JP2019152611A - X-ray ct apparatus for measurement - Google Patents

X-ray ct apparatus for measurement Download PDF

Info

Publication number
JP2019152611A
JP2019152611A JP2018039719A JP2018039719A JP2019152611A JP 2019152611 A JP2019152611 A JP 2019152611A JP 2018039719 A JP2018039719 A JP 2018039719A JP 2018039719 A JP2018039719 A JP 2018039719A JP 2019152611 A JP2019152611 A JP 2019152611A
Authority
JP
Japan
Prior art keywords
measurement
ray
rotary table
inclination
slice plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018039719A
Other languages
Japanese (ja)
Other versions
JP7021980B2 (en
Inventor
境 久嘉
Hisayoshi Sakai
久嘉 境
哲人 高橋
Tetsuto Takahashi
哲人 高橋
誠治 佐々木
Seiji Sasaki
誠治 佐々木
香苗 小林
Kanae Kobayashi
香苗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2018039719A priority Critical patent/JP7021980B2/en
Publication of JP2019152611A publication Critical patent/JP2019152611A/en
Application granted granted Critical
Publication of JP7021980B2 publication Critical patent/JP7021980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To enable efficient and highly accurate X-ray CT measurement by reducing calibration work with no need to reset a slice plane when moving a rotary table.SOLUTION: Disclosed is an X-ray CT apparatus 1 for measurement, which includes a rotary table 6 on which a measuring object W is mounted and a scanning mechanism (5) capable of moving the rotary table 6 to any position in a measurement space area between an X-ray source 2 and an X-ray detector 4. In this X-ray CT apparatus, inclination detecting means (16, 17) are provided for detecting the inclination (φ) of a rotary shaft 8 of the rotary table 6, and the measured value is corrected using the output from the inclination detection means (16, 17).SELECTED DRAWING: Figure 4

Description

本発明は、工業製品のための計測用X線CT装置に係り、特に測定誤差要因の一つとなる回転軸の傾斜量を測定して補正することによって測定対象の内部構造を含む全面の寸法計測を、より高精度に実施可能な計測用X線CT装置に関する。   The present invention relates to a measurement X-ray CT apparatus for industrial products, and in particular, to measure the entire dimension including the internal structure of a measurement object by measuring and correcting the tilt amount of a rotating shaft that is one of the causes of measurement errors. The present invention relates to an X-ray CT apparatus for measurement that can be implemented with higher accuracy.

計測用X線CT装置は、従来より、外観からでは確認困難な鋳物部品の鬆、溶接部品の溶接不良、および電子回路部品の回路パターンの欠陥など、主に観察・検査に用いられてきた。しかし、近年、3Dプリンタの普及も手伝い、加工品内部の3D寸法計測とその高精度化の需要が増大しつつある。このような需要に対して、長さにトレーサブルな計測用X線CT装置が普及し始め、さらなる寸法計測の高精度化の要求に応えるため、様々な創意工夫が凝らされつつある。   Conventionally, X-ray CT apparatuses for measurement have been mainly used for observation and inspection, such as voids in cast parts, weld defects in weld parts, and circuit pattern defects in electronic circuit parts, which are difficult to confirm from the outside. However, in recent years, the spread of 3D printers has also helped, and the demand for 3D dimension measurement inside the workpiece and its high accuracy is increasing. In response to such demands, length-traceable X-ray CT apparatuses are becoming widespread, and various ingenuity is being devised in order to meet the demand for higher accuracy in dimension measurement.

