JP2019153968A - Acoustic wave resonator, filter, and multiplexer - Google Patents

Acoustic wave resonator, filter, and multiplexer Download PDF

Info

Publication number
JP2019153968A
JP2019153968A JP2018038892A JP2018038892A JP2019153968A JP 2019153968 A JP2019153968 A JP 2019153968A JP 2018038892 A JP2018038892 A JP 2018038892A JP 2018038892 A JP2018038892 A JP 2018038892A JP 2019153968 A JP2019153968 A JP 2019153968A
Authority
JP
Japan
Prior art keywords
electrode fingers
electrodes
film thickness
reflector
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018038892A
Other languages
Japanese (ja)
Other versions
JP7351604B2 (en
Inventor
輝 下村
Hikaru Shimomura
輝 下村
治 川内
Osamu Kawauchi
治 川内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018038892A priority Critical patent/JP7351604B2/en
Publication of JP2019153968A publication Critical patent/JP2019153968A/en
Application granted granted Critical
Publication of JP7351604B2 publication Critical patent/JP7351604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

To improve characteristics of acoustic wave resonators.SOLUTION: The acoustic wave resonator includes: a piezoelectric substrate 10; a pair of comb-shaped electrodes 16, provided on the piezoelectric substrate 10, and having a plurality of electrode fingers 14; and a reflector 20, provided outside the pair of comb-shaped electrodes 16, and including a plurality of grating electrodes 18 having a film thickness T2 larger than a film thickness T1 of the plurality of electrode fingers 14 and an average pitch L2 smaller than an average pitch L1 of the plurality of electrode fingers 14.SELECTED DRAWING: Figure 1

Description

本発明は、弾性波共振器、フィルタおよびマルチプレクサに関し、例えば一対の櫛型電極と反射器を有する弾性波共振器、フィルタおよびマルチプレクサに関する。   The present invention relates to an acoustic wave resonator, a filter, and a multiplexer, and for example, relates to an acoustic wave resonator, a filter, and a multiplexer that have a pair of comb-shaped electrodes and a reflector.

弾性表面波共振器等の弾性波共振器は、複数の電極指を有する一対の櫛型電極と、櫛型電極の両側に設けられた反射器を備えている。反射器は、一対の櫛型電極が励振した弾性波を反射する。これにより、弾性波が一対の櫛型電極内に閉じ込められる。   An acoustic wave resonator such as a surface acoustic wave resonator includes a pair of comb electrodes having a plurality of electrode fingers and reflectors provided on both sides of the comb electrodes. The reflector reflects the elastic wave excited by the pair of comb electrodes. Thereby, an elastic wave is confined in a pair of comb electrodes.

反射器をIDTより厚くすること、反射器の密度をIDTの密度より大きくすることが知られている(例えば特許文献1)。反射器内の膜厚をIDTから離れるにしたがい厚くすることが知られている(例えば特許文献2)。   It is known to make the reflector thicker than the IDT and to make the reflector density larger than the IDT density (for example, Patent Document 1). It is known that the film thickness in the reflector is increased as the distance from the IDT increases (for example, Patent Document 2).

特開平10−209804号公報JP-A-10-209804 特開2002−290194号公報JP 2002-290194 A

しかしながら、反射器をIDTより厚くする、または反射器の密度をIDTの密度より大きくすると、IDTが励振する弾性波の周波数と反射器のストップバンドとの差が大きくなることがある。このため、弾性波共振器の損失が大きくなる。   However, when the reflector is thicker than the IDT or the reflector density is greater than the IDT density, the difference between the frequency of the elastic wave excited by the IDT and the stopband of the reflector may increase. For this reason, the loss of an acoustic wave resonator becomes large.

本発明は、上記課題に鑑みなされたものであり、弾性波共振器の特性を向上させることを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to improve the characteristics of an acoustic wave resonator.

本発明は、圧電基板と、前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、前記一対の櫛型電極の外側に設けられ、前記複数の電極指の膜厚より大きい膜厚と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、を備える弾性波共振器である。   The present invention provides a piezoelectric substrate, a pair of comb-shaped electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers, and provided on the outside of the pair of comb-shaped electrodes. And a reflector including a plurality of grating electrodes having a large film thickness and an average pitch smaller than the average pitch of the plurality of electrode fingers.

上記構成において、前記複数のグレーティング電極の密度は前記複数の電極指の密度以上である構成とすることができる。   The said structure WHEREIN: The density of these grating electrodes can be set as the structure more than the density of these electrode fingers.

本発明は、圧電基板と、前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、前記一対の櫛型電極の外側に設けられ、前記複数の電極指の密度より大きい密度と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、を備える弾性波共振器である。   The present invention provides a piezoelectric substrate, a pair of comb electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers, and provided outside the pair of comb electrodes and larger than the density of the plurality of electrode fingers. And a reflector including a plurality of grating electrodes having a density and an average pitch smaller than an average pitch of the plurality of electrode fingers.

上記構成において、前記複数のグレーティング電極の膜厚は前記複数の電極指の膜厚以上である構成とすることができる。   The said structure WHEREIN: The film thickness of these grating electrodes can be set as the structure more than the film thickness of these electrode fingers.

本発明は、圧電基板と、前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、前記一対の櫛型電極の外側に設けられ、前記複数の電極指の密度と膜厚との積より大きい密度と膜厚との積と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、を備える弾性波共振器である。   The present invention provides a piezoelectric substrate, a pair of comb electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers, and provided on the outside of the pair of comb electrodes, and the density and film of the plurality of electrode fingers And a reflector including a plurality of grating electrodes having a product of density and film thickness greater than the product of thickness and an average pitch smaller than the average pitch of the plurality of electrode fingers.

