JP2019155730A - Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method - Google Patents

Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method Download PDF

Info

Publication number
JP2019155730A
JP2019155730A JP2018045549A JP2018045549A JP2019155730A JP 2019155730 A JP2019155730 A JP 2019155730A JP 2018045549 A JP2018045549 A JP 2018045549A JP 2018045549 A JP2018045549 A JP 2018045549A JP 2019155730 A JP2019155730 A JP 2019155730A
Authority
JP
Japan
Prior art keywords
fiber
reinforcing
reinforced composite
yarn
composite sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018045549A
Other languages
Japanese (ja)
Inventor
田中 裕二
Yuji Tanaka
裕二 田中
普 菅野
Susumu Sugano
普 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018045549A priority Critical patent/JP2019155730A/en
Publication of JP2019155730A publication Critical patent/JP2019155730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

To provide a manufacturing method of a UD-like fiber-reinforced composite sheet by a filament winding (FW) method.SOLUTION: The present invention provides a manufacturing method for a fiber-reinforced composite sheet including reinforcing fibers oriented in one direction in solidified resin matrix. A wound yarn body such as a thermoplastic resin-coated yarn coated with a thermoplastic resin around a multifilament continuous reinforcing fiber is prepared, and the reinforcing fiber is wound in one direction with a predetermined tension by rotating a fixed frame consisting of at least one pair of threading members A and a fixed frame B of a predetermined length. Then, it is oriented in two or more layers separated by a predetermined thickness, and the pair of threading members A are temporarily fixed on a press mold while maintaining the predetermined tension, and are press-molded while adjusting a tension of the reinforcing fiber by adjusting a distance between the pair of threading members A, etc., and the thermoplastic resin is heat-melted and then solidified by cooling. There is also provided a rigidity reinforcement member having the fiber-reinforced composite sheet having a hollow structure as a load-supporting insert member.SELECTED DRAWING: Figure 4

Description

本発明は、固化樹脂マトリックス中に一方向に高度に配向した(以下、「UDライクな」、「一方向性の」ともいう。)繊維強化複合シートの製造方法に関する。より詳しくは、本発明は、フィラメントワインディング(FW)法によるUDライクな繊維強化複合シートの製造方法、及び中空構造を有する該繊維強化複合シートを荷重支持インサート部材として有する剛性補強材に関する。   The present invention relates to a method for producing a fiber-reinforced composite sheet highly oriented in one direction (hereinafter also referred to as “UD-like” or “unidirectional”) in a solidified resin matrix. More specifically, the present invention relates to a method for producing a UD-like fiber reinforced composite sheet by a filament winding (FW) method, and a rigid reinforcing material having the fiber reinforced composite sheet having a hollow structure as a load supporting insert member.

金属代替材料として軽量化を目的に現在実用化されている樹脂系複合材料の成形方法としては、ベースマトリックスとして用いる樹脂が熱可塑性樹脂であるか又は熱硬化性樹脂であるか、補強材の体積含有率が50%を超えるか否か、補強材が、紡糸された連続長繊維であるか又はチョップドストランドであるか又は織物であるか、の点で概ね分類することができる。   As a method of molding a resin-based composite material that is currently in practical use for the purpose of reducing the weight as a metal substitute material, the resin used as the base matrix is a thermoplastic resin or a thermosetting resin, and the volume of the reinforcing material It can be roughly classified in terms of whether the content exceeds 50%, and whether the reinforcing material is a spun continuous long fiber, a chopped strand or a woven fabric.

補強材として連続長繊維を用いるものとしては、合糸したロービングを1〜数10本引き揃え、主にエポキシ、ポリエステル等の熱硬化性樹脂であるマトリックスを含浸させながら、マンドレル(金型)に所定の厚さまでテンションをかけて所定の角度で巻き付け、加熱オーブン等の中で加熱硬化後脱型するか又は樹脂、金属製中空ライナー/インナーと一体化する成形法であるフィラメントワインディング(FW、Filament Winding)法が知られている(FW法の概要については、図2を参照のこと。)。FW法は、補強材の体積含有率が高く、また強化繊維が円周方向に概ね配向しているため、FRPの成形法の中で強化繊維の強さを有効に利用しており、パイプ、圧力容器、釣り竿、ゴルフクラブシャフト等の製造に用いられているが、FW法で熱可塑性樹脂を用いた例はない。尚、FW法により、熱硬化性樹脂を含浸させたロービングを、金属板に所定の角度で巻き付けた後、加熱硬化させ、端部を切断し平板とすることは知られているが、熱可塑性樹脂を用いた平板状の繊維強化複合材の製造には用いられていない。   For continuous reinforcing fibers used as a reinforcing material, 1 to several tens of rovings that have been combined are aligned, and a mandrel (mold) is mainly impregnated with a matrix that is a thermosetting resin such as epoxy or polyester. Filament winding (FW, Filament), which is a molding method in which tension is applied to a predetermined thickness and wound at a predetermined angle, followed by heat curing in a heating oven or the like, or molding with a resin or metal hollow liner / inner. Winding) method is known (see Figure 2 for an overview of the FW method). In the FW method, since the volume content of the reinforcing material is high and the reinforcing fibers are generally oriented in the circumferential direction, the strength of the reinforcing fibers is effectively used in the FRP molding method. Although it is used for manufacturing pressure vessels, fishing rods, golf club shafts, etc., there is no example of using a thermoplastic resin by the FW method. In addition, it is known that a roving impregnated with a thermosetting resin is wound around a metal plate at a predetermined angle by the FW method and then heat-cured to cut the end portion into a flat plate. It is not used for the production of a flat fiber reinforced composite material using a resin.

補強材としてチョップドストランドを用いるものとしては、補強材体積含有率が低く、マトリックスとして熱可塑性樹脂を用いる射出成形、スタンバブルシート成形が、熱硬化性樹脂を用いるSMC成形、BMC成形、スプレー成形が知られている。しかしながら、これらの成形法で製造したものは、補強材の体積含有率が低く、また、強化繊維であるチョップドストランドがランダムに配向しているため、強化繊維の強さを有効に発現できない。   As a reinforcing material using chopped strands, the volume content of the reinforcing material is low, and injection molding using a thermoplastic resin as a matrix, stampable sheet molding, SMC molding using a thermosetting resin, BMC molding, and spray molding. Are known. However, those produced by these molding methods have a low volume content of the reinforcing material, and the chopped strands that are reinforcing fibers are randomly oriented, so that the strength of the reinforcing fibers cannot be effectively expressed.

補強材として連続長強化繊維が経緯に配向した織物を用い、また、例えば、マトリックス樹脂として熱可塑性繊維を用いるプレス成形、ハイブリッド(プレス+射出複合)成形により得た成形品(テキスタイルコンポジット)は、ランダムに配向した強化繊維の短繊維を用いて得た射出成形品に比較して、強化繊維の体積率が高く、引張強度、曲げ強度、曲げ弾性率、最大衝撃エネルギー(高速面衝撃)がいずれも高いため、高強度、高剛性の補強材として、例えば、航空機、鉄道車両、自動車等の骨格部材、シート部材、衝撃吸収部材等への応用が期待されている。   For example, a molded article (textile composite) obtained by press molding or hybrid (press + injection composite) molding using a thermoplastic fiber as a matrix resin, using a fabric in which continuous long reinforcing fibers are oriented as a reinforcing material. Compared to injection-molded products obtained using randomly oriented reinforcing short fibers, the volume ratio of reinforcing fibers is high, and tensile strength, bending strength, bending elastic modulus, and maximum impact energy (high-speed surface impact) Therefore, as a high-strength and high-rigidity reinforcing material, for example, it is expected to be applied to skeleton members, seat members, impact absorbing members, etc. for aircraft, railway vehicles, automobiles and the like.

かかる状況下、以下の特許文献1には、以下の事項が検討されている。
炭素繊維、ガラス繊維等の織物に熱可塑性樹脂を含浸したシート(プリプレグ)は室温では硬い板の状態なので複雑な形状をした成形型に沿って積層成形するのが難しく、また、熱硬化性樹脂を使ったプリプレグは柔らかで、しかも粘着性があるため成形は容易であるものの生産性に問題があること;
熱可塑性樹脂を繊維に加工して、炭素繊維、ガラス繊維等の強化繊維と一緒に織り上げた混織繊物であれば、織物であるので柔軟性に富み、複雑な形状にも加工でき、強化繊維と樹脂が両方とも繊維の状態でからみ合っているので、加熱溶融して複合材料を作ると、繊維と樹脂の混ざり具合も均一になる。しかしながら、混織繊物を成形する場合、素材が柔らかいために、ハンドリングが難しく、安定した高サイクル生産を行うには、やはり難点があること;
他方、金属成形の分野においては、長い歴史の中で種々の高サイクル成形技術が確立されてきており、その中で絞り加工を中心とした板金プレス成形(圧縮成形の一種)は最も一般的な高サイクル成形方法の一つである。樹脂系複合材料の分野でも一次素材として、炭素繊維、ガラス繊維等の織物に熱可塑性樹脂を含浸したシート(プリプレグ)を使用することができれば、金属成形と同様に、最も生産性の高い成形手法に成りえるため、成形に供する素材として、規則性を有する織物状配向の強化繊維を熱可塑性樹脂に含浸、凝固させたシートを用いればよいこと;
しかしながら、織物素材をシート成形、つまり、圧縮加工、絞り加工等の組み合わせ成形する場合、繊維自体の伸び、繊維形状の伸び、剪断すべり、格子効果による変形が生じること(これらの変形については、それぞれ、図1(a)〜(d)を参照のこと。);
繊維自体の伸びは、成形中に引張力が作用することによる繊維自体の伸び変形であり、最大ひずみとして約5%以下(例えば、ガラス繊維では5%程度、炭素繊維では、最大2%程度)であり、全体に占める影響は少なく、また、繊維形状の伸びは、繊維を織った際の、縦・横糸のゆるみが成形中に伸びることによる変形であり、シートの強度を高めるため、シート織の際、これらのゆるみは極力少なくなるように管理されており、全体の変形に占める影響は少なく、また、剪断すべりは、角部等急激な変形が生じる箇所で発生するが、格子効果による変形は、金属の剪断ひずみに類似したものであり、変形中、繊維は伸びずに配向方向を変化させるだけであり、比較的小さな力で大きな変形が得られ、織物素材のート成形においては、変形領域の大部分は、格子効果による変形に起因していること;
そこで、シート成形中に局部的なシート座屈がなく、良好な性状品を得るために、成形途中に織物の格子変形角度が一定角以上にならないよう、制御する必要があるため、それを解決するための技術的手段として、成形中にシートをクランプするフレーム部において、成形途中でシートの格子変形角度が一定角度以上にならないように、繊維拘束ピンの突出によりシートの必要箇所を拘束するとともに、成形終了時に成形品を取り出した際、繊維拘束ピンを自動的に元の位置に復帰させることにより、シートに皺がよることがなく、連続成形を行い得る熱可塑性樹脂高性能繊維強化複合材料シートの繊維流動制御方法及びその装置を提供すること。
Under such circumstances, the following matters are studied in Patent Document 1 below.
Sheets (prepregs) impregnated with thermoplastic resin in woven fabrics such as carbon fibers and glass fibers are hard plates at room temperature, so it is difficult to laminate them along a complicated mold, and thermosetting resins Prepregs made of lacquer are soft and sticky, so they are easy to mold but have problems with productivity;
A mixed woven fabric made by processing thermoplastic resin into fibers and woven together with carbon fiber, glass fiber, and other reinforcing fibers is a woven fabric, so it is flexible and can be processed into complex shapes and strengthened. Since both the fiber and the resin are entangled in a fiber state, when the composite material is made by heating and melting, the mixing condition of the fiber and the resin becomes uniform. However, when molding mixed woven fabrics, handling is difficult due to the softness of the material, and there are still difficulties in achieving stable high-cycle production;
On the other hand, in the field of metal forming, various high cycle forming techniques have been established over a long history, and sheet metal press forming (a type of compression forming) centering on drawing is the most common. This is one of the high cycle molding methods. If the sheet (prepreg) in which a thermoplastic resin is impregnated into a woven fabric such as carbon fiber or glass fiber can be used as the primary material in the field of resin composite materials, the most productive molding method is the same as metal molding. Therefore, a sheet obtained by impregnating a thermoplastic resin with a woven fiber-oriented reinforcing fiber having regularity and solidifying it as a material to be molded;
However, when a woven material is formed into a sheet, that is, combined with compression, drawing, etc., the fiber itself stretches, the fiber shape stretches, shear slips, and deformation due to the lattice effect occurs. , See FIGS. 1 (a)-(d).);
The elongation of the fiber itself is an elongation deformation of the fiber itself due to a tensile force acting during molding, and the maximum strain is about 5% or less (for example, about 5% for glass fiber and about 2% for carbon fiber). The elongation of the fiber shape is a deformation caused by the loosening of the warp and weft yarns during the formation of the fiber during the forming process. At this time, these slacks are managed so as to be reduced as much as possible, and the influence on the overall deformation is small, and shear slip occurs at a place where abrupt deformation such as a corner occurs, but deformation caused by the lattice effect Is similar to the shear strain of metal, and during the deformation, the fibers do not stretch but only change the orientation direction, and a large deformation can be obtained with a relatively small force. Deformation Most of the band is that it is caused by deformation due to the lattice effect;
Therefore, in order to obtain a good quality product without local sheet buckling during sheet forming, it is necessary to control the lattice deformation angle of the fabric so that it does not exceed a certain angle during forming. As a technical means to do this, in the frame part that clamps the sheet during molding, the necessary portion of the sheet is restrained by the protrusion of the fiber restraint pin so that the lattice deformation angle of the sheet does not exceed a certain angle during the molding. When a molded product is taken out at the end of molding, a high-performance thermoplastic fiber reinforced composite material that can be continuously molded without wrinkling the sheet by automatically returning the fiber restraining pin to its original position. To provide a fiber flow control method and apparatus for a sheet.