図1に従来の計測用X線CT装置の基本的な構成例を示す。計測用X線CT装置1は、X線を放射するX線源2、X線源2から放射されて測定対象Wの周囲および内部を透過するX線ビーム21を検出するX線検出器4、X線源2とX線検出器4の間にあって前記測定対象Wを搭載する回転テーブル6、回転テーブル6を測定空間領域の任意の位置に移動するステージ走査機構5、図示しない駆動制御機構部、およびデータ処理部を主な構成要素としている。図において、9は本体ベース、22はX線源台、41はX線検出器台、51はX軸ステージ、52はY軸ステージ、53はZ軸ステージである。なお、図1において、X線源2から水平にX線検出器4に向かう方向をX軸、紙面に垂直な方向をY軸として、XY平面に垂直な方向をZ軸とする。   FIG. 1 shows a basic configuration example of a conventional measurement X-ray CT apparatus. The X-ray CT apparatus for measurement 1 includes an X-ray source 2 that emits X-rays, an X-ray detector 4 that detects an X-ray beam 21 emitted from the X-ray source 2 and transmitted around and inside the measurement target W, A rotary table 6 between the X-ray source 2 and the X-ray detector 4 for mounting the measurement object W; a stage scanning mechanism 5 for moving the rotary table 6 to an arbitrary position in the measurement space region; a drive control mechanism unit (not shown); The data processing unit is the main component. In the figure, 9 is a main body base, 22 is an X-ray source base, 41 is an X-ray detector base, 51 is an X-axis stage, 52 is a Y-axis stage, and 53 is a Z-axis stage. In FIG. 1, the direction from the X-ray source 2 toward the X-ray detector 4 in the horizontal direction is the X axis, the direction perpendicular to the paper surface is the Y axis, and the direction perpendicular to the XY plane is the Z axis.

測定に当たっては、X線ビーム21を放射した状態で回転テーブル6の回転面盤61上の測定対象Wを回転させ、複数の角度方向(例えば角度分割数1000〜6000程度)からX線投影画像データを収集する。収集されたX線投影画像データは、データ処理部において、測定対象Wを水平に横断する後述のスライス面10を基準面として再構成処理がなされ、測定対象Wの3次元ボリュームデータが作られる。   In the measurement, the measurement object W on the rotating surface board 61 of the turntable 6 is rotated in a state where the X-ray beam 21 is emitted, and X-ray projection image data is obtained from a plurality of angular directions (for example, about 1000 to 6000 angle divisions). To collect. The collected X-ray projection image data is reconstructed in a data processing unit using a slice plane 10 (described later) that horizontally traverses the measurement target W as a reference plane, and three-dimensional volume data of the measurement target W is created.

なお、上述の計測用X線CT装置による寸法計測をより高精度に実施するためには、測定開始前に装置固有の各種校正を行うことが重要である。例えば特許文献1には校正及び評価用の標準ゲージを用いたX線CT装置の校正方法及び評価方法が記載されている。   In order to carry out the dimension measurement with the above-described measurement X-ray CT apparatus with higher accuracy, it is important to perform various calibrations specific to the apparatus before the measurement is started. For example, Patent Document 1 describes a calibration method and an evaluation method for an X-ray CT apparatus using a standard gauge for calibration and evaluation.

計測用X線CT装置1における校正として、X線源2やX線検出器4の個体差を補正するために測定対象Wを配置しない状態で行うエア校正、X線検出器4を構成するシンチレータ等の配列の歪みを校正するための歪校正、本発明に係わるスライス面校正、回転軸の振れ幅の中心を校正するための回転中心校正などが挙げられるが、以降の説明においては、本発明に係わりのあるスライス面校正に限定して説明する。   As calibration in the measurement X-ray CT apparatus 1, air calibration performed in a state where the measurement target W is not arranged in order to correct individual differences between the X-ray source 2 and the X-ray detector 4, and a scintillator constituting the X-ray detector 4 Examples include distortion calibration for calibrating the distortion of the array, slice surface calibration according to the present invention, rotation center calibration for calibrating the center of the swing width of the rotation axis, etc. The description will be limited to the slice plane calibration related to the above.

スライス面10は、X線源2の焦点FからX線検出器4への垂線の足を結ぶ直線を包含し、かつ、回転軸8と直交する面として定義されている。スライス面10の設定に関しては、いくつかの方法が提案されている。例えば、X線源2の焦点Fから回転テーブル6の回転軸8までの倍率設定された焦点−回転中心間距離FCD(Focus-to-Center Distance)に移動後、基準球7を搭載した回転面盤61を回転させ、Z軸ステージ53をZ軸方向に走査しつつ、X線検出器4に投影される基準球7の軌跡を観察して行われる。ここで、X線検出器4に投影される基準球7の軌跡が一直線になる位置をもって、基準球7の円運動軌跡を含む面がスライス面10となる。   The slice plane 10 is defined as a plane that includes a straight line connecting the legs of the perpendicular line from the focal point F of the X-ray source 2 to the X-ray detector 4 and is orthogonal to the rotation axis 8. Several methods have been proposed for setting the slice plane 10. For example, after moving to a focus-to-center distance (FCD) between the focal point F of the X-ray source 2 and the rotation axis 8 of the rotary table 6, the rotation plane on which the reference sphere 7 is mounted. This is done by rotating the board 61 and observing the locus of the reference sphere 7 projected on the X-ray detector 4 while scanning the Z-axis stage 53 in the Z-axis direction. Here, the plane including the circular motion trajectory of the reference sphere 7 is the slice plane 10 at a position where the trajectory of the reference sphere 7 projected onto the X-ray detector 4 is in a straight line.

