JP2019147776A - Fluorescence probe - Google Patents

Fluorescence probe Download PDF

Info

Publication number
JP2019147776A
JP2019147776A JP2018034775A JP2018034775A JP2019147776A JP 2019147776 A JP2019147776 A JP 2019147776A JP 2018034775 A JP2018034775 A JP 2018034775A JP 2018034775 A JP2018034775 A JP 2018034775A JP 2019147776 A JP2019147776 A JP 2019147776A
Authority
JP
Japan
Prior art keywords
group
formula
compound
represented
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018034775A
Other languages
Japanese (ja)
Inventor
秀子 永澤
Hideko Nagasawa
秀子 永澤
祐 平山
Yu Hirayama
祐 平山
正人 丹羽
Masato Niwa
正人 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gifu City
Original Assignee
Gifu City
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu City filed Critical Gifu City
Priority to JP2018034775A priority Critical patent/JP2019147776A/en
Publication of JP2019147776A publication Critical patent/JP2019147776A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

To provide a compound capable of detecting heme iron selectively and at high sensitivity and a fluorescence probe containing the compound.SOLUTION: There is provided a compound of the following formula or a salt thereof. Ris a carboxyl group, a carboxylic acid ester group, or a carboxylic acid amide group; Rand Rare same or different alkyl group or Rand Rbind each other to form a ring together with a nitrogen atom (N) of N-oxide; Ris a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group; and Yis O or S.SELECTED DRAWING: None

Description

本発明は、蛍光プローブ及びその製造方法に関する。   The present invention relates to a fluorescent probe and a method for producing the same.

鉄は人体中において最も多く含まれている遷移金属種であり、酸素運搬や呼吸器系における電子伝達などをはじめ、様々な生命現象に関与している。一方、体内における鉄の濃度異常はがん、アルツハイマー病、パーキンソン病などの重篤疾患に関与することが指摘されており、特に、生体内遊離鉄イオンの大半を占める鉄(II)イオンはその高い活性酸素種生成能のために、最近アスベスト発がんやC型肝炎においてもその関与が示唆されている。   Iron is the most abundant transition metal species in the human body and is involved in various life phenomena including oxygen transport and electron transfer in the respiratory system. On the other hand, it has been pointed out that abnormal iron concentration in the body is related to serious diseases such as cancer, Alzheimer's disease, Parkinson's disease, especially iron (II) ion, which accounts for the majority of free iron ions in vivo. Due to its high ability to generate reactive oxygen species, its involvement in asbestos carcinogenesis and hepatitis C has recently been suggested.

生細胞や生組織中において鉄(II)イオンを選択的に検知できかつ濃度変化を鋭敏に検知できる蛍光プローブとして、例えば、特許文献1及び2に報告例がある。   For example, Patent Documents 1 and 2 have reported examples of fluorescent probes capable of selectively detecting iron (II) ions in living cells and living tissues and sensitively detecting changes in concentration.

また、鉄(II)イオンとポルフィリンの錯体であるヘムは、ヘムタンパク質の補欠分子族として、酸化還元、電子伝達、そして酸素運搬として機能しており、近年、動物、植物、微生物等において多様な生理作用を調節する細胞内シグナルとしての機能することが明らかとなってきている。   Heme, which is a complex of iron (II) ion and porphyrin, functions as a prosthetic group of heme proteins, which functions as redox, electron transfer, and oxygen transport. It has become clear that it functions as an intracellular signal that regulates physiological effects.

しかしながら、細胞及び生体内においてヘム鉄がどのように輸送及び利用されるのか、またその生体内濃度はどのように調節されるのか等、生理的機能については不明な点が多く残されている。また、病原性細菌では宿主からのヘム鉄の獲得が感染及び病態発症の起点となる(非特許文献1及び2)ことから、感染過程におけるヘム鉄の機能及び挙動の解明は、こうした病原性細菌の感染予防の観点からも重要である。加えて、体内で起こる出血・溶血はヘモグロビンの分解とそれに伴うヘム鉄の放出を惹起し、これが酸化ストレスや炎症に関与する可能性も示唆されている(非特許文献3)。   However, many unclear points remain regarding the physiological functions, such as how heme iron is transported and used in cells and in vivo, and how the concentration in the organism is regulated. In addition, in pathogenic bacteria, the acquisition of heme iron from the host is the starting point of infection and pathogenesis (Non-patent Documents 1 and 2). It is also important from the viewpoint of preventing infection. In addition, hemorrhage / hemolysis that occurs in the body induces the degradation of hemoglobin and the accompanying release of heme iron, which may be involved in oxidative stress and inflammation (Non-patent Document 3).

以上のように、ヘム鉄の生理的及び病理的機能の重要性は強く示唆されており、ヘム鉄を生細胞や生組織中で選択的に測定できる方法が開発できれば、ヘムが関与する病態や生命現象の研究、医薬品開発等においてに非常に重要な手法となり得る。しかしながら、現状では生体内及び細胞内においてヘム鉄を選択的に検出できるような手法は限られており、融合タンパク質を使った方法(非特許文献4及び5)のみが報告されている。これら手法では選択的にヘム鉄を検出できるものの、分子量5万を超える融合タンパク質を遺伝子的手法にて細胞及び生体に導入し、発現させる必要があり、その使用条件は限られる。そのため、ヘム鉄を選択的かつ高感度で検出できる試薬(蛍光プローブ)及びそれを用いた検出方法が強く望まれている。   As described above, the importance of the physiological and pathological functions of heme iron has been strongly suggested, and if a method capable of selectively measuring heme iron in living cells and living tissues can be developed, It can be a very important method for research on life phenomena and drug development. However, at present, there are limited methods for selectively detecting heme iron in vivo and in cells, and only methods using fusion proteins (Non-Patent Documents 4 and 5) have been reported. Although these methods can selectively detect heme iron, it is necessary to introduce and express a fusion protein having a molecular weight of more than 50,000 in cells and living bodies by genetic methods, and the use conditions are limited. Therefore, a reagent (fluorescent probe) that can selectively detect heme iron with high sensitivity and a detection method using the same are strongly desired.

特開2013-193990号公報JP 2013-193990 A 国際公開第2015/108172号International Publication No.2015 / 108172

J. Mol. Biol. 2016, 428, 3408-3428J. Mol. Biol. 2016, 428, 3408-3428 Frontiers in Cell. Infect. Microbiol., 2013, 3, 1-11Frontiers in Cell. Infect. Microbiol., 2013, 3, 1-11 Nat. Immunology, 2016, 17, 1361-1372Nat. Immunology, 2016, 17, 1361-1372 ACS Chem. Biol., 2015, 10, 1610-1615ACS Chem. Biol., 2015, 10, 1610-1615 Proc. Nat. Acad. Sci. USA, 2016, 113, 7539-7544Proc. Nat. Acad. Sci. USA, 2016, 113, 7539-7544

本発明は、ヘム鉄を選択的かつ高感度で検出することができる化合物及びその製造方法、その化合物を含むヘム鉄選択的な蛍光プローブ、並びにその蛍光プローブを用いたヘム鉄の検出方法を提供することを課題とする。   The present invention provides a compound capable of selectively and highly sensitively detecting heme iron, a method for producing the compound, a heme iron-selective fluorescent probe containing the compound, and a method for detecting heme iron using the fluorescent probe. The task is to do.

本発明者らは、上記課題を達成すべく鋭意研究を重ねた結果、式(I)で表される化合物又はその塩(以下、本発明化合物とも表記する)が、ヘム鉄を選択的かつ高感度で検出又は測定できることを見出した。かかる知見に基づきさらに研究を重ねた結果、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that the compound represented by the formula (I) or a salt thereof (hereinafter also referred to as the present compound) selectively and highly increases heme iron. It was found that it can be detected or measured with sensitivity. As a result of further research based on this knowledge, the present invention has been completed.

本発明は、下記の化合物及び蛍光プローブ(特に、ヘム鉄選択的蛍光プローブ)を提供する。   The present invention provides the following compounds and fluorescent probes (particularly heme iron selective fluorescent probes).

[1]式(I): [1] Formula (I):

(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.

及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。 R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.

は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。 R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.

は、−O−又は−S−である。)
で表される化合物又はその塩。
Y 1 is —O— or —S—. )
Or a salt thereof.

