭3を上から見た図、下図は杭3の鉛直方向断面を見た図である。以降の図2(b)(c)についても同様である。   That is, in this embodiment, first, as shown in FIG. The upper view of FIG. 2A is a view of the pile 3 as viewed from above, and the lower view is a view of the vertical section of the pile 3 as viewed. The same applies to FIGS. 2B and 2C.

なお、図2(a)の点線部は解体された既存躯体を示す。本実施形態では既存躯体に埋設された杭3の主筋31も切断され、杭頭3aに主筋31の頂部が露出する。   In addition, the dotted line part of Fig.2 (a) shows the existing housing disassembled. In this embodiment, the main reinforcement 31 of the pile 3 embedded in the existing frame is also cut, and the top of the main reinforcement 31 is exposed to the pile head 3a.

こうして既存躯体を解体した後、図2(b)に示すように杭頭3aのコンクリートに鉄筋11の下端部を埋設する。この際、例えば杭頭3aにインサート(不図示)を埋設し、このインサートに鉄筋11の下端部を取付ける。   After dismantling the existing frame in this way, the lower end of the reinforcing bar 11 is embedded in the concrete of the pile head 3a as shown in FIG. 2 (b). At this time, for example, an insert (not shown) is embedded in the pile head 3a, and the lower end portion of the reinforcing bar 11 is attached to the insert.

そして、図2(c)に示すように鉄筋11の周囲に防錆層13を形成し、防錆処理を行う。本実施形態では、杭頭3aに露出した主筋31の頂部にも防錆層13と同様の防錆層15が形成される。なお、鉄筋11を省略することも可能であり、この場合は主筋31の頂部に防錆層15を形成するだけでよい。   And as shown in FIG.2 (c), the antirust layer 13 is formed around the reinforcing bar 11, and an antirust process is performed. In this embodiment, the rust prevention layer 15 similar to the rust prevention layer 13 is formed also on the top part of the main reinforcement 31 exposed to the pile head 3a. Note that the reinforcing bar 11 can be omitted. In this case, it is only necessary to form the rust prevention layer 15 on the top of the main reinforcing bar 31.

次に、図3(a)に示すように型枠20を配置して杭頭3aに黒鉛コンクリート7を打設する。そして、図3(b)に示すように黒鉛コンクリート7の打設直後に黒鉛コンクリート7上に黒鉛粉末を散布し、コテで抑えるなどして黒鉛コンクリート7と一体化した黒鉛粉末層9を設ける。   Next, as shown in FIG. 3A, the formwork 20 is arranged and the graphite concrete 7 is placed on the pile head 3a. Then, as shown in FIG. 3B, immediately after placing the graphite concrete 7, a graphite powder layer 9 integrated with the graphite concrete 7 is provided by spreading graphite powder on the graphite concrete 7 and suppressing it with a trowel.

その後、型枠20を解体し、図3(c)に示すように上部の基礎躯体5を新たに施工することで、接合構造1が構築される。   Thereafter, the formwork 20 is disassembled, and the upper base casing 5 is newly constructed as shown in FIG.

以上説明したように、本実施形態では、下部の杭3と上部の基礎躯体5の間に、固体潤滑性を有する黒鉛を含むことにより摩擦係数を低減した滑り層4を設けることで、基礎躯体5と杭3との間で伝達される水平力の低減効果が得られる。本実施形態では、黒鉛の素材自体が持つ潤滑性を利用した滑り層4を設けることで、滑り性能が高く簡易な構成の接合構造1を実現でき、前記のような転がり支承としての球体を含む構成等も不要になり低コストである。   As described above, in the present embodiment, by providing the sliding layer 4 having a reduced coefficient of friction by including graphite having solid lubricity between the lower pile 3 and the upper foundation casing 5, the foundation casing is provided. The reduction effect of the horizontal force transmitted between 5 and the pile 3 is acquired. In the present embodiment, by providing the sliding layer 4 utilizing the lubricity of the graphite material itself, it is possible to realize the joint structure 1 having a high sliding performance and a simple configuration, including the sphere as the rolling bearing as described above. A configuration or the like is not necessary, and the cost is low.