他方、以下の特許文献2には、一方向(UD、Uni Direction)繊維が一方向性の様式で連続して且つ均一に配向されている荷重支持要素の、例えば、航空宇宙用の乗り物の一部である支持体への取り付け部分の表面を、樹脂マトリック中にランダムに配向され、切断された不連続繊維を含む接続要素で、オーバーモールドにより覆った複合材構造物が開示されている。かかる複合材構造物の接続要素は、位置方向繊維複合材である荷重持要素と異なり、機械加工による層間剥離による影響を受けにくく機械加工が容易であり、また、支持体への荷重支持要素との間の非常に強い接続が可能になるとされる。特許文献2には、荷重支持要素は、一方向繊維から作製され、一方向繊維は、プリプレグトウ又はテープの形態であってよく、荷重支持要素の形成中に樹脂で含浸されるドライなUD繊維であってもよいと記載されているが、強化繊維の一方向への配向は、炭素繊維の一方向プリプレグテープであるUDテープ(HexPly(登録商標))(炭素繊維/熱可塑性強化エポキシ)が例示されているに過ぎない。すなわち、特許文献2には、プレス成形に際して強化繊維を一方向に配向させるために、UD繊維が予め並列しているUDテープを用いており、プレス成型時の強化繊維のテンション、配向乱れについては一切考察されていない。   On the other hand, Patent Document 2 below discloses a load bearing element in which unidirectional (UD, Uni Direction) fibers are continuously and uniformly oriented in a unidirectional manner, for example, an aerospace vehicle. A composite structure is disclosed in which the surface of the attachment portion to the support, which is a part, is covered with an overmold with connecting elements including discontinuous fibers randomly oriented and cut in a resin matrix. The connecting element of such a composite material structure is unlikely to be affected by delamination caused by machining, unlike the load bearing element that is a position-direction fiber composite material, and is easy to machine. It is said that a very strong connection between them will be possible. In U.S. Patent No. 6,047,059, load bearing elements are made from unidirectional fibers, which may be in the form of prepreg tow or tape, and are dry UD fibers impregnated with resin during the formation of the load bearing elements. However, UD tape (HexPly®) (carbon fiber / thermoplastic reinforced epoxy), which is a unidirectional prepreg tape of carbon fiber, is used as the unidirectional orientation of the reinforcing fiber. It is only illustrated. That is, Patent Document 2 uses a UD tape in which UD fibers are arranged in advance in order to orient the reinforcing fibers in one direction during press molding. Regarding the tension and orientation disorder of the reinforcing fibers during press molding, It is not considered at all.

特許第2771692号公報Japanese Patent No. 2771692 特許第6154002号公報Japanese Patent No. 6154002

前記した従来技術に鑑み、本発明が解決しようとする課題は、フィラメントワインディング(FW)法によるUDライクな繊維強化複合シートの製造方法、及び中空構造を有する該繊維強化複合シートを荷重支持インサート部材として有する剛性補強材を提供することである。   In view of the above-described prior art, the problems to be solved by the present invention are a method for producing a UD-like fiber-reinforced composite sheet by the filament winding (FW) method, and the fiber-reinforced composite sheet having a hollow structure. It is to provide a rigid reinforcing material having.

前記した課題を解決すべく、本発明者らは鋭意検討し実験を重ねた結果、FW法により強化繊維にテンションをかけて配向させながら、プレス成形することで、かかる課題を解決できることを予想外に見出し、本発明を完成するに至ったものである。   In order to solve the above-mentioned problems, the present inventors have intensively studied and repeated experiments. As a result, it is unexpected that the problems can be solved by press-molding the reinforced fiber while applying tension to the reinforcing fibers. And the present invention has been completed.

すなわち、本発明は以下のとおりのものである。
[1]固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法であって、以下の工程:
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、マルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸、マルチフィラメント連続長強化繊維に熱可塑性樹脂を含浸させた熱可塑性樹脂含浸糸、及びマルチフィラメント連続長強化繊維に熱硬化性樹脂を含浸させた熱硬化性樹脂含浸糸からなる群から選ばれる強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その両端に所定厚の少なくとも1対の糸かけ部材Aを、かつ、その中心に回転軸を、脱着可能な状態で固定することができる所定長の固定枠Bに、該少なくとも1対の糸かけ部材Aと該回転軸を固定し、該巻糸体からの強化繊維を、該糸かけ部材Aに、該回転軸に直交する方向に対して0〜5度で所定のテンションをかけながら該回転軸を回転させることにより、一方向に巻き付け、該所定厚離間して2層以上で配向させる巻き付け・配向工程(本明細書中、便宜上、「FW工程」、「FW法」ともいう。);
該所定のテンションを保持したまま、該固定枠Bから該回転軸を取り外し、次いで、プレス成形用金型に、該固定枠Bと共に又は該固定枠Bを取り外した後に、該少なくとも1対の糸かけ部材Aを仮固定する仮固定工程;
必要により、該少なくとも1対の糸かけ部材Aの位置及び/又は糸かけ部材A間の距離を変更することで強化繊維の所定のテンションを更に維持しながら、所定の温度・圧力でプレス成形し、該熱可塑性樹脂又は熱硬化性樹脂を加熱溶融又は硬化、次いで冷却固化させることにより、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを得るプレス成形工程;
を含む前記方法。
[2]前記マルチフィラメント連続長強化繊維は、ガラス繊維及び炭素繊維からなる群から選ばれる、前記[1]に記載の方法。
[3]前記熱可塑性樹脂は、ポリアミド及びポリプロピレンからなる群から選ばれる、前記[1]又は[2]に記載の方法。
[4]前記繊維強化複合シートは、平板状構造を有する、前記[1]〜[3]のいずれかに記載の方法。
[5]前記成形工程において、前記糸かけ部材Aを略円柱状の中子として機能させ、必要により、前記所定厚離間して配向した強化繊維の層間に略円柱状中子を配置してプレス成形した後、該糸かけ部材Aを取り外し、さらに該層間に配置された略円柱状中子を除去することにより、平板状構造に加え中空構造を有する繊維強化複合シートを得る、前記[1]〜[3]のいずれかに記載の方法。
[6]前記平板状構造に、前記強化繊維の配向方向に直交する方向に沿って、厚みが異なる凹部が存在する、前記[4]又は[5]に記載の方法。
[7]前記繊維強化複合シートは、前記平板状構造の主平板部の強化繊維体積比よりも低い強化繊維体積比をもつ薄肉リブを有する、前記[4]〜[6]のいずれかに記載の方法。
[8]前記層間に配置される略円柱状中子が水溶性である、前記[5]〜[7]のいずれかに記載の方法。
[9]前記略円柱状の中子として機能させる糸かけ部材Aの、必要により前記層間に配置される略円柱状中子の円周方向に強化繊維を巻いた後にプレス成形工程を行うことにより、中空構造の円周方向にも強化繊維が配向した繊維強化複合シートを得る、前記[5]〜[8]のいずれかに記載の方法。
[10]前記巻き付け・配向工程において、記糸かけ部材Aに接する強化繊維の最内層では、前記強化繊維を、前記糸かけ部材Aに、前記回転軸に直交する方向に対して0度で巻き付け、強化繊維の最外層では、前記強化繊維を、前記糸かけ部材Aに、前記回転軸に直交する方向に対して5度未満の角度で巻き付ける、前記[1]〜[9]のいずれかに記載の方法。
[11]平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材の少なくとも一部に熱可塑性樹脂がオーバーモールドされている該中空構造を有する、支持体に接続するための剛性補強材。
[12]前記中空構造の円周方向にも強化繊維が配向している、前記[11]に記載の剛性補強材。
[13]前記中空構造は、前記支持体に接続するためのボルト締結部である、前記[11]又は[12]に記載の剛性補強材。
That is, the present invention is as follows.
[1] A method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in a solidified resin matrix, the following steps:
Thermoplastic coated yarn with multifilament continuous length reinforced fiber coated with thermoplastic resin, blended yarn of multifilament continuous length reinforced fiber and multifilament yarn of the same thermoplastic resin, multifilament continuous length reinforced fiber heated A wound body of reinforcing fibers selected from the group consisting of a thermoplastic resin-impregnated yarn impregnated with a plastic resin and a thermosetting resin-impregnated yarn obtained by impregnating a multifilament continuous length reinforcing fiber with a thermosetting resin, Winding body preparation process to prepare multiple;
At least one pair of yarn hooking members A having a predetermined thickness at both ends thereof, and at least one pair of yarn hooking members on a fixed frame B of a predetermined length that can be fixed in a detachable state at the center thereof. The member A and the rotating shaft are fixed, and the reinforcing fiber from the wound yarn is rotated while applying a predetermined tension to the yarn hooking member A at 0 to 5 degrees with respect to the direction orthogonal to the rotating shaft. A winding / orientation process in which the shaft is rotated in one direction by rotating the shaft and oriented in two or more layers at a predetermined thickness (in the present specification, also referred to as “FW process” or “FW method” for convenience);
The rotary shaft is removed from the fixed frame B while maintaining the predetermined tension, and then the at least one pair of yarns is removed from the press mold together with the fixed frame B or after the fixed frame B is removed. A temporary fixing step of temporarily fixing the hanging member A;
If necessary, press molding is performed at a predetermined temperature and pressure while maintaining a predetermined tension of the reinforcing fiber by changing the position of the at least one pair of the threading members A and / or the distance between the threading members A. A press molding step of obtaining a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in a solidified resin matrix by heating, melting or curing the thermoplastic resin or thermosetting resin, and then solidifying by cooling;
Including said method.
[2] The method according to [1], wherein the multifilament continuous length reinforcing fiber is selected from the group consisting of glass fiber and carbon fiber.
[3] The method according to [1] or [2], wherein the thermoplastic resin is selected from the group consisting of polyamide and polypropylene.
[4] The method according to any one of [1] to [3], wherein the fiber-reinforced composite sheet has a flat plate structure.
[5] In the forming step, the threading member A functions as a substantially cylindrical core, and if necessary, a substantially cylindrical core is disposed between layers of the reinforcing fibers separated by a predetermined thickness and pressed. After forming, by removing the threading member A and further removing the substantially cylindrical core disposed between the layers, a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure is obtained [1] -The method in any one of [3].
[6] The method according to the above [4] or [5], wherein the flat plate structure has concave portions having different thicknesses along a direction orthogonal to the orientation direction of the reinforcing fibers.
[7] The fiber reinforced composite sheet according to any one of [4] to [6], wherein the fiber reinforced composite sheet has a thin rib having a reinforcing fiber volume ratio lower than a reinforcing fiber volume ratio of the main flat plate portion of the flat plate structure. the method of.
[8] The method according to any one of [5] to [7], wherein the substantially cylindrical core disposed between the layers is water-soluble.
[9] By performing a press molding step after winding reinforcing fibers in the circumferential direction of the substantially cylindrical core disposed between the layers of the threading member A that functions as the substantially cylindrical core, if necessary. The method according to any one of [5] to [8] above, wherein a fiber-reinforced composite sheet in which reinforcing fibers are oriented in the circumferential direction of the hollow structure is obtained.
[10] In the winding / orientation step, in the innermost layer of the reinforcing fiber in contact with the yarn hooking member A, the reinforcing fiber is wound around the yarn hooking member A at 0 degree with respect to the direction orthogonal to the rotation axis. In the outermost layer of reinforcing fibers, the reinforcing fibers are wound around the yarn hooking member A at an angle of less than 5 degrees with respect to the direction orthogonal to the rotation axis. The method described.
[11] At least a part of the load supporting insert member, which is a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure and containing reinforcing fibers oriented in one direction in the solidified resin matrix, is overloaded with thermoplastic resin. A rigid reinforcement for connecting to a support, having the hollow structure molded.
[12] The rigid reinforcing material according to [11], wherein reinforcing fibers are oriented in a circumferential direction of the hollow structure.
[13] The rigid reinforcing material according to [11] or [12], wherein the hollow structure is a bolt fastening portion for connecting to the support.

