JP2019148350A - Air conditioning control system and air conditioning control method - Google Patents

Air conditioning control system and air conditioning control method Download PDF

Info

Publication number
JP2019148350A
JP2019148350A JP2018031866A JP2018031866A JP2019148350A JP 2019148350 A JP2019148350 A JP 2019148350A JP 2018031866 A JP2018031866 A JP 2018031866A JP 2018031866 A JP2018031866 A JP 2018031866A JP 2019148350 A JP2019148350 A JP 2019148350A
Authority
JP
Japan
Prior art keywords
time
average
air conditioning
pmv
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018031866A
Other languages
Japanese (ja)
Other versions
JP7034764B2 (en
Inventor
将也 岩下
Masaya Iwashita
将也 岩下
茂木 正史
Masashi Mogi
正史 茂木
康一 稲留
Koichi Inatome
康一 稲留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2018031866A priority Critical patent/JP7034764B2/en
Publication of JP2019148350A publication Critical patent/JP2019148350A/en
Application granted granted Critical
Publication of JP7034764B2 publication Critical patent/JP7034764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an air conditioning control system and an air conditioning control method capable of improving the effect of reducing air conditioning energy without damaging comfort.SOLUTION: An air conditioning control method includes: a first control step (Z1) for estimating a space average PMV of a "first time" of an air conditioning control target space, further performing a procedure for calculating a time average PMV being a time average value of the space average PMV from moment to moment, determining whether both the calculated space average temperature and space average PMV satisfy an allowable condition during the "first time", and stopping air conditioning by an air conditioner until the "first time" has elapsed when they satisfy the allowable condition; and a second control step (Z2) for estimating a space average PMV of a "third time" from after the elapse of a "second time" of the space elapses, further performing a procedure for calculating time average PMV from moment to moment, determining whether the calculated time average PMV satisfies an allowable condition, immediately stopping air conditioning by the air conditioner when it satisfies the allowable condition, and also making a transition to the first control step.SELECTED DRAWING: Figure 5

Description

本発明は、快適性を損なうことなく、空調エネルギの削減効果を改善することが可能な空調制御システム及び空調制御方法に関する。   The present invention relates to an air conditioning control system and an air conditioning control method capable of improving the effect of reducing air conditioning energy without impairing comfort.

近年、産業構造の変化に伴って建物の消費エネルギの割合が増加しており、これらを削減させるため、国による継続的な施策の取り組みが進められている。2009年度、経済産業省より2020年までに新築公共建物をネット・ゼロ・エネルギ・ビル(以下、ZEB)化するビジョンが掲げられ、それ以降、ZEBの定義の決定、助成制度も進められている。ZEBにおいては、建物全体のエネルギ消費量に対し、空調エネルギの比率が大きくなると考えられ、ZEBの建物規模を拡大していくには空調エネルギの削減が重要な課題となる。   In recent years, the proportion of energy consumption in buildings has increased with changes in the industrial structure, and in order to reduce these, efforts for continuous measures have been promoted by the government. In 2009, the Ministry of Economy, Trade and Industry announced the vision of converting a newly built public building into a net zero energy building (ZEB) by 2020. Since then, the definition of the ZEB and the subsidy system have been promoted. . In ZEB, it is considered that the ratio of air-conditioning energy to the energy consumption of the entire building is increased, and reduction of air-conditioning energy is an important issue for expanding the ZEB building scale.

空調の稼働と停止を、時間間隔を空けて行うことで、温度変化に律動を与え、快適性を損なわずに空調エネルギの削減に関する技術として、特許文献1〜3が知られている。特許文献1の「空気調和機の制御方法」は、熱源装置と、送風ファンを有し、かつ、上記熱源装置からの熱媒が供給されると共に所定の室に設置されたファンコイルユニットと、送風ファンを有し、かつ、上記熱源装置からの熱媒が供給されると共に屋外からの外気を上記所定の室に導入するエアハンドリングユニットと、上記熱源装置と、上記ファンコイルユニットおよびエアハンドリングユニットとに接続された熱媒配管と、該熱媒配管の途中に設けられて上記熱源装置からの熱媒を上記熱媒配管を介して上記ファンコイルユニットおよびエアハンドリングユニットに供給して上記熱源装置に戻すポンプとを備える冷暖房用空気調和機の制御方法において、上記所定の室の温度が設定温度になるように上記空気調和機の空気調和動作を連続的に行っている連続運転状態での上記所定の室に居る特定の複数の被験者が申告した段階的表示の温冷感レベルの平均値を求め、上記空気調和機の送風ファンの動作を所定時間だけ強制的に停止させている停止時間と上記連続運転状態と同じ設定温度で連続運転を行っている稼働時間とを繰り返す間欠動作を、上記停止時間と稼働時間を変えて複数回行い、上記複数の間欠動作の各々での上記所定の室に居る上記特定の複数の被験者が申告した段階的表示の温冷感レベルの平均値を求め、上記複数の間欠動作での上記温冷感レベルの平均値のうちで上記連続運転時の温冷感レベルの平均値と同程度の温冷感レベルの平均値を有する停止時間と稼働時間との組み合わせからなる間欠運転で、上記送風ファンを運転するようにしている。   Patent Documents 1 to 3 are known as technologies relating to the reduction of air conditioning energy without losing comfort by giving rhythm to temperature change by performing operation and stopping of air conditioning at intervals. Patent Document 1 “Control Method of Air Conditioner” includes a heat source device, a fan coil unit that has a blower fan and is supplied with a heat medium from the heat source device and installed in a predetermined chamber; An air handling unit that has a blower fan and that is supplied with a heat medium from the heat source device and introduces outside air into the predetermined chamber, the heat source device, the fan coil unit, and the air handling unit A heat medium pipe connected to the heat medium pipe and a heat medium provided in the middle of the heat medium pipe to supply the heat medium from the heat source apparatus to the fan coil unit and the air handling unit via the heat medium pipe. In the method for controlling an air conditioner for heating and cooling provided with a pump for returning to the air conditioner, the air conditioner operation of the air conditioner is linked so that the temperature of the predetermined chamber becomes a set temperature. The average value of the thermal sensation level of the gradual display declared by a plurality of specific subjects in the predetermined room in the continuous operation state being performed is determined, and the operation of the blower fan of the air conditioner is determined for a predetermined time The intermittent operation that repeats the stop time that is forcibly stopped only and the operation time that is continuously operating at the same set temperature as the continuous operation state is performed multiple times with the stop time and operation time being changed, The average value of the thermal sensation level of the stepwise display declared by the plurality of specific subjects in each of the intermittent motions of each of the intermittent motions, and the average of the thermal sensation level in the multiple intermittent motions Among the values, the fan is operated in an intermittent operation composed of a combination of a stop time and an operation time having an average value of the thermal sensation level comparable to the average value of the thermal sensation level during the continuous operation. I have to.

特許文献2の「空調制御装置」は、快適性を満足し、省エネ化を図ることができるようにすることを課題とし、PMV演算部からのPMVに基いて、室温設定値演算部は室温設定値を演算し、これをDDCに出力する。DDCは、この室温設定値に基いて、蒸気バルブ、温水バルブ、冷水バルブ等の制御を行なう。一方、PMV間欠運転制御部も上記PMVを入力しており、このPMVが所定の上下限値間の範囲内に入るように、空調機オン・オフ指令を空調機及びDDCに出力するようにしている。PMVとは、予想平均申告(Predicted Mean Vote) であって、ISO7730(1994)に採用されている代表的な温熱環境評価指数の一つである。   The “air-conditioning control device” of Patent Document 2 is intended to satisfy comfort and achieve energy saving. Based on the PMV from the PMV calculation unit, the room temperature set value calculation unit sets the room temperature. The value is calculated and output to the DDC. The DDC controls the steam valve, the hot water valve, the cold water valve, and the like based on the room temperature set value. On the other hand, the PMV intermittent operation control unit also inputs the PMV, and outputs an air conditioner on / off command to the air conditioner and the DDC so that the PMV falls within a range between predetermined upper and lower limit values. Yes. PMV is a predicted mean vote and is one of the representative thermal environment evaluation indices adopted in ISO 7730 (1994).

特許文献3の「変動パターンに基づく空調制御装置および方法」は、被空調者の快適感を損なうことなく、消費エネルギーの低減する空調制御をすることを課題とし、変動パターンに基づいて変動する目標PMV値と室内PMV値とに基づいて空調を制御する。変動パターンは、被空調者にとって快適な快適PMV値とこの値より室外PMV値に近い省エネPMV値との間を変動する変動パターンであって、快適PMV値から省エネPMV値へ徐々に変動する第1変動と省エネPMV値から快適PMV値へ急激に変動する第2変動とを繰り返すようにしている。   The “air-conditioning control device and method based on a fluctuation pattern” of Patent Document 3 has a problem of performing air-conditioning control that reduces energy consumption without impairing the comfort of the air-conditioned person, and a target that fluctuates based on the fluctuation pattern. Air conditioning is controlled based on the PMV value and the indoor PMV value. The fluctuation pattern is a fluctuation pattern that fluctuates between a comfortable PMV value that is comfortable for the air-conditioned person and an energy saving PMV value that is closer to the outdoor PMV value than this value, and gradually changes from the comfortable PMV value to the energy saving PMV value. The first fluctuation and the second fluctuation that fluctuates rapidly from the energy-saving PMV value to the comfortable PMV value are repeated.