上記構成において、前記複数のグレーティング電極の平均ピッチは前記複数の電極指の平均ピッチの0.95倍以下である構成とすることができる。   The said structure WHEREIN: The average pitch of these grating electrodes can be set as the structure which is 0.95 times or less of the average pitch of these electrode fingers.

上記構成において、前記圧電基板はタンタル酸リチウム基板またはニオブ酸リチウム基板である構成とすることができる。   In the above configuration, the piezoelectric substrate may be a lithium tantalate substrate or a lithium niobate substrate.

本発明は、上記弾性波共振器を含むフィルタである。   The present invention is a filter including the elastic wave resonator.

本発明は、上記フィルタを含むマルチプレクサである。   The present invention is a multiplexer including the filter.

本発明によれば、弾性波共振器の特性を向上させることができる。   According to the present invention, the characteristics of an acoustic wave resonator can be improved.

図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。1A is a plan view of the acoustic wave resonator according to the first embodiment, and FIG. 1B is a cross-sectional view taken along line AA of FIG. 図2は、シミュレーション条件を示す図である。FIG. 2 is a diagram showing simulation conditions. 図3は、サンプルAからEにおけるIDTの通過特性を示す図である。FIG. 3 is a diagram illustrating IDT pass characteristics in samples A to E. FIG. 図4(a)は、サンプルAおよびDの反射器の反射量を示す図であり、図4(b)は、図4(a)の拡大図である。4A is a diagram showing the reflection amount of the reflectors of samples A and D, and FIG. 4B is an enlarged view of FIG. 4A. 図5(a)は、サンプルBおよびEの反射器の反射量を示す図であり、図5(b)は、図5(a)の拡大図である。FIG. 5A is a diagram showing the reflection amount of the reflectors of Samples B and E, and FIG. 5B is an enlarged view of FIG. 5A. 図6(a)は、サンプルCおよびDの反射器の反射量を示す図であり、図6(b)は、図6(a)の拡大図である。6A is a diagram showing the reflection amount of the reflectors of samples C and D, and FIG. 6B is an enlarged view of FIG. 6A. 図7(a)は、サンプルCおよびEの反射器の反射量を示す図であり、図7(b)は、図7(a)の拡大図である。Fig.7 (a) is a figure which shows the reflection amount of the reflector of the samples C and E, FIG.7 (b) is an enlarged view of Fig.7 (a). 図8(a)から図8(c)は、それぞれ実施例1、その変形例1および2に係る弾性波共振器の断面図である。FIGS. 8A to 8C are cross-sectional views of the acoustic wave resonators according to the first embodiment and the first and second modifications, respectively. 図9(a)は、実施例2に係るフィルタの回路図、図9(b)は、実施例2の変形例1に係るデュプレクサの回路図である。FIG. 9A is a circuit diagram of a filter according to the second embodiment, and FIG. 9B is a circuit diagram of a duplexer according to the first modification of the second embodiment.

以下、図面を参照し本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

弾性波デバイスとして弾性波共振器について説明する。図1(a)は、実施例1における弾性波共振器の平面図、図1(b)は、図1(a)のA−A断面図である。電極指14の配列方向をX方向、電極指14の延伸方向をY方向とする。X方向およびY方向は、圧電基板10の結晶方位のX軸方向およびY軸方向とは必ずしも対応しない。   An acoustic wave resonator will be described as an acoustic wave device. 1A is a plan view of the acoustic wave resonator according to the first embodiment, and FIG. 1B is a cross-sectional view taken along line AA of FIG. The arrangement direction of the electrode fingers 14 is defined as the X direction, and the extending direction of the electrode fingers 14 is defined as the Y direction. The X direction and the Y direction do not necessarily correspond to the X axis direction and the Y axis direction of the crystal orientation of the piezoelectric substrate 10.

図1(a)および図1(b)に示すように、圧電基板10上にIDT22および反射器20が形成されている。IDT22は、圧電基板10上に設けられた膜厚T1の金属膜12aにより形成される。反射器20は、圧電基板10に形成された膜厚T2の金属膜12bにより形成される。反射器20は、IDT22のX方向の外側に配置されている。   As shown in FIGS. 1A and 1B, an IDT 22 and a reflector 20 are formed on the piezoelectric substrate 10. The IDT 22 is formed by a metal film 12 a having a film thickness T 1 provided on the piezoelectric substrate 10. The reflector 20 is formed by a metal film 12b having a film thickness T2 formed on the piezoelectric substrate 10. The reflector 20 is disposed outside the IDT 22 in the X direction.

IDT22は、対向する一対の櫛型電極16を備える。櫛型電極16は、複数の電極指14と、複数の電極指14が接続されたバスバー15と、を備える。一対の櫛型電極16の電極指14が交差する領域が交叉領域24である。交叉領域24の長さが開口長である。一対の櫛型電極16は、交叉領域24の少なくとも一部において電極指14がほぼ互い違いとなるように、対向して設けられている。交叉領域24において複数の電極指14が励振する弾性波は、主にX列方向に伝搬する。同じ櫛型電極16の電極指14のピッチL1がほぼ弾性波の波長λとなる。ピッチL1は電極指14の2本分のピッチとなる。   The IDT 22 includes a pair of opposing comb electrodes 16. The comb electrode 16 includes a plurality of electrode fingers 14 and a bus bar 15 to which the plurality of electrode fingers 14 are connected. A region where the electrode fingers 14 of the pair of comb electrodes 16 intersect is a cross region 24. The length of the crossing region 24 is the opening length. The pair of comb-shaped electrodes 16 are provided so as to face each other so that the electrode fingers 14 are substantially staggered in at least a part of the crossing region 24. The elastic wave excited by the plurality of electrode fingers 14 in the crossing region 24 propagates mainly in the X column direction. The pitch L1 of the electrode fingers 14 of the same comb electrode 16 is substantially the wavelength λ of the elastic wave. The pitch L1 is the pitch of two electrode fingers 14.