本発明に係る固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法においては、加熱プレス成形において、マトリックス樹脂として熱可塑性樹脂を用いUDライクな繊維強化複合シートを形成する際、加熱溶融樹脂の流動による強化繊維の配向乱れを抑制することができ、また、織物ではなく、均一に一方向に配向した強化繊維を補強材として用いるため、製織に関わる設備コストを必要とせず、例えば、コーティング糸製造装置、FW装置、加熱成形プレス装置、トリミング装置のみで、最終製品までの一連の製造工程が完成するため、多品種少量生産に対応しやすく、また、FW法を採用することにより、生産量増加に伴い、強化繊維の糸目付を高めたり、強化繊維として、比較的安価な撚りをかけていないロービング形態の糸を使用することができ、得ようとする繊維強化複合シート肉厚をかせぐために、FWの離間する層の層数を増加させたり、FW法により巻いたものを複数セット用いたりすることができる。さらに、平板状構造に加え中空構造を有する繊維強化複合シートを荷重支持インサート部材として用い、これにマトリックス樹脂をオーバーモールドすれば、例えば、自動車骨格部材である支持体に接続するための剛性補強材とすることができる。   In the method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix according to the present invention, a UD-like fiber-reinforced composite sheet is formed using a thermoplastic resin as a matrix resin in hot press molding. Can suppress the disorder of the orientation of the reinforcing fibers due to the flow of the molten resin, and use the reinforcing fibers that are uniformly oriented in one direction instead of the woven fabric as a reinforcing material. Instead, for example, a series of manufacturing processes up to the final product is completed with only the coating yarn manufacturing device, FW device, thermoforming press device, and trimming device. By adopting it, as the production volume increases, the fabric weight of the reinforcing fiber is increased or a relatively inexpensive twist is applied as the reinforcing fiber. In order to increase the thickness of the fiber reinforced composite sheet to be obtained, the number of layers separated by FW can be increased, or a plurality of sets wound by the FW method can be used. can do. Furthermore, if a fiber reinforced composite sheet having a hollow structure in addition to a flat plate structure is used as a load supporting insert member, and a matrix resin is overmolded thereto, for example, a rigid reinforcing material for connecting to a support that is an automobile skeleton member It can be.

織物素材をシート成形する際の、繊維自体の伸び(a)、繊維形状の伸び(b)、剪断すべり(c)、格子効果による変形(d)の説明図である。It is explanatory drawing of the elongation (a) of fiber itself, the elongation (b) of a fiber shape, a shear slip (c), and the deformation | transformation (d) by a lattice effect at the time of sheet-forming a textile material. 従来技術のFW法による成形の説明図である。It is explanatory drawing of shaping | molding by FW method of a prior art. マルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸(a)、マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸(b)、マルチフィラメント連続長強化繊維に熱硬化性樹脂を含浸させた熱硬化性樹脂含浸糸(c)、マルチフィラメント連続長強化繊維に熱可塑性樹脂を含浸させたテープ状の熱可塑性樹脂含浸糸(d)の断面図である。Mixed filament yarn (a) of multifilament continuous length reinforcing fiber and multifilament yarn of the same thermoplastic resin, thermoplastic resin coated yarn (b) coated with thermoplastic resin around multifilament continuous length reinforcing fiber, multifilament Sections of thermosetting resin-impregnated yarn (c) in which continuous-length reinforcing fibers are impregnated with thermosetting resin, and tape-like thermoplastic resin-impregnated yarn (d) in which multifilament continuous-length reinforcing fibers are impregnated with thermoplastic resin FIG. 本実施形態の固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法における巻き付け・配向工程に使用する、強化繊維を巻き付け、回転させる中空枠(1対の所定長の固定枠B、1対の糸かけ部材A、回転軸)の平面図、及び側面図である。尚、糸かけ部材Aは、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能することもできる。A hollow frame (a pair of predetermined lengths) for winding and rotating reinforcing fibers used in the winding / orientation step in the method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix of the present embodiment. FIG. 4 is a plan view and a side view of a fixed frame B, a pair of threading members A, and a rotation shaft. The yarn hooking member A can also function as a substantially cylindrical core used for producing a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure. 本実施形態の固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法における巻き付け・配向工程に使用する、強化繊維を巻き付け、回転させる中空枠(片持ちの所定長の固定枠B、1対の糸かけ部材A、回転軸)の平面図、及び側面図である。尚、糸かけ部材Aは、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能することもできる。A hollow frame (with a predetermined length of cantilever) for winding and rotating reinforcing fibers used in the winding / orientation step in the method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix of this embodiment FIG. 4 is a plan view and a side view of a fixed frame B, a pair of threading members A, and a rotation shaft. The yarn hooking member A can also function as a substantially cylindrical core used for producing a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure. 図4に示す中空枠に強化繊維を巻き付けた状態を示す図面に代わる写真である。It is a photograph replaced with drawing which shows the state which wound the reinforced fiber around the hollow frame shown in FIG. 1対の糸かけ部材を金型に仮固定し、プレス成形する際の、金型、強化繊維、及び糸かけ部材の動きを説明する正面図である。FIG. 5 is a front view for explaining the movement of a mold, a reinforcing fiber, and a threading member when a pair of threading members are temporarily fixed to a mold and press-molded. Z軸(垂直)方向に、1対の糸かけ部材を3つ重ねた場合の正面図である。FIG. 6 is a front view when three pairs of yarn hooking members are stacked in the Z-axis (vertical) direction. XY平面に1対の糸かけ部材を直交して複数重ねた場合の平面図である。FIG. 6 is a plan view when a plurality of pairs of yarn hooking members are orthogonally stacked on an XY plane. 平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの断面図である。尚、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能させた場合、中空構造の外側に平板状構造は存在しない。It is sectional drawing of the fiber reinforced composite sheet which has a hollow structure in addition to a flat structure, and contains the reinforced fiber oriented in one direction in the solidified resin matrix. In addition, when the threading member A functions as a substantially cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to the flat structure, there is no flat structure outside the hollow structure. 略円柱状の中子の円周方向に強化繊維を巻いた状態を示す正面図である。It is a front view which shows the state which wound the reinforced fiber in the circumferential direction of the substantially cylindrical core. 平板状構造に強化繊維の配向方向に直交する方向に沿って厚みが異なる凹部(金型の凸部に相当する)が存在する繊維強化複合シートの断面図である。尚、前記凹部は、成形品の少なくとも片面に存在すればよい。It is sectional drawing of the fiber reinforced composite sheet in which the recessed part (corresponding to the convex part of a metal mold | die) from which thickness differs along the direction orthogonal to the orientation direction of a reinforced fiber exists in a flat structure. In addition, the said recessed part should just exist in the at least single side | surface of a molded article. 平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材に、熱可塑性樹脂をオーバーモールドする際に用いるハイブリッド(プレス+射出複合)成形金型と、インサート部材拘束手段により拘束された平板状構造に加え中空構造を有する繊維強化複合シートの関係を説明する正面図である。Hybrid used when overmolding a thermoplastic resin on a load-supporting insert member that is a fiber-reinforced composite sheet that has a hollow structure in addition to a flat plate structure and includes reinforcing fibers oriented in one direction in a solidified resin matrix It is a front view explaining the relationship between a (press + injection composite) molding die and a fiber reinforced composite sheet having a hollow structure in addition to a flat plate structure restrained by an insert member restraining means. 糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能させた場合の、ハイブリッド(プレス+射出複合)成形金型と、インサート部材拘束手段により拘束された平板状構造に加え中空構造を有する繊維強化複合シートの関係を説明する正面図である。Hybrid (press + injection composite) molding die and insert when the threading member A functions as a substantially cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure It is a front view explaining the relationship of the fiber reinforced composite sheet which has a hollow structure in addition to the flat plate structure restrained by the member restraining means. 平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材、及びこれに熱可塑性樹脂をオーバーモールドした中空構造を有する、支持体に接続するための剛性補強材の正面図と側面図である。尚、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能させた場合、中空構造の外側に平板状構造は存在しない。A load-supporting insert member that is a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure and containing reinforcing fibers oriented in one direction in a solidified resin matrix, and a hollow structure in which a thermoplastic resin is overmolded They are the front view and side view of a rigid reinforcement material for connecting to a support body which have these. In addition, when the threading member A functions as a substantially cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to the flat structure, there is no flat structure outside the hollow structure. 平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの各種変形の断面図である。尚、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる円柱状中子として機能させた場合、中空構造の外側に平板状構造は存在しない。It is sectional drawing of the various deformation | transformation of the fiber reinforced composite sheet which has a hollow structure in addition to a flat structure, and contains the reinforced fiber oriented in one direction in the solidified resin matrix. When the yarn hooking member A is caused to function as a cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to the flat structure, there is no flat structure outside the hollow structure. 強化繊維を巻き付けた中空枠を、プレス成形する前に金型に固定した状態を示す図面に代わる写真である。It is a photograph which replaces drawing which shows the state which fixed the hollow frame which wound the reinforced fiber to the metal mold | die before press molding. 実施例3の構造物の概略断面図である。6 is a schematic cross-sectional view of a structure of Example 3. FIG.

以下、本発明の実施形態を詳細に説明する。
第一の実施形態は、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法であって、以下の工程:
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、マルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸、及びマルチフィラメント連続長強化繊維に熱硬化性樹脂を含浸させた熱硬化性樹脂含浸糸からなる群から選ばれる強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その両端に所定厚の少なくとも1対の糸かけ部材Aを、かつ、その中心に回転軸を、脱着可能な状態で固定することができる所定長の固定枠Bに、該少なくとも1対の糸かけ部材Aと該回転軸を固定し、該巻糸体からの強化繊維を、該糸かけ部材Aに、該回転軸に直交する方向に対して0〜5度で所定のテンションをかけながら該回転軸を回転させることにより、一方向に巻き付け、該所定厚離間して2層以上で配向させる巻き付け・配向工程(本明細書中、便宜上、「FW工程」、「FW法」ともいう。);
該所定のテンションを保持したまま、該固定枠Bから該回転軸を取り外し、次いで、プレス成形用金型に、該固定枠Bと共に又は該固定枠Bを取り外した後に、該少なくとも1対の糸かけ部材Aを仮固定する仮固定工程;
必要により、該少なくとも1対の糸かけ部材の位置及び/又は糸かけ部材A間の距離を変更することで強化繊維のテンションを更に調整しながら、所定の温度・圧力でプレス成形し、該熱可塑性樹脂又は熱硬化性樹脂を加熱溶融又は硬化、次いで冷却固化させることにより、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを得るプレス成形工程;
を含む前記方法である。
Hereinafter, embodiments of the present invention will be described in detail.
1st embodiment is a manufacturing method of the fiber reinforced composite sheet containing the reinforced fiber oriented in one direction in the solidification resin matrix, Comprising:
Multi-filament continuous-length reinforcing fibers are coated with thermoplastic resin, thermoplastic-coated yarns, multifilament continuous-length reinforcing fibers and multi-filament yarns of the same thermoplastic resin, and multifilament continuous-length reinforcing fibers A wound body preparation step of preparing one or a plurality of reinforcing fiber wound bodies selected from the group consisting of thermosetting resin-impregnated yarns impregnated with a thermosetting resin;
At least one pair of yarn hooking members A having a predetermined thickness at both ends thereof, and at least one pair of yarn hooking members on a fixed frame B of a predetermined length that can be fixed in a detachable state at the center thereof. The member A and the rotating shaft are fixed, and the reinforcing fiber from the wound yarn is rotated while applying a predetermined tension to the yarn hooking member A at 0 to 5 degrees with respect to the direction orthogonal to the rotating shaft. A winding / orientation process in which the shaft is rotated in one direction by rotating the shaft and oriented in two or more layers at a predetermined thickness (in the present specification, also referred to as “FW process” or “FW method” for convenience);
The rotary shaft is removed from the fixed frame B while maintaining the predetermined tension, and then the at least one pair of yarns is removed from the press mold together with the fixed frame B or after the fixed frame B is removed. A temporary fixing step of temporarily fixing the hanging member A;
If necessary, the position of the at least one pair of yarn hooking members and / or the distance between the yarn hooking members A is changed to further adjust the tension of the reinforcing fiber and press-mold at a predetermined temperature and pressure, and the heat A press molding step of obtaining a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in a solidified resin matrix by heat-melting or curing a plastic resin or thermosetting resin, and then solidifying by cooling;
A method comprising:

一般に、織物、チョップド長繊維ベースの熱硬化性、熱可塑性樹脂複合材は、経緯の強度、弾性率が平均化(等方性)するため、高い強度、弾性率は期待できない。他方、強化長繊維が一方向に配向したUDライクな熱硬化性、熱可塑性樹脂複合材は、異方性が高く、高弾性率、高強度が期待できる。しかしながら、高弾性率、高強度を期待して、強化長繊維が一方向に配向したUDライクな熱可塑性樹脂複合材を作製しようとすると、プレス成形、ハイブリッド(プレス+射出複合)成形時に熱可塑性樹脂の流動による繊維配向乱れが発生してしまう。そこで、本願発明者らは、プレス成形、ハイブリッド(プレス+射出複合)成形時の繊維配向乱れを、該繊維にテンションをかけて抑制するための技術手段として、FW法を採用したものである。   In general, the thermosetting and thermoplastic resin composites based on woven fabrics and chopped long fibers are not expected to have high strength and elastic modulus because the strength and elastic modulus are averaged (isotropic). On the other hand, a UD-like thermosetting and thermoplastic resin composite material in which reinforced long fibers are oriented in one direction has high anisotropy, and high elastic modulus and high strength can be expected. However, in order to produce a UD-like thermoplastic resin composite material in which reinforced long fibers are oriented in one direction with the expectation of high elastic modulus and high strength, thermoplasticity during press molding and hybrid (press + injection composite) molding The fiber orientation disorder occurs due to the flow of the resin. Therefore, the inventors of the present application employ the FW method as a technical means for suppressing the fiber orientation disorder during press molding and hybrid (press + injection composite) molding by applying tension to the fiber.

本実施形態の繊維強化複合シートの製造方法においては、強化繊維の織物を予め準備しておく必要がなく、マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸(以下、単に「コーティング糸」ともいう。)、マルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸(以下、単に「混繊糸」ともいう。)、マルチフィラメント連続長強化繊維に熱硬化性樹脂を含浸させた熱硬化性樹脂含浸糸(以下、単に「熱硬化性樹脂含浸糸」ともいう。)、及びマルチフィラメント連続長強化繊維に熱可塑性樹脂を含浸させたテープ状熱可塑性樹脂含浸糸(以下、単に「熱可塑性樹脂テープ状含浸糸」ともいう。)からなる群から選ばれる強化繊維の巻糸体を、単数又は複数準備しておけばよいため、製織における、巻き返し、整経、糊付け、経通し、機掛け、管巻き、製織、さらには生機のトリミング等の複雑な工程が不要となるため設備投資が軽くなり、また、多品種少量生産への対応がしやすくなる。
また、強化繊維の織物を用いる場合、例えば、ガラス繊維の巻糸体と熱可塑性長繊維の巻糸体から、ガラス繊維と熱可塑性長繊維の混繊糸を作製し、これを経糸及び/又は緯に用いて織物を製織し、仕上げ加工し、さらに得られた生機をトリミングしなければならない。
勿論、FW法を採用すれば、コーティング糸、混繊糸、含浸糸の準備は必要となるが、少なくとも、製織、仕上げ加工、トリミングが省ける点で、織物を用いる場合に比較して設備投資は格段に低くなる。
In the method for producing a fiber-reinforced composite sheet of this embodiment, it is not necessary to prepare a woven fabric of reinforcing fibers in advance, and a thermoplastic resin-coated yarn (hereinafter, referred to as a multifilament continuous length reinforcing fiber) coated with a thermoplastic resin. , Simply called “coating yarn”), multifilament continuous length reinforcing fiber and multifilament yarn of the same thermoplastic resin (hereinafter also simply referred to as “mixed yarn”), multifilament continuous length reinforcing Thermosetting resin-impregnated yarn in which fibers are impregnated with thermosetting resin (hereinafter also simply referred to as “thermosetting resin-impregnated yarn”), and tape shape in which multifilament continuous long reinforcing fibers are impregnated with thermoplastic resin A wound body of reinforcing fibers selected from the group consisting of thermoplastic resin-impregnated yarns (hereinafter also simply referred to as “thermoplastic tape-like impregnated yarns”) Since it is only necessary to prepare several, the capital investment is lightened because complicated processes such as rewinding, warping, gluing, threading, machine hanging, pipe winding, weaving, and trimming of live machinery are unnecessary in weaving. In addition, it becomes easy to cope with high-mix low-volume production.
Further, when using a woven fabric of reinforcing fibers, for example, a mixed fiber of glass fiber and thermoplastic long fiber is produced from a wound body of glass fiber and a long fiber of thermoplastic fiber, and this is used as warp and / or It is necessary to weave the fabric using the weft, finish it, and trim the resulting machine.
Of course, if the FW method is adopted, it is necessary to prepare coating yarn, blended yarn, and impregnated yarn, but at least in terms of saving weaving, finishing, and trimming, capital investment is less than when using woven fabric. It will be much lower.

図3の(a)、(b)、(c)に、それぞれ、混繊糸、コーティング糸、含浸糸の断面を示す。
図3(a)では、ガラス繊維の単糸と熱可塑性長繊維の単糸が混じった混繊糸が示されているが、マルチフィラメントガラス繊維の束とマルチフィラメント熱可塑性樹脂長繊維の束を単に束ねたものであってよい。
図3(b)に示すコーティング糸は、マルチフィラメントガラス繊維の束の周囲に、加熱溶融された熱可塑性繊維を一定の厚みでコーティングしたものである。コーティング糸は、例えば、入口側孔Aと、孔Aよりも大きな出口側孔Bを備えたダイを用い、孔Aに強化繊維の束を通過させつつ、孔Bに溶融樹脂を供給して強化繊維の束を被覆した後、樹脂を冷却固化させることにより、製造することができる。コーティング糸は、樹脂コーティングにより内部のガラス繊維が保護され、以降の工程においてガラス繊維の損傷を防止することができる点で、混繊糸や含浸糸よりも好ましい。
図3(c)に示す熱硬化性樹脂含浸糸は、粘着性がある熱硬化性樹脂を、例えば、ガラス繊維に含浸させたものであるため、取り扱いが難しく、生産性の観点からは好ましくないが、成形は容易である。例えば、含浸糸は、流動性の熱硬化性樹脂槽内に、マルチフィラメントガラス繊維を浸漬して通過させることにより得ることができる。
図3(d)に示す熱可塑性樹脂テープ状含浸糸は、例えば、前記コーティング糸を320℃の加熱ロールで加圧し、厚み0.3mm以下、好ましくは0.2mm以下、例えば、0.1mm、幅1.5mm程度のテープ状に加工して作製することができる。テープの厚みは糸かけ部材Aの曲率に合わせて適宜調整することができ、テープ状であれば、フレキシブル性があるため、糸かけ部材Aに巻き付けることができる。
尚、コーティング糸、混繊糸、熱硬化性樹脂含浸糸、熱可塑性樹脂テープ状含浸糸に含まれる強化連続長繊維は、ガラス繊維に限定されず、炭素繊維、アルミナ繊維、アラミド繊維、バサルト繊維等の有機向きの強化繊維を広く包含する。これらの強化連続長繊維は、単独で使用しても、2種以上混ぜて使用してもよい。
また、本実施形態の繊維強化複合シート中の強化繊維の体積比を見込んで、コーティング糸、混繊糸、含浸糸中の、強化繊維に対する熱可塑性樹脂(繊維)又は熱硬化性樹脂の使用量を調整することが必要である。
使用する熱可塑性樹脂(繊維)又は熱硬化性樹脂も特に制限はないが、例えば、熱可塑性樹脂としてポリアミド(PA)66、PA6、ポリプロピレン(PP)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)であることができ、また、熱硬化性樹脂としてエポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂メラミン樹脂、ユリア樹脂等が挙げられる。
これらの樹脂には、製品要求特性に応じ適宜、染顔料、離型剤等の各種添加剤を添加することができる。
3A, 3B, and 3C show cross sections of the mixed yarn, the coating yarn, and the impregnated yarn, respectively.
In FIG. 3 (a), a mixed yarn in which a single fiber of glass fiber and a single yarn of thermoplastic long fiber are mixed is shown, but a bundle of multifilament glass fibers and a bundle of multifilament thermoplastic resin long fibers are shown. It can be simply bundled.
The coating yarn shown in FIG. 3B is obtained by coating a heat-melted thermoplastic fiber with a certain thickness around a bundle of multifilament glass fibers. For example, the coating yarn is reinforced by using a die having an inlet side hole A and an outlet side hole B larger than the hole A and supplying a molten resin to the hole B while passing the bundle of reinforcing fibers through the hole A. After the fiber bundle is coated, the resin can be cooled and solidified. The coated yarn is preferable to the mixed yarn or the impregnated yarn in that the glass fiber inside is protected by the resin coating and damage of the glass fiber can be prevented in the subsequent steps.
The thermosetting resin-impregnated yarn shown in FIG. 3 (c) is an adhesive thermosetting resin impregnated into, for example, glass fiber, so that it is difficult to handle and is not preferable from the viewpoint of productivity. However, molding is easy. For example, the impregnated yarn can be obtained by immersing and passing multifilament glass fibers in a fluid thermosetting resin tank.
The thermoplastic resin tape-impregnated yarn shown in FIG. 3 (d), for example, pressurizes the coating yarn with a heating roll at 320 ° C., and has a thickness of 0.3 mm or less, preferably 0.2 mm or less, for example, 0.1 mm, It can be produced by processing into a tape shape having a width of about 1.5 mm. The thickness of the tape can be appropriately adjusted according to the curvature of the yarn hooking member A, and if it is tape-like, it has flexibility and can be wound around the yarn hooking member A.
The continuous continuous fiber contained in the coating yarn, blended yarn, thermosetting resin impregnated yarn, and thermoplastic resin tape-like impregnated yarn is not limited to glass fiber, but carbon fiber, alumina fiber, aramid fiber, basalt fiber. Widely includes organic reinforcing fibers such as These reinforcing continuous long fibers may be used alone or in combination of two or more.
Further, in view of the volume ratio of the reinforcing fibers in the fiber-reinforced composite sheet of the present embodiment, the amount of thermoplastic resin (fiber) or thermosetting resin used for the reinforcing fibers in the coated yarn, the mixed yarn, and the impregnated yarn It is necessary to adjust.
The thermoplastic resin (fiber) or thermosetting resin to be used is not particularly limited. For example, polyamide (PA) 66, PA6, polypropylene (PP), polyphenylene sulfide (PPS), polyether ether ketone is used as the thermoplastic resin. In addition, examples of the thermosetting resin include an epoxy resin, an unsaturated polyester resin, a phenol resin melamine resin, and a urea resin.
Various additives such as dyes and pigments and release agents can be appropriately added to these resins according to the product requirement characteristics.