特許第3991068号公報Japanese Patent No. 3991068 特開平9−217953号公報JP-A-9-217953 特開2004−353973号公報JP 2004-353974 A

特許文献1が開示している従来の空調制御では、例えば単一の壁掛け温度計を用いて室内温度を取得し、これを基に室内機を発停させていたが、制御対象室が大きい場合に、温度計に近い場所と遠い場所とで、温度の不均一性が顕著になるなどの弊害が現れた。また、人の温熱快適性は温度だけでなく湿度にも影響される。しかしながら、特許文献1では、湿度は一定としており、湿度変化に対応した制御機能を備えていなかった。このため、快適性を損なうことなく省エネルギを確保することが可能な空調制御を、十分に確立し得てはいなかった。   In the conventional air conditioning control disclosed in Patent Document 1, for example, a room temperature is acquired using a single wall-mounted thermometer, and the indoor unit is started and stopped based on this, but the control target room is large In addition, problems such as temperature non-uniformity appearing in places near and far from the thermometer appeared. Human thermal comfort is influenced not only by temperature but also by humidity. However, in Patent Document 1, the humidity is constant, and the control function corresponding to the humidity change is not provided. For this reason, the air conditioning control which can ensure energy saving, without impairing comfort, has not fully been established.

PMVは、温度と同時に湿度を加味した空調制御用の指標であり、特許文献2及び3で採用されている。しかしながら、空調制御へのPMVの利用に関し、制御対象空調空間における時々刻々変化するリアルタイムのPMV変化までは考慮していないため、快適性及び省エネ性の確保において、改良の余地のある技術であった。   PMV is an index for air conditioning control that takes humidity into consideration at the same time as temperature, and is adopted in Patent Documents 2 and 3. However, regarding the use of PMV for air-conditioning control, since real-time PMV changes that change from time to time in the controlled air-conditioning space are not taken into consideration, the technology has room for improvement in ensuring comfort and energy saving. .

本発明は上記従来の課題に鑑みて創案されたものであって、快適性を損なうことなく、空調エネルギの削減効果を改善することが可能な空調制御システム及び空調制御方法を提供することを目的とする。   The present invention was devised in view of the above-described conventional problems, and an object thereof is to provide an air conditioning control system and an air conditioning control method capable of improving the effect of reducing air conditioning energy without impairing comfort. And

本発明にかかる空調制御システムは、空調制御対象空間の空調制御を行うための空調機と、空調制御対象空間内の多点に設けられ、時々刻々温度及び湿度を計測して発信する複数のセンサと、上記各センサから入力される温度計測値及び湿度計測値を用いて、上記空調機の稼働と停止を制御する制御機とを備え、該制御機は、上記空調機による空調の停止開始時を基点として「第1の時間」までの間で、複数の上記センサそれぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間の該「第1の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第1の時間」における快適性を示す空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、該「第1の時間」の間で、算出された該空間平均温度及び該空間平均PMVが共に許容条件を充足しているか否かを判定し、充足しているときには、該「第1の時間」が経過するまで該空調機による空調を停止する第1の制御と、上記「第1の時間」の経過後、上記空調機による空調の稼働を「第2の時間」が経過するまで継続し、該「第2の時間」経過後から「第3の時間」までの間で、複数の上記センサそれぞれから入力される上記温度計測値及び上記湿度計測値から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における上記空間平均温度及び上記空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における快適性を示す上記空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、算出された該時間平均PMVが許容条件を充足しているか否かを判定し、充足しているときには、省エネルギ確保のために直ちに該空調機による空調を停止し、かつ該「第1の時間」における該時間平均PMVを更新するために上記第1の制御に移行する第2の制御と、該第2の制御で時々刻々得られる上記時間平均PMVが許容条件を充足するまで最大上記「第3の時間」まで判定を継続しつつ快適性を確保するために上記空調機による空調の稼働を継続し、その後、該空調機による空調を停止し、かつ上記「第1の時間」における上記時間平均PMVを更新するために上記第1の制御に移行する第3の制御と、上記第1の制御で時々刻々得られる上記空間平均温度及び上記空間平均PMVのいずれかが許容条件を充足していないときは、上記空調機による空調の稼働を行って快適性を確保するフェイルセーフのために、上記「第1の時間」の経過を問わず直ちに上記第2の制御に移行する第4の制御とを行う機能を有することを特徴とする。   An air conditioning control system according to the present invention includes an air conditioner for performing air conditioning control of an air conditioning control target space, and a plurality of sensors that are provided at multiple points in the air conditioning control target space and that measure and transmit temperature and humidity every moment. And a controller that controls the operation and stop of the air conditioner using the temperature measurement value and the humidity measurement value input from each sensor, and the controller is configured to start air conditioning stop by the air conditioner. From the temperature measurement value and the humidity measurement value input from each of the plurality of sensors to the “first time” from the base point, the space average temperature and the space in the “first time” of the air conditioning control target space An average humidity is calculated, a spatial average PMV indicating the comfort in the “first time” of the air conditioning control target space is estimated from the spatial average temperature and the spatial average humidity, and further, the temporal average value of the spatial average PMV so The time average PMV is calculated from time to time, and it is determined whether the calculated space average temperature and the space average PMV both satisfy the permissible conditions during the “first time”. When satisfied, the first control for stopping the air conditioning by the air conditioner until the “first time” elapses, and the operation of the air conditioning by the air conditioner after the elapse of the “first time”. Until the “second time” elapses, and after the “second time” elapses until the “third time”, the temperature measurement values input from each of the plurality of sensors and the From the humidity measurement value, the space average temperature and the space average humidity at the “third time” after the “second time” of the air-conditioning control target space has elapsed are calculated, and from these space average temperature and space average humidity, , The "second time" elapse of the air conditioning control target space The above-mentioned spatial average PMV indicating the comfort in the “third time” is estimated from the above, and the procedure for calculating the time average PMV that is the time average value of the spatial average PMV is performed every moment, and the calculated time It is determined whether or not the average PMV satisfies an allowable condition. When the average PMV is satisfied, the air conditioning by the air conditioner is immediately stopped to ensure energy saving, and the time average in the “first time” is determined. The second control that shifts to the first control to update the PMV, and the time average PMV that is obtained from time to time in the second control until the maximum “third time” until the allowable condition is satisfied. In order to ensure comfort while continuing the determination, the operation of the air conditioner by the air conditioner is continued, then the air conditioner by the air conditioner is stopped, and the time average PMV in the “first time” is updated. For If any one of the third control that shifts to the first control and the spatial average temperature and the spatial average PMV that are obtained every moment in the first control does not satisfy the permissible condition, the air conditioning For fail-safe to ensure comfort by operating the air conditioning by the machine, it has a function of performing the fourth control that immediately shifts to the second control regardless of the passage of the “first time”. It is characterized by that.

前記制御機は、前記各センサごとに、それらから時々刻々入力される複数の発信温度計測値及び発信湿度計測値の一定時間における平均値を、前記温度計測値及び前記湿度計測値とすることを特徴とする。   The controller sets, for each of the sensors, an average value of a plurality of transmission temperature measurement values and transmission humidity measurement values that are input from time to time for a certain period of time as the temperature measurement value and the humidity measurement value. Features.

前記センサは、電源装置として光発電パネルを備え、前記温度計測値及び前記湿度計測値を無線で前記制御機へ送信することを特徴とする。   The sensor includes a photovoltaic panel as a power supply device, and wirelessly transmits the temperature measurement value and the humidity measurement value to the controller.