反射器20は、複数のグレーティング電極18と複数のグレーティング電極18が接続されたバスバー19とを備える。グレーティング電極18はX方向に配列し、Y方向に延伸する。グレーティング電極18の2本分のピッチはL2である。反射器20は、IDT22の電極指14が励振した弾性波(弾性表面波)を反射する。これにより弾性波はIDT22の交叉領域24内に閉じ込められる。   The reflector 20 includes a plurality of grating electrodes 18 and a bus bar 19 to which the plurality of grating electrodes 18 are connected. The grating electrodes 18 are arranged in the X direction and extend in the Y direction. The pitch of the two grating electrodes 18 is L2. The reflector 20 reflects an elastic wave (surface acoustic wave) excited by the electrode finger 14 of the IDT 22. As a result, the elastic wave is confined in the crossing region 24 of the IDT 22.

圧電基板10としては、例えば、タンタル酸リチウム基板またはニオブ酸リチウム基板であり、例えば回転YカットX伝搬タンタル酸リチウム基板または回転YカットX伝搬タンタル酸ニオブ酸リチウム基板である。圧電基板10は支持基板上に直接または中間層を介し接合されていてもよい。支持基板は、例えばサファイア基板、スピネル基板、アルミナ基板、水晶基板またはシリコン基板である。金属膜12aおよび12bは、例えばAl(アルミニウム)またはCu(銅)を主成分とする膜であり、例えばAl膜またはCu膜である。電極指14およびグレーティング電極18と圧電基板10との間にTi(チタン)膜またはCr(クロム)膜等の密着膜が設けられていてもよい。密着膜は電極指14およびグレーティング電極18より薄い。電極指14およびグレーティング電極18を覆うように絶縁膜が設けられていてもよい。絶縁膜は保護膜または温度補償膜として機能する。   The piezoelectric substrate 10 is, for example, a lithium tantalate substrate or a lithium niobate substrate, such as a rotating Y-cut X-propagating lithium tantalate substrate or a rotating Y-cut X-propagating lithium tantalate niobate substrate. The piezoelectric substrate 10 may be bonded to the supporting substrate directly or via an intermediate layer. The support substrate is, for example, a sapphire substrate, a spinel substrate, an alumina substrate, a quartz substrate, or a silicon substrate. The metal films 12a and 12b are films mainly composed of, for example, Al (aluminum) or Cu (copper), and are, for example, Al films or Cu films. An adhesive film such as a Ti (titanium) film or a Cr (chromium) film may be provided between the electrode finger 14 and the grating electrode 18 and the piezoelectric substrate 10. The adhesion film is thinner than the electrode finger 14 and the grating electrode 18. An insulating film may be provided so as to cover the electrode finger 14 and the grating electrode 18. The insulating film functions as a protective film or a temperature compensation film.

膜厚T1およびT2は例えば50nmから500nmである。電極指14およびグレーティング電極18のX方向の幅は例えば200nmから1500nmである。電極指14のピッチL1は例えば500nmから2500nmである。IDT22の静電容量値は例えば0.1pFから10pFである。   The film thicknesses T1 and T2 are, for example, 50 nm to 500 nm. The width in the X direction of the electrode finger 14 and the grating electrode 18 is, for example, 200 nm to 1500 nm. The pitch L1 of the electrode fingers 14 is, for example, 500 nm to 2500 nm. The capacitance value of the IDT 22 is, for example, 0.1 pF to 10 pF.

[シミュレーション]
5つのサンプルAからEについてシミュレーションを行った。サンプルAからCは比較例に対応し、サンプルDおよびEは実施例1に対応する。図2は、シミュレーション条件を示す図である。サンプルAからEとも圧電基板10として42°回転YカットX伝搬タンタル酸リチウム基板を用い、金属膜12aおよび12bとしてアルミニウム膜を用いた。開口長を15λとした。IDT22において、対数を100、ピッチL1を2μm、デュティ比を80%、金属膜12aの膜厚T1を200nmとした。反射器20において、対数を15、デュティ比を80%とした。
[simulation]
Simulations were performed for five samples A to E. Samples A to C correspond to the comparative example, and samples D and E correspond to Example 1. FIG. 2 is a diagram showing simulation conditions. In both samples A to E, a 42 ° rotated Y-cut X-propagating lithium tantalate substrate was used as the piezoelectric substrate 10, and aluminum films were used as the metal films 12a and 12b. The opening length was 15λ. In the IDT 22, the logarithm was 100, the pitch L1 was 2 μm, the duty ratio was 80%, and the film thickness T1 of the metal film 12a was 200 nm. In the reflector 20, the logarithm was 15 and the duty ratio was 80%.