図4に、本実施形態の固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法における巻き付け・配向工程に使用する、強化繊維を巻き付け、回転させる中空枠(1対の所定長の固定枠B、1対の糸かけ部材A、回転軸)の一例を示す。また、図5に、固定枠Bを片持ちにしたものを示す。
前記したように準備したコーティング糸等の単数又は複数の巻糸体から、コーティング糸等を解きながら、かかる中空枠を回転させて、中空枠に強化繊維を巻き付ける。例えば、かかる巻き付けは、回転軸に直交する方向に対して外径0.5mmのコーティング糸3本を、0度2mmピッチ130mm幅で4往復、両面で16層(片道(往路)の回転で上下2層、往路の回転でさらに上下2層、合計4層となるため、4往復で16層になる)、さらに5度ヘリカル巻き4往復、両面で約1層分となる。5度傾いたヘリカル巻は、糸密度が粗のため、前記0度のパラレル巻に比べ巻数は約1/13になるため、4往復で16層÷13=1.2、実質1層分の体積となる。かかるヘリカル巻きで内層にある0度で巻かれた強化繊維を拘束することで、プレス成形時の繊維配向乱れをさらに抑制することができる。また、UD特有のUD方向に直交する方向の破壊特性(配向方向の割れ)を改善することができる。
尚、以下の実施例1では、パラレル巻UD層16層+ヘリカル巻約1層=約17層であり、巻いた糸の厚みは約10mm、熱プレス後、樹脂が溶けて空間を埋め圧縮されることで2.4mmであった。
前記パラレル巻(0度)とヘリカル巻(5度)の層構成は、繊維強化複合シートに要求される強度に依存して適宜設計することができるが、例えば、UD強度を更に高めたい場合にはパラレル巻の割合を高めればよい。
中空枠への強化繊維の巻き付け時のテンションは適宜調整すればよいが、巻き付け時のテンションが高すぎると、強化繊維が破断するおそれがある。
図4右側の側面図に示すように、糸かけ部材Aには、所定の厚みがあるため、中空枠に巻かれた強化繊維は表層と裏層の間に空間が存在する。以下に説明するように、この空間に略円柱状中子を配置してプレス成形し、該略円柱状中子を引き抜くことで、平板状構造にさらに中空構造が付与された繊維強化複合シートを製造することができる。また、糸かけ部材Aを略円柱状の中子として用いてもよい。
図5は、図4に示す中空枠の固定枠Bを片持ちにしたものを示し、図4に示す両持ちの中空枠と同様に機能することができる。片持ちの中空枠の一対の糸かけ部材Aは、例えば、φ8mmであり、その間隔は、作製しようとする成形品の形状に合わせて伸縮可能であり、かかる伸縮のための構造は、例えば、バネ圧でテンションをかけることによるものであることができる。しかがって、図4に示すスライド孔4は必須ではない。
図6は、図4に示す中空枠に強化繊維を巻き付けた状態の一例の写真である。
FIG. 4 shows a hollow frame in which reinforcing fibers are wound and rotated for use in a winding / orientation step in a method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix of this embodiment. Of a fixed frame B having a predetermined length, a pair of yarn hooking members A, and a rotation shaft). FIG. 5 shows a cantilever in which the fixed frame B is cantilevered.
The hollow frame is rotated while unwinding the coating yarn or the like from one or a plurality of wound yarn bodies such as the coating yarn prepared as described above, and the reinforcing fiber is wound around the hollow frame. For example, in this winding, three coating yarns having an outer diameter of 0.5 mm with respect to the direction orthogonal to the rotation axis, 4 reciprocations at a 0 degree 2 mm pitch 130 mm width, and 16 layers on both sides (one way (outward) rotation up and down) 2 layers, 2 layers on the upper and lower sides in the forward rotation, totaling 4 layers, so there are 16 layers in 4 round trips), 4 round trips with 5 degree helical winding, and about 1 layer on both sides. The helical winding tilted by 5 degrees has a coarse yarn density, so the number of turns is about 1/13 compared to the parallel winding of 0 degree. Therefore, 16 layers ÷ 13 = 1.2 in 4 reciprocations. Volume. By restraining the reinforcing fiber wound at 0 degree in the inner layer by such helical winding, the fiber orientation disorder at the time of press molding can be further suppressed. Further, it is possible to improve the fracture characteristics (cracking in the orientation direction) in the direction orthogonal to the UD direction unique to UD.
In Example 1 below, 16 layers of parallel winding UD layers + about 1 layer of helical winding = about 17 layers, the thickness of the wound yarn is about 10 mm, and after hot pressing, the resin melts and the space is filled and compressed. It was 2.4 mm.
The layer structure of the parallel winding (0 degree) and the helical winding (5 degree) can be appropriately designed depending on the strength required for the fiber reinforced composite sheet. For example, when it is desired to further increase the UD strength Just increase the percentage of parallel winding.
The tension at the time of winding the reinforcing fiber around the hollow frame may be adjusted as appropriate. However, if the tension at the time of winding is too high, the reinforcing fiber may be broken.
As shown in the side view on the right side of FIG. 4, the threading member A has a predetermined thickness, so that there is a space between the front layer and the back layer of the reinforcing fiber wound around the hollow frame. As will be described below, a fiber-reinforced composite sheet in which a hollow structure is further added to a flat plate structure is formed by placing a substantially cylindrical core in this space, press-molding, and pulling out the substantially cylindrical core. Can be manufactured. Further, the thread hooking member A may be used as a substantially cylindrical core.
FIG. 5 shows a cantilever of the fixed frame B of the hollow frame shown in FIG. 4, and can function in the same manner as the both-end hollow frame shown in FIG. The pair of thread hanging members A of the cantilevered hollow frame is, for example, φ8 mm, and the interval thereof can be expanded and contracted according to the shape of the molded product to be manufactured. The structure for such expansion and contraction is, for example, It can be by applying tension with spring pressure. Therefore, the slide hole 4 shown in FIG. 4 is not essential.
FIG. 6 is a photograph of an example of a state in which reinforcing fibers are wound around the hollow frame shown in FIG.

図7は、1対の糸かけ部材を金型に仮固定し、プレス成形する際の、金型、強化繊維、及び糸かけ部材の動きを説明する正面図である。
強化繊維が巻き付けられた中空枠の固定枠Bから回転軸を取り外し、次いで、該固定枠Bと共に又は該固定枠Bを取り外した後に、該少なくとも1対の糸かけ部材Aを、所定のテンションを保持したまま、プレス成形用金型に、仮固定する。糸かけ部材Aの金型への仮固定部は図示せず。
プレス成形用金型への糸かけ部材Aの仮固定には、糸かけ部材に設けられたスライドガイド孔を介して金型のテンション調整装置に固定することにより行うことができる。かかるテンション調整装置は、特に制限はないが、例えば、成形しようとする形状に合わせてサーボモータ、バネ、油圧等により、配向した強化繊維のテンションを適宜調整することができるように機能するものを挙げることができる。また、FW工程における巻テンションを予め高低調整することで、プレス成形工程におけるテンションを調整してもよい。
図4〜6に示す糸かけ部材Aは、幅方向に連続し一体化している部材の一例であるが、図9に示すように、糸かけ部材Aは、幅方向に分割され、かかる分割された部分に対応するテンション調節装置が各々設けられたものであってもよい。
テンション調整装置により1対の糸かけ部材Aの位置、及び/又は糸かけ部材A間の距離(Aの間隔)を、変動(移動、縮小、調整)することで、成形品の形状に応じて、強化繊維の所定のテンションを更に調整して、例えば、一定に維持しながら、上下金型が強化繊維を挟み込むように、所定の温度・圧力でプレス成形し、熱可塑性樹脂又は熱硬化性樹脂を加熱溶融又は硬化、次いで冷却固化させることにより、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを得ることができる。
FIG. 7 is a front view for explaining the movement of the die, the reinforcing fiber, and the yarn hooking member when the pair of yarn hooking members are temporarily fixed to the die and press-molded.
The rotating shaft is removed from the fixed frame B of the hollow frame around which the reinforcing fiber is wound, and then the fixed frame B is removed together with or after the fixed frame B is attached to the at least one pair of the threading members A with a predetermined tension. While being held, it is temporarily fixed to a press mold. The temporary fixing portion of the threading member A to the mold is not shown.
Temporary fixing of the yarn hooking member A to the press molding die can be performed by fixing the yarn hooking member A to a tension adjusting device of the die through a slide guide hole provided in the yarn hooking member. Such a tension adjusting device is not particularly limited, but, for example, a device that functions so that the tension of the oriented reinforcing fibers can be appropriately adjusted by a servo motor, a spring, hydraulic pressure, etc. according to the shape to be molded. Can be mentioned. Moreover, the tension in the press molding process may be adjusted by adjusting the winding tension in the FW process in advance.
The threading member A shown in FIGS. 4 to 6 is an example of a member that is continuous and integrated in the width direction. However, as shown in FIG. 9, the threading member A is divided in the width direction. A tension adjusting device corresponding to each of the portions may be provided.
By changing (moving, reducing, adjusting) the position of the pair of yarn hooking members A and / or the distance (interval of A) between the yarn hooking members A by the tension adjusting device, according to the shape of the molded product. Further, by adjusting the predetermined tension of the reinforcing fiber, for example, while maintaining it constant, press molding is performed at a predetermined temperature and pressure so that the upper and lower molds sandwich the reinforcing fiber, and a thermoplastic resin or a thermosetting resin By heating and melting or curing, and then cooling and solidifying, a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix can be obtained.

図8は、Z軸(垂直)方向に、1対の糸かけ部材を3つ重ねた場合の正面図である。
図8に示すように、中空枠に巻き付けられた強化繊維を、例えば、3セット準備し、これを金型の移動方向(垂直方向)に重ねれば、成形品の要求特性に応じて強化繊維の量を変え、また、成形シートの厚みを変えることができる。
また、図9は、XY平面に1対の糸かけ部材を直交して複数重ねた場合の平面図である。
図9に示すように、中空枠に巻き付けられた強化繊維を、例えば、2セット準備し、1のセットをX軸方向、他のセットをX軸に直交するY軸方向にし、これらを金型の移動方向(Z方向)に重ねれば、成形品の要求特性に応じて強化繊維の配向、量を変え、また、成形シートの厚みを変えることができる。ここで、得ようとする成形品の形状への強化繊維の形状追従性の観点から、1のセットと他のセットは直交するものに制限されず、任意の角度であることができる。この場合、UDライクな成形品とはならないが、従来の繊維強化複合材料に比較して、前記した剪断すべり、格子効果等による変形が生じないため、得られる複合材料の強度は優れたものとなる。
尚、前記したように、図9は、糸かけ部材Aが幅方向に分割され、かかる分割された部分に対応するテンション調節装置が各々設けられたものも示している。
FIG. 8 is a front view when three pairs of yarn hooking members are stacked in the Z-axis (vertical) direction.
As shown in FIG. 8, if, for example, three sets of reinforcing fibers wound around a hollow frame are prepared and overlapped in the movement direction (vertical direction) of the mold, the reinforcing fibers are formed according to the required characteristics of the molded product. The thickness of the molded sheet can be changed.
FIG. 9 is a plan view when a plurality of pairs of yarn hooking members are orthogonally stacked on the XY plane.
As shown in FIG. 9, for example, two sets of reinforcing fibers wound around a hollow frame are prepared, one set is set in the X-axis direction, the other set is set in the Y-axis direction orthogonal to the X-axis, and these are set as a mold. If they are stacked in the moving direction (Z direction), the orientation and amount of reinforcing fibers can be changed according to the required characteristics of the molded product, and the thickness of the molded sheet can be changed. Here, from the viewpoint of the shape followability of the reinforcing fiber to the shape of the molded product to be obtained, the one set and the other set are not limited to those orthogonal to each other, and can be at any angle. In this case, it does not become a UD-like molded product, but since the deformation due to the above-described shear slip, lattice effect, etc. does not occur as compared with the conventional fiber reinforced composite material, the strength of the obtained composite material is excellent. Become.
Note that, as described above, FIG. 9 also shows that the yarn hooking member A is divided in the width direction, and tension adjusting devices corresponding to the divided portions are respectively provided.

プレス成形により得られるものは、一般には、シート状の形態の繊維強化複合シートであることができるが、例えば、プレス成形に用いる金型に凸部を設ければ、図12に示すような平板状構造に強化繊維の配向方向に直交する方向に沿って少なくとも片面に厚みが異なる(変化する)凹部が存在する繊維強化複合シートを得ることができる(図17(b)参照)。この場合、隣接する凹部により、得ようとするプレス製品周縁部の肉厚が薄いものとなり、樹脂流動による凹部間の繊維配向乱れを一層抑制することができる。このような繊維配向乱れの抑制は、前記したヘリカル巻きで内層にある0度で巻かれた強化繊維を拘束することで、さらに強化される。周縁部の肉厚が薄い部分を、トリミングにより除去されるべき薄肉リブとするとき、得られる繊維強化複合シートは、平板状構造の主平板部の強化繊維体積比よりも低い強化繊維体積比をもつ薄肉リブを有するものなり、トリミングが容易となり、生産性も向上する。   What is obtained by press molding can generally be a fiber-reinforced composite sheet in the form of a sheet. For example, if a projection is provided on a mold used for press molding, a flat plate as shown in FIG. It is possible to obtain a fiber-reinforced composite sheet in which a concave portion having a thickness varying (changing) is present on at least one surface along a direction orthogonal to the orientation direction of the reinforcing fibers in the shape structure (see FIG. 17B). In this case, the thickness of the peripheral portion of the pressed product to be obtained becomes thin due to the adjacent concave portions, and the fiber orientation disorder between the concave portions due to resin flow can be further suppressed. The suppression of such fiber orientation disorder is further strengthened by restraining the reinforcing fiber wound at 0 degree in the inner layer by the helical winding described above. When the thin-walled portion of the peripheral portion is a thin rib to be removed by trimming, the resulting fiber-reinforced composite sheet has a reinforcing fiber volume ratio lower than the reinforcing fiber volume ratio of the main flat plate portion of the flat plate structure. Trimming is facilitated and productivity is improved.