特に本実施形態では、滑り層4として黒鉛を含み自己潤滑性のある黒鉛コンクリート7を適用することで、水平力低減効果が得られる。また杭頭処理におけるモルタル打設(均しコンクリート)を黒鉛コンクリート7で代替することもできる。   In particular, in the present embodiment, by applying graphite concrete 7 containing graphite as the sliding layer 4 and having self-lubricating properties, a horizontal force reducing effect can be obtained. Moreover, the mortar placement (leveling concrete) in the pile head processing can be replaced with the graphite concrete 7.

また本実施形態では、黒鉛コンクリート7の表面に黒鉛粉末層9をさらに設けることで、より高い水平力低減効果が得られる。   Moreover, in this embodiment, the further horizontal force reduction effect is acquired by further providing the graphite powder layer 9 on the surface of the graphite concrete 7. FIG.

黒鉛コンクリート7は、細骨材のうち、黒鉛粉末の粒径に対応する粒径の細骨材を黒鉛粉末に置き換え、その他の粒径の細骨材はそのままとすることで、コンクリートの強度等を維持しつつ、コンクリートに自己潤滑性を付与できる。   In the graphite concrete 7, the fine aggregate having a particle size corresponding to the particle size of the graphite powder is replaced with the graphite powder, and the fine aggregate having the other particle size is left as it is. While maintaining the above, self-lubricating property can be imparted to the concrete.

さらに、本実施形態では鉄筋11により滑り層4と基礎躯体5との一体性を高めることもできる。滑り層4の黒鉛が鉄筋11と接触すると発錆する恐れがあるが、本実施形態では鉄筋11に防錆層13を形成することで、発錆を防ぐことができる。なお、図4の接合構造1’に示すように、鉄筋11は滑り層4を貫通するように配置してその上端部を基礎躯体5に埋設してもよく、杭3と基礎躯体5の間の鉄筋11により引張力を負担させることができる。鉄筋11を埋設する場合は、鉄筋11のせん断降伏応力の総和が滑り層4と基礎躯体5の間に生じる摩擦力(特に動摩擦力)以下となるようにし、滑り層4の滑り性能を妨げないようにする。   Furthermore, in this embodiment, the integrity of the sliding layer 4 and the foundation frame 5 can be enhanced by the reinforcing bars 11. If the graphite of the sliding layer 4 comes into contact with the reinforcing bar 11, rusting may occur. However, in this embodiment, the rusting layer 13 can be formed on the reinforcing bar 11 to prevent rusting. As shown in the joint structure 1 ′ in FIG. 4, the rebar 11 may be disposed so as to penetrate the sliding layer 4 and the upper end thereof may be embedded in the foundation frame 5. The tensile force can be borne by the reinforcing bar 11. When the reinforcing bar 11 is embedded, the total of the shear yield stress of the reinforcing bar 11 is set to be equal to or less than the frictional force (particularly dynamic frictional force) generated between the sliding layer 4 and the foundation frame 5 and does not hinder the sliding performance of the sliding layer 4. Like that.

しかしながら、本発明はこれに限らない。例えば前記の黒鉛粉末層9を省略し、黒鉛コンクリート7のみによって滑り層を形成することも可能である。   However, the present invention is not limited to this. For example, it is possible to omit the graphite powder layer 9 and to form a sliding layer with only the graphite concrete 7.

一方、黒鉛コンクリート7に代えて普通コンクリートを用い、黒鉛粉末層9のみにより滑り層を形成することも可能であり、これによっても滑り性能が高く、且つ簡易な構成の接合構造を得ることができる。ただし杭3と基礎躯体5の間には常時鉛直力が作用しており、振動により水平力が作用する場合もあるので黒鉛粉末が摩耗する可能性があり、この面では黒鉛コンクリート7がより望ましい。   On the other hand, it is also possible to use plain concrete instead of the graphite concrete 7 and form the sliding layer only by the graphite powder layer 9, which also provides a sliding structure with high sliding performance and a simple configuration. . However, a vertical force always acts between the pile 3 and the foundation frame 5, and a horizontal force may act due to vibration, so there is a possibility that the graphite powder is worn. In this aspect, the graphite concrete 7 is more desirable. .