サンプルAおよびBでは、膜厚T2を膜厚T1と同じ200nmとし、ピッチL2をそれぞれ2.04μmおよび1.97μmとした。サンプルCでは、ピッチL2をL1と同じ2μmとし、膜厚T2を350nmとした。サンプルDおよびEでは、膜厚T2を350nmとし、ピッチL2をそれぞれ1.90μmおよび1.82μmとした。サンプルAからEの反射器20に対するIDT22のピッチ比は、それぞれ1.02、0.985、1.00、0.95および0.91となる。   In Samples A and B, the film thickness T2 was set to 200 nm, which was the same as the film thickness T1, and the pitch L2 was set to 2.04 μm and 1.97 μm, respectively. In sample C, the pitch L2 was 2 μm, the same as L1, and the film thickness T2 was 350 nm. In samples D and E, the film thickness T2 was 350 nm, and the pitch L2 was 1.90 μm and 1.82 μm, respectively. The pitch ratio of the IDT 22 to the reflectors 20 of samples A to E is 1.02, 0.985, 1.00, 0.95, and 0.91, respectively.

図3は、サンプルAからEにおけるIDTの通過特性を示す図である。図3に示すように、共振周波数frおよび***振周波数faは、それぞれ約1923.5MHzおよび約1987MHzである。***振周波数faは共振周波数frより高周波数側に位置する。フィルタ等には、共振周波数frと***振周波数faとの間付近の周波数を用いる。   FIG. 3 is a diagram illustrating IDT pass characteristics in samples A to E. FIG. As shown in FIG. 3, the resonance frequency fr and the antiresonance frequency fa are about 1923.5 MHz and about 1987 MHz, respectively. The anti-resonance frequency fa is located on the higher frequency side than the resonance frequency fr. For the filter or the like, a frequency near the resonance frequency fr and the anti-resonance frequency fa is used.

図4(a)は、サンプルAおよびDの反射器の反射量を示す図であり、図4(b)は、図4(a)の拡大図である。図4(a)および図4(b)に示すように、サンプルAでは、反射量が最も大きい周波数が共振周波数frにほぼ一致する。   4A is a diagram showing the reflection amount of the reflectors of samples A and D, and FIG. 4B is an enlarged view of FIG. 4A. As shown in FIGS. 4 (a) and 4 (b), in sample A, the frequency with the largest amount of reflection almost coincides with the resonance frequency fr.

図5(a)は、サンプルBおよびEの反射器の反射量を示す図であり、図5(b)は、図5(a)の拡大図である。図5(a)および図5(b)に示すように、サンプルBでは、反射量が最も大きい周波数が***振周波数faにほぼ一致する。   FIG. 5A is a diagram showing the reflection amount of the reflectors of Samples B and E, and FIG. 5B is an enlarged view of FIG. 5A. As shown in FIGS. 5A and 5B, in the sample B, the frequency with the largest amount of reflection substantially matches the antiresonance frequency fa.

反射器20の反射が大きい周波数帯をストップバンドという。ストップバンドの周波数は、IDT22の共振周波数frおよび***振周波数faの近傍であることが好ましい。これにより、反射器20は、フィルタ等に用いられる周波数付近の弾性波を効率的に反射する。よって、弾性波をIDT22により閉じ込めることができる。これにより、弾性波共振器の共振周波数frおよび***振周波数fa付近のQ値を向上させることができる。   A frequency band in which the reflection of the reflector 20 is large is called a stop band. The stopband frequency is preferably in the vicinity of the resonance frequency fr and antiresonance frequency fa of the IDT 22. Thereby, the reflector 20 efficiently reflects an elastic wave near a frequency used for a filter or the like. Therefore, the elastic wave can be confined by the IDT 22. Thereby, the Q value in the vicinity of the resonance frequency fr and the antiresonance frequency fa of the acoustic wave resonator can be improved.

サンプルAおよびBでは、反射器20のグレーティング電極18のピッチL2を調整することで、反射器20のストップバンドの中心の周波数を共振周波数frおよび***振周波数fa付近とすることができる。しかしながら、反射器20の反射率が小さく、反射量が小さい。反射器20の反射率を向上させるためには、金属膜12bの膜厚T2を大きくすることが考えられる。しかし、IDT22の金属膜12aの膜厚T1は、IDT22における損失等の特性が最適化されるように設定される。このため、膜厚T1を膜厚T2と合わせて大きくすることが難しい。そこで、サンプルCでは、膜厚T2を膜厚T1より大きくしている。   In samples A and B, by adjusting the pitch L2 of the grating electrode 18 of the reflector 20, the frequency at the center of the stop band of the reflector 20 can be made around the resonance frequency fr and the anti-resonance frequency fa. However, the reflectance of the reflector 20 is small and the amount of reflection is small. In order to improve the reflectance of the reflector 20, it is conceivable to increase the film thickness T2 of the metal film 12b. However, the thickness T1 of the metal film 12a of the IDT 22 is set so that characteristics such as loss in the IDT 22 are optimized. For this reason, it is difficult to increase the film thickness T1 together with the film thickness T2. Therefore, in sample C, the film thickness T2 is larger than the film thickness T1.

図6(a)は、サンプルCおよびDの反射器の反射量を示す図であり、図6(b)は、図6(a)の拡大図である。図7(a)は、サンプルCおよびEの反射器の反射量を示す図であり、図7(b)は、図7(a)の拡大図である。図6(a)から図7(b)に示すように、サンプルCでは、膜厚T2を大きくすることで、サンプルAおよびBに比べ反射器20の反射量が大きくなる。しかしながら、ストップバンドの中心周波数が共振周波数frおよび***振周波数faより低周波数にシフトしてしまう。このため、反射器20は、共振周波数frおよび***振周波数fa付近の弾性波を効率的に反射することができない。   6A is a diagram showing the reflection amount of the reflectors of samples C and D, and FIG. 6B is an enlarged view of FIG. 6A. Fig.7 (a) is a figure which shows the reflection amount of the reflector of the samples C and E, FIG.7 (b) is an enlarged view of Fig.7 (a). As shown in FIG. 6A to FIG. 7B, in the sample C, the reflection amount of the reflector 20 is increased as compared with the samples A and B by increasing the film thickness T2. However, the center frequency of the stop band is shifted to a frequency lower than the resonance frequency fr and the antiresonance frequency fa. For this reason, the reflector 20 cannot efficiently reflect the elastic wave near the resonance frequency fr and the anti-resonance frequency fa.