[2]式(I)において、
が、式:−COORで表される基、又は式:−CONR で表される基であり、
が、置換基として式:−COORで表される基、及び式:−CONR で表される基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基であり、
当該Rが、
(A1)水素原子、又は
(A2)アルキル基であり、当該アルキル基は、下記(A2-1)〜(A2-3)からなる群より選ばれる少なくとも1種の基を有していてもよく、
(A2-1)アルキルカルボニルオキシ基、
(A2-2)ホスホニウム残基、
(A2-3)アルキルオキシ基、
当該Rが、同一又は異なって、
(B1)水素原子、又は
(B2)アルキル基であり、当該アルキル基は、下記(B2-1)〜(B2-5)からなる群より選ばれる少なくとも1種の基を有していてもよく、
(B2-1)カルボキシル基、
(B2-2)アルキルオキシカルボニル基、
(B2-3)(アルキルカルボニルオキシ)アルキルオキシカルボニル基、
(B2-4)ホスホニウム残基、
(B2-5)(アルキルオキシ)アルキルオキシカルボニル基、
及びRが共に式:−COORで表される基を有する場合、Rは同一又は異なっていてもよく、
及びRが共に式:−CONR で表される基を有する場合、Rは同一又は異なっていてもよい、
前記[1]に記載の化合物又はその塩。
[2] In the formula (I),
R 1 is a group represented by the formula: —COOR A , or a group represented by the formula: —CONR B 2 ;
R 4 is an alkyl group which may have at least one selected from the group consisting of a group represented by the formula: —COOR A and a group represented by the formula: —CONR B 2 as a substituent. ,
The RA is
(A1) a hydrogen atom, or
(A2) is an alkyl group, and the alkyl group may have at least one group selected from the group consisting of the following (A2-1) to (A2-3);
(A2-1) alkylcarbonyloxy group,
(A2-2) phosphonium residue,
(A2-3) an alkyloxy group,
The R B are the same or different,
(B1) a hydrogen atom, or
(B2) is an alkyl group, and the alkyl group may have at least one group selected from the group consisting of the following (B2-1) to (B2-5);
(B2-1) carboxyl group,
(B2-2) an alkyloxycarbonyl group,
(B2-3) (alkylcarbonyloxy) alkyloxycarbonyl group,
(B2-4) a phosphonium residue,
(B2-5) (alkyloxy) alkyloxycarbonyl group,
When R 1 and R 4 both have a group represented by the formula: —COOR A , R A may be the same or different;
When R 1 and R 4 both have a group represented by the formula: —CONR B 2 , R B may be the same or different;
The compound or a salt thereof according to the above [1].

[3]式(I)において、 [3] In the formula (I),

(式中、R及びRは前記に同じ。)
で表される基が、式(A):
(Wherein R 2 and R 3 are the same as above)
The group represented by formula (A):

(式中、Zは、結合手、−O−、−CH−、又は−NR−であり。Rは、水素原子、アルキル基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、又はアルキルオキシカルボニル基である。)
で表される基である、
前記[1]又は[2]に記載の化合物又はその塩。
(In the formula, Z represents a bond, —O—, —CH 2 —, or —NR Z —. R Z represents a hydrogen atom, an alkyl group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, Or an alkyloxycarbonyl group.)
Is a group represented by
The compound or salt thereof according to [1] or [2].

[4]式(I)において、Yが−S−である、前記[1]〜[3]のいずれかに記載の化合物又はその塩。 [4] The compound or salt thereof according to any one of [1] to [3], wherein Y 1 is —S— in formula (I).

[5]前記[1]〜[4]のいずれかに記載の化合物又はその塩を含む蛍光プローブ。 [5] A fluorescent probe comprising the compound or salt thereof according to any one of [1] to [4].

[6]前記[5]に記載の蛍光プローブを用いてヘム鉄を検出する方法。 [6] A method for detecting heme iron using the fluorescent probe according to [5].

[7](1)ヘム鉄を含む検体と、前記[5]に記載の蛍光プローブとを混合する工程、及び(2)得られた混合物の蛍光スペクトルを測定する工程を含む、前記[6]に記載の方法。 [7] The above [6], comprising the step of (1) mixing a specimen containing heme iron and the fluorescent probe according to the above [5], and (2) measuring the fluorescence spectrum of the obtained mixture. The method described in 1.

[8]式(I): [8] Formula (I):

(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.

及びRは、同一又は異なって、アルキル基である、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。 R 2 and R 3 are the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.

は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。 R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.

は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(9):
Y 1 is —O— or —S—. )
Wherein the compound represented by formula (9):

(式中、記号は前記に同じ。)
で表される化合物を酸化反応に付し、必要に応じて塩を形成することを特徴とする、製造方法。
(In the formula, the symbols are the same as above.)
A production method comprising subjecting a compound represented by the formula to an oxidation reaction to form a salt as necessary.

[9]式(I−B): [9] Formula (IB):

(式中、
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
(Where
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.

alkはアルキレン基を示し、
は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(I−A):
alk represents an alkylene group,
Y 1 is —O— or —S—. )
A method for producing a compound represented by formula (I-A):

(式中、R及びRは同一又は異なってアルキル基を示し、R、R、及びYは前記に同じ。)
で表される化合物を加水分解し、必要に応じて塩を形成することを特徴とする、製造方法。
(In the formula, R 5 and R 6 are the same or different and each represents an alkyl group, and R 2 , R 3 and Y 1 are the same as above.)
The method represented by the formula is hydrolyzed to form a salt if necessary.

[10]式(I−F): [10] Formula (IF):

(式中、
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
(Where
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.

41はアルキル基を示し、
は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(I−E):
R 41 represents an alkyl group,
Y 1 is —O— or —S—. )
Wherein the compound represented by formula (IE):

(式中、Rは同一又は異なってアルキル基を示し、R、R、及びYは前記に同じ。)
で表される化合物を加水分解し、必要に応じて塩を形成することを特徴とする、製造方法。
(In the formula, R 6 is the same or different and represents an alkyl group, and R 2 , R 3 , and Y 1 are the same as above.)
The method represented by the formula is hydrolyzed to form a salt if necessary.

[11]式(9): [11] Formula (9):

(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.

及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。 R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.

は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。 R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.

は、−O−又は−S−である。)
で表される化合物又はその塩。
Y 1 is —O— or —S—. )
Or a salt thereof.

本発明の化合物は、ヘム鉄を選択的かつ高感度で検出することができるため、ヘム鉄選択的な蛍光プローブとして用いることができる。本発明の蛍光プローブは、条件を調整することにより、ヘム鉄を定量的に測定することもできる。   Since the compound of the present invention can selectively detect heme iron with high sensitivity, it can be used as a heme iron-selective fluorescent probe. The fluorescent probe of the present invention can also quantitatively measure heme iron by adjusting the conditions.

ヘム鉄蛍光プローブ Fura-Nox類縁体(a-f)および二価鉄イオン蛍光プローブ(g-i)のヘミン(2 μM、黒太実線)あるいは二価鉄イオン(10 μM、黒実線)に対する蛍光応答の評価結果を示す。黒点線:反応前。灰色実線:1 mMグルタチオンのみ。ヘミン、二価鉄イオンとの反応時は1 mMグルタチオン存在下で反応。励起波長:365 nm (a-f)、540 nm (g,h)、630 nm (i)。Heme iron fluorescent probe Fura-Nox analog (af) and divalent iron ion fluorescent probe (gi) evaluation results of fluorescence response to hemin (2 μM, solid black line) or divalent iron ion (10 μM, solid black line) Indicates. Black dotted line: Before reaction. Gray solid line: 1 mM glutathione only. Reaction with hemin and divalent iron ions in the presence of 1 mM glutathione. Excitation wavelengths: 365 nm (a-f), 540 nm (g, h), 630 nm (i). (a) 各プローブのヘミン又は二価鉄イオンに対する蛍光応答性を比較した結果を示す。Fura-Nox-1からFura-Nox-6についてはそれぞれI(580)/I(430)、I(580)/I(430)、I(550)/I(425)、I(580)/I(430)、I(570)/I(430)、I(570)/I(430)の値を、プローブのみの場合を1として相対値をプロットした。ただし、I(x)はx nmにおける蛍光強度を示す。白色:プローブのみ、灰色:二価鉄イオン(10 μM)、黒色:ヘミン(2 μM)。実験条件は図1の実験と同様。(b) (a)におけるFura-Nox-1からFura-Nox-5の部分を拡大したもの。(a) The result of comparing the fluorescence responsiveness of each probe to hemin or divalent iron ions is shown. For Fura-Nox-1 to Fura-Nox-6, I (580) / I (430), I (580) / I (430), I (550) / I (425), I (580) / I Relative values were plotted with the values of (430), I (570) / I (430), and I (570) / I (430) as 1 for the probe alone. However, I (x) indicates the fluorescence intensity at x nm. White: probe only, gray: divalent iron ion (10 μM), black: hemin (2 μM). The experimental conditions are the same as in the experiment of FIG. (b) An enlargement of Fura-Nox-5 to Fura-Nox-5 in (a). 各種金属イオン種に対するFura-Noxシリーズの蛍光応答性を比較した結果を示す。金属イオン濃度:Na, K, Mg, Ca = 1 mM, 他の金属種 = 20 μM。The result of comparing the fluorescence response of Fura-Nox series to various metal ion species is shown. Metal ion concentration: Na, K, Mg, Ca = 1 mM, other metal species = 20 μM.

以下本発明について詳細に説明する。
1.置換基の定義
本明細書における各置換基の定義は、特に断りのない限り、以下の通りである。
The present invention will be described in detail below.
1. Definition of Substituents The definition of each substituent in the present specification is as follows unless otherwise specified.