本発明にかかる空調制御方法は、空調機による空調の停止開始時を基点として「第1の時間」までの間で、複数のセンサそれぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間の該「第1の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第1の時間」における快適性を示す空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、該「第1の時間」の間で、算出された該空間平均温度及び該空間平均PMVが共に許容条件を充足しているか否かを判定し、充足しているときには、該「第1の時間」が経過するまで該空調機による空調を停止する第1の制御ステップと、上記「第1の時間」の経過後、上記空調機による空調の稼働を「第2の時間」が経過するまで継続し、該「第2の時間」経過後から「第3の時間」までの間で、複数の上記センサそれぞれから入力される上記温度計測値及び上記湿度計測値から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における上記空間平均温度及び上記空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における快適性を示す上記空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、算出された該時間平均PMVが許容条件を充足しているか否かを判定し、充足しているときには、省エネルギ確保のために直ちに該空調機による空調を停止し、かつ該「第1の時間」における該時間平均PMVを更新するために上記第1の制御ステップに移行する第2の制御ステップと、該第2の制御ステップで時々刻々得られる上記時間平均PMVが許容条件を充足するまで最大上記「第3の時間」まで判定を継続しつつ快適性を確保するために上記空調機による空調の稼働を継続し、その後、該空調機による空調を停止し、かつ上記「第1の時間」における上記時間平均PMVを更新するために上記第1の制御ステップに移行する第3の制御ステップと、上記第1の制御ステップで時々刻々得られる上記空間平均温度及び上記空間平均PMVのいずれかが許容条件を充足していないときは、上記空調機による空調の稼働を行って快適性を確保するフェイルセーフのために、上記「第1の時間」の経過を問わず直ちに上記第2の制御ステップに移行する第4の制御ステップとを備えることを特徴とする。   The air conditioning control method according to the present invention is based on the temperature measurement value and the humidity measurement value input from each of a plurality of sensors from the start of air conditioning stop by the air conditioner until the “first time”, and the air conditioning control is performed. The space average temperature and the space average humidity in the “first time” of the target space are calculated, and the space indicating the comfort in the “first time” of the air conditioning control target space is calculated from the space average temperature and the space average humidity. A procedure for estimating an average PMV and calculating a time average PMV, which is a time average value of the space average PMV, is performed from time to time. During the “first time”, the calculated space average temperature and the A first control step of determining whether or not both of the spatial average PMVs satisfy the permissible condition, and when satisfied, when the “first time” elapses, stopping the air conditioning by the air conditioner; Above After the lapse of “time”, the air-conditioning operation by the air conditioner is continued until the “second time” elapses, and a plurality of times from the lapse of the “second time” to the “third time”. From the temperature measurement value and the humidity measurement value input from each of the sensors, the space average temperature and the space average at the “third time” after the passage of the “second time” of the air conditioning control target space The humidity is calculated, and the spatial average PMV indicating the comfort in the “third time” after the passage of the “second time” of the air conditioning control target space is estimated from the spatial average temperature and the spatial average humidity, Further, the procedure for calculating the time average PMV, which is the time average value of the spatial average PMV, is performed every moment, it is determined whether or not the calculated time average PMV satisfies an allowable condition, and To save energy A second control step of immediately stopping the air conditioning by the air conditioner and transferring to the first control step in order to update the time average PMV in the “first time”; and the second control Until the time average PMV obtained from time to time in the step satisfies the permissible condition, the air conditioner is continuously operated to ensure comfort while continuing the determination until the maximum “third time”, and thereafter A third control step for stopping the air conditioning by the air conditioner and shifting to the first control step in order to update the time average PMV in the “first time”, and the first control step. When either of the spatial average temperature and the spatial average PMV obtained from time to time does not satisfy the permissible conditions, a fail set that ensures the comfort by operating the air conditioner with the air conditioner. And a fourth control step that immediately shifts to the second control step regardless of the passage of the “first time”.

本発明にかかる空調制御システム及び空調制御方法にあっては、快適性を損なうことなく、空調エネルギの削減効果を改善することができる。   In the air conditioning control system and the air conditioning control method according to the present invention, the air conditioning energy reduction effect can be improved without impairing comfort.

本発明に係る空調制御システムのシステム構成の好適な一実施形態を示す構成図である。1 is a configuration diagram showing a preferred embodiment of a system configuration of an air conditioning control system according to the present invention. 図1に示した空調制御システムに用いられる無線温湿度センサの斜視図である。It is a perspective view of the wireless temperature / humidity sensor used for the air-conditioning control system shown in FIG. 図1に示した空調制御システムにおける、無線温湿度センサによる計測から、制御機で実行される受信及び受信後の平均値変換までの処理フローを説明する説明図である。It is explanatory drawing explaining the processing flow from the measurement by a wireless temperature / humidity sensor in the air-conditioning control system shown in FIG. 1 to the reception performed by a controller, and the average value conversion after reception. 従来周知のPMVとそれに対応するPPDの関係を示す説明図である。It is explanatory drawing which shows the relationship between conventionally well-known PMV and PPD corresponding to it. 本発明に係る空調制御方法の好適な一実施形態を説明する制御機による空調室内機の空調運転状態の制御フローを説明する説明図である。It is explanatory drawing explaining the control flow of the air-conditioning driving | running state of the air-conditioning indoor unit by the controller which demonstrates suitable one Embodiment of the air-conditioning control method which concerns on this invention. 図5に示した制御フローに従った室内空調機の冷房時の制御状態を示すグラフ図である。It is a graph which shows the control state at the time of air_conditioning | cooling of the indoor air conditioner according to the control flow shown in FIG. 図5に示した制御フローに従った室内空調機の暖房時の制御状態を示すグラフ図である。It is a graph which shows the control state at the time of the heating of the indoor air conditioner according to the control flow shown in FIG. 実証実験を行った実験室内における無線温湿度センサ及び空調室内機の配置図である。It is a layout view of a wireless temperature / humidity sensor and an air conditioning indoor unit in a laboratory in which a demonstration experiment was performed. 実証実験を行った拡張制御及び従来制御それぞれにおける1サイクルを基準としたサイクル平均温度とサイクル平均PMVの推移の実験結果を示すグラフ図である。It is a graph which shows the experimental result of transition of cycle average temperature and cycle average PMV on the basis of 1 cycle in each of the extended control and the conventional control in which the demonstration experiment was performed. 本実施形態に係る空調制御システム及び空調制御方法による拡張制御と、一般空調と、従来制御の3パターンの室外機の電力消費を説明するためのグラフ図である。It is a graph for demonstrating the power consumption of the outdoor control of the expansion control by the air-conditioning control system and air-conditioning control method which concerns on this embodiment, general air conditioning, and conventional control. 本実施形態に係る空調制御システムの構成例を説明する図であって、(A)は単一モジュールタイプ、(B)は複数モジュールタイプを示す図である。It is a figure explaining the structural example of the air-conditioning control system which concerns on this embodiment, Comprising: (A) is a single module type, (B) is a figure which shows multiple module types.

以下に、本発明にかかる空調制御システム及び空調制御方法の好適な一実施形態を、添付図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of an air conditioning control system and an air conditioning control method according to the present invention will be described in detail with reference to the accompanying drawings.

本発明者等は、(1)空調制御対象空間内の温度の偏りの影響を最小限にすることと、(2)PMVの時間平均値に着目し、このPMVの時間平均値に基づいて、空調機の発停(稼働開始と稼働停止)制御を行うようにすることで、湿度が快適性を上昇させる条件下で、空調の稼働時間をこれまでよりも短縮することが可能であることを見出して、空調エネルギの削減効果を改善できる本発明を完成するに至ったものである。   The inventors of the present invention (1) minimize the influence of temperature deviation in the air conditioning control target space, and (2) pay attention to the PMV time average value, and based on this PMV time average value, By controlling the start and stop (start and stop) of the air conditioner, it is possible to reduce the operating time of the air conditioner than before under the condition that humidity increases comfort. As a result, the present invention that can improve the effect of reducing the air-conditioning energy has been completed.

図1には、本実施形態に係る空調制御システムのシステム構成が示されていて、天井1や床2、壁3などで区画形成された部屋などの空調制御対象空間Sに設けられ、当該空調制御対象空間S内の空調制御を行うための空調機としての空調室内機4と、空調制御対象空間S内の多点に設けられ、時々刻々温度及び湿度を計測して発信する複数の無線温湿度センサ17(柱面aや机上面bに設置)と、これら複数の無線温湿度センサ17から入力される温度計測値及び湿度計測値を用いて、空調室内機4の稼働と停止を制御する、無線受信機能を備えた制御機20とから構成される。   FIG. 1 shows a system configuration of an air conditioning control system according to the present embodiment, which is provided in an air conditioning control target space S such as a room defined by a ceiling 1, a floor 2, a wall 3, and the like. An air conditioning indoor unit 4 as an air conditioner for performing air conditioning control in the control target space S, and a plurality of wireless temperatures provided at multiple points in the air conditioning control target space S to measure and transmit temperature and humidity every moment. The operation and stop of the air conditioning indoor unit 4 are controlled using the humidity sensor 17 (installed on the column surface a and the desk surface b) and the temperature measurement value and the humidity measurement value input from the plurality of wireless temperature / humidity sensors 17. And a controller 20 having a wireless reception function.

図示では、壁掛温度計7も示されていて、この温度計7からは有線で制御機20に計測値が入力される。空調制御対象空間Sの部屋には、照明スイッチの他、空調室内機4や制御機20を入り切りするスイッチ8及び制御ランプが設けられる。   In the figure, a wall-mounted thermometer 7 is also shown, and a measured value is input from the thermometer 7 to the controller 20 by wire. In the room of the air conditioning control target space S, a switch 8 and a control lamp for turning on and off the air conditioning indoor unit 4 and the controller 20 are provided in addition to the illumination switch.