サンプルDおよびEでは、膜厚T2を膜厚T1より大きくし、かつピッチL2をピッチL1より小さくする。これにより、図4(a)から図5(b)のように、サンプルDおよびEでは、サンプルAおよびBに比べ反射器20の反射量を大きくできる。図6(a)から図7(b)のように、サンプルDおよびEでは、サンプルCに比べ反射器20のストップバンドを共振周波数frおよび***振周波数fa付近とすることができる。よって、IDT22が励振した共振周波数frおよび***振周波数fa付近の弾性波を効率的にIDT22内に閉じ込めることができる。これにより、Q値等の弾性波共振器の特性を向上できる。   In samples D and E, the film thickness T2 is made larger than the film thickness T1, and the pitch L2 is made smaller than the pitch L1. Thereby, as shown in FIG. 4A to FIG. 5B, the reflection amount of the reflector 20 can be made larger in the samples D and E than in the samples A and B. As shown in FIGS. 6A to 7B, in samples D and E, the stop band of the reflector 20 can be set near the resonance frequency fr and the anti-resonance frequency fa as compared with the sample C. Therefore, the elastic wave near the resonance frequency fr and the antiresonance frequency fa excited by the IDT 22 can be efficiently confined in the IDT 22. Thereby, the characteristics of the acoustic wave resonator such as the Q value can be improved.

反射器20のストップバンドの中心周波数は、反射器20のグレーティング電極18の平均ピッチL2にほぼ反比例する。よって、このシミュレーションの例では、ピッチ比が0.95と0.91との間では、ストップバンドの中心周波数は共振周波数frと***振周波数faの間に位置する。   The center frequency of the stop band of the reflector 20 is almost inversely proportional to the average pitch L2 of the grating electrodes 18 of the reflector 20. Therefore, in this simulation example, when the pitch ratio is between 0.95 and 0.91, the center frequency of the stop band is located between the resonance frequency fr and the anti-resonance frequency fa.

[実施例1およびその変形例]
図8(a)から図8(c)は、それぞれ実施例1、その変形例1および2に係る弾性波共振器の断面図である。図8(a)のように、実施例1では、反射器20の複数のグレーティング電極18の膜厚T2は、IDT22(一対の櫛型電極16)の複数の電極指14の膜厚T1より大きく、グレーティング電極18の平均ピッチL2/2は電極指14の平均ピッチL1/2より小さい。これにより、サンプルDおよびEのように、弾性波共振器の特性を向上できる。
[Example 1 and its modifications]
FIGS. 8A to 8C are cross-sectional views of the acoustic wave resonators according to the first embodiment and the first and second modifications, respectively. As shown in FIG. 8A, in Example 1, the thickness T2 of the plurality of grating electrodes 18 of the reflector 20 is larger than the thickness T1 of the plurality of electrode fingers 14 of the IDT 22 (a pair of comb-shaped electrodes 16). The average pitch L2 / 2 of the grating electrodes 18 is smaller than the average pitch L1 / 2 of the electrode fingers 14. Thereby, like the samples D and E, the characteristic of an elastic wave resonator can be improved.

複数のグレーティング電極18の密度は複数の電極指14の密度以上であることが好ましい。これにより、反射器20の反射率を大きくできる。グレーティング電極18の材料と電極指14の材料は製造誤差程度に略同じであり、グレーティング電極18の密度と電極指14の密度は製造誤差程度に略同じであることが好ましい。これにより、弾性波共振器に用いる材料の数を少なくできる。   The density of the plurality of grating electrodes 18 is preferably equal to or higher than the density of the plurality of electrode fingers 14. Thereby, the reflectance of the reflector 20 can be increased. It is preferable that the material of the grating electrode 18 and the material of the electrode finger 14 are substantially the same as the manufacturing error, and the density of the grating electrode 18 and the density of the electrode finger 14 are substantially the same as the manufacturing error. Thereby, the number of materials used for the elastic wave resonator can be reduced.

図8(b)に示すように、実施例1の変形例1では、複数のグレーティング電極18の密度は、複数の電極指14の密度より大きく、グレーティング電極18の平均ピッチL2/2は電極指14の平均ピッチL1/2より小さい。実施例1の変形例1のように、グレーティング電極18の金属膜12bの密度を電極指14の金属膜12aより大きくすることで、反射器20の反射量を大きくしてもよい。この場合もグレーティング電極18の平均ピッチL2/2を電極指14の平均ピッチL1/2より小さくすることで、ストップバンドの中心を共振周波数frおよび***振周波数fa付近とすることができる。グレーティング電極18の膜厚T2と電極指14の膜厚T1は製造誤差程度に略同じであることが好ましい。このように、グレーティング電極18の密度を大きくすることで、反射器20は薄くても反射器20の反射量を大きくできる。よって、製造工程における反射器20の加工が容易となる。   As shown in FIG. 8B, in the first modification of the first embodiment, the density of the plurality of grating electrodes 18 is larger than the density of the plurality of electrode fingers 14, and the average pitch L2 / 2 of the grating electrodes 18 is an electrode finger. 14 is smaller than the average pitch L1 / 2. As in the first modification of the first embodiment, the reflection amount of the reflector 20 may be increased by making the density of the metal film 12b of the grating electrode 18 larger than that of the metal film 12a of the electrode finger 14. Also in this case, by making the average pitch L2 / 2 of the grating electrodes 18 smaller than the average pitch L1 / 2 of the electrode fingers 14, the center of the stop band can be set near the resonance frequency fr and the antiresonance frequency fa. The film thickness T2 of the grating electrode 18 and the film thickness T1 of the electrode finger 14 are preferably substantially the same as the manufacturing error. Thus, by increasing the density of the grating electrode 18, the reflection amount of the reflector 20 can be increased even if the reflector 20 is thin. Therefore, the reflector 20 can be easily processed in the manufacturing process.