また、プレス成形時、所定の厚みをもつ糸かけ部材Aに巻かれた強化繊維の表層と裏層の間に空間に略円柱状中子を配置して、対応の金型を用いてプレス成形すれば、図10に示すように、平板状構造にさらに中空構造が付与された繊維強化複合シートを製造することができる。また、糸かけ部材Aを、略円柱状中子として機能させても、平板上構造に加え中空構造を有する繊維強化複合シートを製造することができる。尚、図10において、糸かけ部材Aを、平板上構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能させた場合には、中空構造の外側に平板状構造は存在しない。
図11に示すように、層間に配置する略円柱状中子の、及び/又は略円柱状中子として機能させる糸かけ部材Aの円周方向に強化繊維を巻き付けておき、プレス成形後に、用いた中子を除去するか、及び/又は糸かけ部材Aを取り外せば、中空構造の円周方向にも強化繊維が配向している複合強化材を製造することができる。層間に配置する略円柱状中子の除去においては、例えば、金属製の中子であれば引き抜けばよく、また、水溶性の中子であれば、プレス成形後に水洗溶解除去すればよい。
また、図16に示すように、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの形状としては、各種の変形が存在しうる。例えば、中空構造が平板状構造の上に配置されたもの、平板状構造がほぼ直角に曲がったもの等がある。中空構造が平板状構造の上に配置されたものは、前記したように、Z軸方向に、中空枠に巻き付けられた強化繊維のセットを準備し、これらを金型の移動方向(垂直方向)に重ねて製造することができる。また、平板状構造がほぼ直角に曲がったものは、プレス成形で得たものを、再度、加熱し後加工でほぼ直角に曲げてもよいし、予め湾曲した構造をもつ金型を用いてプレス成形して得ることもできる。
Further, during press molding, a substantially cylindrical core is disposed in the space between the surface layer and the back layer of the reinforcing fiber wound around the threading member A having a predetermined thickness, and press molding is performed using a corresponding die. If it does so, as shown in FIG. 10, the fiber reinforced composite sheet by which the hollow structure was further provided to the flat structure can be manufactured. Moreover, even if the yarn hooking member A is made to function as a substantially cylindrical core, a fiber-reinforced composite sheet having a hollow structure in addition to the structure on a flat plate can be produced. In FIG. 10, when the threading member A functions as a substantially cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure, a flat plate is formed outside the hollow structure. There is no structure.
As shown in FIG. 11, reinforcing fibers are wound around the circumferential direction of the threaded member A that functions as a substantially cylindrical core and / or a substantially cylindrical core disposed between the layers, and after press molding, If the core is removed and / or the threading member A is removed, a composite reinforcing material in which reinforcing fibers are oriented in the circumferential direction of the hollow structure can be produced. For removal of the substantially cylindrical core disposed between the layers, for example, if it is a metal core, it can be pulled out, and if it is a water-soluble core, it can be removed by washing and washing after press molding.
Further, as shown in FIG. 16, there are various deformations as the shape of the fiber reinforced composite sheet having a hollow structure in addition to the flat plate structure and including the reinforcing fibers oriented in one direction in the solidified resin matrix. Yes. For example, there are a structure in which the hollow structure is arranged on a flat plate structure, a structure in which the flat plate structure is bent substantially at a right angle, and the like. In the case where the hollow structure is arranged on the plate-like structure, as described above, a set of reinforcing fibers wound around the hollow frame is prepared in the Z-axis direction, and these are set in the moving direction of the mold (vertical direction). It can be manufactured by overlapping. In addition, if the flat structure is bent at a substantially right angle, the one obtained by press molding may be heated again and bent at a substantially right angle by post-processing, or pressed using a mold having a curved structure in advance. It can also be obtained by molding.

プレス成形後には、所望の製品形状に合わせ、成形品の周縁をトリミングする。トリミング装置としては、例えば、レーザ、ウォータージェット(研磨剤、レーザ併用)等を用いることができる。   After press molding, the periphery of the molded product is trimmed in accordance with the desired product shape. As the trimming device, for example, a laser, a water jet (abrasive and laser combined use) or the like can be used.

第二の実施形態は、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材の少なくとも一部に、熱可塑性樹脂がオーバーモールドされている該中空構造を有する、支持体に接続するための剛性補強材である。中空構造の円周方向にも強化繊維が配向していることが好ましい。また、中空構造は、前記支持体、例えば、自動車骨格部材に接続するためのボルト締結部であることができる。   The second embodiment has a hollow structure in addition to a flat plate-like structure, and at least a part of a load-supporting insert member that is a fiber-reinforced composite sheet including reinforcing fibers oriented in one direction in a solidified resin matrix. It is a rigid reinforcing material for connecting to a support body, which has the hollow structure in which a thermoplastic resin is overmolded. The reinforcing fibers are preferably oriented in the circumferential direction of the hollow structure. The hollow structure may be a bolt fastening portion for connecting to the support, for example, an automobile skeleton member.

このような剛性補強材は、例えば、前記のようにして得た、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを荷重支持インサート部材として用い、かかるインサート部材の少なくとも一部に、強化繊維のチョップドストランド等を含む熱可塑性樹脂をマトリックス樹脂として射出成形によりオーバーモールドして得ることができ、又はハイブリッド(プレス+射出複合)成形により、前記繊維強化複合シートの作製と同時に作製することもできる。
オーバーモールドする樹脂は、荷重支持インサート部材として用いる繊維強化複合シートのマトリックス樹脂と主成分が同質であるものが好ましく、例えば、PA66系ならPA66系、PP系ならPP系であることが好ましく、種々の共重合組成の樹脂であってもよい。
図13は、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材に、マトリックス樹脂をオーバーモールドする際に用いるハイブリッド(プレス+射出複合)成形金型と、インサート部材拘束手段により拘束された平板状構造に加え中空構造を有する繊維強化複合シートの関係を説明する正面図である。
Such a rigid reinforcing material is obtained by using, for example, a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in a solidified resin matrix, obtained as described above, as a load-supporting insert member. It can be obtained by overmolding a thermoplastic resin containing chopped strands of reinforcing fibers in the part as a matrix resin by injection molding, or by hybrid (press + injection composite) molding, simultaneously with the production of the fiber reinforced composite sheet It can also be produced.
The resin to be overmolded is preferably the same as the main component of the matrix resin of the fiber reinforced composite sheet used as the load supporting insert member. For example, PA66 is preferable for PA66, and PP is preferable for PP. A resin having a copolymer composition may be used.
FIG. 13 shows a case where a matrix resin is overmolded on a load-supporting insert member that is a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure and containing reinforcing fibers oriented in one direction in a solidified resin matrix. It is a front view explaining the relationship between the hybrid (press + injection composite) molding die used for and the fiber-reinforced composite sheet having a hollow structure in addition to the flat plate structure restrained by the insert member restraining means.

図14は、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる略円柱状中子として機能させた場合の、該糸かけ部材Aに近接する金型の外形形状を六角形とし、金型ピンチ部をゼロタッチとした場合の断面面である。   FIG. 14 shows the gold threading member A in the vicinity of the threading member A when the threading member A functions as a substantially cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure. It is a cross-sectional surface when the outer shape of the mold is a hexagon and the mold pinch part is zero-touch.

図15は、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材、及びこれに熱可塑性樹脂をオーバーモールドした中空構造を有する、支持体に接続するための剛性補強材の正面図と側面図である。尚、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる円柱状中子として機能させた場合、中空構造の外側に平板状構造は存在しない。糸かけ部材Aを一緒に金型に入れ、全体をプレス成形すると製品化の歩留まりが高まるため好ましい。
また、図16は、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの各種変形の断面図である。かかる各種変形の製造においても、糸かけ部材Aを、平板状構造に加え中空構造を有する繊維強化複合シートを製造するために用いる円柱状中子として機能させた場合には、中空構造の外側に平板状構造は存在しない。
FIG. 15 shows a load-supporting insert member that is a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure and containing reinforcing fibers oriented in one direction in a solidified resin matrix, and overlying a thermoplastic resin. It is the front view and side view of a rigid reinforcement material for connecting to a support body which have the hollow structure which shape | molded. When the yarn hooking member A is caused to function as a cylindrical core used for manufacturing a fiber-reinforced composite sheet having a hollow structure in addition to the flat structure, there is no flat structure outside the hollow structure. It is preferable to put the threading member A together in a mold and press-mold the whole because the yield of commercialization increases.
FIG. 16 is a cross-sectional view of various deformations of a fiber-reinforced composite sheet having a hollow structure in addition to a flat plate structure and including reinforcing fibers oriented in one direction in the solidified resin matrix. Also in the manufacture of such various modifications, when the yarn hooking member A functions as a cylindrical core used for manufacturing a fiber reinforced composite sheet having a hollow structure in addition to a flat plate structure, There is no flat structure.

このような剛性補強材の中空構造は、支持体、例えば、自動車、飛行機、鉄道車両等の骨格部材、シート部材、衝撃吸収部材、補強部材へのボルト締結部とすることができる。この場合、中空構造の円周方向にも強化繊維が配向していれば、ボルト締結部における強度が向上する。   Such a hollow structure of the rigid reinforcing material may be a support, for example, a skeleton member such as an automobile, an airplane, or a railway vehicle, a seat member, an impact absorbing member, or a bolt fastening portion to the reinforcing member. In this case, if the reinforcing fibers are oriented in the circumferential direction of the hollow structure, the strength at the bolt fastening portion is improved.

図17は、強化繊維を巻き付けた中空枠を、プレス成形する前に金型に固定した状態を示す図面に代わる写真である。   FIG. 17 is a photograph replacing a drawing showing a state in which a hollow frame wrapped with reinforcing fibers is fixed to a mold before press molding.

図18に、実施例3の構造物の概略断面図を示す。強化繊維を巻き付けた中空枠の片面又は両面に織物層を重ねたものを、プレス成形して、平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを作製してもよく、さらに、これを荷重支持インサート部材として用いて、熱可塑性樹脂をオーバーモールドした中空構造を有する、支持体に接続するための剛性補強材を製造することもできる。強化繊維の織物層を使用すれば、直交方向の強度をさらに補強することができる。FW層(UD層)の高剛性を確保したいときは極力、使用する織物層(例えば、0/90度の綾織)はより薄いことが好ましく、熱プレス後の厚み層としてUD層/織物層>1であることが好ましい。   FIG. 18 is a schematic cross-sectional view of the structure according to the third embodiment. Reinforced fibers in which a fabric layer is laminated on one or both sides of a hollow frame wrapped with reinforcing fibers, press-molded, has a hollow structure in addition to a flat plate structure, and is oriented in one direction in the solidified resin matrix In addition, a fiber-reinforced composite sheet may be prepared, and a rigid reinforcing material for connecting to a support having a hollow structure in which a thermoplastic resin is overmolded is manufactured using this as a load supporting insert member. You can also. If a woven fabric layer of reinforcing fibers is used, the strength in the orthogonal direction can be further reinforced. When it is desired to ensure high rigidity of the FW layer (UD layer), the woven layer used (for example, 0/90 degree twill) is preferably thinner, and the UD layer / woven layer as the thickness layer after hot pressing> 1 is preferable.