また、黒鉛粉末層9の代わりに黒鉛粉末を含む液状層や、シート状に成型した黒鉛を用いることも可能であり、黒鉛粉末層9と同様に設置することが可能である。さらに、杭3はコンクリート製に限らず、木製であってもよい。   Further, instead of the graphite powder layer 9, a liquid layer containing graphite powder or a graphite molded into a sheet shape can be used, and can be installed in the same manner as the graphite powder layer 9. Further, the pile 3 is not limited to concrete but may be wooden.

本実施形態の接合構造1は下部構造体である杭3と上部構造体である基礎躯体5を接合したものであり、杭3に加わる水平力を低減することが可能になるが、下部構造体は杭3に限らず柱でもよく、上部構造体は梁などであってもよい。この場合、前記と同様の滑り層を設けることで免震部材としての効果を得ることができ、柱に加わる水平力を低減することができる。   The joint structure 1 of the present embodiment is obtained by joining a pile 3 that is a lower structure and a foundation frame 5 that is an upper structure, and the horizontal force applied to the pile 3 can be reduced. Is not limited to the pile 3 and may be a pillar, and the upper structure may be a beam or the like. In this case, the effect as a seismic isolation member can be acquired by providing the sliding layer similar to the above, and the horizontal force added to a pillar can be reduced.

また、基礎躯体5や梁などの上部構造体の下面に黒鉛コンクリート7等による滑り層4を設けることも可能であり、この場合、滑り層4は杭3や柱などの下部構造体に対して滑動する。また鉄筋11を上部構造体から延びるように設け、滑り層4の黒鉛コンクリート7に埋設することもできる。   Further, it is possible to provide a sliding layer 4 made of graphite concrete 7 or the like on the lower surface of the upper structure such as the foundation frame 5 or the beam. In this case, the sliding layer 4 is not attached to the lower structure such as the pile 3 or the column. To slide. Further, the reinforcing bars 11 can be provided so as to extend from the upper structure, and can be embedded in the graphite concrete 7 of the sliding layer 4.

以下、本発明の別の例を第2の実施形態として説明する。第2の実施形態は第1の実施形態と異なる点について説明し、同様の点については図等で同じ符号を付すなどして説明を省略する。   Hereinafter, another example of the present invention will be described as a second embodiment. The second embodiment will be described with respect to differences from the first embodiment, and the same points will be denoted by the same reference numerals in the drawings and the like, and the description thereof will be omitted.

[第2の実施形態]
(1.接合構造1a)
図5は本発明の第2の実施形態に係る接合構造1aを示す図である。本実施形態の接合構造1aも下部構造体である杭3と上部構造体である基礎躯体5を接合するものであり、杭3と基礎躯体5の間に黒鉛コンクリート7と黒鉛粉末層9による滑り層4が設けられるが、前記の鉄筋11が設けられない点で主に異なる。
[Second Embodiment]
(1. Joining structure 1a)
FIG. 5 is a view showing a joint structure 1a according to the second embodiment of the present invention. The joining structure 1a of the present embodiment also joins the pile 3 as the lower structure and the foundation casing 5 as the upper structure, and slips between the pile 3 and the foundation casing 5 due to the graphite concrete 7 and the graphite powder layer 9. The layer 4 is provided, but is mainly different in that the reinforcing bar 11 is not provided.

(2.接合構造1aの構築方法)
図6、7は接合構造1aの構築方法を示す図である。本実施形態は、新設の杭3を施工した後、杭3と基礎躯体5の接合構造1aを構築する例である。
(2. Construction method of joint structure 1a)
6 and 7 are diagrams illustrating a method of constructing the joint structure 1a. This embodiment is an example of constructing a joint structure 1 a of the pile 3 and the foundation frame 5 after constructing the new pile 3.

すなわち、本実施形態ではまず図6(a)に示すように場所打ちコンクリートによる杭3を構築する。図6(a)は杭3の鉛直方向断面を見た図である。以降の図6(b)(c)、図7(a)(b)についても同様である。   That is, in this embodiment, first, a pile 3 made of cast-in-place concrete is constructed as shown in FIG. FIG. 6A is a view of a vertical section of the pile 3. The same applies to FIGS. 6B and 6C and FIGS. 7A and 7B.