金属膜12aは例えばAlを主成分とする膜を用いる。金属膜12bは、例えばCu、W(タングルテン)、Ru(ルテニウム)、Mo(モリブデン)、Ta(タンタル)、Pt(白金)、Pd(パラジウム)、Ir(イリジウム)、Rh(ロジウム)、Re(レニウム)およびTe(テルル)の少なくとも1つを主成分とする。   For example, a film containing Al as a main component is used as the metal film 12a. The metal film 12b is made of, for example, Cu, W (tangled), Ru (ruthenium), Mo (molybdenum), Ta (tantalum), Pt (platinum), Pd (palladium), Ir (iridium), Rh (rhodium), Re The main component is at least one of (rhenium) and Te (tellurium).

図8(c)に示すように、実施例1の変形例2では、複数のグレーティング電極18の密度は、複数の電極指14の密度より大きく、複数のグレーティング電極18の膜厚T2は複数の電極指14の膜厚T1以上である。これにより、反射器20の反射率をより大きくできる。   As shown in FIG. 8C, in the second modification of the first embodiment, the density of the plurality of grating electrodes 18 is larger than the density of the plurality of electrode fingers 14, and the thickness T2 of the plurality of grating electrodes 18 is a plurality of thicknesses. It is the film thickness T1 or more of the electrode finger 14. Thereby, the reflectance of the reflector 20 can be made larger.

実施例1およびその変形例のように、反射器20の反射量を大きくするためには、グレーティング電極18の密度と膜厚の積を電極指14の密度と膜厚の積より大きくすればよい。   In order to increase the reflection amount of the reflector 20 as in the first embodiment and its modification, the product of the density and the film thickness of the grating electrode 18 may be made larger than the product of the density and the film thickness of the electrode finger 14. .

グレーティング電極18の膜厚T2と電極指14の膜厚T1との関係、およびグレーティング電極18の密度と電極指14の密度との関係は、IDT22における損失等と反射器20の反射率を考慮して決められる。例えば、グレーティング電極18の膜厚T2は電極指14の膜厚T1の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.5倍以上がさらに好ましい。膜厚T2はT1の3倍以下が好ましく2倍以下がより好ましい。また、例えばグレーティング電極18の密度は電極指14の密度の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.5倍以上がさらに好ましい、3倍以下が好ましく2倍以下がより好ましい。さらに、例えばグレーティング電極18の膜厚T2と密度との積は電極指14の膜厚T1と密度との積の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.5倍以上がさらに好ましい、3倍以下が好ましく2倍以下がより好ましい。   The relationship between the film thickness T2 of the grating electrode 18 and the film thickness T1 of the electrode finger 14 and the relationship between the density of the grating electrode 18 and the density of the electrode finger 14 take into account the loss in the IDT 22 and the reflectance of the reflector 20. Can be decided. For example, the film thickness T2 of the grating electrode 18 is preferably 1.1 times or more, more preferably 1.2 times or more, and even more preferably 1.5 times or more the film thickness T1 of the electrode finger 14. The film thickness T2 is preferably 3 times or less of T1 and more preferably 2 times or less. For example, the density of the grating electrode 18 is preferably 1.1 times or more of the density of the electrode fingers 14, more preferably 1.2 times or more, further preferably 1.5 times or more, preferably 3 times or less, preferably 2 times or less. More preferred. Further, for example, the product of the thickness T2 and the density of the grating electrode 18 is preferably 1.1 times or more, more preferably 1.2 times or more, and more preferably 1.5 times the product of the film thickness T1 and the density of the electrode finger 14. The above is more preferable, 3 times or less is preferable, and 2 times or less is more preferable.

反射器20のストップバンドを共振周波数frおよび***振周波数faに合わせるため、複数のグレーティング電極18の平均ピッチL2は複数の電極指14の平均ピッチL1の0.98倍以下が好ましく、0.95倍以下がより好ましく、0.92倍以下がさらに好ましい。L1はL2の0.8倍以上が好ましく、0.85倍以上がより好ましく、0.91倍以上がさらに好ましい。   In order to match the stop band of the reflector 20 to the resonance frequency fr and the anti-resonance frequency fa, the average pitch L2 of the plurality of grating electrodes 18 is preferably 0.98 times or less of the average pitch L1 of the plurality of electrode fingers 14, and 0.95 The ratio is more preferably double or less, and further preferably 0.92 or less. L1 is preferably at least 0.8 times L2, more preferably at least 0.85 times, and even more preferably at least 0.91 times.

電極指14の平均ピッチは、複数の電極指14のX方向の長さを電極指14の本数(例えば対数)で除することで求めることができる。グレーティング電極18の平均ピッチは複数のグレーティング電極18のX方向の長さをグレーティング電極18の本数で除する(例えば本数の1/2で除する)ことで求めることができる。   The average pitch of the electrode fingers 14 can be obtained by dividing the length of the plurality of electrode fingers 14 in the X direction by the number of electrode fingers 14 (for example, logarithm). The average pitch of the grating electrodes 18 can be obtained by dividing the length of the plurality of grating electrodes 18 in the X direction by the number of the grating electrodes 18 (for example, dividing by the half of the number).