以下、本発明の実施例について具体的に説明する。
[実施例1]
強化繊維のコーティング糸として、外径φ約0.5mm、Vf146%の旭化成(株)製PA66レオナ1402S(登録商標)を用意した。強化繊維は日本電気ガラス社製のガラスファイバー、繊度685dtex、単糸数400 本であった。
FW装置として旭化成エンジニアリング(株)製「1000P」を用意した。尚、「1000」は1000mm用、「P」は5軸制御を意味する。最大径φは400mmであった。
上記コーティング糸3本をクリール(張力制御繰り出し装置)に取り付け、3本同時に引き揃え、図4に示す中空枠に巻き付けた。
巻き付け条件は、テンションが50g/強化繊維1本、回転数20rpm、回転軸に直交する方向に対して0°パラレル巻2mmピッチ130mm幅で4往復、両面で16層、さらに5°ヘリカル巻表面2往復、両面で1層分(片面で約0.5層相当で表面としては5°の斜めの層はまばら)、糸かけ部材の糸層の総厚み約10mmであった。尚、総厚みはノギスで測定した。
得られた中空枠を枠ごと金型に固定した。糸かけ部材Aは、枠Bのバネ構造によりテンションを維持しながら金型形状に沿って配置した。
図14に示すように、プレス成形においては、中空締結部ピッチ80mm、中空部中子径φ8mm、金型ピンチ部はゼロタッチ、中子棒部外形はφ8mmの内接円とする正六角形の形状とした。尚、「金型ピンチ部はゼロタッチ」とは、金型のみで閉じた場合、金型が接触しないクリアランス=キャビティー(空間)が存在していないことを意味する。金型が閉じるとガラス繊維と樹脂が挟まり加熱溶融圧縮された成形品が形成される。
強化繊維を巻き付けた中空枠を枠ごと、型温度200℃に加熱した金型に挿入・固定し、型閉じ後300℃まで昇温し(この時点で型は糸厚み約10mm分浮いていた)、昇温後、製品面にかかる圧力を5MPaに調整し、1分間保持した(この時点で型は約2mmまで閉じた)。その後、150℃まで冷却し、型を開き中空枠を取り出した。
取り出した中空枠から中子棒を抜き、締結部(中空構造)を有する平板状構造物を得た。平板状構造物の厚みは2mm、中空部構造の肉厚は1mmであった。低圧型締め時に約7mmあった型開距離は前記融点以上で約2mmに減少した。
このようにして得た成形品の中央部の曲げ弾性率は60GPa、曲げ強度1.1GPaであった。
上記曲げ弾性率、曲げ強度は以下のように測定した。
JIS K 7017に従い、インストロン社製引っ張り試験機、ロードセル50kN、スパン間40mmで簡易的に曲げ物性を評価した。試験速度は1mm/分、試験環境は23℃、50RH%、試験片調湿は、絶乾状態であった。
Examples of the present invention will be specifically described below.
[Example 1]
As a reinforcing fiber coating yarn, PA66 Leona 1402S (registered trademark) manufactured by Asahi Kasei Co., Ltd. having an outer diameter of about 0.5 mm and Vf of 146% was prepared. The reinforcing fiber was a glass fiber manufactured by Nippon Electric Glass Co., Ltd., a fineness of 685 dtex, and a single yarn number of 400.
As the FW device, “1000P” manufactured by Asahi Kasei Engineering Co., Ltd. was prepared. “1000” means 1000 mm, and “P” means 5-axis control. The maximum diameter φ was 400 mm.
The three coating yarns were attached to a creel (tension control feeding device), and the three yarns were simultaneously aligned and wound around the hollow frame shown in FIG.
The winding conditions are: tension 50 g / reinforcing fiber, rotation speed 20 rpm, 0 ° parallel winding 2 mm pitch 130 mm width 4 reciprocations with respect to the direction perpendicular to the rotation axis, 16 layers on both sides, 5 ° helical winding surface 2 Reciprocating, one layer on both sides (corresponding to about 0.5 layer on one side and a 5 ° oblique layer on the surface is sparse), the total thickness of the thread layer of the threading member was about 10 mm. The total thickness was measured with calipers.
The obtained hollow frame was fixed to the mold together with the frame. The yarn hooking member A was arranged along the mold shape while maintaining the tension by the spring structure of the frame B.
As shown in FIG. 14, in press molding, a regular hexagonal shape having a hollow fastening portion pitch of 80 mm, a hollow portion core diameter of φ8 mm, a mold pinch portion having zero touch, and a core rod portion having an inscribed circle of φ8 mm did. Note that “the mold pinch portion is zero touch” means that when the mold is closed only by the mold, there is no clearance = cavity (space) where the mold does not contact. When the mold is closed, the glass fiber and the resin are sandwiched to form a molded product that is heated, melted and compressed.
The hollow frame wrapped with the reinforcing fiber was inserted and fixed together with the frame in a mold heated to a mold temperature of 200 ° C., and the temperature was raised to 300 ° C. after the mold was closed (at this point, the mold was floated by a thickness of about 10 mm) After the temperature rise, the pressure applied to the product surface was adjusted to 5 MPa and held for 1 minute (at this point, the mold was closed to about 2 mm). Then, it cooled to 150 degreeC, the type | mold was opened, and the hollow frame was taken out.
The core rod was pulled out from the taken out hollow frame to obtain a flat structure having a fastening portion (hollow structure). The thickness of the flat structure was 2 mm, and the thickness of the hollow structure was 1 mm. The mold opening distance, which was about 7 mm at the time of low-pressure clamping, decreased to about 2 mm above the melting point.
The bending elastic modulus at the center of the molded product thus obtained was 60 GPa and the bending strength was 1.1 GPa.
The bending elastic modulus and bending strength were measured as follows.
In accordance with JIS K 7017, bending physical properties were simply evaluated using a tensile tester manufactured by Instron, a load cell of 50 kN, and a span interval of 40 mm. The test speed was 1 mm / min, the test environment was 23 ° C., 50 RH%, and the humidity of the test piece was absolutely dry.

[実施例2]
図5に示す片持の中空枠に、テンションが50g/強化繊維1本、回転数20rpm、回転軸に直交する方向に対して0°パラレル巻2mmピッチ100mm幅で2往復、両面で8層を巻き付けた以外を実施例と同様に実施した。糸かけ部材の糸層の総厚み約4mmであった。尚、総厚みはノギスで測定した。
取り出した中空枠から中子棒を抜き、締結部(中空構造)を有する平板状構造物を得た。平板状構造物の厚みは0.8mm、中空部構造の肉厚は0.8mmであった。
このようにして得た成形品の中央部の曲げ弾性率は60GPa、曲げ強度1.1GPaであった。
上記曲げ弾性率、曲げ強度は以下のように測定した。
JIS K 7017に従い、ロードセル50kN、スパン間12.8mmで簡易的に曲げ物性を評価した。試験速度は2mm/分、試験環境は23℃、50RH%、試験片調湿は、絶乾状態であった。
[Example 2]
In a cantilevered hollow frame shown in FIG. 5, tension is 50 g / one reinforcing fiber, rotation speed is 20 rpm, 0 ° parallel winding with respect to the direction orthogonal to the rotation axis, 2 mm pitch, 2 reciprocations with a width of 100 mm, and 8 layers on both sides. Except winding, it implemented similarly to the Example. The total thickness of the yarn layer of the yarn hooking member was about 4 mm. The total thickness was measured with calipers.
The core rod was pulled out from the taken out hollow frame to obtain a flat structure having a fastening portion (hollow structure). The thickness of the flat structure was 0.8 mm, and the thickness of the hollow structure was 0.8 mm.
The bending elastic modulus at the center of the molded product thus obtained was 60 GPa and the bending strength was 1.1 GPa.
The bending elastic modulus and bending strength were measured as follows.
According to JIS K 7017, the bending physical properties were simply evaluated at a load cell of 50 kN and a span of 12.8 mm. The test speed was 2 mm / min, the test environment was 23 ° C., 50 RH%, and the humidity of the test piece was absolutely dry.

[実施例3]
図18に示すように、実施例2で得た強化繊維を巻き付けた糸かけ部材の上下面に、0/90度の綾織層を配置し、実施例2と同様に繊維強化複合シートを作製した。尚、上記綾織層を構成する強化繊維は、実施例1で用いたものと同一であり、
レピア織り機を用い、複合糸を経糸及び緯糸として用いて3×3綾織に製織し、目付630g/mとなるように織密度を調整したものであった。
取り出した中空枠から中子棒を抜き、締結部(中空構造)を有する平板状構造物を得た。平板状構造物の厚みは1.2mm、中空部構造の肉厚は1.2mmであった。
このようにして得た成形品の中央部の曲げ弾性率は40GPa、曲げ強度0.6GPaであった。
上記曲げ弾性率、曲げ強度は以下のように測定した。
JIS K 7017に従い、ロードセル50kN、スパン間19.2mmで簡易的に曲げ物性を評価した。試験速度は2mm/分、試験環境は23℃、50RH%、試験片調湿は、絶乾状態であった。
[Example 3]
As shown in FIG. 18, a 0/90 degree twill layer was disposed on the upper and lower surfaces of the threading member wound with the reinforcing fiber obtained in Example 2, and a fiber-reinforced composite sheet was produced in the same manner as in Example 2. . The reinforcing fiber constituting the twill layer is the same as that used in Example 1,
A rapier weaving machine was used to weave a 3 × 3 twill weave using the composite yarn as warp and weft, and the weave density was adjusted so that the basis weight was 630 g / m 2 .
The core rod was pulled out from the taken out hollow frame to obtain a flat structure having a fastening portion (hollow structure). The thickness of the flat structure was 1.2 mm, and the thickness of the hollow structure was 1.2 mm.
The bending elastic modulus at the center of the molded product thus obtained was 40 GPa and the bending strength was 0.6 GPa.
The bending elastic modulus and bending strength were measured as follows.
According to JIS K 7017, the bending physical properties were simply evaluated at a load cell of 50 kN and a span interval of 19.2 mm. The test speed was 2 mm / min, the test environment was 23 ° C., 50 RH%, and the humidity of the test piece was absolutely dry.

本発明に係る固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法においては、加熱プレス成形において、マトリックス樹脂として熱可塑性樹脂を用いUDライクな繊維強化複合シートを形成する際、加熱溶融樹脂の流動による強化繊維の配向乱れを抑制することができ、また、織物ではなく、均一に一方向に配向した強化繊維を補強材として用いるため、製織に関わる設備コストを必要とせず、例えば、コーティング糸製造装置、FW装置、加熱成形プレス装置、トリミング装置のみで、最終製品までの一連の製造工程が完成するため、多品種少量生産に対応しやすく、また、FW法を採用することにより、生産量増加に伴い、強化繊維の糸目付を高めたり、ロービングを使用することができ、得ようとする繊維強化複合シート肉厚をかせぐため、FWの離間する層の層数を増加させることができる。さらに、平板状構造に加え中空構造を有する繊維強化複合シートを荷重支持インサート部材として用い、これに熱可塑性樹脂をオーバーモールドすれば、例えば、自動車骨格部材である支持体に接続するための剛性補強材とすることができる。したがって、本発明は、高強度、高剛性、高衝撃物性を有するUDライクな繊維強化複合材料として好適に利用可能である。   In the method for producing a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in the solidified resin matrix according to the present invention, a UD-like fiber-reinforced composite sheet is formed using a thermoplastic resin as a matrix resin in hot press molding. Can suppress the disorder of the orientation of the reinforcing fibers due to the flow of the molten resin, and use the reinforcing fibers that are uniformly oriented in one direction instead of the woven fabric as a reinforcing material. Instead, for example, a series of manufacturing processes up to the final product is completed with only the coating yarn manufacturing device, FW device, thermoforming press device, and trimming device. By adopting it, you can increase the production weight of reinforcing fibers and use roving as production increases. To earn fiber-reinforced composite sheet thickness that can increase the number of layers of the layer away the FW. Furthermore, if a fiber reinforced composite sheet having a hollow structure in addition to a flat plate structure is used as a load support insert member and a thermoplastic resin is overmolded thereon, for example, rigidity reinforcement for connecting to a support body which is an automobile skeleton member It can be a material. Therefore, the present invention can be suitably used as a UD-like fiber-reinforced composite material having high strength, high rigidity, and high impact properties.