このほか、特許文献2に記載のスライスファントムと称する平行平面で挟まれた隙間を有するスライス面設定用校正具を用い、前記平面上の隙間が回転軸に垂直になるように回転面盤上に載置し、Z軸ステージをZ軸方向に走査して、隙間の透過像が最も明瞭になる位置をもってスライス面とする手法もある。   In addition, a slice plane setting calibration tool having a gap sandwiched between parallel planes called a slice phantom described in Patent Document 2 is used, and the gap on the plane is perpendicular to the rotation axis on the rotating face plate. There is also a method in which the slice plane is set at the position where the transmitted image of the gap becomes the most clear by placing and scanning the Z-axis stage in the Z-axis direction.

以上の方法でスライス面10が求められ、回転テーブル6の座標位置と回転面盤61の上面から基準球7の中心までの高さ寸法を併せて、スライス面10の位置を特定し処理部に記憶させることで設定が完了する。スライス面10の設定後、回転面盤61上に測定対象Wが搭載され、測定対象WのX線CT測定が実行される。設定されたスライス面10は、X線CT測定により取得されたデータを再構成処理する際の基準面として使用される。X線CT測定においては、スライス面を正しく設定することが高精度測定への一要件である。   The slice plane 10 is obtained by the above method, and the position of the slice plane 10 is specified by combining the coordinate position of the rotary table 6 and the height dimension from the upper surface of the rotary face plate 61 to the center of the reference sphere 7 to the processing unit. Setting is completed by memorizing. After the slicing plane 10 is set, the measurement target W is mounted on the rotating surface board 61, and X-ray CT measurement of the measurement target W is executed. The set slice plane 10 is used as a reference plane when reconstructing data acquired by X-ray CT measurement. In X-ray CT measurement, setting the slice plane correctly is one requirement for high-accuracy measurement.

なお、特許文献3には、測定対象の中心線の傾きを検出する手段と、中心線を回転軸に一致させる角度調整手段を設けることが記載されているが、スライス面設定には有効でなかった。   Although Patent Document 3 describes providing a means for detecting the inclination of the center line of the measurement object and an angle adjusting means for matching the center line to the rotation axis, it is not effective for slice plane setting. It was.

特開2012−189517号公報JP 2012-189517 A 特開2000−298105号公報JP 2000-298105 A 特公平6−92888号公報Japanese Patent Publication No. 6-92888

ところで、計測用X線CT測定の高精度化の需要が増加する一方で、高精度測定には、より適切な各種校正が必要となる。図2は、測定作業者によって指定された所定の測定倍率に対応する位置FCD´に回転テーブル6が移動した時の状態を示す。回転テーブル6の移動は、ステージ走査機構5を駆動させることにより行われる。ステージ走査機構5は、X軸ステージ51、Y軸ステージ52、およびZ軸ステージ53がシリアルに構成されている。例えば、図2は、回転テーブル6の移動に伴って、XZ平面(紙面)内において回転軸8が角度φだけ傾斜した様子を示している。その傾斜角φは、X軸ステージ51のピッチング、Y軸ステージ52のローリング、およびZ軸ステージ53のヨーイングの角度の誤差成分の合計値である。つまり、回転テーブル6を移動する際、ステージ走査機構5が有する固有の機構運動誤差のために、回転テーブル6の回転軸8の倒れが発生する。   By the way, while the demand for higher accuracy in measurement X-ray CT measurement increases, more appropriate various calibrations are required for high accuracy measurement. FIG. 2 shows a state when the rotary table 6 has moved to a position FCD ′ corresponding to a predetermined measurement magnification designated by the measurement operator. The rotary table 6 is moved by driving the stage scanning mechanism 5. In the stage scanning mechanism 5, an X-axis stage 51, a Y-axis stage 52, and a Z-axis stage 53 are serially configured. For example, FIG. 2 shows a state where the rotary shaft 8 is inclined by an angle φ in the XZ plane (paper surface) as the rotary table 6 moves. The inclination angle φ is a total value of error components of the pitching of the X-axis stage 51, the rolling of the Y-axis stage 52, and the yawing angle of the Z-axis stage 53. That is, when the rotary table 6 is moved, the rotary shaft 8 of the rotary table 6 is tilted due to a mechanism motion error inherent in the stage scanning mechanism 5.