次に、図6(b)に示すように杭頭処理を行って余盛コンクリートを除去する。そして、図6(c)に示すように型枠20を配置して杭頭3aに黒鉛コンクリート7を打設し、図7(a)に示すように黒鉛コンクリート7の上に黒鉛粉末層9を設ける。黒鉛コンクリート7は、余盛コンクリートを除去した後の杭頭3aのコンクリート面の凹凸により杭3と一体化する。黒鉛コンクリート7の打設前に、杭頭3aに凹凸を形成する工程を別途実施してもよい。   Next, pile head processing is performed as shown in FIG. Then, as shown in FIG. 6 (c), the mold frame 20 is arranged and the graphite concrete 7 is placed on the pile head 3a. As shown in FIG. 7 (a), the graphite powder layer 9 is placed on the graphite concrete 7. Provide. The graphite concrete 7 is integrated with the pile 3 by the unevenness of the concrete surface of the pile head 3a after removing the surplus concrete. Before placing the graphite concrete 7, a process of forming irregularities on the pile head 3a may be performed separately.

その後、型枠20を解体し、図7(b)に示すように上部の基礎躯体5を施工することで、接合構造1aが構築される。   Thereafter, the formwork 20 is disassembled, and the upper base casing 5 is constructed as shown in FIG. 7B, whereby the joint structure 1a is constructed.

本実施形態でも、滑り性能が高く、且つ簡易な構成の接合構造1aを得ることができ、第1の実施形態と同様の効果が得られる。なお、本実施形態でも第1の実施形態の図1や図4等の例と同様に鉄筋11を設けることは可能であり、この場合も第1の実施形態と同様の防錆層を鉄筋11の周囲に形成する。   Also in this embodiment, it is possible to obtain a joining structure 1a having high sliding performance and a simple configuration, and the same effect as that of the first embodiment can be obtained. In this embodiment as well, it is possible to provide the reinforcing bar 11 as in the example of FIG. 1 and FIG. 4 of the first embodiment. In this case as well, the same antirust layer as that of the first embodiment is provided. Form around.

以下、摩擦係数測定試験を行って黒鉛による水平力低減効果について検討を行った結果を実施例として説明する。なお、本発明はこれに限定されるものではない。   Hereinafter, the result of conducting a friction coefficient measurement test and examining the effect of reducing the horizontal force by graphite will be described as an example. Note that the present invention is not limited to this.

<黒鉛粉末>
黒鉛粉末は、後述する実施例1〜4に示すようにコンクリートへの添加を行った。また比較例として黒鉛粉末を使用しない普通コンクリートについても検討を行った。
<Graphite powder>
The graphite powder was added to concrete as shown in Examples 1-4 described later. Further, as a comparative example, ordinary concrete not using graphite powder was also examined.

<実施例1>
実施例1では、普通コンクリートの注水前の調合段階において、細骨材の一部に代えて表乾状態の黒鉛粉末を用い、これにより製造した黒鉛コンクリートを型枠内に打設し養生することで後述する材料試験の供試体と摩擦係数測定試験の試験体を作製した。供試体は直径100mm、高さ200mmの円柱状であり、試験体は直径100mm、高さ100mmの円柱状である。
<Example 1>
In Example 1, in the mixing stage before water injection of ordinary concrete, graphite powder in a surface dry state is used instead of a part of fine aggregate, and the graphite concrete thus produced is placed in a mold and cured. A specimen for a material test and a specimen for a friction coefficient measurement test described later were prepared. The specimen is a cylinder with a diameter of 100 mm and a height of 200 mm, and the specimen is a cylinder with a diameter of 100 mm and a height of 100 mm.

黒鉛粉末と置き換えた細骨材は、黒鉛粉末の粒径の範囲と同じ範囲の粒径を有する細骨材であり、その他の粒径の細骨材はそのまま用いた。   The fine aggregate replaced with the graphite powder was a fine aggregate having a particle size in the same range as that of the graphite powder, and the fine aggregates having other particle sizes were used as they were.

<実施例2>
実施例2では、普通コンクリートの注水前の調合段階で、細骨材の全部に代えて表乾状態の黒鉛粉末を用い、これにより製造した黒鉛コンクリートを用いて上記と同様に供試体と試験体を作製した。
<Example 2>
In Example 2, in the blending stage before water injection of ordinary concrete, graphite powder in a dry state was used instead of all fine aggregates, and specimens and test specimens were prepared in the same manner as described above using graphite concrete produced thereby. Was made.