1、1’ 糸かけ部材A
2、2’ 固定枠B
3 回転軸
4 スライド孔
5、5’ プレス成形金型
6 テンション調整装置
7、7’ ハイブリッド(プレス+射出複合)成形金型
8 インサート部材拘束手段
10 強化連続長繊維
11 熱可塑性樹脂又は連続長繊維
12 含浸熱硬化性樹脂
13 円柱状中子
14、14’、14’’ 平板状構造にさらに中空構造が付与された繊維強化複合シート
15 平板状構造に強化繊維の配向方向に沿って厚みが異なる凹部が存在する繊維強化複合シート
16 射出樹脂
100 クリール
101 樹脂槽
102 マンドレル
1, 1 'Threading member A
2, 2 'fixed frame B
DESCRIPTION OF SYMBOLS 3 Rotating shaft 4 Slide hole 5, 5 'Press molding die 6 Tension adjusting device 7, 7' Hybrid (press + injection compound) molding die 8 Insert member restraining means 10 Reinforced continuous long fiber 11 Thermoplastic resin or continuous long fiber 12 impregnated thermosetting resin 13 cylindrical core 14, 14 ′, 14 ″ Fiber reinforced composite sheet in which a flat structure is further provided with a hollow structure 15 Thickness varies along the orientation direction of the reinforcing fiber in the flat structure Fiber reinforced composite sheet with recesses 16 Injection resin 100 Creel 101 Resin tank 102 Mandrel

Claims (13)

固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートの製造方法であって、以下の工程:
マルチフィラメント連続長強化繊維の周囲を熱可塑性樹脂でコーティングした熱可塑性樹脂コーティング糸、マルチフィラメント連続長強化繊維と同熱可塑性樹脂のマルチフィラメント糸との混繊糸、マルチフィラメント連続長強化繊維に熱可塑性樹脂を含浸させた熱可塑性樹脂含浸糸、及びマルチフィラメント連続長強化繊維に熱硬化性樹脂を含浸させた熱硬化性樹脂含浸糸からなる群から選ばれる強化繊維の巻糸体を、単数又は複数準備する巻糸体準備工程;
その両端に所定厚の少なくとも1対の糸かけ部材Aを、かつ、その中心に回転軸を、脱着可能な状態で固定することができる所定長の固定枠Bに、該少なくとも1対の糸かけ部材Aと該回転軸を固定し、該巻糸体からの強化繊維を、該糸かけ部材Aに、該回転軸に直交する方向に対して0〜5度で所定のテンションをかけながら該回転軸を回転させることにより一方向に巻き付け、該所定厚離間して2層以上で配向させる巻き付け・配向工程;
該所定のテンションを保持したまま、該固定枠Bから該回転軸を取り外し、次いで、プレス成形用金型に、該固定枠Bと共に又は該固定枠Bを取り外した後に、該少なくとも1対の糸かけ部材Aを仮固定する仮固定工程;
必要により、該少なくとも1対の糸かけ部材Aの位置及び/又は糸かけ部材A間の距離を変更することで強化繊維のテンションを更に調整しながら、所定の温度・圧力でプレス成形し、該熱可塑性樹脂又は熱硬化性樹脂を加熱溶融又は硬化、次いで冷却固化させることにより、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートを得るプレス成形工程;
を含む前記方法。
A method for producing a fiber-reinforced composite sheet comprising reinforcing fibers oriented in one direction in a solidified resin matrix, the following steps:
Thermoplastic coated yarn with multifilament continuous length reinforced fiber coated with thermoplastic resin, blended yarn of multifilament continuous length reinforced fiber and multifilament yarn of the same thermoplastic resin, multifilament continuous length reinforced fiber heated A wound body of reinforcing fibers selected from the group consisting of a thermoplastic resin-impregnated yarn impregnated with a plastic resin and a thermosetting resin-impregnated yarn obtained by impregnating a multifilament continuous length reinforcing fiber with a thermosetting resin, Winding body preparation process to prepare a plurality of;
At least one pair of yarn hooking members A having a predetermined thickness at both ends thereof, and at least one pair of yarn hooking members on a fixed frame B of a predetermined length that can be fixed in a detachable state at the center thereof. The member A and the rotating shaft are fixed, and the reinforcing fiber from the wound yarn is rotated while applying a predetermined tension to the yarn hooking member A at 0 to 5 degrees with respect to the direction orthogonal to the rotating shaft. Winding / orientation step in which the shaft is wound in one direction by rotating the shaft, and is oriented in two or more layers separated by the predetermined thickness;
The rotary shaft is removed from the fixed frame B while maintaining the predetermined tension, and then the at least one pair of yarns is removed from the press mold together with the fixed frame B or after the fixed frame B is removed. A temporary fixing step of temporarily fixing the hanging member A;
If necessary, press-molding at a predetermined temperature and pressure while further adjusting the tension of the reinforcing fiber by changing the position of the at least one pair of threading members A and / or the distance between the threading members A, A press molding step of obtaining a fiber-reinforced composite sheet containing reinforcing fibers oriented in one direction in a solidified resin matrix by heat-melting or curing a thermoplastic resin or a thermosetting resin and then solidifying by cooling;
Including said method.
前記マルチフィラメント連続長強化繊維は、ガラス繊維及び炭素繊維からなる群から選ばれる、請求項1に記載の方法。   The method according to claim 1, wherein the multifilament continuous length reinforcing fiber is selected from the group consisting of glass fiber and carbon fiber. 前記熱可塑性樹脂は、ポリアミド及びポリプロピレンからなる群から選ばれる、請求項1又は2に記載の方法。   The method according to claim 1 or 2, wherein the thermoplastic resin is selected from the group consisting of polyamide and polypropylene. 前記繊維強化複合シートは、平板状構造を有する、請求項1〜3のいずれか1項に記載の方法。   The method according to claim 1, wherein the fiber-reinforced composite sheet has a flat structure. 前記成形工程において、前記糸かけ部材Aを略円柱状の中子として機能させ、必要により、前記所定厚離間して配向した強化繊維の層間に略円柱状中子を配置してプレス成形した後、該糸かけ部材Aを取り外し、さらに該層間に配置された略円柱状中子を除去することにより、平板状構造に加え中空構造を有する繊維強化複合シートを得る、請求項1〜3のいずれか1項に記載の方法。   In the molding step, the threading member A functions as a substantially cylindrical core, and if necessary, a substantially cylindrical core is disposed between layers of the reinforcing fibers separated by a predetermined thickness and press-molded. The fiber-reinforced composite sheet having a hollow structure in addition to the flat plate structure is obtained by removing the threading member A and further removing the substantially cylindrical core disposed between the layers. The method according to claim 1. 前記平板状構造に、前記強化繊維の配向方向に直交する方向に沿って、厚みが異なる凹部が存在する、請求項4又は5に記載の方法。   6. The method according to claim 4, wherein the flat plate structure has recesses having different thicknesses along a direction orthogonal to the orientation direction of the reinforcing fibers. 前記繊維強化複合シートは、前記平板状構造の主平板部の強化繊維体積比よりも低い強化繊維体積比をもつ薄肉リブを有する、請求項4〜6のいずれか1項に記載の方法。   The method according to any one of claims 4 to 6, wherein the fiber-reinforced composite sheet has thin-walled ribs having a reinforcing fiber volume ratio lower than a reinforcing fiber volume ratio of the main flat plate portion of the flat plate-like structure. 前記層間に配置される略円柱状中子が水溶性である、請求項5〜7のいずれか1項に記載の方法。   The method according to claim 5, wherein the substantially cylindrical core disposed between the layers is water-soluble. 前記略円柱状の中子として機能させる糸かけ部材Aの、必要により前記層間に配置される略円柱状中子の円周方向に強化繊維を巻いた後にプレス成形工程を行うことにより、中空構造の円周方向にも強化繊維が配向した繊維強化複合シートを得る、請求項5〜8のいずれか1項に記載の方法。   A hollow structure is obtained by performing a press molding step after winding reinforcing fibers in the circumferential direction of the substantially cylindrical core disposed between the layers of the threading member A that functions as the substantially cylindrical core, if necessary. The method according to claim 5, wherein a fiber-reinforced composite sheet in which reinforcing fibers are oriented in the circumferential direction is obtained. 前記巻き付け・配向工程において、記糸かけ部材Aに接する強化繊維の最内層では、前記強化繊維を、前記糸かけ部材Aに、前記回転軸に直交する方向に対して0度で巻き付け、強化繊維の最外層では、前記強化繊維を、前記糸かけ部材Aに、前記回転軸に直交する方向に対して5度未満の角度で巻き付ける、請求項1〜9のいずれか1項に記載の方法。   In the winding / orientation step, in the innermost layer of the reinforcing fiber in contact with the yarn hooking member A, the reinforcing fiber is wound around the yarn hooking member A at 0 degree with respect to the direction orthogonal to the rotation axis. 10. The method according to claim 1, wherein in the outermost layer, the reinforcing fiber is wound around the yarn hooking member A at an angle of less than 5 degrees with respect to a direction orthogonal to the rotation axis. 平板状構造に加え中空構造を有し、かつ、固化樹脂マトリックス中に一方向に配向した強化繊維を含む繊維強化複合シートである荷重支持インサート部材の少なくとも一部に熱可塑性樹脂がオーバーモールドされている該中空構造を有する、支持体に接続するための剛性補強材。   A thermoplastic resin is overmolded on at least a part of a load-supporting insert member that is a fiber-reinforced composite sheet that has a hollow structure in addition to a flat plate structure and includes reinforcing fibers oriented in one direction in a solidified resin matrix. A rigid reinforcement for connecting to a support having the hollow structure. 前記中空構造の円周方向にも強化繊維が配向している、請求項11に記載の剛性補強材。   The rigid reinforcing material according to claim 11, wherein reinforcing fibers are also oriented in a circumferential direction of the hollow structure. 前記中空構造は、前記支持体に接続するためのボルト締結部である、請求項11又は12に記載の剛性補強材。   The rigid reinforcing material according to claim 11 or 12, wherein the hollow structure is a bolt fastening portion for connection to the support.
JP2018045549A 2018-03-13 2018-03-13 Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method Pending JP2019155730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018045549A JP2019155730A (en) 2018-03-13 2018-03-13 Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018045549A JP2019155730A (en) 2018-03-13 2018-03-13 Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method

Publications (1)

Publication Number Publication Date
JP2019155730A true JP2019155730A (en) 2019-09-19

Family

ID=67992977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018045549A Pending JP2019155730A (en) 2018-03-13 2018-03-13 Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method

Country Status (1)

Country Link
JP (1) JP2019155730A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730225A (en) * 2020-12-09 2021-04-30 中国纺织科学研究院有限公司 Low-melting-point fiber bonding strength testing device and testing method
CN113681941A (en) * 2021-08-20 2021-11-23 江西昌河航空工业有限公司 Integrated winding forming tool and method for high-strength glass fiber girder with tension and torsion bars

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730225A (en) * 2020-12-09 2021-04-30 中国纺织科学研究院有限公司 Low-melting-point fiber bonding strength testing device and testing method
CN112730225B (en) * 2020-12-09 2023-02-28 中国纺织科学研究院有限公司 Low-melting-point fiber bonding strength testing device and testing method
CN113681941A (en) * 2021-08-20 2021-11-23 江西昌河航空工业有限公司 Integrated winding forming tool and method for high-strength glass fiber girder with tension and torsion bars

Similar Documents

Publication Publication Date Title
US10190240B2 (en) Woven preform, composite, and method of making thereof
US8440276B2 (en) Multidirectionally reinforced shape woven preforms for composite structures
US8883660B2 (en) Woven preform, composite, and method of making thereof
US20140230634A1 (en) Reinforced fiber/resin fiber composite, and method for manufacturing same
JP2020028984A (en) Ud-like closed fiber-reinforced composite molded product by filament winding (fw) method and method for producing the same
US20050104441A1 (en) Fiber reinforced composite wheels
US11926719B2 (en) Materials comprising shape memory alloy wires and methods of making these materials
US20140342630A1 (en) Woven fabric preforms and process for making the same
JP2018094746A (en) Method for producing fiber-reinforced plastic molded article, nozzle used for the same, and 3d printer
JP2019155730A (en) Manufacturing method of UD-like fiber reinforced composite sheet by filament winding (FW) method
KR102204244B1 (en) Fabric for fiber reinforced plastic and manufacturing method thereof using the same
JP6526495B2 (en) Method of manufacturing pipe molded article
JP5598931B2 (en) Fiber reinforced resin substrate, method for producing resin molded body, and resin processing machine for implementing the method
EP3758922B1 (en) Process for manufacturing composite fiber products
JP7387963B2 (en) Prepreg, prepreg manufacturing method, molded body, and molded body manufacturing method
AU618573B2 (en) Multi-directional, light-weight, high-strength interlaced material and method of making the material
EP3843980A1 (en) Product and process
Venkataraman et al. Review on hybrid yarns, textile structures and techniques
Venkataraman et al. Review on Hybrid Yarn, Structure and Techniques