計測用X線CTの測定では、測定対象Wの測定ポイントや拡大倍率の選定および要求精度によって、回転テーブル6を測定空間内で適切な位置に移動させるが、前述のように、高精度な寸法測定のためには、回転テーブル6が移動する度毎に、スライス面10の設定を適切に実行することが要求される。しかし、測定の高精度化のためのスライス面10の設定は、一方で、多くの工数を要し測定効率を妨げるという問題がある。前述のスライス面設定方法では、Z軸ステージ53をZ軸方向に走査し、スライス面10と回転軸8が直交する位置を透過像を観察しながら探査するという煩雑な作業を伴い、しかも、必ずしも任意位置でのスライス面10の設定ができないという問題もある。   In the measurement of the X-ray CT for measurement, the rotary table 6 is moved to an appropriate position in the measurement space depending on the selection of the measurement point of the measurement object W and the magnification and the required accuracy. For the measurement, it is required that the setting of the slice plane 10 is appropriately executed every time the rotary table 6 moves. However, the setting of the slice plane 10 for higher measurement accuracy, on the other hand, has a problem that it requires a lot of man-hours and hinders measurement efficiency. The above-described slice plane setting method involves a complicated operation of scanning the Z-axis stage 53 in the Z-axis direction and searching for a position where the slice plane 10 and the rotation axis 8 are orthogonal while observing a transmission image. There is also a problem that the slice plane 10 cannot be set at an arbitrary position.

本発明は上述の実情に鑑みてなされたものであり、測定倍率を決めるFCD値の位置への移動の度毎に、スライス面設定作業を実施することなく、測定空間における任意の位置で、スライス面の設定を可能とし、一旦スライス面が設定されれば回転テーブルの移動に関わりなく設定が維持され、校正作業工数の削減による効率的で高精度なX線CT測定を可能とすることを課題としている。   The present invention has been made in view of the above-described circumstances, and slices can be performed at an arbitrary position in a measurement space without performing a slice plane setting operation each time the FCD value is moved to a position that determines a measurement magnification. It is possible to set the plane, and once the slice plane is set, the setting is maintained regardless of the movement of the rotary table, and it is possible to perform efficient and highly accurate X-ray CT measurement by reducing the calibration man-hours It is said.

本発明は、X線源とX線検出器との間に、測定対象を搭載する回転テーブルと、該回転テーブルを測定空間領域の任意位置に移動可能な走査機構を備えた計測用X線CT装置において、前記回転テーブルの回転軸の傾斜を検出する傾斜検出手段を設け、該傾斜検出手段からの出力を用いて測定値を補正することにより、前記課題を解決するものである。   The present invention provides a measurement X-ray CT including a rotary table on which a measurement object is mounted and a scanning mechanism capable of moving the rotary table to an arbitrary position in a measurement space region between an X-ray source and an X-ray detector. In the apparatus, an inclination detecting means for detecting the inclination of the rotating shaft of the rotary table is provided, and the measurement value is corrected using an output from the inclination detecting means, thereby solving the above-mentioned problem.

ここで、前記傾斜検出手段が、前記回転テーブルと一体で姿勢変化するように設けられた第1の水準器を含むことができる。   Here, the inclination detecting means may include a first level provided so as to change its posture integrally with the rotary table.

又、前記傾斜検出手段が、更に、前記X線検出器の傾斜を検出する第2の水準器を含むことができる。   The tilt detection means may further include a second level for detecting the tilt of the X-ray detector.