金属膜12aおよび/または12bが複数の金属膜の積層膜の場合、電極指14および/またはグレーティング電極18の膜厚および密度は、積層された複数の金属膜のうち最も厚い金属膜の膜厚および密度で比較してもよい。   When the metal films 12a and / or 12b are laminated films of a plurality of metal films, the film thickness and density of the electrode fingers 14 and / or the grating electrodes 18 are the film thickness of the thickest metal film among the laminated metal films. And comparison by density.

図9(a)は、実施例2に係るフィルタの回路図である。図9(a)に示すように、入力端子Tinと出力端子Toutとの間に、1または複数の直列共振器S1からS3が直列に接続されている。入力端子Tinと出力端子Toutとの間に、1または複数の並列共振器P1およびP2が並列に接続されている。1または複数の直列共振器S1からS3および1または複数の並列共振器P1およびP2の少なくとも1つに実施例1およびその変形例の圧電薄膜共振器を用いることができる。ラダー型フィルタの共振器の個数等は適宜設定できる。   FIG. 9A is a circuit diagram of a filter according to the second embodiment. As shown in FIG. 9A, one or more series resonators S1 to S3 are connected in series between the input terminal Tin and the output terminal Tout. One or more parallel resonators P1 and P2 are connected in parallel between the input terminal Tin and the output terminal Tout. The piezoelectric thin film resonator of the first embodiment and its modification can be used for at least one of the one or more series resonators S1 to S3 and the one or more parallel resonators P1 and P2. The number of resonators of the ladder type filter can be set as appropriate.

[実施例2の変形例1]
図9(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図9(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ40が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ42が接続されている。送信フィルタ40は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ42は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ40および受信フィルタ42の少なくとも一方を実施例2のフィルタとすることができる。
[Modification 1 of Embodiment 2]
FIG. 9B is a circuit diagram of a duplexer according to the first modification of the second embodiment. As shown in FIG. 9B, the transmission filter 40 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 42 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 40 passes signals in the transmission band among the high-frequency signals input from the transmission terminal Tx as transmission signals to the common terminal Ant, and suppresses signals of other frequencies. The reception filter 42 passes signals in the reception band among the high-frequency signals input from the common terminal Ant to the reception terminal Rx as reception signals, and suppresses signals of other frequencies. At least one of the transmission filter 40 and the reception filter 42 can be the filter of the second embodiment.

マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。   Although the duplexer has been described as an example of the multiplexer, a triplexer or a quadplexer may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

10 圧電基板
12a、12b 金属膜
14 電極指
16 櫛型電極
18 グレーティング電極
20 反射器
22 IDT
40 送信フィルタ
42 受信フィルタ
DESCRIPTION OF SYMBOLS 10 Piezoelectric substrate 12a, 12b Metal film 14 Electrode finger 16 Comb electrode 18 Grating electrode 20 Reflector 22 IDT
40 Transmission filter 42 Reception filter

Claims (9)

圧電基板と、
前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、
前記一対の櫛型電極の外側に設けられ、前記複数の電極指の膜厚より大きい膜厚と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、
を備える弾性波共振器。
A piezoelectric substrate;
A pair of comb electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers;
A reflector provided with a plurality of grating electrodes provided outside the pair of comb-shaped electrodes and having a film thickness larger than a film thickness of the plurality of electrode fingers and an average pitch smaller than an average pitch of the plurality of electrode fingers;
An elastic wave resonator comprising:
前記複数のグレーティング電極の密度は前記複数の電極指の密度以上である請求項1に記載の弾性波共振器。   The acoustic wave resonator according to claim 1, wherein a density of the plurality of grating electrodes is equal to or higher than a density of the plurality of electrode fingers. 圧電基板と、
前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、
前記一対の櫛型電極の外側に設けられ、前記複数の電極指の密度より大きい密度と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、
を備える弾性波共振器。
A piezoelectric substrate;
A pair of comb electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers;
A reflector provided on the outside of the pair of comb-shaped electrodes, and comprising a plurality of grating electrodes having a density larger than a density of the plurality of electrode fingers and an average pitch smaller than an average pitch of the plurality of electrode fingers;
An elastic wave resonator comprising:
前記複数のグレーティング電極の膜厚は前記複数の電極指の膜厚以上である請求項3に記載の弾性波共振器。   4. The acoustic wave resonator according to claim 3, wherein a film thickness of the plurality of grating electrodes is equal to or greater than a film thickness of the plurality of electrode fingers. 圧電基板と、
前記圧電基板上に設けられ、複数の電極指を備える一対の櫛型電極と、
前記一対の櫛型電極の外側に設けられ、前記複数の電極指の密度と膜厚との積より大きい密度と膜厚との積と前記複数の電極指の平均ピッチより小さい平均ピッチとを有する複数のグレーティング電極を備える反射器と、
を備える弾性波共振器。
A piezoelectric substrate;
A pair of comb electrodes provided on the piezoelectric substrate and provided with a plurality of electrode fingers;
Provided outside the pair of comb-shaped electrodes and having a product of density and film thickness greater than the product of the density and film thickness of the plurality of electrode fingers and an average pitch smaller than the average pitch of the plurality of electrode fingers. A reflector comprising a plurality of grating electrodes;
An elastic wave resonator comprising:
前記複数のグレーティング電極の平均ピッチは前記複数の電極指の平均ピッチの0.95倍以下である請求項1から5のいずれか一項に記載の弾性波共振器。   6. The acoustic wave resonator according to claim 1, wherein an average pitch of the plurality of grating electrodes is 0.95 times or less of an average pitch of the plurality of electrode fingers. 前記圧電基板はタンタル酸リチウム基板またはニオブ酸リチウム基板である請求項1から6のいずれか一項に記載の弾性波共振器。   The acoustic wave resonator according to any one of claims 1 to 6, wherein the piezoelectric substrate is a lithium tantalate substrate or a lithium niobate substrate. 請求項1から7のいずれか一項に記載の弾性波共振器を含むフィルタ。   The filter containing the elastic wave resonator as described in any one of Claim 1 to 7. 請求項8に記載のフィルタを含むマルチプレクサ。   A multiplexer including the filter according to claim 8.
JP2018038892A 2018-03-05 2018-03-05 Acoustic wave resonators, filters and multiplexers Active JP7351604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018038892A JP7351604B2 (en) 2018-03-05 2018-03-05 Acoustic wave resonators, filters and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018038892A JP7351604B2 (en) 2018-03-05 2018-03-05 Acoustic wave resonators, filters and multiplexers