図2は、無線温湿度センサの斜視図である。この無線温湿度センサ17は、厚さの薄い直方体状のハウジング18の前端側及び後端側に、断熱材14aを介して、黒球温度計(輻射熱計測用)14が一対設けられると共に、一側面に、空気温度計21及び湿度計23が設けられる。さらに、ハウジング18の天面には、光発電パネル22及び照度センサ24が設けられる。   FIG. 2 is a perspective view of the wireless temperature / humidity sensor. This wireless temperature / humidity sensor 17 is provided with a pair of black bulb thermometers (for radiant heat measurement) 14 on the front end side and the rear end side of a thin rectangular parallelepiped housing 18 via a heat insulating material 14a. An air thermometer 21 and a hygrometer 23 are provided on the side surface. Further, a photovoltaic panel 22 and an illuminance sensor 24 are provided on the top surface of the housing 18.

この無線温湿度センサ17は、照明を利用する光発電パネル22を電源装置とした環境発電方式であり、電源交換の必要がなく、温度・湿度・照度を計測し、これら計測値を制御機20に向けて無線送信する。本実施形態では、空気温度計21の計測値が温度計測値として用いられる。無線温湿度センサ17は、照度200lux で30秒ごとのデータ送信が可能であり、照度が高くなるほど、送信間隔は短くなる。   This wireless temperature / humidity sensor 17 is an energy harvesting method using a photovoltaic power generation panel 22 that uses illumination as a power supply device, and does not require power supply replacement, and measures temperature, humidity, and illuminance. Wirelessly send to. In the present embodiment, the measurement value of the air thermometer 21 is used as the temperature measurement value. The wireless temperature / humidity sensor 17 can transmit data every 30 seconds at an illuminance of 200 lux, and the higher the illuminance, the shorter the transmission interval.

この無線温湿度センサ17が、空調制御対象空間S内に偏りなく複数設置される。無線温湿度センサ17は、光発電パネル22で自ら給電を行うと共に、計測値を無線送信するので、電源線や信号線の配設が不要であり、複数箇所に設置する場合にその設置施工性に優れる。   A plurality of the wireless temperature / humidity sensors 17 are installed in the air conditioning control target space S without deviation. The wireless temperature / humidity sensor 17 powers itself with the photovoltaic panel 22 and transmits the measured values wirelessly, so that it is not necessary to arrange a power line or a signal line. Excellent.

このように複数の無線温湿度センサ17を空調制御対象空間S内の多点に設置するようにしたので、空調制御対象空間S内の標準的な(平均的な)温度を捉えることが可能で、温度及び湿度の偏りの影響を最小限に抑えて適切に計測値を取得することができる。   As described above, since the plurality of wireless temperature / humidity sensors 17 are installed at multiple points in the air conditioning control target space S, it is possible to capture the standard (average) temperature in the air conditioning control target space S. In addition, the measurement value can be appropriately acquired while minimizing the influence of temperature and humidity bias.

無線温湿度センサ17で計測された温度計測値及び湿度計測値は、受信機能を有する制御機20へ送られる。図3には、無線温湿度センサ17による計測から、制御機20における受信及び受信後の平均値変換までの処理フローが示されている。   The temperature measurement value and the humidity measurement value measured by the wireless temperature / humidity sensor 17 are sent to the controller 20 having a reception function. FIG. 3 shows a processing flow from measurement by the wireless temperature / humidity sensor 17 to reception by the controller 20 and average value conversion after reception.

無線温湿度センサ17による温度計測値等の送信間隔(送信頻度)は、環境照度(空調制御対象空間S内の照度)に応じて大小変化する。一定時間内で制御機20が受信した温度計測値等の全平均を求めると、高照度環境に配置された無線温湿度センサ17からの温度計測値等が多く含まれることとなり、厳密な平均値とならない。   The transmission interval (transmission frequency) of the temperature measurement value or the like by the wireless temperature / humidity sensor 17 varies depending on the environmental illuminance (illuminance in the air conditioning control target space S). When the total average of the temperature measurement values received by the controller 20 within a certain time is obtained, a lot of temperature measurement values from the wireless temperature / humidity sensor 17 arranged in the high illuminance environment are included, and a strict average value is obtained. Not.

そのため、制御機20は、各無線温湿度センサ17ごとに、それらから時々刻々入力される複数の発信温度計測値及び発信湿度計測値の一定時間における平均値を、温度計測値及び湿度計測値とするようになっている。   Therefore, for each wireless temperature / humidity sensor 17, the controller 20 calculates the average value of a plurality of transmission temperature measurement values and transmission humidity measurement values input from time to time as a temperature measurement value and a humidity measurement value. It is supposed to be.

すなわち、制御機20側で、各無線温湿度センサ17からの温度計測値等の所定時間(例えば1分間)における平均値を個々に求め、各無線温湿度センサ17それぞれについて個別に得た各平均値から、これら平均値の総和を無線温湿度センサ17の個数で割って、空間平均温度と空間平均湿度を算出する。これにより、送信間隔が異なることによる温度計測値等の偏りを防止することができる。無線温湿度センサ17が黒球温度計14の計測値(輻射温度を求める際の基礎データとして利用)や照度も計測する場合、これらの計測値についても同様に平均化する処理をすることで、偏りを防止することができる。   That is, on the controller 20 side, an average value in a predetermined time (for example, 1 minute) such as a temperature measurement value from each wireless temperature / humidity sensor 17 is obtained individually, and each average obtained individually for each wireless temperature / humidity sensor 17. From the values, the sum of these average values is divided by the number of wireless temperature and humidity sensors 17 to calculate the space average temperature and the space average humidity. As a result, it is possible to prevent deviations in temperature measurement values and the like due to different transmission intervals. When the wireless temperature / humidity sensor 17 measures the measurement value of the black bulb thermometer 14 (used as basic data for obtaining the radiation temperature) and the illuminance, the measurement value is similarly averaged. Unevenness can be prevented.

この際、空調制御対象空間S内で、温度や湿度が異なると考えられる複数箇所に無線温湿度センサ17を配置し、これより温湿度等の空間平均値を算出するようにすれば、より標準的な温湿度等による制御が可能となる。   At this time, if the wireless temperature / humidity sensors 17 are arranged in a plurality of places where the temperature and humidity are considered to be different in the air conditioning control target space S, and the spatial average value of the temperature / humidity is calculated therefrom, the standard is more standardized. Control by temperature and humidity etc. becomes possible.

図3に示すように、制御機20は、算出した空間平均温度及び空間平均湿度より、時々刻々変化する空間平均PMVを推定する。そして後述するように、この空間平均PMVの時間平均値(以下、時間平均PMVという)を元にして、空調室内機4の発停の制御を判断する。   As shown in FIG. 3, the controller 20 estimates a spatial average PMV that changes every moment from the calculated spatial average temperature and spatial average humidity. Then, as will be described later, on / off control of the air conditioning indoor unit 4 is determined based on the time average value of the spatial average PMV (hereinafter referred to as time average PMV).

時間平均PMVとは、空調室内機4の稼働停止、稼働開始、再度の稼働停止までの1サイクルにおいて、時々刻々得られる空間平均PMVを積算し、積算した回数で割って得られる平均値をいう。空調制御対象空間Sに外部から入ったばかりの人と、そこに長時間居た人とでは、快適となる条件が異なる。各瞬間の空間平均PMVに対し、時間平均PMVであれば、空調制御対象空間Sに長時間居ることによる感覚的な慣れを考慮した制御を行うことができる。従って、空調制御対象空間Sを長時間利用する場合に用いることが好ましい。   The time average PMV refers to an average value obtained by accumulating the spatial average PMV obtained every moment in one cycle from the operation stop, operation start, and operation stop of the air conditioning indoor unit 4 and dividing by the number of integration. . Comfortable conditions differ between a person who has just entered the air conditioning control target space S from outside and a person who has been there for a long time. If it is time average PMV with respect to the space average PMV of each moment, the control which considered the sensory habituation by staying in the air-conditioning control object space S for a long time can be performed. Therefore, it is preferable to use it when the air conditioning control target space S is used for a long time.

図3中のサイクル平均PMVは、空調室内機4の稼働停止、稼働開始、再度の稼働停止に亘る1サイクル中における時間平均PMVの平均値であって、制御目標となる許容条件となる(図6及び図7中、許容値PMVに相当)。時間平均PMV、空間平均PMV及び空間平均温度が、制御機20による空調室内機4の制御値とされる。   The cycle average PMV in FIG. 3 is an average value of the time average PMV during one cycle from the operation stop, operation start, and operation stop of the air-conditioning indoor unit 4, and is an allowable condition that is a control target (FIG. 3). 6 and in FIG. 7, it corresponds to the allowable value PMV). The time average PMV, the space average PMV, and the space average temperature are the control values of the air conditioning indoor unit 4 by the controller 20.