「カルボン酸エステル基」とは、「C(=O)−O−C」で示される化学構造を有する基を意味する。   The “carboxylic acid ester group” means a group having a chemical structure represented by “C (═O) —O—C”.

「カルボン酸アミド基」とは、「C(=O)−N」で示される化学構造を有する基を意味する。   “Carboxamide group” means a group having a chemical structure represented by “C (═O) —N”.

「アルキル基」としては、鎖状又は分岐状のC1〜6のアルキル基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキル基であり、より好ましくは鎖状又は分岐状のC1〜3のアルキル基である。具体例として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。このうちメチル基及びエチル基がより好ましい。   Examples of the “alkyl group” include a linear or branched C1-6 alkyl group, preferably a linear or branched C1-4 alkyl group, more preferably a linear or branched C1. ˜3 alkyl groups. Specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an n-pentyl group, and an n-hexyl group. Of these, a methyl group and an ethyl group are more preferable.

「アルキルオキシ基」としては、鎖状又は分岐状のC1〜6のアルキルオキシ基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキルオキシ基であり、より好ましくは鎖状又は分岐状のC1〜3のアルキル基である。具体例として、メチルオキシ基、エチルオキシ基、n−プロピルオキシ基、イソプロピルオキシ基、n−ブチルオキシ基、n−ペンチルオキシ基、n−ヘキシルオキシ基等が挙げられる。このうちメチルオキシ基及びエチルオキシ基がより好ましい。   Examples of the “alkyloxy group” include a linear or branched C1-6 alkyloxy group, preferably a linear or branched C1-4 alkyloxy group, and more preferably a linear or branched chain. It is a C1-C3 alkyl group. Specific examples include a methyloxy group, an ethyloxy group, an n-propyloxy group, an isopropyloxy group, an n-butyloxy group, an n-pentyloxy group, and an n-hexyloxy group. Of these, a methyloxy group and an ethyloxy group are more preferable.

「アルキルカルボニル基」としては、上記「アルキル基」がカルボニル基に結合した基であり、(アルキル)−C(=O)−と表すことができる。例えば、鎖状又は分岐状のC1〜6のアルキルカルボニル基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキルカルボニル基である。具体例として、アセチル基(Ac)、プロピオニル基等が挙げられる。   The “alkylcarbonyl group” is a group in which the above “alkyl group” is bonded to a carbonyl group, and can be represented as (alkyl) -C (═O) —. For example, a linear or branched C1-6 alkylcarbonyl group can be mentioned, and a linear or branched C1-4 alkylcarbonyl group is preferable. Specific examples include an acetyl group (Ac) and a propionyl group.

「アルキルカルボニルオキシ基」としては、上記「アルキル基」がカルボニルオキシ基のカルボニル基に結合した基であり、(アルキル)−C(=O)−O−と表すことができる。例えば、鎖状又は分岐状のC1〜6のアルキルカルボニルオキシ基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキルカルボニルオキシ基である。具体例として、アセチルオキシ基(AcO−)、プロピオニルオキシ基等が挙げられる。   The “alkylcarbonyloxy group” is a group in which the above “alkyl group” is bonded to the carbonyl group of the carbonyloxy group, and can be represented as (alkyl) -C (═O) —O—. For example, a linear or branched C1-6 alkylcarbonyloxy group can be mentioned, and a linear or branched C1-4 alkylcarbonyloxy group is preferable. Specific examples include an acetyloxy group (AcO-) and a propionyloxy group.

「アルキルオキシカルボニル基」としては、上記「アルキル基」がオキシカルボニル基に結合した基であり、(アルキル)−O−C(=O)−と表すことができる。例えば、鎖状又は分岐状のC1〜6のアルキルオキシカルボニル基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキルオキシカルボニル基である。具体例として、メトキシカルボニル基、エトキシカルボニル基、tert−ブトキシカルボニル基(Boc)等が挙げられる。   The “alkyloxycarbonyl group” is a group in which the above “alkyl group” is bonded to an oxycarbonyl group, and can be represented as (alkyl) -O—C (═O) —. For example, a linear or branched C1-6 alkyloxycarbonyl group is exemplified, and a linear or branched C1-4 alkyloxycarbonyl group is preferred. Specific examples include methoxycarbonyl group, ethoxycarbonyl group, tert-butoxycarbonyl group (Boc) and the like.

「(アルキルカルボニルオキシ)アルキルオキシカルボニル基」としては、上記「アルキルカルボニルオキシ基」が上記「アルキルオキシカルボニル基」のアルキル基に結合した基であり、例えば、(アルキル)−C(=O)−O−(アルキレン)−O−C(=O)−と表すことができる。ここで、「アルキレン基」とは、上記「アルキル基」から1つの水素原子を除いて得られる2価の基を意味する。この「アルキレン基」としては、鎖状又は分岐状のC1〜6のアルキレン基が挙げられ、好ましくはC1〜4のアルキレン基であり、より好ましくはメチレン基(−CH−)、ジメチレン基(−CHCH−)である。「(アルキルカルボニルオキシ)アルキルオキシカルボニル基」として好ましくは、(C1〜4アルキル)−C(=O)−O−(C1〜4アルキレン)−O−C(=O)−であり、より好ましくは(C1〜4アルキル)−C(=O)−O−CH−O−C(=O)−である。 The “(alkylcarbonyloxy) alkyloxycarbonyl group” is a group in which the “alkylcarbonyloxy group” is bonded to the alkyl group of the “alkyloxycarbonyl group”. For example, (alkyl) -C (═O) It can be represented as —O— (alkylene) —O—C (═O) —. Here, the “alkylene group” means a divalent group obtained by removing one hydrogen atom from the above “alkyl group”. Examples of the “alkylene group” include a linear or branched C1-6 alkylene group, preferably a C1-4 alkylene group, more preferably a methylene group (—CH 2 —), a dimethylene group ( -CH 2 CH 2 -) a. The “(alkylcarbonyloxy) alkyloxycarbonyl group” is preferably (C1-4 alkyl) -C (═O) —O— (C1-4 alkylene) —O—C (═O) —, more preferably. it is (C1 -4 alkyl) -C (= O) -O- CH 2 -O-C (= O) - is.

「(アルキルオキシ)アルキルオキシカルボニル基」としては、上記「アルキルオキシ基」が上記「アルキルオキシカルボニル基」のアルキル基に結合した基であり、例えば、(アルキル)−O−(アルキレン)−O−C(=O)−と表すことができる。ここで、「アルキレン基」は前記に同じである。「(アルキルオキシ)アルキルオキシカルボニル基」として好ましくは、(C1〜4アルキル)−O−(C1〜4アルキレン)−O−C(=O)−である。   The “(alkyloxy) alkyloxycarbonyl group” is a group in which the “alkyloxy group” is bonded to the alkyl group of the “alkyloxycarbonyl group”. For example, (alkyl) -O- (alkylene) -O It can be expressed as -C (= O)-. Here, the “alkylene group” is the same as described above. The “(alkyloxy) alkyloxycarbonyl group” is preferably (C1-4 alkyl) -O— (C1-4 alkylene) —O—C (═O) —.

「アリール基」としては、単環又は2以上の環が縮環したアリール基が挙げられ、例えば、フェニル基、トルイル基、キシリル基、ナフチル基等が挙げられる。   Examples of the “aryl group” include an aryl group in which a single ring or two or more rings are condensed, and examples thereof include a phenyl group, a toluyl group, a xylyl group, and a naphthyl group.

「アリールカルボニル基」としては、上記「アリール基」がカルボニル基に結合した基であり、例えば、(アリール)−C(=O)−と表すことができる。好ましくは、ベンゾイル基等が挙げられる。   The “arylcarbonyl group” is a group in which the above “aryl group” is bonded to a carbonyl group, and can be represented by, for example, (aryl) -C (═O) —. Preferably, a benzoyl group etc. are mentioned.

「ヘテロアリール」としては、環にO、N及びSからなる群から選ばれる少なくとも1種のヘテロ原子を含むヘテロアリール基であり、単環(5又は6員環)又は2以上の環が縮環したヘテロアリール基が挙げられる。具体例として、ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ピリミジニル基、イソキノリニル基、キノリニル基等が挙げられる。好ましくは、(2−,3−又は4−)ピリジル基等である。   “Heteroaryl” is a heteroaryl group containing at least one heteroatom selected from the group consisting of O, N and S in the ring, and a single ring (5- or 6-membered ring) or two or more rings are condensed. A ringed heteroaryl group may be mentioned. Specific examples include pyridyl group, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, pyrimidinyl group, isoquinolinyl group, quinolinyl group and the like. Preferably, it is a (2-, 3- or 4-) pyridyl group.

「ヘテロアリールカルボニル基」としては、上記「ヘテロアリール基」がカルボニル基に結合した基であり、例えば、(ヘテロアリール)−C(=O)−と表すことができる。好ましくは、(2−,3−又は4−ピリジル)−C(=O)−が挙げられる。   The “heteroarylcarbonyl group” is a group in which the above “heteroaryl group” is bonded to a carbonyl group, and can be represented by, for example, (heteroaryl) -C (═O) —. Preferably, (2-, 3- or 4-pyridyl) -C (= O)-is mentioned.