又、前記傾斜検出手段からの出力を用いて、前記回転軸の傾斜誤差マップを作成し、該傾斜誤差マップを用いて測定値を補正することができる。   In addition, a tilt error map of the rotating shaft can be created using the output from the tilt detection means, and the measured value can be corrected using the tilt error map.

前述のように、従来の計測用X線CT装置を用いて高精度なCT測定を行う場合、測定作業者は、CT測定の前に各種校正を行う。その中の一つにスライス面校正があり、スライス面の設定後にCT測定が行われるが、その後、必要に応じて測定対象を移動する度毎にスライス面の設定を行う必要があり、測定の作業効率上の課題となっている。これに対して、本発明によれば、最初のスライス面の設定を行えば、以降のスライス面の設定は不要となり、作業効率の高い計測用X線CT装置の提供が可能となる。   As described above, when performing highly accurate CT measurement using a conventional X-ray CT apparatus for measurement, the measurement operator performs various calibrations before CT measurement. One of them is slice plane calibration, and CT measurement is performed after setting the slice plane. After that, it is necessary to set the slice plane every time the measurement target is moved as necessary. This is a problem in work efficiency. On the other hand, according to the present invention, if the first slice plane is set, the subsequent slice plane setting is unnecessary, and a measurement X-ray CT apparatus with high work efficiency can be provided.

計測用X線CT装置の基本的な構成例を示す正面図Front view showing a basic configuration example of a measurement X-ray CT apparatus 同じく所定の測定倍率に対応するFCD´の位置に回転テーブルを移動した時の状態を示す正面図Similarly, a front view showing a state when the rotary table is moved to the position of FCD ′ corresponding to a predetermined measurement magnification. 本発明の第1実施形態で測定対象載置前の状態を示す正面図The front view which shows the state before measurement object mounting in 1st Embodiment of this invention. 同じく測定対象載置後の状態を示す正面図Similarly, a front view showing the state after placing the measurement object 第1実施形態で用いられている電子水準器の構成を示す断面図Sectional drawing which shows the structure of the electronic level used by 1st Embodiment 本発明の第2実施形態で用いる傾斜角マップの例を示す図The figure which shows the example of the inclination-angle map used by 2nd Embodiment of this invention.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。なお、本発明は以下の実施形態及び実施例に記載した内容により限定されるものではない。又、以下に記載した実施形態及び実施例における構成要件には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。更に、以下に記載した実施形態及び実施例で開示した構成要素は適宜組み合わせてもよいし、適宜選択して用いてもよい。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the content described in the following embodiment and an Example. In addition, the constituent elements in the embodiments and examples described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in the so-called equivalent range. Furthermore, the constituent elements disclosed in the embodiments and examples described below may be appropriately combined or may be appropriately selected and used.

本発明の第1実施形態を図3(測定対象載置前の状態)及び図4(測定対象載置後の状態)に示す。図3及び図4では、図1および図2に示す基本構成に対して、新たに外部振動を遮断する空気式除振台14と、本発明に関連する第1及び第2の電子水準器16、17が設けられている。空気式除振台14は床面15と本体ベース9の下面の間に設けられ、床面15から伝達される振動外乱を遮断する。   The first embodiment of the present invention is shown in FIG. 3 (state before placing the measurement object) and FIG. 4 (state after placing the measurement object). 3 and FIG. 4, in contrast to the basic configuration shown in FIG. 1 and FIG. 2, a pneumatic anti-vibration table 14 that newly blocks external vibrations, and first and second electronic levels 16 related to the present invention. , 17 are provided. The pneumatic vibration isolation table 14 is provided between the floor surface 15 and the lower surface of the main body base 9 and blocks vibration disturbance transmitted from the floor surface 15.

電子水準器16、17は、回転テーブル6の底面部と、本体ベース9の上面にそれぞれ配置され、回転テーブル6の回転軸8のX軸方向におけるピッチング成分の傾きは、両者の差動をとる形態で検出される。   The electronic levels 16 and 17 are disposed on the bottom surface of the turntable 6 and the top surface of the main body base 9, respectively, and the inclination of the pitching component in the X-axis direction of the rotation shaft 8 of the turntable 6 takes a differential between the two. Detected in form.