空間平均PMVは一般周知であって、略述すると、対象とする空調空間の温熱環境を形成する6要素(温度、湿度、気流、輻射温度、代謝量、着衣量)を基に、公知の快適方程式(例えば、「空気調和・衛生工学便覧 1 基礎編」(社)空気調和・衛生工学会 発行を参照)から数値化された、当該空調空間の温冷感(図4参照)を算出したもので、不快者数の割合の期待値(予測不快者率;PPD)と対応しているものである。   Spatial average PMV is generally well known and, in short, known comfort based on six elements (temperature, humidity, airflow, radiation temperature, metabolic rate, amount of clothes) that form the thermal environment of the target air-conditioned space. Calculated thermal sensation (see Fig. 4) of the air-conditioned space expressed from an equation (for example, “Handbook of Air Conditioning and Sanitary Engineering 1 Basics” (see the issue of Air Conditioning and Sanitation Engineering Society)) Therefore, it corresponds to the expected value of the ratio of the number of uncomfortable persons (predicted uncomfortable person rate; PPD).

図5には、空調室内機4の空調運転状態を制御する制御機20による制御フローが示されている。また、下記表1には、本実施形態における制御値であるサイクル平均PMV(時間平均PMV)、空間平均PMV、並びに空間平均温度の許容条件が示されている。   FIG. 5 shows a control flow by the controller 20 that controls the air conditioning operation state of the air conditioning indoor unit 4. Table 1 below shows allowable conditions for cycle average PMV (time average PMV), space average PMV, and space average temperature, which are control values in the present embodiment.

Figure 2019148350
Figure 2019148350

なお、代謝量、着衣量は、表1のように一定値であっても、あるいは時期や季節毎に値を設定するようにしても良い。気流や輻射温度については、計測して空間平均を求めるようにしても、あるいは定数としても良く、さらに、時期や時刻、季節毎に値を設定するようにしても良い。   Note that the metabolic rate and the clothing amount may be constant values as shown in Table 1, or may be set for each period or season. The airflow and radiation temperature may be measured to obtain a spatial average, or may be a constant, and may be set for each time, time, and season.

制御機20による空調室内機4の制御方法は基本的に、以下の第1〜第4の制御ステップを備える。空調室内機4は、上記スイッチ8を入れるとその稼働が開始され、その後、下記制御に移行する。   The control method of the air conditioning indoor unit 4 by the controller 20 basically includes the following first to fourth control steps. The air conditioning indoor unit 4 starts its operation when the switch 8 is turned on, and then shifts to the following control.

第1の制御ステップ(Z1)は、空調室内機4による空調の停止開始時を基点として「第1の時間(図中、10分間)」までの間で、複数の無線温湿度センサ17それぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間Sの「第1の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間Sの「第1の時間」における快適性を示す空間平均PMVを推定し、さらに、空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、「第1の時間」の間で、算出された空間平均温度及び該空間平均PMVが共に表1の許容条件を充足しているか否かを判定し、充足しているときには、「第1の時間」が経過するまで空調室内機4による空調を停止する。   The first control step (Z1) is performed from each of the plurality of wireless temperature / humidity sensors 17 until the "first time (10 minutes in the figure)" from the start of air conditioning stop by the air conditioning indoor unit 4. The space average temperature and the space average humidity in the “first time” of the air conditioning control target space S are calculated from the input temperature measurement value and humidity measurement value, and the air conditioning control target space is calculated from these space average temperature and space average humidity. The procedure of estimating the spatial average PMV indicating the comfort in the “first time” of S, and calculating the time average PMV, which is the time average value of the spatial average PMV, is performed from time to time. It is determined whether or not the calculated spatial average temperature and the spatial average PMV both satisfy the permissible conditions in Table 1. If they are satisfied, the air-conditioned room until the “first time” elapses. Air conditioning by machine 4 To stop.

第2の制御ステップ(Z2)は、「第1の時間(図中、10分間))」の経過後、空調室内機4による空調の稼働を「第2の時間(図中、15分間)」が経過するまで継続し、「第2の時間」経過後から「第3の時間(図中、5分間(空調室内機4の稼働開始から通算して20分間))」までの間で、複数の無線温湿度センサ17それぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間Sの「第2の時間」経過後から「第3の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間Sの「第2の時間」経過後から「第3の時間」における快適性を示す空間平均PMVを推定し、さらに、空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、算出された時間平均PMVが表1の許容条件を充足しているか否かを判定し、充足しているときには、省エネルギ確保のために直ちに空調室内機4による空調を停止し、かつ「第1の時間」における時間平均PMVを更新するために第1の制御ステップに移行する。   In the second control step (Z2), after the “first time (10 minutes in the figure)” elapses, the operation of the air conditioning by the air conditioning indoor unit 4 is “second time (15 minutes in the figure)”. Is continued until “second time” elapses until “third time (in the figure, 5 minutes (20 minutes from the start of operation of the air conditioning indoor unit 4))”. From the temperature measurement value and the humidity measurement value input from each of the wireless temperature / humidity sensors 17, the spatial average temperature and the spatial average humidity in the “third time” after the “second time” of the air conditioning control target space S has elapsed. The spatial average PMV indicating the comfort in the “third time” after elapse of the “second time” of the air conditioning control target space S is calculated from the spatial average temperature and the spatial average humidity. Procedure for calculating time average PMV, which is the time average value of PMV Step by step, it is determined whether the calculated time average PMV satisfies the permissible conditions of Table 1, and if satisfied, immediately stop the air conditioning by the air conditioning indoor unit 4 to ensure energy saving, and The process proceeds to the first control step in order to update the time average PMV in the “first time”.

なお、新たな空調の停止開始時における最初の時間平均PMVは、当該停止開始時における空間平均PMVとする。   The initial time average PMV at the start of a new air conditioning stop is the spatial average PMV at the start of the stop.

第3の制御ステップ(Z3)は、第2の制御ステップで時々刻々得られる時間平均PMVが表1の許容条件を充足するまで最大「第3の時間(図中、5分間(空調室内機4の稼働開始から通算して20分間)」まで判定を継続しつつ快適性を確保するために空調室内機4による空調の稼働を継続し、その後、空調室内機4による空調を停止し、かつ「第1の時間」における時間平均PMVを更新するために第1の制御ステップに移行する。   In the third control step (Z3), the time average PMV obtained every moment in the second control step is “maximum“ third time (5 minutes in the figure (air conditioning indoor unit 4) until the permissible conditions in Table 1 are satisfied ”. The air-conditioning indoor unit 4 continues air-conditioning operation in order to ensure comfort while continuing the determination until “20 minutes from the start of operation”), and then the air-conditioning indoor unit 4 stops air-conditioning and “ In order to update the time average PMV in the “first time”, the process proceeds to the first control step.

第4の制御ステップ(Z4)は、第1の制御ステップで時々刻々得られる空間平均温度及び空間平均PMVのいずれかが表1の許容条件を充足していないときは、空調室内機4による空調の稼働を行って快適性を確保するフェイルセーフのために、「第1の時間」の経過を問わず直ちに第2の制御ステップに移行する。   In the fourth control step (Z4), when any one of the space average temperature and the space average PMV obtained every moment in the first control step does not satisfy the permissible conditions in Table 1, air conditioning by the air conditioning indoor unit 4 is performed. For fail-safe to ensure comfort by performing the operation, the process immediately shifts to the second control step regardless of the passage of the “first time”.

そして、制御機20は、上記第1〜第4の制御ステップ(Z1)〜(Z4)を実行する第1〜第4の制御機能を備える。   The controller 20 includes first to fourth control functions for executing the first to fourth control steps (Z1) to (Z4).

制御フローにおける流れの一例としては、空調の停止開始時を起点とし、計測ごとに起点からその時刻までの空間平均PMVの時間平均値(時間平均PMV)を求め、10分後(第1の制御ステップ(Z1))に空調を15分から20分稼働する。   As an example of the flow in the control flow, the time average value (time average PMV) of the spatial average PMV from the start point to the time is obtained for each measurement from the start time of air conditioning stop, and 10 minutes later (first control) In step (Z1)), air conditioning is operated for 15 to 20 minutes.

15分から20分の間で、時間平均PMVが許容値に収まる場合、その段階で空調を停止させ、新たな停止−稼働サイクルに移る(第2の制御ステップ(Z2))。つまり、湿度条件が有利な場合は、時間平均PMVを保ちながら、稼働時間を最大で15分まで縮小させる。   If the time average PMV falls within an allowable value between 15 minutes and 20 minutes, the air conditioning is stopped at that stage, and a new stop-operation cycle is started (second control step (Z2)). That is, when the humidity condition is advantageous, the operating time is reduced to a maximum of 15 minutes while maintaining the time average PMV.

停止時間率(停止−稼働サイクル1サイクルあたりの停止時間の割合)は、33〜40%となり、最大で7%停止時間率が増大する。時間平均PMVが許容値に収まらない場合は、20分稼働後に、空調を停止する(第3の制御ステップ(Z3))。   The stop time rate (stop-percentage of stop time per operation cycle) is 33 to 40%, and the stop time rate increases by 7% at the maximum. If the time average PMV does not fall within the allowable value, the air conditioning is stopped after 20 minutes of operation (third control step (Z3)).