「ホスホニウム残基」としては、例えば、式:−(PR ・(X(式中、Rは同一又は異なって、アルキル基又はアリール基であり、Xはアニオンである。)で示される基が挙げられる。 Examples of the “phosphonium residue” include the formula: — (PR 7 3 ) +. (X 5 ) (wherein R 7 is the same or different and is an alkyl group or an aryl group, and X 5 is an anion. Group).

で示される「アルキル基」としては、上記「アルキル基」から選択すること芽できる。例えば、鎖状又は分岐状のC1〜6のアルキル基が挙げられ、好ましくは鎖状又は分岐状のC1〜4のアルキル基である。具体的例として、メチル基、エチル基、n−プロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基等が挙げられる。 The “alkyl group” represented by R 7 can be selected from the above “alkyl groups”. Examples thereof include a chain or branched C1-6 alkyl group, and a chain or branched C1-4 alkyl group is preferable. Specific examples include methyl group, ethyl group, n-propyl group, n-butyl group, sec-butyl group, isobutyl group, tert-butyl group and the like.

で示される「アリール基」としては、上記「アリール基」から選択すること芽できる。例えば、フェニル基、トルイル基、キシリル基等が挙げられ、好ましくはフェニル基である。 The “aryl group” represented by R 7 can be selected from the above “aryl groups”. For example, a phenyl group, a toluyl group, a xylyl group, etc. are mentioned, Preferably it is a phenyl group.

で示されるアニオンとは、電子を受け取って負の電荷を帯びた原子又は原子団を意味する。具体例として、ハロゲン化物イオン(フッ素、塩素、臭素、ヨウ素のイオン)、6フッ化リン(PF )、リン酸二水素イオン(HPO )、酢酸イオン(AcO)、炭酸水素イオン(HCO )等が挙げられる。 The anion represented by X 5 means an atom or an atomic group that receives electrons and is negatively charged. Specific examples include halide ions (fluorine, chlorine, bromine and iodine ions), phosphorus hexafluoride (PF 6 ), dihydrogen phosphate ion (H 2 PO 4 ), acetate ion (AcO ), carbonic acid. Examples thereof include hydrogen ions (HCO 3 ).

2.本発明化合物
本発明化合物は、式(I)で表される化合物及びその塩であり、分子内にN−オキシドを有することを特徴とする。
2. Compound of the present invention The compound of the present invention is a compound represented by the formula (I) and a salt thereof, and has an N-oxide in the molecule.

(式中、R、R、R、R及びYは前記に同じ。)
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種(好ましくは1種)を有する基である。特にRとしては、式:−COORで表される基、又は式:−CONR で表される基が挙げられる。
(In the formula, R 1 , R 2 , R 3 , R 4 and Y 1 are the same as above.)
R 1 is a group having at least one (preferably one) selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group. In particular, R 1 includes a group represented by the formula: —COOR A or a group represented by the formula: —CONR B 2 .

は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種(好ましくは1種)を有していてもよいアルキル基である。特にRとしては、置換基として式:−COORで表される基、及び式:−CONR で表される基からなる群より選ばれる少なくとも1種(好ましくは1種)を有していてもよいアルキル基が挙げられる。 R 4 is an alkyl group which may have at least one (preferably one) selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent. In particular, R 4 has at least one (preferably one) selected from the group consisting of a group represented by the formula: —COOR A and a group represented by the formula: —CONR B 2 as a substituent. And an alkyl group which may be present.

及びRにおける式:−COORで表される基のRは、同一又は異なって、
(A1)水素原子、又は
(A2)アルキル基であり、当該アルキル基は、下記(A2-1)〜(A2-3)からなる群より選ばれる少なくとも1種(好ましくは1種)の基を有していてもよい、
(A2-1)アルキルカルボニルオキシ基、
(A2-2)ホスホニウム残基、
(A2-3)アルキルオキシ基。
Wherein in R 1 and R 4: the R A group represented by -COOR A, same or different,
(A1) a hydrogen atom, or
(A2) is an alkyl group, and the alkyl group may have at least one (preferably one) group selected from the group consisting of the following (A2-1) to (A2-3).
(A2-1) alkylcarbonyloxy group,
(A2-2) phosphonium residue,
(A2-3) Alkyloxy group.

及びRにおける式:−CONR で表される基のRは、同一又は異なって、
(B1)水素原子、又は
(B2)アルキル基であり、当該アルキル基は、下記(B2-1)〜(B2-5)からなる群より選ばれる少なくとも1種(好ましくは1種)の基を有していてもよい、
(B2-1)カルボキシル基、
(B2-2)アルキルオキシカルボニル基、
(B2-3)(アルキルカルボニルオキシ)アルキルオキシカルボニル基、
(B2-4)ホスホニウム残基、
(B2-5)(アルキルオキシ)アルキルオキシカルボニル基。
Wherein in R 1 and R 4: R B of the group represented by -CONR B 2 are the same or different,
(B1) a hydrogen atom, or
(B2) is an alkyl group, and the alkyl group may have at least one (preferably one) group selected from the group consisting of the following (B2-1) to (B2-5).
(B2-1) carboxyl group,
(B2-2) an alkyloxycarbonyl group,
(B2-3) (alkylcarbonyloxy) alkyloxycarbonyl group,
(B2-4) a phosphonium residue,
(B2-5) (Alkyloxy) alkyloxycarbonyl group.

及びRにおいて、式:−COORで表される基の具体例としては、
−COOH、
−COO(C1〜4アルキル)(特に、−COOCH、−COOC、−COOtBu等)、
−COOCH−OC(=O)−(C1〜4アルキル)(特に、−COOCH−OAc等)、
−CHCH−(PPh・(X(Xは前記に同じ。)、
等が挙げられる。
Specific examples of the group represented by the formula: —COOR A in R 1 and R 4 include
-COOH,
-COO (C1 -4 alkyl) (in particular, -COOCH 3, -COOC 2 H 5 , -COOtBu , etc.),
-COOCH 2 -OC (= O) - (C1~4 alkyl) (in particular, -COOCH 2 -OAc, etc.),
-CH 2 CH 2 - (PPh 3 ) + · (X 5) -, (X 5 is as defined above.)
Etc.

及びRにおいて、式:−CONR で表される基の具体例としては、
−CON(CH−COOH)
−CON(CH−COO(C1〜4アルキル))
−CON(CH−COO−CH−OC(=O)−(C1〜4アルキル))
−CONH(CHCH−(PPh・(X)(Xは前記に同じ。)、
等が挙げられる。
As specific examples of the group represented by the formula: —CONR B 2 in R 1 and R 4 ,
-CON (CH 2 -COOH) 2,
-CON (CH 2 -COO (C1~4 alkyl)) 2,
-CON (CH 2 -COO-CH 2 -OC (= O) - (C1~4 alkyl)) 2,
-CONH (CH 2 CH 2 - ( PPh 3) + · (X 5) -), (X 5 is as defined above.)
Etc.

として好ましくは、
−COOH、
−COOC(C1〜4アルキル)(特に、−COOCH、−COOC、−COOtBu等)、
−COOCH−OC(=O)−(C1〜4アルキル)、
−CONH(CHCH−(PPh・(X)(Xは前記に同じ。)、
である。
R 1 is preferably
-COOH,
-COOC (C1 -4 alkyl) (in particular, -COOCH 3, -COOC 2 H 5 , -COOtBu , etc.),
-COOCH 2 -OC (= O) - (C1~4 alkyl),
-CONH (CH 2 CH 2 - ( PPh 3) + · (X 5) -), (X 5 is as defined above.)
It is.

として好ましくは、
C1〜3アルキル基(特に、メチル基)、
−CH−CON(CH−COOH)
−CH−CON(CH−COO(C1〜4アルキル))
−CH−CON(CH−COO−CH−OC(=O)−(C1〜4アルキル))
である。
R 4 is preferably
A C1-3 alkyl group (particularly a methyl group),
-CH 2 -CON (CH 2 -COOH) 2,
-CH 2 -CON (CH 2 -COO ( C1~4 alkyl)) 2,
-CH 2 -CON (CH 2 -COO- CH 2 -OC (= O) - (C1~4 alkyl)) 2,
It is.

及びRが共に式:−COORで表される基を有する場合、R(2つのR)は同一又は異なっていてもよい。 When R 1 and R 4 both have a group represented by the formula: —COOR A , R A (two R A ) may be the same or different.

及びRが共に式:−CONR で表される基を有する場合、R(4つのR)は同一又は異なっていてもよい。 When R 1 and R 4 both have a group represented by the formula: —CONR B 2 , R B (four R B ) may be the same or different.

及びRは同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。当該置換基として、例えば、アルキル基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、又はアルキルオキシカルボニル基等が挙げられる。好ましくは、後者のR及びRが互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成している場合である。 R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent. Examples of the substituent include an alkyl group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, and an alkyloxycarbonyl group. Preferably, the latter R 2 and R 3 are bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide.