<実施例3>
実施例3では、普通コンクリート(生コン)の製造後、気乾状態の黒鉛粉末を後から添加して手練で練り込むことで製造した黒鉛コンクリートにより、上記と同様に供試体と試験体を作製した。
<Example 3>
In Example 3, specimens and test specimens were prepared in the same manner as described above using graphite concrete produced by adding air-dried graphite powder and kneading by hand after the production of ordinary concrete (green concrete). .

<実施例4>
実施例4では、普通コンクリート(生コン)を製造し、これを型枠内に打設した直後にその頂面に気乾状態の黒鉛粉末を散布することで、供試体と試験体を作製した。
<Example 4>
In Example 4, normal concrete (green concrete) was manufactured, and immediately after placing this in a mold, an air-dried graphite powder was sprayed on the top surface thereof to prepare a specimen and a test specimen.

<比較例>
比較例として、普通コンクリートにより、上記と同様に供試体と試験体を作製した。実施例1〜4の普通コンクリートの調合(実施例1、2については細骨材を黒鉛粉末で置き換えない場合の普通コンクリートの調合)も、使用した混和剤の量および種類を除けば比較例の普通コンクリートとほぼ同様であり、例えば水セメント比などは実施例1〜4と比較例とで変わりは無い。練上り温度や養生方法などの環境条件についても同様である。
<Comparative example>
As a comparative example, specimens and specimens were made of ordinary concrete in the same manner as described above. The mixing of the ordinary concrete of Examples 1 to 4 (the mixing of the ordinary concrete when the fine aggregate is not replaced with graphite powder in Examples 1 and 2) is also of the comparative example except for the amount and type of the admixture used. It is almost the same as ordinary concrete. For example, the water cement ratio is the same between Examples 1 to 4 and the comparative example. The same applies to environmental conditions such as kneading temperature and curing method.

<各コンクリートの物性値>
実施例1〜4および比較例で作製した材齢1日、7日、28日のコンクリートによる供試体に対して材料試験を行い、圧縮強度、静弾性係数、ポアソン比を測定した。
<Physical properties of each concrete>
Material tests were performed on specimens made of concrete of 1 day, 7 days and 28 days of age produced in Examples 1 to 4 and Comparative Examples, and compressive strength, static elastic modulus, and Poisson's ratio were measured.

なお、実施例1および実施例2では材齢1日での脱型が困難であったので、実施例1では材齢1日での供試体に替えて材齢2日での供試体を用い、実施例2では材齢1日の供試体での測定を省略した。また実施例1〜4および比較例のそれぞれについて、各材齢の供試体の数は3体とし、圧縮強度、静弾性係数、ポアソン比は供試体間の平均値を算出した。   In Example 1 and Example 2, it was difficult to remove the mold at the age of 1 day. In Example 1, the specimen at the age of 2 days was used instead of the specimen at the age of 1 day. In Example 2, the measurement with a specimen having a material age of 1 day was omitted. Moreover, about each of Examples 1-4 and the comparative example, the number of the test bodies of each age was set to three, and the average value between test bodies calculated the compressive strength, the static elastic modulus, and the Poisson's ratio.

結果、実施例1〜4の供試体は、比較例の供試体に比べ圧縮強度が低下する傾向が認められた。しかし、黒鉛粉末の量が比較的少ない実施例1、3および4の供試体の圧縮強度は比較例の供試体の8割程度であり、強度が維持されることがわかった。ポアソン比、静弾性係数についても同様の傾向が見られた。   As a result, it was recognized that the specimens of Examples 1 to 4 tend to have a lower compressive strength than the specimens of the comparative examples. However, the compressive strength of the specimens of Examples 1, 3 and 4 with a relatively small amount of graphite powder was about 80% of that of the comparative specimen, and it was found that the strength was maintained. Similar trends were observed for Poisson's ratio and static elastic modulus.