また、フェイルセーフとして、空調の停止中に空間平均PMV、空間平均温度が瞬時でも許容条件を外れた場合は、即座に空調を稼働する(第4の制御ステップ(Z4))。   Further, as a fail safe, if the space average PMV and the space average temperature are out of the allowable conditions even during the stop of air conditioning, the air conditioning is immediately activated (fourth control step (Z4)).

図6及び図7それぞれには、制御フローに従った冷房時及び暖房時の制御状態が示されている。空調室内機4の稼働停止(時間平均PMV計算起点;「第1の時間」の起点)、稼働開始、再度の稼働停止に亘る1サイクルにおいて、許容値PMV(サイクル平均PMV)を制御目標として、「第1の時間(10min)」の経過時に空調室内機4の稼働が開始(空間平均PMVが許容値PMV(許容条件)を逸脱している)され、その後の「第2の時間(15min)」の経過後、「第3の時間(〜5min)」までの間で、それまで時々刻々計測されている空間平均温度及び空間平均湿度から推定される空間平均PMVより算出される時間平均PMVが許容値PMV(許容条件)を満たすことになる。   FIG. 6 and FIG. 7 show control states during cooling and heating according to the control flow. In one cycle spanning the operation stop of the air-conditioning indoor unit 4 (time average PMV calculation start point; “first time” start point), operation start, and operation stop again, an allowable value PMV (cycle average PMV) is set as a control target. When the “first time (10 min)” has elapsed, the operation of the air conditioning indoor unit 4 is started (the spatial average PMV deviates from the allowable value PMV (allowable condition)), and the subsequent “second time (15 min). After the lapse of “,” the time average PMV calculated from the spatial average PMV estimated from the spatial average temperature and the spatial average humidity measured every moment until the “third time (˜5 min)” The allowable value PMV (allowable condition) is satisfied.

すなわち、空間平均PMVが許容条件を満たして空調室内機4が停止されるようになっていて、これにより、早期停止可能域が得られて、空調エネルギの削減を達成することができる。   That is, the air-conditioning indoor unit 4 is stopped when the space average PMV satisfies the permissible condition, whereby an early stoppable area is obtained, and the air-conditioning energy can be reduced.

《実証実験》
(1)実験概要
本実施形態に係る空調制御システム及び空調制御方法に従った冬期暖房時の運転実験及び省エネルギ効果の確認実験を行った。従来制御は、特許文献1の開示方式に沿ったものである。
"Demonstration experiment"
(1) Outline of Experiment An operation experiment during winter heating and a confirmation experiment of the energy saving effect were performed according to the air conditioning control system and the air conditioning control method according to the present embodiment. Conventional control is in accordance with the disclosure method of Patent Document 1.

図8には、実験室(幅4,500×奥行き7,000×高さ2,500mm )Sx内における無線温湿度センサ17(温湿度測定点の位置:高さ800mm )及び空調室内機4の配置が示されている。暖房能力4.0kWの空調室内機4を実験室Sxの東西に2台配置し、これらを同時に制御した。空調室外機の定格出力は2.5kWである。無線温湿度センサ17は、空調室内機4の風が当たらない机上に配置した。   FIG. 8 shows the arrangement of the wireless temperature / humidity sensor 17 (temperature / humidity measurement point position: height 800 mm) and the air conditioning indoor unit 4 in the laboratory (width 4,500 × depth 7,000 × height 2,500 mm) Sx. Yes. Two air conditioner indoor units 4 having a heating capacity of 4.0 kW were arranged on the east and west sides of the laboratory Sx, and these were controlled simultaneously. The rated output of the air conditioner outdoor unit is 2.5 kW. The wireless temperature / humidity sensor 17 was placed on a desk where the wind of the air conditioning indoor unit 4 was not hit.

実験では、従来制御と、本実施形態に係る空調制御方法による制御(以下、「拡張制御」という)で、空調制御を行い、それぞれの動作状況、空調室外機のエネルギ消費量を比較した。日中の負荷変動の影響を除外するため、日没以降18:30〜20:00の時間帯に2サイクルの実験を実施した。   In the experiment, air-conditioning control was performed by conventional control and control by the air-conditioning control method according to the present embodiment (hereinafter referred to as “extended control”), and the operation status and the energy consumption of the air-conditioning outdoor unit were compared. In order to exclude the influence of load fluctuations during the daytime, a two-cycle experiment was conducted in the time zone from 18:30 to 20:00 after sunset.

時刻変化に伴う温度のばらつきに配慮し、日を変えて3回実験をし、その日別平均の計測値を比較した。エネルギ消費量の比較は、一般空調(設定温度に達した後に空調を停止する)の稼働実験も加え、上記3回の実験のうち外気温が近しい日で比較した。   Considering the temperature variation with time change, the experiment was performed three times with different days, and the daily averaged measured values were compared. The energy consumption was compared with the operation of general air conditioning (air conditioning was stopped after reaching the set temperature), and the comparison was made on the day when the outside air temperature was near among the above three experiments.

PMVは、湿度が高いほど、大きくなる。従来制御では、暖房時は相対湿度40%を仮定していたため、本実験では、40%より高湿度となる場合に、PMVの時間平均値制御によって、空調稼働時間が短縮される動作確認をした。湿度は、加湿器で調整し、従来制御の場合は、過去の被験者実験と同様、相対湿度40%、拡張制御では、よりPMVが有利な条件として相対湿度50%を与えた。空調設定温度は、22℃とした。   PMV increases as humidity increases. In the conventional control, it was assumed that the relative humidity was 40% at the time of heating. Therefore, in this experiment, when the humidity was higher than 40%, the operation confirmation that the air conditioning operation time was shortened by the PMV time average value control was confirmed. . Humidity was adjusted with a humidifier. In the case of the conventional control, the relative humidity was 40%, and in the extended control, the relative humidity was 50% as a more advantageous condition for PMV in the extended control. The air conditioning set temperature was 22 ° C.

(2)制御の確認
図9には、実験結果として、拡張制御(改良制御)及び従来制御それぞれにおける1サイクルを基準としたサイクル平均温度とサイクル平均PMVの推移が示されている。サイクル平均温度は、従来制御で22.1℃、拡張制御で21.8℃と差があるが、サイクル平均PMVは、湿度差が加味され、従来制御と拡張制御で共に−0.3となっている。
(2) Confirmation of Control FIG. 9 shows the transition of the cycle average temperature and the cycle average PMV based on one cycle in each of the extended control (improved control) and the conventional control as experimental results. The cycle average temperature is 22.1 ° C in the conventional control and 21.8 ° C in the extended control, but the cycle average PMV is -0.3 in both the conventional control and the extended control due to the humidity difference. ing.

また、拡張制御においては、空調室外機の稼働時間が15分となっており、サイクル平均PMVに基づいた稼働時間を短縮する制御が確認された。   In the extended control, the operating time of the air-conditioning outdoor unit is 15 minutes, and it has been confirmed that the operating time is shortened based on the cycle average PMV.

(3)省エネルギ効果
図10には、一般空調と、従来制御、拡張制御(改良した制御)3パターンの室外機の電力(電力量の運転時間平均)が示されている。一般空調に対し、稼働時間の短縮によって、従来制御は36%(=(728-467)/728)であるのに対し、拡張制御では、43%(=(728-415)/728)の削減効果を得ることができた。空調停止率(稼働時間の短縮による削減効果の差分)が7%増加したことで、優れた省エネルギ性能を確保できることが確認された。
(3) Energy Saving Effect FIG. 10 shows the power of the outdoor unit in three patterns of general air conditioning, conventional control, and extended control (improved control) (average operation time of electric energy). For general air conditioning, the conventional control is 36% (= (728-467) / 728) due to the shortening of operation time, while the extended control is 43% (= (728-415) / 728). The effect was able to be acquired. It was confirmed that an excellent energy-saving performance could be secured by increasing the air conditioning stop rate (difference in reduction effect due to shortened operation time) by 7%.

本実施形態に係る空調制御システム及び空調制御方法では、温度と湿度を加味したPMVの時間平均値を用いて制御することに着目し、常時計測した温度・湿度からPMVを推定し、PMVの時間平均値に基づいて、空調室内機4の停止・稼働を制御することで、湿度が快適性を上昇させる条件下で、空調の稼働時間を、より短縮できて、快適性を損なうことなく、空調エネルギの削減効果を改善することができる。   In the air conditioning control system and the air conditioning control method according to the present embodiment, paying attention to control using the time average value of PMV taking temperature and humidity into consideration, PMV is estimated from the constantly measured temperature and humidity, and the time of PMV By controlling the stop and operation of the air conditioning indoor unit 4 based on the average value, the operating time of the air conditioning can be further shortened under the condition that the humidity increases the comfort, and the air conditioning is performed without impairing the comfort. The energy reduction effect can be improved.