及びRの好ましい一態様として、 As a preferred embodiment of R 2 and R 3 ,

(式中、R及びRは前記に同じ。)
で表される基が、式(A):
(Wherein R 2 and R 3 are the same as above)
The group represented by formula (A):

(式中、Zは、結合手、−O−、−CH−、又は−NR−であり。Rは、水素原子、アルキル基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、又はアルキルオキシカルボニル基である。)
で表される基であるものが挙げられる。
(In the formula, Z represents a bond, —O—, —CH 2 —, or —NR Z —. R Z represents a hydrogen atom, an alkyl group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, Or an alkyloxycarbonyl group.)
What is group represented by these is mentioned.

Zとして好ましくは、−O−、−CH−、又は−NR−(Rは前記に同じ。)である。 Z is preferably —O—, —CH 2 —, or —NR Z — (R Z is the same as above).

は、−O−又は−S−であり、好ましくは−S−である。 Y 1 is —O— or —S—, preferably —S—.

本発明化合物は、式(I)で表される化合物の塩の形態も包含する。当該塩としては、本発明の効果を発揮できる限り特に限定されない。水溶性の塩であることが好ましい。例えば、分子内にカルボキシル基等の酸性の基を有する場合には、例えば、アルカリ金属塩(ナトリウム、カリウム等の塩)、アルカリ土類金属塩(カルシウム、マグネシウム等の塩)、アンモニウム塩(テトラアルキルアンモニウム塩等)、有機アミン(トリアルキルアミン等)との塩、塩基性アミノ酸(アルギニン、リジン等)との塩等が挙げられる。また、分子内にアミノ基、ピリジル基等の塩基性の基を有する場合には、例えば、無機酸(塩酸、臭化水素酸、硫酸、リン酸等)との塩、有機酸(酢酸、乳酸、酒石酸、シュウ酸等)との塩、酸性アミノ酸(アスパラギン酸等)との塩等が挙げられる。   The compound of the present invention includes a salt form of the compound represented by the formula (I). The salt is not particularly limited as long as the effect of the present invention can be exhibited. A water-soluble salt is preferable. For example, when the molecule has an acidic group such as a carboxyl group, for example, an alkali metal salt (a salt such as sodium or potassium), an alkaline earth metal salt (a salt such as calcium or magnesium), an ammonium salt (tetra Alkyl ammonium salts, etc.), salts with organic amines (trialkylamine, etc.), salts with basic amino acids (arginine, lysine, etc.), and the like. In addition, when the molecule has a basic group such as an amino group or pyridyl group, for example, a salt with an inorganic acid (hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, etc.), an organic acid (acetic acid, lactic acid, etc.) , Salts with tartaric acid, oxalic acid, etc.) and salts with acidic amino acids (aspartic acid, etc.).

本発明化合物の好ましい態様として、後述する反応式2及び3で示した、式(I−A)〜式(I−H)で表される化合物又はその塩が挙げられる。   As a preferable embodiment of the compound of the present invention, compounds represented by the formulas (IA) to (IH) or salts thereof shown in the reaction formulas 2 and 3 described later can be mentioned.

本発明化合物の他の好ましい一態様として、式(I−1):   As another preferred embodiment of the compound of the present invention, the compound represented by formula (I-1):

(式中、R、R、Y及びZは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(Wherein R 1 , R 4 , Y 1 and Z are the same as above)
Or a salt thereof.

本発明化合物の他の好ましい一態様として、式(I−2):   As another preferred embodiment of the compound of the present invention, the compound represented by formula (I-2):

(式中、R、R及びZは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(Wherein R 1 , R 4 and Z are the same as above)
Or a salt thereof.

本発明化合物の他の好ましい一態様として、式(I−3):   As another preferred embodiment of the compound of the present invention, the compound represented by formula (I-3):

(式中、R41はアルキル基を示し、R及びZは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, R 41 represents an alkyl group, and R 1 and Z are the same as above.)
Or a salt thereof.

本発明化合物の他の好ましい一態様として、式(I−4):   As another preferred embodiment of the compound of the present invention, the compound represented by formula (I-4):

(式中、alkはアルキレン基を示し、R42は式:−COORで表される基、又は式:−CONR で表される基を示し、R、R、R及びZは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, alk represents an alkylene group, R 42 represents a group represented by the formula: —COOR A , or a group represented by the formula: —CONR B 2 , and R A , R B , R 1 and Z Is the same as above.)
Or a salt thereof.

3.本発明化合物の製造方法
本発明化合物は、例えば次のようにして製造することができる。典型的な製造方法を反応式1に示す。
3. Production method of the compound of the present invention The compound of the present invention can be produced , for example, as follows. A typical production method is shown in Reaction Scheme 1.

(式中、Bnはベンジル基を示し、X、X及びXは同一又は異なって脱離基を示し、R、R、R、R及びYは前記に同じ。)
、X及びXで示される脱離基としては、例えば、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。
(In the formula, Bn represents a benzyl group, X 1 , X 2 and X 3 are the same or different and represent a leaving group, and R 1 , R 2 , R 3 , R 4 and Y 1 are the same as above).
Examples of the leaving group represented by X 1 , X 2 and X 3 include a halogen atom (a chlorine atom, a bromine atom, an iodine atom, etc.) and the like.

式(1)で表される化合物は、公知の化合物であるか、又は公知の方法から容易に合成できる化合物であり、例えば、Tetrahedron Lett., 2012, 53, 2432.に記載の方法に従い又は準じて製造することができる。
(1)+(2)→(3):
式(1)で表される化合物及び式(2)で表される化合物を、溶媒(例えば、DMF等)中、塩基(例えば、KCO等)の存在下に反応させることにより、式(3)で表される化合物を製造することができる。
(3)+(4)→(5):
式(3)で表される化合物及び式(4)で表される化合物を、溶媒(例えば、THF、ジオキサン等)中、パラジウム触媒(例えば、Pd(PPh、Pddba、Pd(OAc)等)、配位子(例えば、2-ジシクロヘキシルホスフィノ-2',6'-ジイソプロポキシビフェニル(Ruphos)、2,2’-ビス(ジフェニルホスフィノ)-1-1’-ビナフチル(BINAP)、4,5-ビス(ジフェニルホスフィノ)-9,9-ジメチルキサンテン(Xantphos)等)及び塩基(例えば、炭酸セシウム等)の存在下に反応(カップリング反応)させることにより、式(5)で表される化合物を製造することができる。
(5)→(6):
式(5)で表される化合物に、オキシ塩化リン(POCl)の存在下、DMFを反応させることにより、式(6)で表される化合物を製造することができる。
(6)→(7):
式(6)で表される化合物を、水素雰囲気下、溶媒(例えば、酢酸エチル等)中、水素化触媒(例えば、Pd/C等)の存在下に還元反応(脱ベンジル化)することにより、式(7)で表される化合物を製造することができる。
(7)+(8)→(9):
式(7)で表される化合物及び式(8)で表される化合物を、溶媒(例えば、DMF等)中、塩基(例えば、KCO等)の存在下に反応させることにより、式(9)で表される化合物を製造することができる。
(9)→(I):
式(9)で表される化合物を、溶媒(例えば、酢酸エチル等)中、塩基(例えば、炭酸水素ナトリウム等)の存在下、酸化剤(例えば、m−クロロ過安息香酸(mCPBA)、過酸化水素等)で酸化(N−オキシド化)することにより、式(I)で表される化合物を製造することができる。
The compound represented by the formula (1) is a known compound or a compound that can be easily synthesized from a known method. For example, according to or according to the method described in Tetrahedron Lett., 2012, 53, 2432. Can be manufactured.
(1) + (2) → (3):
By reacting the compound represented by the formula (1) and the compound represented by the formula (2) in a solvent (for example, DMF and the like) in the presence of a base (for example, K 2 CO 3 and the like), the formula The compound represented by (3) can be produced.
(3) + (4) → (5):
A compound represented by the formula (3) and a compound represented by the formula (4) are mixed with a palladium catalyst (for example, Pd (PPh 3 ) 4 , Pd 2 dba 3 , Pd) in a solvent (for example, THF, dioxane, etc.). (OAc) 2 etc.), a ligand (for example, 2-dicyclohexylphosphino-2 ′, 6′-diisopropoxybiphenyl (Ruphos), 2,2′-bis (diphenylphosphino) -1-1-1′- By reacting in the presence of binaphthyl (BINAP), 4,5-bis (diphenylphosphino) -9,9-dimethylxanthene (Xantphos) and a base (for example, cesium carbonate, etc.) (coupling reaction), A compound represented by the formula (5) can be produced.
(5) → (6):
The compound represented by the formula (6) can be produced by reacting the compound represented by the formula (5) with DMF in the presence of phosphorus oxychloride (POCl 3 ).
(6) → (7):
By subjecting the compound represented by formula (6) to a reduction reaction (debenzylation) in the presence of a hydrogenation catalyst (eg, Pd / C) in a solvent (eg, ethyl acetate) in a hydrogen atmosphere. The compound represented by Formula (7) can be manufactured.
(7) + (8) → (9):
By reacting the compound represented by the formula (7) and the compound represented by the formula (8) in a solvent (for example, DMF and the like) in the presence of a base (for example, K 2 CO 3 and the like), the formula The compound represented by (9) can be produced.
(9) → (I):
The compound represented by the formula (9) is reacted with an oxidizing agent (for example, m-chloroperbenzoic acid (mCPBA), persulfate in a solvent (for example, ethyl acetate) in the presence of a base (for example, sodium bicarbonate). The compound represented by the formula (I) can be produced by oxidation (N-oxidation) with hydrogen oxide or the like.