電子水準器16、17は、図5に示す如く、例えば被測定面となる傾斜面に接触する3本の脚を有するフレーム161とその内部にフレーム161から支持される振り子162を有し、絶えず重力方向を指向する振り子162とフレーム161との相対的な角度変位をトランスデューサ(例えば差動トランス)163により検出する構成となっている。なお、本方式の電子水準器16、17は、公知の内容であり、市販の電子水準器の適用が可能である。また、電子水準器16、17は重力方向を基準に傾きを検出するが、スライス面校正で必要な情報は、計測用X線CT装置1内における本体ベース9上面の法線(正確にはX線検出器4の表面)に対する回転軸8の相対的な傾き角であるため、2台の電子水準器16、17の差動により検出している。なお、第2の電子水準器17をX線検出器台41の上に配設して精度を高めることもできる。   As shown in FIG. 5, the electronic levels 16 and 17 have, for example, a frame 161 having three legs that come into contact with an inclined surface to be measured, and a pendulum 162 supported from the frame 161 inside thereof. A relative angular displacement between the pendulum 162 directed in the direction of gravity and the frame 161 is detected by a transducer (for example, a differential transformer) 163. In addition, the electronic level 16 and 17 of this system is a well-known content, and a commercially available electronic level can be applied. The electronic levels 16 and 17 detect the inclination with respect to the direction of gravity. However, information necessary for calibrating the slice plane is the normal line on the upper surface of the main body base 9 in the measurement X-ray CT apparatus 1 (more precisely, X Since the relative inclination angle of the rotation shaft 8 with respect to the surface of the line detector 4 is detected by the differential between the two electronic levels 16 and 17. The second electronic level 17 can be arranged on the X-ray detector base 41 to increase the accuracy.

以上により、X線源2をONにして計測用X線CT装置1を立ち上げ後、最初のスライス面校正を実行すれば、それ以降は、回転テーブル6を測定空間領域の任意の位置に移動しても、最初のスライス面校正時を基準とする本体ベース9の上面および回転軸8の傾斜の変化量が取得され、任意位置における本体ベース9の上面に対する回転軸8の相対的な傾斜量が求められる。   As described above, after the X-ray source 2 is turned on and the measurement X-ray CT apparatus 1 is started up, the first slice plane calibration is performed, and thereafter, the rotary table 6 is moved to an arbitrary position in the measurement space region. Even so, the amount of change in the inclination of the upper surface of the main body base 9 and the rotation shaft 8 relative to the time of the first slice plane calibration is acquired, and the relative inclination amount of the rotation shaft 8 with respect to the upper surface of the main body base 9 at any position Is required.

以上により、X線CT測定で取得された測定対象Wの複数の投影画像、もしくはそれを用いて行われる再構成処理の段階で、2台の電子水準器16、17で求められた回転軸8の傾斜量に基づき補正を行うことで、より高精度な測定対象の3次元ボリュームデータの作成が可能となる。   As described above, the plurality of projection images of the measurement object W acquired by the X-ray CT measurement, or the rotation axis 8 obtained by the two electronic levels 16 and 17 at the stage of the reconstruction process performed using the projection image. By performing the correction based on the tilt amount, it is possible to create the three-dimensional volume data of the measurement object with higher accuracy.

なお、本体ベース9の上面の傾きが問題にならない場合は、第2の電子水準器17を省略することも可能である。   If the inclination of the upper surface of the main body base 9 does not become a problem, the second electronic level 17 can be omitted.

次に、本発明の第2実施形態を説明する。この第2実施形態では、ステージ走査機構5により回転テーブル6を走査し、測定空間領域のいかなる位置においても、回転テーブル6の位置座標とそのときの回転軸8の傾斜角の関係に、十分な再現性が認められることを前提とする。この前提のもとで、事前に測定空間を網羅するX・Y・Z座標の範囲内で回転テーブル6の座標位置に対する回転軸8の傾斜角φを第1実施形態と同様に取得し、図6に例示するような測定空間領域における回転軸8の傾斜角マップを作成してデータ処理部に記憶させる。   Next, a second embodiment of the present invention will be described. In this second embodiment, the rotary table 6 is scanned by the stage scanning mechanism 5, and at any position in the measurement space region, the relationship between the position coordinates of the rotary table 6 and the tilt angle of the rotary shaft 8 at that time is sufficient. It is assumed that reproducibility is recognized. Under this assumption, the inclination angle φ of the rotary shaft 8 with respect to the coordinate position of the rotary table 6 is acquired in the same manner as in the first embodiment within the range of X, Y and Z coordinates covering the measurement space in advance. An inclination angle map of the rotating shaft 8 in the measurement space region as exemplified in FIG.