制御機20は、各無線温湿度センサ17ごとに、それらから時々刻々入力される複数の発信温度計測値及び発信湿度計測値の一定時間における平均値を、温度計測値及び湿度計測値とするので、多点に設置した無線温湿度センサ17それぞれから取得される計測値を等しく取り扱って、各無線温湿度センサ17の設置場所に依存することのない偏りのない空調制御を行うことができる。   Since the controller 20 uses the wireless temperature sensor 17 for each wireless temperature / humidity sensor 17 as a temperature measurement value and a humidity measurement value, the average value of the plurality of transmission temperature measurement values and the transmission humidity measurement values input from time to time for a certain period of time is used. The measurement values acquired from the wireless temperature / humidity sensors 17 installed at multiple points are handled equally, and the air conditioning control without bias can be performed without depending on the installation locations of the wireless temperature / humidity sensors 17.

無線温湿度センサ17は、電源装置として光発電パネル22を備え、温度計測値及び湿度計測値を無線で制御機20へ送信するので、電源線や通信線の配線に手間取るなど施工性を損なうことなく、空調制御対象空間Sの多点で適切に温度・湿度を計測することができ、温度等の偏りなく、空調制御対象空間Sの標準的な温度・湿度に基づいて、空調制御を行うことができる。   Since the wireless temperature / humidity sensor 17 includes the photovoltaic panel 22 as a power supply device and wirelessly transmits the temperature measurement value and the humidity measurement value to the controller 20, it impairs workability such as troublesome wiring of the power line and the communication line. In addition, the temperature and humidity can be appropriately measured at multiple points in the air conditioning control target space S, and air conditioning control is performed based on the standard temperature and humidity of the air conditioning control target space S without biasing the temperature or the like. Can do.

図11は、本実施形態に係る空調制御システムの構成例を説明する図であって、(A)に示すように、一つの空調制御対象空間Sに対し、空調室内機4と複数の無線温湿度センサ17と制御機20からなる単一のモジュールを設備しても、あるいは、(B)に示すように、空調制御対象空間Sが広大な場合には、この一つの空調制御対象空間SをゾーンRにわけ、ゾーン制御方式で、複数のモジュールを設備するようにしても良い。   FIG. 11 is a diagram illustrating a configuration example of the air conditioning control system according to the present embodiment. As illustrated in FIG. 11A, an air conditioning indoor unit 4 and a plurality of wireless temperatures are provided for one air conditioning control target space S. Even if a single module comprising the humidity sensor 17 and the controller 20 is installed, or as shown in (B), if the air conditioning control target space S is vast, this single air conditioning control target space S is defined as A plurality of modules may be installed in the zone R by the zone control method.

後者の場合、図示するように、複数のゾーンRを単一の制御機20で制御しても、あるいは、各ゾーンRを個々に専用の制御機20で制御するようにしても、いずれであっても良い。   In the latter case, as shown in the figure, either a plurality of zones R may be controlled by a single controller 20, or each zone R may be individually controlled by a dedicated controller 20. May be.

図3の説明では、温度、湿度の1分平均を制御機20内で算定するようにしているが、算定を各無線温湿度センサ17で行わせるようにし、各無線温湿度センサ17で算定した1分平均の温度等を制御機20へ送信させるようにしても良い。図1に示した壁掛温度計7は、用いなくても良い。図2で説明した無線温湿度センサ17は、温度と湿度を計測できれば良く、照度センサ24や黒球温度計14を備えていなくてもよい。その場合、温度と湿度以外のPMVを算定するために必要なデータは、予め用意された値を用いるようにすればよい。   In the description of FIG. 3, the one-minute average of temperature and humidity is calculated in the controller 20, but the calculation is performed by each wireless temperature / humidity sensor 17 and calculated by each wireless temperature / humidity sensor 17. The one-minute average temperature or the like may be transmitted to the controller 20. The wall-mounted thermometer 7 shown in FIG. 1 may not be used. The wireless temperature / humidity sensor 17 described with reference to FIG. 2 only needs to be able to measure temperature and humidity, and may not include the illuminance sensor 24 and the black bulb thermometer 14. In that case, as data necessary for calculating PMV other than temperature and humidity, values prepared in advance may be used.

4 空調室内機
17 無線温湿度センサ
20 制御機
S 空調制御対象空間
Z1 第1の制御ステップ
Z2 第2の制御ステップ
Z3 第3の制御ステップ
Z4 第4の制御ステップ
4 Air Conditioning Indoor Unit 17 Wireless Temperature / Humidity Sensor 20 Controller S Air Conditioning Control Target Space Z1 First Control Step Z2 Second Control Step Z3 Third Control Step Z4 Fourth Control Step

Claims (4)