上記反応式1で製造される式(I)で表される化合物のうち、Rが、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基であり、かつ、Rが、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有するアルキル基である化合物、具体的には、式(I−A)〜式(I−D)で表される化合物は、例えば、反応式2のようにして製造することができる。 Among the compounds represented by the formula (I) produced by the reaction formula 1, R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group. A compound in which R 4 is an alkyl group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent; The compounds represented by A) to Formula (ID) can be produced, for example, as shown in Reaction Scheme 2.

(式中、R及びRは同一又は異なってアルキル基を示し、alkはアルキレン基を示し、Xは脱離基を示し、R、R、R、R、Bn、X、X、X及びYは前記に同じ。)
及びRで示される「アルキル基」としては、鎖状又は分岐状のC1〜4のアルキル基が挙げられ、具体例として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基等が挙げられる。このうちメチル基及びエチル基が好ましい。
(Wherein R 5 and R 6 are the same or different and each represents an alkyl group, alk represents an alkylene group, X 4 represents a leaving group, R 2 , R 3 , R A , R B , Bn, X 1 , X 2 , X 3 and Y 1 are the same as above.)
Examples of the “alkyl group” represented by R 5 and R 6 include a chain or branched C1-4 alkyl group, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -A butyl group, a tert- butyl group, etc. are mentioned. Of these, a methyl group and an ethyl group are preferred.

alkで示される「アルキレン基」としては、鎖状又は分岐状のC1〜6のアルキレン基が挙げられ、好ましくはC1〜4のアルキレン基である。具体例として、メチレン基(−CH−)、ジメチレン基(−CHCH−)、トリメチレン基(−CHCHCH−)等が挙げられる。より好ましくはメチレン基、ジメチレン基である。 Examples of the “alkylene group” represented by alk include a chain or branched C1-6 alkylene group, preferably a C1-4 alkylene group. Specific examples include a methylene group (—CH 2 —), a dimethylene group (—CH 2 CH 2 —), a trimethylene group (—CH 2 CH 2 CH 2 —), and the like. More preferred are a methylene group and a dimethylene group.

で示される「脱離基」としては、例えば、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子等)等が挙げられる。
(1)+(2a)→(3a):
式(1)で表される化合物及び式(2a)で表される化合物から、式(3a)で表される化合物を製造する反応は、反応式1の式(1)で表される化合物及び式(2)で表される化合物から、式(3)で表される化合物を製造する反応に従い実施することができる。
(3a)+(4)→(5a):
式(3a)で表される化合物及び式(4)で表される化合物から、式(5a)で表される化合物を製造する反応は、反応式1の式(3)で表される化合物及び式(4)で表される化合物から、式(5)で表される化合物を製造する反応に従い実施することができる。
(5a)→(6a):
式(5a)で表される化合物から、式(6a)で表される化合物を製造する反応は、反応式1の式(5)で表される化合物から、式(6)で表される化合物を製造する反応に従い実施することができる。
(6a)→(7a):
式(6a)で表される化合物から、式(7a)で表される化合物を製造する反応は、反応式1の式(6)で表される化合物から、式(7)で表される化合物を製造する反応に従い実施することができる。
(7a)+(8a)→(9a):
式(7a)で表される化合物及び式(8a)で表される化合物から、式(9a)で表される化合物を製造する反応は、反応式1の式(7)で表される化合物及び式(8)で表される化合物から、式(9)で表される化合物を製造する反応に従い実施することができる。
(9a)→(I−A):
式(9a)で表される化合物から、式(I−A)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
(I−A)→(I−B):
式(I−A)で表される化合物を、溶媒(例えば、メタノール/水等)中、塩基(例えば、水酸化カリウム、水酸化ナトリウム等)を用いて加水分解することにより、式(I−B)で表される化合物を製造することができる。
(9a)→(10a):
式(9a)で表される化合物から、式(10a)で表される化合物を製造する反応は、反応式2の式(I−A)で表される化合物から、式(I−B)で表される化合物を製造する反応に従い実施することができる。
(10a)→(11a):
式(10a)で表される化合物及び式(13)で表される化合物を、溶媒(例えば、THF、DMF等)中、縮合剤(例えば、ジシクロヘキシルカルボジイミド(DCC)等)の存在下で縮合(エステル化)させることにより、式(11a)で表される化合物を製造することができる。或いは、式(10a)で表される化合物及び式(14)で表される化合物を、溶媒(例えば、THF、DMF等)中、塩基(例えば、トリエチルアミン、ジイソプロピルエチルアミン等)の存在下で反応(エステル化)させることにより、式(11a)で表される化合物を製造することができる。
(11a)→(I−C):
式(11a)で表される化合物から、式(I−C)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
(10a)+(15)→(12a):
式(10a)で表される化合物及び式(15)で表される化合物を、溶媒(例えば、THF、DMF等)中、縮合剤(例えば、ジシクロヘキシルカルボジイミド(DCC)、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム クロリド(DMT-MM)等)の存在下で縮合(アミド化)させることにより、式(12a)で表される化合物を製造することができる。
(12a)→(I−D):
式(12a)で表される化合物から、式(I−D)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
Examples of the “leaving group” represented by X 4 include a halogen atom (chlorine atom, bromine atom, iodine atom, etc.) and the like.
(1) + (2a) → (3a):
The reaction for producing the compound represented by the formula (3a) from the compound represented by the formula (1) and the compound represented by the formula (2a) includes the compound represented by the formula (1) in the reaction formula 1 and It can implement according to reaction which manufactures the compound represented by Formula (3) from the compound represented by Formula (2).
(3a) + (4) → (5a):
The reaction for producing the compound represented by the formula (5a) from the compound represented by the formula (3a) and the compound represented by the formula (4) is carried out by reacting the compound represented by the formula (3) of the reaction formula 1 and It can implement according to reaction which manufactures the compound represented by Formula (5) from the compound represented by Formula (4).
(5a) → (6a):
The reaction for producing the compound represented by the formula (6a) from the compound represented by the formula (5a) is carried out by reacting the compound represented by the formula (5) of the reaction formula 1 with the compound represented by the formula (6). Can be carried out according to the reaction to produce
(6a) → (7a):
The reaction for producing the compound represented by the formula (7a) from the compound represented by the formula (6a) is carried out by reacting the compound represented by the formula (6) of the reaction formula 1 with the compound represented by the formula (7). Can be carried out according to the reaction to produce
(7a) + (8a) → (9a):
The reaction for producing the compound represented by the formula (9a) from the compound represented by the formula (7a) and the compound represented by the formula (8a) includes the compound represented by the formula (7) in the reaction formula 1 and It can implement according to reaction which manufactures the compound represented by Formula (9) from the compound represented by Formula (8).
(9a) → (IA):
The reaction for producing the compound represented by the formula (IA) from the compound represented by the formula (9a) is represented by the formula (I) from the compound represented by the formula (9) in the reaction formula 1. This can be carried out according to the reaction for producing the compound.
(IA) → (IB):
By hydrolyzing the compound represented by the formula (IA) in a solvent (for example, methanol / water, etc.) using a base (for example, potassium hydroxide, sodium hydroxide, etc.), the formula (I- The compound represented by B) can be produced.
(9a) → (10a):
The reaction for producing the compound represented by the formula (10a) from the compound represented by the formula (9a) is carried out from the compound represented by the formula (IA) of the reaction formula 2 by the formula (IB). The reaction can be carried out according to the reaction for producing the represented compound.
(10a) → (11a):
The compound represented by the formula (10a) and the compound represented by the formula (13) are condensed in a solvent (for example, THF, DMF and the like) in the presence of a condensing agent (for example, dicyclohexylcarbodiimide (DCC) and the like). By esterification, the compound represented by the formula (11a) can be produced. Alternatively, the compound represented by the formula (10a) and the compound represented by the formula (14) are reacted in a solvent (eg, THF, DMF, etc.) in the presence of a base (eg, triethylamine, diisopropylethylamine, etc.) ( By esterification, the compound represented by the formula (11a) can be produced.
(11a) → (IC):
The reaction for producing the compound represented by the formula (IC) from the compound represented by the formula (11a) is represented by the formula (I) from the compound represented by the formula (9) in the reaction formula 1. This can be carried out according to the reaction for producing the compound.
(10a) + (15) → (12a):
A compound represented by formula (10a) and a compound represented by formula (15) are mixed with a condensing agent (eg, dicyclohexylcarbodiimide (DCC), 4- (4,6-) in a solvent (eg, THF, DMF, etc.). By the condensation (amidation) in the presence of dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM, etc.). Compounds can be produced.
(12a) → (ID):
The reaction for producing the compound represented by Formula (ID) from the compound represented by Formula (12a) is represented by Formula (I) from the compound represented by Formula (9) of Reaction Formula 1. This can be carried out according to the reaction for producing the compound.