次にX線CT測定で取得された測定対象Wの複数の投影画像、もしくはそれを用いて行われる再構成処理の段階で、事前にデータ処理部で記憶された回転軸8の傾斜角φを読込み補正を行うことで、より高精度な測定対象の3次元ボリュームデータの作成が可能となる。   Next, a plurality of projection images of the measurement object W acquired by X-ray CT measurement, or the angle of inclination φ of the rotary shaft 8 stored in advance in the data processing unit at the stage of reconstruction processing performed using the projection image. By performing the reading correction, it is possible to create three-dimensional volume data of a measurement object with higher accuracy.

なお、前記実施形態においては、水準器として図5に例示する振り子を利用した電子水準器が用いられていたが、水準器の種類はこれに限定されず、他の電気/電子水準器、例えば気泡の位置を検出する水準器等を用いても良い。   In the above embodiment, the electronic level using the pendulum illustrated in FIG. 5 is used as the level, but the type of the level is not limited to this, and other electric / electronic levels, for example, You may use the level etc. which detect the position of a bubble.

1…計測用X線CT装置
2…X線源
4…X線検出器
5…ステージ走査機構
6…回転テーブル
8…回転軸
10…スライス面
16、17…(電子)水準器
21…X線ビーム
51…X軸ステージ
52…Y軸ステージ
53…Z軸ステージ
W…測定対象
φ…傾斜角
DESCRIPTION OF SYMBOLS 1 ... X-ray CT apparatus for measurement 2 ... X-ray source 4 ... X-ray detector 5 ... Stage scanning mechanism 6 ... Rotary table 8 ... Rotating shaft 10 ... Slicing surface 16, 17 ... (Electronic) level 21 ... X-ray beam 51 ... X-axis stage 52 ... Y-axis stage 53 ... Z-axis stage W ... Measurement object φ ... Inclination angle

Claims (4)

X線源とX線検出器との間に、測定対象を搭載する回転テーブルと、該回転テーブルを測定空間領域の任意位置に移動可能な走査機構を備えた計測用X線CT装置において、
前記回転テーブルの回転軸の傾斜を検出する傾斜検出手段を設け、
該傾斜検出手段からの出力を用いて測定値を補正することを特徴とする計測用X線CT装置。
In an X-ray CT apparatus for measurement comprising a rotary table on which a measurement object is mounted and a scanning mechanism capable of moving the rotary table to an arbitrary position in a measurement space region between an X-ray source and an X-ray detector.
Inclination detecting means for detecting the inclination of the rotating shaft of the rotary table is provided,
An X-ray CT apparatus for measurement, wherein a measurement value is corrected using an output from the tilt detection means.
前記傾斜検出手段が、前記回転テーブルと一体で姿勢変化するように設けられた第1の水準器を含むことを特徴とする請求項1に記載の計測用X線CT装置。   The measurement X-ray CT apparatus according to claim 1, wherein the tilt detection unit includes a first level provided so as to change its posture integrally with the rotary table. 前記傾斜検出手段が、更に、前記X線検出器の傾斜を検出する第2の水準器を含むことを特徴とする請求項2に記載の計測用X線CT装置。   The measurement X-ray CT apparatus according to claim 2, wherein the inclination detection unit further includes a second level for detecting an inclination of the X-ray detector. 前記傾斜検出手段からの出力を用いて、前記回転軸の傾斜誤差マップを作成し、該傾斜誤差マップを用いて測定値を補正することを特徴とする請求項1乃至3のいずれかに記載の計測用X線CT装置。   4. The tilt error map of the rotating shaft is created using the output from the tilt detection means, and the measured value is corrected using the tilt error map. X-ray CT system for measurement.
JP2018039719A 2018-03-06 2018-03-06 X-ray CT device for measurement Active JP7021980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018039719A JP7021980B2 (en) 2018-03-06 2018-03-06 X-ray CT device for measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039719A JP7021980B2 (en) 2018-03-06 2018-03-06 X-ray CT device for measurement