<摩擦係数測定試験>
次に、実施例1〜4および比較例で作製したコンクリートによる試験体を用いて摩擦係数測定試験を行った。なお、実施例1、3、4および比較例では試験体を3体作成し、後述する摩擦係数はその平均値である。また実施例4の各試験体では、黒鉛粉末の散布量を変えている。
<Friction coefficient measurement test>
Next, a friction coefficient measurement test was conducted using the concrete specimens prepared in Examples 1 to 4 and the comparative example. In Examples 1, 3, 4 and the comparative example, three test specimens were prepared, and the friction coefficient described later is an average value thereof. Moreover, in each test body of Example 4, the application quantity of graphite powder is changed.

(動的2軸スライド装置)
摩擦係数測定試験には、図8に示す動的2軸スライド装置100を用いた。この動的2軸スライド装置100は、レール102に沿って鉛直方向に移動する鉛直移動部103とレール104に沿って水平移動する水平移動部105をフレーム101に設けたものである。
(Dynamic 2-axis slide device)
A dynamic biaxial slide device 100 shown in FIG. 8 was used for the friction coefficient measurement test. This dynamic biaxial slide device 100 is provided with a frame 101 including a vertical moving unit 103 that moves in a vertical direction along a rail 102 and a horizontal moving unit 105 that moves in a horizontal direction along a rail 104.

摩擦係数測定試験では、水平移動部105に設けたステージ106に試験体200を乗せ、鉛直移動部103に設けた押圧部107と試験体200との間には鋼板108を配置した。押圧部107によって試験体200に一定の軸力を与えながら、水平移動部105を水平方向に徐々に移動させ、水平荷重が増加しなくなった時(水平剛性(=水平荷重÷水平変位)が概ね0になった時)の水平荷重(滑り荷重)を測定した。上記の軸力は全試験体で一定とした。摩擦係数は滑り荷重を上記軸力で割って得ることができる。   In the friction coefficient measurement test, the test body 200 was placed on the stage 106 provided in the horizontal movement unit 105, and the steel plate 108 was disposed between the pressing unit 107 provided in the vertical movement unit 103 and the test body 200. When the horizontal moving part 105 is gradually moved in the horizontal direction while applying a constant axial force to the test body 200 by the pressing part 107, the horizontal load does not increase (horizontal rigidity (= horizontal load ÷ horizontal displacement) is approximately The horizontal load (sliding load) at 0) was measured. The above axial force was constant for all specimens. The coefficient of friction can be obtained by dividing the sliding load by the axial force.

(実験結果)
図9は、実施例1〜4および比較例の試験体の水平荷重と水平変位の関係を示すグラフである。このグラフは、水平荷重を軸力で割って得た摩擦係数換算値を縦軸とし、横軸を水平変位の量としたものである。
(Experimental result)
FIG. 9 is a graph showing the relationship between the horizontal load and the horizontal displacement of the test bodies of Examples 1 to 4 and the comparative example. In this graph, the friction coefficient conversion value obtained by dividing the horizontal load by the axial force is the vertical axis, and the horizontal axis is the amount of horizontal displacement.

図9に示すように、比較例の試験体の摩擦係数(水平剛性が概ね0となった時の水平荷重の摩擦係数換算値)は約0.5であったのに対し、実施例1〜4の試験体の摩擦係数は低くなり、滑り層としての水平力低減効果があることがわかった。   As shown in FIG. 9, the coefficient of friction of the test sample of the comparative example (converted value of the coefficient of friction of the horizontal load when the horizontal rigidity becomes approximately 0) was about 0.5, whereas It was found that the friction coefficient of the test body was low and there was an effect of reducing the horizontal force as a sliding layer.

特に、実施例1および実施例2の試験体は摩擦係数が0.2〜0.25程度、実施例4の試験体は摩擦係数が0.15程度となり、黒鉛粉末を後添加した実施例3(摩擦係数は0.4程度)と比較しても摩擦力が大きく低減された。なお、実施例4の試験体において、黒鉛粉末の散布量による摩擦係数の差異は認められなかった。   In particular, the specimens of Examples 1 and 2 have a coefficient of friction of about 0.2 to 0.25, the specimen of Example 4 has a coefficient of friction of about 0.15, and Example 3 in which graphite powder is added afterwards (the coefficient of friction is about 0.4). Compared with), the frictional force was greatly reduced. In addition, in the test body of Example 4, the difference of the friction coefficient by the application amount of graphite powder was not recognized.