上記反応式1で製造される式(I)で表される化合物のうち、Rが、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基であり、かつ、Rがアルキル基である(以下、「R41」と表記する。)化合物、具体的には、式(I−E)〜式(I−H)で表される化合物は、例えば反応式3のようにして製造することができる。 Among the compounds represented by the formula (I) produced by the reaction formula 1, R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group. And R 4 is an alkyl group (hereinafter referred to as “R 41 ”), specifically, compounds represented by formulas (IE) to (IH) are: For example, it can be produced as shown in Reaction Scheme 3.

(式中、R41はアルキル基を示し、R、R、R、R、R、Bn、X、X、X、X及びYは前記に同じ。))
41で示される「アルキル基」としては、鎖状又は分岐状のC1〜4のアルキル基が挙げられ、具体例として、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基等が挙げられる。このうちメチル基及びエチル基が好ましい。
(1)+(2b)→(3b):
式(1)で表される化合物及び式(2b)で表される化合物から、式(3b)で表される化合物を製造する反応は、反応式1の式(1)で表される化合物及び式(2)で表される化合物から、式(3)で表される化合物を製造する反応に従い実施することができる。
(3b)+(4)→(5b):
式(3b)で表される化合物及び式(4)で表される化合物から、式(5b)で表される化合物を製造する反応は、反応式1の式(3)で表される化合物及び式(4)で表される化合物から、式(5)で表される化合物を製造する反応に従い実施することができる。
(5b)→(6b):
式(5b)で表される化合物から、式(6b)で表される化合物を製造する反応は、反応式1の式(5)で表される化合物から、式(6)で表される化合物を製造する反応に従い実施することができる。
(6b)→(7b):
式(6b)で表される化合物から、式(7b)で表される化合物を製造する反応は、反応式1の式(6)で表される化合物から、式(7)で表される化合物を製造する反応に従い実施することができる。
(7b)+(8a)→(9b):
式(7b)で表される化合物及び式(8a)で表される化合物から、式(9b)で表される化合物を製造する反応は、反応式1の式(7)で表される化合物及び式(8)で表される化合物から、式(9)で表される化合物を製造する反応に従い実施することができる。
(9b)→(I−E):
式(9b)で表される化合物から、式(I−E)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
(I−E)→(I−F):
式(I−E)で表される化合物から、式(I−F)で表される化合物を製造する反応は、反応式2の式(I−A)で表される化合物から、式(I−B)で表される化合物を製造する反応に従い実施することができる。
(9b)→(10b):
式(9b)で表される化合物から、式(10b)で表される化合物を製造する反応は、反応式2の式(9a)で表される化合物から、式(10a)で表される化合物を製造する反応に従い実施することができる。
(10b)→(11b):
式(10b)で表される化合物から、式(11b)で表される化合物を製造する反応は、反応式2の式(10a)で表される化合物から、式(11a)で表される化合物を製造する反応に従い実施することができる。
(11b)→(I−G):
式(11b)で表される化合物から、式(I−G)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
(10b)+(15)→(12b):
式(10b)で表される化合物から、式(12b)で表される化合物を製造する反応は、反応式2の式(11a)で表される化合物から、式(12a)で表される化合物を製造する反応に従い実施することができる。
(12b)→(I−H):
式(12b)で表される化合物から、式(I−H)で表される化合物を製造する反応は、反応式1の式(9)で表される化合物から、式(I)で表される化合物を製造する反応に従い実施することができる。
(In the formula, R 41 represents an alkyl group, and R 2 , R 3 , R 6 , R A , R B , Bn, X 1 , X 2 , X 3 , X 4 and Y 1 are the same as above))
Examples of the “alkyl group” represented by R 41 include a chain or branched C1-4 alkyl group, and specific examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. , Tert-butyl group and the like. Of these, a methyl group and an ethyl group are preferred.
(1) + (2b) → (3b):
The reaction for producing the compound represented by the formula (3b) from the compound represented by the formula (1) and the compound represented by the formula (2b) includes the compound represented by the formula (1) in the reaction formula 1 and It can implement according to reaction which manufactures the compound represented by Formula (3) from the compound represented by Formula (2).
(3b) + (4) → (5b):
The reaction for producing the compound represented by the formula (5b) from the compound represented by the formula (3b) and the compound represented by the formula (4) includes the compound represented by the formula (3) in the reaction formula 1 and It can implement according to reaction which manufactures the compound represented by Formula (5) from the compound represented by Formula (4).
(5b) → (6b):
The reaction for producing the compound represented by the formula (6b) from the compound represented by the formula (5b) is carried out by reacting the compound represented by the formula (5) of the reaction formula 1 with the compound represented by the formula (6). Can be carried out according to the reaction to produce
(6b) → (7b):
The reaction for producing the compound represented by the formula (7b) from the compound represented by the formula (6b) is carried out by reacting the compound represented by the formula (6) of the reaction formula 1 with the compound represented by the formula (7). Can be carried out according to the reaction to produce
(7b) + (8a) → (9b):
The reaction for producing the compound represented by the formula (9b) from the compound represented by the formula (7b) and the compound represented by the formula (8a) It can implement according to reaction which manufactures the compound represented by Formula (9) from the compound represented by Formula (8).
(9b) → (IE):
The reaction for producing the compound represented by Formula (IE) from the compound represented by Formula (9b) is represented by Formula (I) from the compound represented by Formula (9) of Reaction Formula 1. This can be carried out according to the reaction for producing the compound.
(IE) → (IF):
The reaction for producing the compound represented by the formula (IF) from the compound represented by the formula (IE) is carried out from the compound represented by the formula (IA) of the reaction formula 2 by the formula (I It can be carried out according to the reaction for producing the compound represented by -B).
(9b) → (10b):
The reaction for producing the compound represented by the formula (10b) from the compound represented by the formula (9b) is carried out by reacting the compound represented by the formula (9a) of the reaction formula 2 with the compound represented by the formula (10a). Can be carried out according to the reaction to produce
(10b) → (11b):
The reaction for producing the compound represented by the formula (11b) from the compound represented by the formula (10b) is carried out from the compound represented by the formula (10a) of the reaction formula 2 by the compound represented by the formula (11a). Can be carried out according to the reaction to produce
(11b) → (IG):
The reaction for producing the compound represented by the formula (IG) from the compound represented by the formula (11b) is represented by the formula (I) from the compound represented by the formula (9) in the reaction formula 1. This can be carried out according to the reaction for producing the compound.
(10b) + (15) → (12b):
The reaction for producing the compound represented by the formula (12b) from the compound represented by the formula (10b) is carried out by reacting the compound represented by the formula (11a) of the reaction formula 2 with the compound represented by the formula (12a). Can be carried out according to the reaction to produce
(12b) → (I−H):
The reaction for producing the compound represented by the formula (IH) from the compound represented by the formula (12b) is represented by the formula (I) from the compound represented by the formula (9) in the reaction formula 1. This can be carried out according to the reaction for producing the compound.

上記反応式1〜3における各製造工程の反応条件は、上記で説明した条件に限定されず、当業者が公知の方法に基づいて実施できるあらゆる条件を包含する。各反応において、必要であれば、反応に関与しない官能基を保護した後に反応を行い、反応後に当該保護基を除去(脱保護)することができる。この操作は、当業者は、公知の方法(例えば、Greene's Protective Groups in Organic Synthesis, 5th edition等)の記載に従い又は準じて適宜選択して実施できる。 The reaction conditions of each production process in the above reaction formulas 1 to 3 are not limited to the conditions described above, and include all conditions that can be carried out by those skilled in the art based on known methods. In each reaction, if necessary, the reaction can be performed after protecting a functional group not involved in the reaction, and the protecting group can be removed (deprotected) after the reaction. This operation, one skilled in the art, a known method (e.g., Greene's Protective Groups in Organic Synthesis , 5 th edition , etc.) or analogously implemented appropriately selected according to the description of.

また、式(I)で表される化合物は、公知の方法に従い又は準じて所望の塩の形態に変換することができる。   In addition, the compound represented by the formula (I) can be converted into a desired salt form according to or according to a known method.