空調制御対象空間の空調制御を行うための空調機と、
空調制御対象空間内の多点に設けられ、時々刻々温度及び湿度を計測して発信する複数のセンサと、
上記各センサから入力される温度計測値及び湿度計測値を用いて、上記空調機の稼働と停止を制御する制御機とを備え、
該制御機は、
上記空調機による空調の停止開始時を基点として「第1の時間」までの間で、複数の上記センサそれぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間の該「第1の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第1の時間」における快適性を示す空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、該「第1の時間」の間で、算出された該空間平均温度及び該空間平均PMVが共に許容条件を充足しているか否かを判定し、充足しているときには、該「第1の時間」が経過するまで該空調機による空調を停止する第1の制御と、
上記「第1の時間」の経過後、上記空調機による空調の稼働を「第2の時間」が経過するまで継続し、該「第2の時間」経過後から「第3の時間」までの間で、複数の上記センサそれぞれから入力される上記温度計測値及び上記湿度計測値から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における上記空間平均温度及び上記空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における快適性を示す上記空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、算出された該時間平均PMVが許容条件を充足しているか否かを判定し、充足しているときには、省エネルギ確保のために直ちに該空調機による空調を停止し、かつ該「第1の時間」における該時間平均PMVを更新するために上記第1の制御に移行する第2の制御と、
該第2の制御で時々刻々得られる上記時間平均PMVが許容条件を充足するまで最大上記「第3の時間」まで判定を継続しつつ快適性を確保するために上記空調機による空調の稼働を継続し、その後、該空調機による空調を停止し、かつ上記「第1の時間」における上記時間平均PMVを更新するために上記第1の制御に移行する第3の制御と、
上記第1の制御で時々刻々得られる上記空間平均温度及び上記空間平均PMVのいずれかが許容条件を充足していないときは、上記空調機による空調の稼働を行って快適性を確保するフェイルセーフのために、上記「第1の時間」の経過を問わず直ちに上記第2の制御に移行する第4の制御とを行う機能を有することを特徴とする空調制御システム。
An air conditioner for air conditioning control of the air conditioning control target space;
A plurality of sensors that are provided at multiple points in the air-conditioning control target space and that measure and transmit temperature and humidity every moment,
A controller for controlling the operation and stop of the air conditioner using the temperature measurement value and the humidity measurement value input from each sensor,
The controller is
From the start time of air conditioning stop by the air conditioner to the “first time” until the “first time”, the “first” of the air conditioning control target space is determined from the temperature measurement value and the humidity measurement value input from each of the plurality of sensors. The space average temperature and the space average humidity at “time of the time” are calculated, and the space average PMV indicating the comfort in the “first time” of the air conditioning control target space is estimated from these space average temperature and space average humidity, The time average PMV, which is the time average value of the space average PMV, is performed from time to time, and the calculated space average temperature and the space average PMV are both acceptable conditions during the “first time”. A first control to stop air conditioning by the air conditioner until the “first time” has elapsed,
After the “first time” has elapsed, the operation of the air conditioning by the air conditioner is continued until the “second time” elapses, and after the “second time” elapses until the “third time”. From the temperature measurement value and the humidity measurement value input from each of the plurality of sensors, the space average temperature in the “third time” after the passage of the “second time” of the air conditioning control target space And the space average PMV indicating the comfort in the “third time” after the passage of the “second time” of the air conditioning control target space from the space average temperature and the space average humidity. Further, a procedure for calculating a time average PMV that is a time average value of the spatial average PMV is performed every moment, and it is determined whether or not the calculated time average PMV satisfies an allowable condition. Energy saving when you are A second control to shift to the first control to update said time average PMV in immediately stop the air conditioning by the air conditioner, and the "first time" for holding,
In order to ensure comfort while continuing the determination until the maximum “third time” until the time average PMV obtained from time to time in the second control satisfies the allowable condition, the air conditioner is operated by the air conditioner. A third control that continues and then stops air conditioning by the air conditioner and transitions to the first control to update the time average PMV in the “first time”;
When either the space average temperature or the space average PMV obtained from time to time in the first control does not satisfy the permissible conditions, the air conditioner is operated by the air conditioner to ensure comfort. Therefore, the air conditioning control system has a function of performing the fourth control immediately shifting to the second control regardless of the passage of the “first time”.
前記制御機は、前記各センサごとに、それらから時々刻々入力される複数の発信温度計測値及び発信湿度計測値の一定時間における平均値を、前記温度計測値及び前記湿度計測値とすることを特徴とする請求項1に記載の空調制御システム。   The controller sets, for each of the sensors, an average value of a plurality of transmission temperature measurement values and transmission humidity measurement values that are input from time to time for a certain period of time as the temperature measurement value and the humidity measurement value. The air conditioning control system according to claim 1, wherein 前記センサは、電源装置として光発電パネルを備え、前記温度計測値及び前記湿度計測値を無線で前記制御機へ送信することを特徴とする請求項1または2に記載の空調制御システム。   The air conditioning control system according to claim 1 or 2, wherein the sensor includes a photovoltaic panel as a power supply device, and wirelessly transmits the temperature measurement value and the humidity measurement value to the controller. 空調機による空調の停止開始時を基点として「第1の時間」までの間で、複数のセンサそれぞれから入力される温度計測値及び湿度計測値から、空調制御対象空間の該「第1の時間」における空間平均温度及び空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第1の時間」における快適性を示す空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、該「第1の時間」の間で、算出された該空間平均温度及び該空間平均PMVが共に許容条件を充足しているか否かを判定し、充足しているときには、該「第1の時間」が経過するまで該空調機による空調を停止する第1の制御ステップと、
上記「第1の時間」の経過後、上記空調機による空調の稼働を「第2の時間」が経過するまで継続し、該「第2の時間」経過後から「第3の時間」までの間で、複数の上記センサそれぞれから入力される上記温度計測値及び上記湿度計測値から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における上記空間平均温度及び上記空間平均湿度を算出し、これら空間平均温度及び空間平均湿度から、空調制御対象空間の該「第2の時間」経過後から該「第3の時間」における快適性を示す上記空間平均PMVを推定し、さらに、該空間平均PMVの時間平均値である時間平均PMVを算出する手順を時々刻々行い、算出された該時間平均PMVが許容条件を充足しているか否かを判定し、充足しているときには、省エネルギ確保のために直ちに該空調機による空調を停止し、かつ該「第1の時間」における該時間平均PMVを更新するために上記第1の制御ステップに移行する第2の制御ステップと、
該第2の制御ステップで時々刻々得られる上記時間平均PMVが許容条件を充足するまで最大上記「第3の時間」まで判定を継続しつつ快適性を確保するために上記空調機による空調の稼働を継続し、その後、該空調機による空調を停止し、かつ上記「第1の時間」における上記時間平均PMVを更新するために上記第1の制御ステップに移行する第3の制御ステップと、
上記第1の制御ステップで時々刻々得られる上記空間平均温度及び上記空間平均PMVのいずれかが許容条件を充足していないときは、上記空調機による空調の稼働を行って快適性を確保するフェイルセーフのために、上記「第1の時間」の経過を問わず直ちに上記第2の制御ステップに移行する第4の制御ステップとを備えることを特徴とする空調制御方法。
Based on the temperature measurement value and the humidity measurement value input from each of the plurality of sensors from the start of air conditioning stop by the air conditioner to the “first time”, the “first time” of the air conditioning control target space The space average temperature and the space average humidity in the “first time” of the air conditioning control target space are estimated from the space average temperature and the space average humidity, and the space average PMV indicating the comfort in the “first time” is estimated, The procedure for calculating the time average PMV, which is the time average value of the space average PMV, is performed from time to time, and the calculated space average temperature and the space average PMV both satisfy the allowable condition during the “first time”. A first control step of stopping air conditioning by the air conditioner until the “first time” has elapsed,
After the “first time” has elapsed, the operation of the air conditioning by the air conditioner is continued until the “second time” elapses, and after the “second time” elapses until the “third time”. From the temperature measurement value and the humidity measurement value input from each of the plurality of sensors, the space average temperature in the “third time” after the passage of the “second time” of the air conditioning control target space And the space average PMV indicating the comfort in the “third time” after the passage of the “second time” of the air conditioning control target space from the space average temperature and the space average humidity. Further, a procedure for calculating a time average PMV that is a time average value of the spatial average PMV is performed every moment, and it is determined whether or not the calculated time average PMV satisfies an allowable condition. Energy saving when you are A second control step stops the air conditioner by the air conditioner, and to shift to the first control step to update the said time average PMV in the "first time" immediately for holding,
Operation of air conditioning by the air conditioner in order to ensure comfort while continuing the determination until the maximum “third time” until the time average PMV obtained from time to time in the second control step satisfies the allowable condition And then the third control step to stop the air conditioning by the air conditioner and shift to the first control step to update the time average PMV in the “first time”,
When either the space average temperature or the space average PMV obtained every moment in the first control step does not satisfy the allowable condition, the air conditioner is operated by the air conditioner to ensure comfort. For safety, an air conditioning control method comprising: a fourth control step that immediately shifts to the second control step regardless of the passage of the “first time”.
JP2018031866A 2018-02-26 2018-02-26 Air conditioning control system and air conditioning control method Active JP7034764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018031866A JP7034764B2 (en) 2018-02-26 2018-02-26 Air conditioning control system and air conditioning control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031866A JP7034764B2 (en) 2018-02-26 2018-02-26 Air conditioning control system and air conditioning control method

Publications (2)

Publication Number Publication Date
JP2019148350A true JP2019148350A (en) 2019-09-05
JP7034764B2 JP7034764B2 (en) 2022-03-14

Family

ID=67849299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031866A Active JP7034764B2 (en) 2018-02-26 2018-02-26 Air conditioning control system and air conditioning control method

Country Status (1)

Country Link
JP (1) JP7034764B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748951A (en) * 2019-11-01 2020-02-04 北京硕人时代科技股份有限公司 Method, device and system for determining heat supply energy saving amount
JPWO2022044186A1 (en) * 2020-08-27 2022-03-03

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102852A (en) * 1979-01-30 1980-08-06 Sharp Corp Air conditioner
US4725001A (en) * 1986-10-17 1988-02-16 Arnold D. Berkeley Electronic thermostat employing adaptive cycling
JPH09217953A (en) * 1996-02-09 1997-08-19 Toshiba Corp Air conditioning control equipment
JP2005257270A (en) * 1996-02-29 2005-09-22 Building Research Institute Air conditioner and its control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55102852A (en) * 1979-01-30 1980-08-06 Sharp Corp Air conditioner
US4725001A (en) * 1986-10-17 1988-02-16 Arnold D. Berkeley Electronic thermostat employing adaptive cycling
JPH09217953A (en) * 1996-02-09 1997-08-19 Toshiba Corp Air conditioning control equipment
JP2005257270A (en) * 1996-02-29 2005-09-22 Building Research Institute Air conditioner and its control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110748951A (en) * 2019-11-01 2020-02-04 北京硕人时代科技股份有限公司 Method, device and system for determining heat supply energy saving amount
JPWO2022044186A1 (en) * 2020-08-27 2022-03-03
WO2022044186A1 (en) * 2020-08-27 2022-03-03 三菱電機株式会社 Air conditioner
JP7301133B2 (en) 2020-08-27 2023-06-30 三菱電機株式会社 air conditioner

Also Published As

Publication number Publication date
JP7034764B2 (en) 2022-03-14

Similar Documents

Publication Publication Date Title
CN105091218B (en) Air conditioner intelligent sleep control method
WO2020035912A1 (en) Air-conditioning device, control device, air-conditioning method, and program
CN109855253B (en) Control method for air conditioner
JP6053440B2 (en) Temperature adjustment system, temperature adjustment method, system controller, and program
CN108317692B (en) Temperature-sensing air conditioner control method based on dressing compensation and air conditioner
JP6939841B2 (en) Air conditioning system
JP6370049B2 (en) Air conditioner indoor unit
WO2020195338A1 (en) Air conditioning system controller
US20080277488A1 (en) Method for Controlling HVAC Systems
CN105605726B (en) A kind of air conditioner energy saving control method and device
JP2011158155A (en) Air-conditioning control apparatus
CN105202694A (en) Air conditioner control method
JP2014159908A (en) Air conditioning system
JP2020026945A (en) Air conditioning device
JP6845754B2 (en) Building air conditioning system
JP2019148350A (en) Air conditioning control system and air conditioning control method
US20140142773A1 (en) Methods for Energy Saving On Electrical Systems Using Habit Oriented Control
WO2020035913A1 (en) Air-conditioning device, control device, air-conditioning method, and program
WO2020035911A1 (en) Air-conditioning device, control device, air-conditioning method, and program
JP2015152192A (en) air conditioning system
JPWO2020035908A1 (en) Air conditioners, controls, air conditioners and programs
JP2017003205A (en) Energy-saving cooling method for air-conditioner and cooling control device
JP6725352B2 (en) Air conditioning system and building
JP2009030845A (en) Air-conditioning control system
JP7191110B2 (en) Air conditioner, control device, air conditioning method and program

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7034764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150