Publications (2)

Publication Number Publication Date
JP2019152611A true JP2019152611A (en) 2019-09-12
JP7021980B2 JP7021980B2 (en) 2022-02-17

Family

ID=67948908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039719A Active JP7021980B2 (en) 2018-03-06 2018-03-06 X-ray CT device for measurement

Country Status (1)

Country Link
JP (1) JP7021980B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296340A (en) * 2004-04-12 2005-10-27 Canon Inc Cone-beam x-ray ct apparatus and method of obtaining image using the same
JP2010151775A (en) * 2008-12-25 2010-07-08 Toshiba It & Control Systems Corp Computed tomography system and calibration device
JP2012161471A (en) * 2011-02-07 2012-08-30 Fujifilm Corp Radiographic imaging apparatus and radiographic imaging method
US20150260859A1 (en) * 2012-09-10 2015-09-17 Werth Messtechnik Gmbh Method and device for correcting computed tomographiy measurements, comprising a coordinate measuring machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005296340A (en) * 2004-04-12 2005-10-27 Canon Inc Cone-beam x-ray ct apparatus and method of obtaining image using the same
JP2010151775A (en) * 2008-12-25 2010-07-08 Toshiba It & Control Systems Corp Computed tomography system and calibration device
JP2012161471A (en) * 2011-02-07 2012-08-30 Fujifilm Corp Radiographic imaging apparatus and radiographic imaging method
US20150260859A1 (en) * 2012-09-10 2015-09-17 Werth Messtechnik Gmbh Method and device for correcting computed tomographiy measurements, comprising a coordinate measuring machine

Also Published As

Publication number Publication date
JP7021980B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
CN108007400B (en) Coordinate alignment tool for coordinate measuring device and measuring X-ray CT apparatus
US9129427B2 (en) Method and apparatus for generating a three-dimensional model of a region of interest using an imaging system
TWI510756B (en) A shape measuring device, a shape measuring method, a manufacturing method and a program for a structure
JP3511450B2 (en) Position calibration method for optical measuring device
JP5125423B2 (en) Method of inspecting solder electrode by X-ray tomographic image and board inspection apparatus using this method
CN107490586B (en) X-ray inspection apparatus and X-ray inspection method
JP2019100898A (en) Measurement device, and assembling method of total station and two-dimensional scanner
CN111141767A (en) X-ray CT apparatus for measurement and CT reconstruction method using the same
KR20160006054A (en) Method for Inspecting Compact Parts Formed on Substrate in Defect Inspection
JP2011002317A (en) Calibration method of image probe and shape measuring machine
US11499817B2 (en) Coordinate measuring machine with vision probe for performing points-from-focus type measurement operations
JP7211722B2 (en) X-ray CT system for measurement
JP6693533B2 (en) X-ray device, X-ray measuring method, and structure manufacturing method
JP2006258612A (en) Inter-shaft angle correction method
US11333619B2 (en) Measurement X-ray CT apparatus
JP7224598B2 (en) Inclined X-ray Inspection Method, Inclined X-ray Inspection Apparatus and Accuracy Evaluation Method Therefor
JP7021980B2 (en) X-ray CT device for measurement
JP2021050937A (en) Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement
JP2017053793A (en) Measurement device, and manufacturing method of article
JP4552907B2 (en) Form measuring device deviation amount acquisition method, deviation amount acquisition program, and deviation amount acquisition reference workpiece
JP5287266B2 (en) measuring device
JP2005127886A (en) Inclined x-ray ct equipment and method for calibrating rotating center axis in the same
JP2012093237A (en) Error distribution calculation method, shape measurement method, and shape measurement device
JP4494189B2 (en) Accuracy measurement method and calibration method of non-contact image measuring machine
JP5851200B2 (en) Substrate inspection apparatus, substrate inspection method, and substrate inspection program

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220204

R150 Certificate of patent or registration of utility model

Ref document number: 7021980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150