以上、添付図面を参照して、本発明の好適な実施形態について説明したが、本発明は係る例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It will be apparent to those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea disclosed in the present application, and these are naturally within the technical scope of the present invention. Understood.

1、1’、1a:接合構造
3:杭
3a:杭頭
5:基礎躯体
7:黒鉛コンクリート
9:黒鉛粉末層
11:鉄筋
13、15:防錆層
20:型枠
31:主筋
33:帯筋
100:動的2軸スライド装置
200:試験体
DESCRIPTION OF SYMBOLS 1, 1 ', 1a: Joining structure 3: Pile 3a: Pile head 5: Foundation frame 7: Graphite concrete 9: Graphite powder layer 11: Reinforcement 13, 15: Rust prevention layer 20: Formwork 31: Main reinforcement 33: Band reinforcement 100: Dynamic two-axis slide device 200: Specimen

Claims (6)

杭または柱である下部構造体とその上部構造体の接合構造であって、
前記上部構造体と前記下部構造体の間に、黒鉛を含み、前記上部構造体または前記下部構造体に対して滑動する滑り層を設けたことを特徴とする接合構造。
A joint structure of a lower structure that is a pile or a column and its upper structure,
A junction structure comprising graphite and including a sliding layer that slides relative to the upper structure or the lower structure between the upper structure and the lower structure.
前記滑り層は、黒鉛を含むコンクリートを有することを特徴とする請求項1記載の接合構造。   The joint structure according to claim 1, wherein the sliding layer includes concrete containing graphite. 前記コンクリートは、細骨材のうち、黒鉛粉末の粒径に対応する粒径の細骨材を、前記黒鉛粉末に置き換えたものであることを特徴とする請求項2記載の接合構造。   The joining structure according to claim 2, wherein the concrete is obtained by replacing a fine aggregate having a particle size corresponding to the particle size of the graphite powder with the graphite powder. 前記上部構造体または前記下部構造体から延びる鉄筋が前記滑り層に埋設され、前記鉄筋の前記滑り層内の部分に防錆層が設けられたことを特徴とする請求項1から請求項3のいずれかに記載の接合構造。   The reinforcing bar extended from the said upper structure or the said lower structure was embed | buried under the said sliding layer, and the rust prevention layer was provided in the part in the said sliding layer of the said reinforcing bar, The Claim 1- Claim 3 characterized by the above-mentioned. The joining structure according to any one of the above. 前記滑り層は、黒鉛粉末を散布して形成された黒鉛粉末層を有することを特徴とする請求項1から請求項4のいずれかに記載の接合構造。   The joining structure according to any one of claims 1 to 4, wherein the sliding layer has a graphite powder layer formed by spraying graphite powder. 杭または柱である下部構造体とその上部構造体の接合構造の構築方法であって、
前記上部構造体と前記下部構造体の間に、黒鉛を含み、前記上部構造体または前記下部構造体に対して滑動する滑り層を設けることを特徴とする接合構造の構築方法。
A method of constructing a joint structure between a lower structure that is a pile or a column and its upper structure,
A method for constructing a joint structure, comprising: a slip layer that includes graphite and slides relative to the upper structure or the lower structure between the upper structure and the lower structure.
JP2018047585A 2018-03-15 2018-03-15 Joining structure, how to build a joining structure Active JP6967476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018047585A JP6967476B2 (en) 2018-03-15 2018-03-15 Joining structure, how to build a joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018047585A JP6967476B2 (en) 2018-03-15 2018-03-15 Joining structure, how to build a joining structure

Publications (2)

Publication Number Publication Date
JP2019157549A true JP2019157549A (en) 2019-09-19
JP6967476B2 JP6967476B2 (en) 2021-11-17

Family

ID=67993895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018047585A Active JP6967476B2 (en) 2018-03-15 2018-03-15 Joining structure, how to build a joining structure

Country Status (1)