Publications (2)

Publication Number Publication Date
JP2019153968A true JP2019153968A (en) 2019-09-12
JP7351604B2 JP7351604B2 (en) 2023-09-27

Family

ID=67947181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018038892A Active JP7351604B2 (en) 2018-03-05 2018-03-05 Acoustic wave resonators, filters and multiplexers

Country Status (1)

Country Link
JP (1) JP7351604B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311585B1 (en) * 2021-02-22 2021-10-08 서울대학교산학협력단 Metamaterial-based elastic wave parallel translator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209804A (en) * 1997-01-27 1998-08-07 Oki Electric Ind Co Ltd Surface acoustic wave resonator and surface acoustic wave filter
JPH11234085A (en) * 1998-02-17 1999-08-27 Murata Mfg Co Ltd Surface acoustic wave filter
JP2005295203A (en) * 2004-03-31 2005-10-20 Tdk Corp Duplexer
JP2006128927A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device
JP2007202087A (en) * 2005-05-11 2007-08-09 Seiko Epson Corp Lamb wave type high frequency device
JP2010245738A (en) * 2009-04-03 2010-10-28 Seiko Epson Corp Saw filter
WO2017131170A1 (en) * 2016-01-29 2017-08-03 京セラ株式会社 Acoustic wave resonator, acoustic wave filter, demultiplexer, and communications device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209804A (en) * 1997-01-27 1998-08-07 Oki Electric Ind Co Ltd Surface acoustic wave resonator and surface acoustic wave filter
JPH11234085A (en) * 1998-02-17 1999-08-27 Murata Mfg Co Ltd Surface acoustic wave filter
JP2005295203A (en) * 2004-03-31 2005-10-20 Tdk Corp Duplexer
JP2006128927A (en) * 2004-10-27 2006-05-18 Kyocera Corp Surface acoustic wave element and communication device
JP2007202087A (en) * 2005-05-11 2007-08-09 Seiko Epson Corp Lamb wave type high frequency device
JP2010245738A (en) * 2009-04-03 2010-10-28 Seiko Epson Corp Saw filter
WO2017131170A1 (en) * 2016-01-29 2017-08-03 京セラ株式会社 Acoustic wave resonator, acoustic wave filter, demultiplexer, and communications device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102311585B1 (en) * 2021-02-22 2021-10-08 서울대학교산학협력단 Metamaterial-based elastic wave parallel translator
KR20220120425A (en) * 2021-02-22 2022-08-30 서울대학교산학협력단 Metamaterial-based elastic wave parallel translator
KR102628439B1 (en) * 2021-02-22 2024-01-23 서울대학교산학협력단 Metamaterial-based elastic wave parallel translator

Also Published As

Publication number Publication date
JP7351604B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
US10700662B2 (en) Acoustic wave device, filter, and multiplexer
US10826461B2 (en) Acoustic wave device
JP6494447B2 (en) Elastic wave device
WO2018168836A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
JP7224094B2 (en) Acoustic wave resonators, filters and multiplexers
JP6335473B2 (en) Surface acoustic wave device and filter
WO2018070369A1 (en) Acoustic wave device
US11569433B2 (en) Acoustic wave resonator, filter, and multiplexer
JP7403239B2 (en) Acoustic wave devices, filters, and multiplexers
JP7037333B2 (en) Elastic wave devices and their manufacturing methods, filters and multiplexers
CN113348625A (en) Elastic wave device and multiplexer
JP6681380B2 (en) Acoustic wave devices, filters and multiplexers
JP7351604B2 (en) Acoustic wave resonators, filters and multiplexers
JP7055016B2 (en) Multiplexer
JP4036856B2 (en) Bandpass filter using surface acoustic wave element
US10483944B2 (en) Multiplexer
US20220352871A1 (en) Acoustic wave resonator, filter, and multiplexer
JP7485479B2 (en) filter
JP7068974B2 (en) Ladder type filter and multiplexer
JP7068835B2 (en) Elastic wave devices, filters and multiplexers
JP7033010B2 (en) Elastic wave devices, filters and multiplexers
US20230387882A1 (en) Acoustic wave resonator, filter, and multiplexer
JP2021136558A (en) Filter and multiplexer
JP2021027401A (en) Acoustic wave device, filter, and multiplexer
JP7344662B2 (en) multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230914

R150 Certificate of patent or registration of utility model

Ref document number: 7351604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150