Country Link
JP (1) JP6967476B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219749A (en) * 1985-03-23 1986-09-30 電気化学工業株式会社 Cement composition
JPH01102124A (en) * 1987-10-14 1989-04-19 Kubota Ltd Support structure for concrete structure
JPH10227039A (en) * 1997-02-14 1998-08-25 Nippon Pillar Packing Co Ltd Pile foundation structure
JP2000220151A (en) * 1999-02-03 2000-08-08 Ohbayashi Corp Seismic isolated structure for pile
JP2003268787A (en) * 2002-03-20 2003-09-25 Taisei Corp Support structure for concrete foundation
JP2006169075A (en) * 2004-12-20 2006-06-29 Yoji Natsume Highly thermal-conductive hydraulic compound, concrete molding using the compound and structure
JP2009091730A (en) * 2007-10-04 2009-04-30 Taisei Corp Foundation structure employing existing pile and new pile
JP2011184950A (en) * 2010-03-09 2011-09-22 Jp Home Kk Slide foundation structure
KR20110114265A (en) * 2010-04-13 2011-10-19 (주)지비텍이엔씨 Vibration damping pile cap and vibration damping pile structure using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219749A (en) * 1985-03-23 1986-09-30 電気化学工業株式会社 Cement composition
JPH01102124A (en) * 1987-10-14 1989-04-19 Kubota Ltd Support structure for concrete structure
JPH10227039A (en) * 1997-02-14 1998-08-25 Nippon Pillar Packing Co Ltd Pile foundation structure
JP2000220151A (en) * 1999-02-03 2000-08-08 Ohbayashi Corp Seismic isolated structure for pile
JP2003268787A (en) * 2002-03-20 2003-09-25 Taisei Corp Support structure for concrete foundation
JP2006169075A (en) * 2004-12-20 2006-06-29 Yoji Natsume Highly thermal-conductive hydraulic compound, concrete molding using the compound and structure
JP2009091730A (en) * 2007-10-04 2009-04-30 Taisei Corp Foundation structure employing existing pile and new pile
JP2011184950A (en) * 2010-03-09 2011-09-22 Jp Home Kk Slide foundation structure
KR20110114265A (en) * 2010-04-13 2011-10-19 (주)지비텍이엔씨 Vibration damping pile cap and vibration damping pile structure using the same

Also Published As

Publication number Publication date
JP6967476B2 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
Said et al. Structural behavior of RC engineered cementitious composite (ECC) exterior beam–column joints under reversed cyclic loading
Leung et al. Properties of wet-mixed fiber reinforced shotcrete and fiber reinforced concrete with similar composition
Zhang et al. Engineered cementitious composite with characteristic of low drying shrinkage
Golafshani et al. Bond behavior of steel and GFRP bars in self-compacting concrete
Won et al. Bond behaviour and flexural performance of structural synthetic fibre-reinforced concrete
Aldred Burj Khalifa–a new high for high-performance concrete
Lee et al. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates
Jiang et al. Shear-friction behavior of grooved construction joints between a precast UHPC girder and a cast-in-place concrete slab
Kassimi et al. Performance of fiber-reinforced self-consolidating concrete for repair of reinforced concrete beams
AbdelAleem et al. Influence of rubber content on enhancing the structural behaviour of beam–column joints
Al-Akhras et al. Repair of corroded self-compacted reinforced concrete columns loaded eccentrically using carbon fiber reinforced polymer
Liu et al. Experimental study of durable low-friction concrete contacts for precast segmental columns with resettable sliding joints
Karami Application of the cementitious grouts on stability and durability of semi flexible bituminous mixtures
Ding et al. Permeability of the bonding interface between strain-hardening cementitious composite and normal concrete
Apostolinas et al. Experimental investigation and analytical modelling of the roughness and bonding agent influence on the old-to-repair concrete interfacial bonding strength
JP4986924B2 (en) Seismic reinforcement method
JP2019157549A (en) Joint structure, and construction method of joint structure
Turk et al. Influence of loading condition and reinforcement size on the concrete/reinforcement bond strength
Jurkiewiez et al. Experimental study of a pre-cracked steel–concrete composite beam
Dybeł et al. Influence of silica fume content on bond behaviour of reinforcement in HPSCC
Hua et al. 3D-printed concrete shear keys: Design and experimental study
JP2016199904A (en) Construction method for floor slab structure
Pandurangan et al. Effect of fusion bonded epoxy coating and rib geometry on the bond strength of reinforced concrete
Oliveira et al. Investigating the fatigue performance of grouted macadams
Lee et al. Structural performance of SFRC slab-on-grade supported on elastic spring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6967476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150