4.用途
本発明化合物(式(I)で表される化合物又はその塩)は、ヘム鉄を高選択的かつ高感度で検出できる蛍光特性を有している。ここで、ヘム鉄とは、二価鉄イオン(Fe(II)2+)とポルフィリンからなる錯体である。本発明化合物は、分子内にN−オキシド部位を有し、このN−オキシド部位がヘム鉄と選択的に反応してアミノ基に還元され、得られたアミノ基含有化合物が強い蛍光を発すると考えられる。本発明化合物は、ヘム鉄と選択的に反応し、鉄イオン以外の金属イオン及び遊離の鉄イオン(Fe(II)イオン、Fe(III)イオン等)とは反応しない又は極めて反応性が低いという特徴を有している。結果として、ヘム鉄を高選択的かつ高感度で検出できる。
4). Use The compound of the present invention (compound represented by the formula (I) or a salt thereof) has a fluorescence property that can detect heme iron with high selectivity and high sensitivity. Here, heme iron is a complex composed of divalent iron ions (Fe (II) 2+ ) and porphyrin. The compound of the present invention has an N-oxide moiety in the molecule, and this N-oxide moiety selectively reacts with heme iron to be reduced to an amino group, and the resulting amino group-containing compound emits strong fluorescence. Conceivable. The compound of the present invention selectively reacts with heme iron and does not react with metal ions other than iron ions and free iron ions (Fe (II) ions, Fe (III) ions, etc.) or is extremely low in reactivity. It has characteristics. As a result, heme iron can be detected with high selectivity and high sensitivity.

本発明化合物は、上記特性を利用して、ヘム鉄を選択的に検出又は測定することができる蛍光プローブ(蛍光試薬)として利用することができる。本発明はまた、上記蛍光プローブを含むヘム鉄蛍光検出薬、ヘム鉄蛍光検出キット等として利用することができる。   The compound of the present invention can be used as a fluorescent probe (fluorescent reagent) that can selectively detect or measure heme iron by utilizing the above-described properties. The present invention can also be used as a heme iron fluorescence detection agent, a heme iron fluorescence detection kit, and the like including the fluorescent probe.

本発明の蛍光プローブを用いてヘム鉄を測定又は検出することができる。その方法は、例えば、(1)ヘム鉄を含む検体と、本発明の蛍光プローブとを混合する工程、及び(2)得られた混合物の蛍光スペクトルを測定する工程を含む。具体的には、適当な緩衝液中で、ヘム鉄を含む検体及び本発明の蛍光プローブを混合しインキュベートした後、この混合物に励起光を当てて蛍光を測定することでヘム鉄を測定できる。   Heme iron can be measured or detected using the fluorescent probe of the present invention. The method includes, for example, (1) a step of mixing a specimen containing heme iron and the fluorescent probe of the present invention, and (2) a step of measuring a fluorescence spectrum of the obtained mixture. Specifically, heme iron can be measured by mixing a sample containing heme iron and the fluorescent probe of the present invention in an appropriate buffer and incubating, and then measuring the fluorescence by applying excitation light to the mixture.

緩衝液としては特に限定はなく、例えば、HEPES緩衝液(pH 7.4)等の公知のものを用いることができる。   The buffer solution is not particularly limited, and for example, a known solution such as a HEPES buffer solution (pH 7.4) can be used.

緩衝液中の蛍光プローブ(式(I)で表される化合物又はその塩)の濃度は特に限定はなく、通常、0.1μM〜1mM程度、好ましくは1μM〜0.1mM程度、より好ましくは5μM〜20μM程度である。   The concentration of the fluorescent probe (the compound represented by formula (I) or a salt thereof) in the buffer is not particularly limited, and is usually about 0.1 μM to 1 mM, preferably about 1 μM to 0.1 mM, more preferably 5 μM. About 20 μM.

インキュベーションの温度及び時間は、特に限定されず、例えば、0〜40℃程度で10分〜2時間程度である。検体が細胞又は組織である場合には、その培養に適した温度(例えば、ヒト由来の細胞又は組織であれば約37℃)であることが好ましい。   The incubation temperature and time are not particularly limited, and are, for example, about 0 to 40 ° C. and about 10 minutes to 2 hours. When the specimen is a cell or tissue, it is preferably a temperature suitable for the culture (for example, about 37 ° C. for a human-derived cell or tissue).

蛍光の測定は、市販の蛍光計を用いることができる。細胞内のヘム鉄の動態を調べる場合には、蛍光顕微鏡、共焦点レーザー走査蛍光顕微鏡等の公知の方法を用いて観察することができる。   A commercially available fluorometer can be used for the measurement of fluorescence. When investigating the dynamics of heme iron in cells, it can be observed using a known method such as a fluorescence microscope or a confocal laser scanning fluorescence microscope.

本発明の方法を採用することで、選択的かつ高感度にヘム鉄の蛍光検出が可能となる。具体的には、細胞および組織染色でのヘム鉄を蛍光検出したり、血液中、尿中等においてヘム鉄を定量して溶血を検出したりすることができる。   By employing the method of the present invention, fluorescence detection of heme iron can be performed selectively and with high sensitivity. Specifically, heme iron in cells and tissue staining can be detected by fluorescence, or hemolysis can be detected by quantifying heme iron in blood, urine, or the like.

以下、具体的な実施態様を示して本発明を説明するが、本発明はこれらに限定される訳ではない。   Hereinafter, the present invention will be described by showing specific embodiments, but the present invention is not limited thereto.

実施例1(Fura-Nox-1の合成)
(1)化合物2の合成
Example 1 (Synthesis of Fura-Nox-1)
(1) Synthesis of compound 2

4-ベンジルオキシ-2-ブロモフェノール (54 mg, 0.19 mmol)(Tetrahedron Lett., 2012, 53, 2432.を参照)をジメチルホルムアミド(3 mL)に溶解し、そこに炭酸カリウム(40 mg, 0.29 mmol)およびブロモ酢酸エチル(36 mg, 0.21 mmol)を加えた。窒素置換し、室温にて2時間攪拌後、反応液に酢酸エチルを(20 mL)加えた。反応混合液を水(10 mL×3)、飽和食塩水(10 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 20 ; 1 : 10)で精製し、化合物2 を白色固体として得た(61 mg, 86%)。   4-Benzyloxy-2-bromophenol (54 mg, 0.19 mmol) (see Tetrahedron Lett., 2012, 53, 2432.) is dissolved in dimethylformamide (3 mL) and added to potassium carbonate (40 mg, 0.29 mmol) and ethyl bromoacetate (36 mg, 0.21 mmol) were added. After purging with nitrogen and stirring at room temperature for 2 hours, ethyl acetate (20 mL) was added to the reaction solution. The reaction mixture was washed with water (10 mL × 3) and saturated brine (10 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20; 1:10) to obtain Compound 2 as a white solid (61 mg, 86%).

1H-NMR (CDCl3, 400 MHz) δ 7.45-7.29 (m, 5H), 7.22 (d, J = 2.4 Hz, 1H), 6.90-6.77 (m, 2H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 168.7, 154.2, 149.1, 136.5, 128.6, 128.1, 127.5, 120.1, 115.7, 114.6, 113.2, 70.7, 67.5, 61.4, 14.1; HRMS (ESI+): m/z calculated for C17H17BrNaO4 +: 387.0202, found : 387.0176. 1 H-NMR (CDCl 3 , 400 MHz) δ 7.45-7.29 (m, 5H), 7.22 (d, J = 2.4 Hz, 1H), 6.90-6.77 (m, 2H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 1.29 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 168.7, 154.2, 149.1, 136.5, 128.6, 128.1, 127.5, 120.1, 115.7, 114.6, 113.2, 70.7, 67.5, 61.4, 14.1; HRMS (ESI +): m / z calculated for C 17 H 17 BrNaO 4 + : 387.0202, found: 387.0176.

(2)化合物3の合成 (2) Synthesis of compound 3

乾燥させた試験管にビス(ジベンジリデンアセトン)パラジウム(0) (2.5 mg, 0.0029 mmol)、Ruphos (6.4 mg, 0.014 mmol)、炭酸セシウム(89 mg, 0.27 mmol)、脱水1,4-ジオキサン(2 mL)、化合物2(50 mg, 0.14 mmol)、モルホリン(13 μL, 0.15 mmol)を加えた。アルゴンに置換し、100 ℃で24時間攪拌した。セライトを用いた濾過により不溶性の沈殿を除去した後、反応溶媒を減圧化留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 10 ; 1 : 3)で精製し、化合物3を淡黄色油状物質として得た(49 mg, 96%)。   In a dried test tube, bis (dibenzylideneacetone) palladium (0) (2.5 mg, 0.0029 mmol), Ruphos (6.4 mg, 0.014 mmol), cesium carbonate (89 mg, 0.27 mmol), dehydrated 1,4-dioxane ( 2 mL), compound 2 (50 mg, 0.14 mmol), and morpholine (13 μL, 0.15 mmol) were added. The atmosphere was replaced with argon, and the mixture was stirred at 100 ° C. for 24 hours. After removing the insoluble precipitate by filtration using celite, the reaction solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10; 1: 3) to give compound 3 as a pale yellow oil (49 mg, 96%).

1H-NMR (400 MHz, CDCl3) δ: 7.46-7.29 (m, 5H), 6.76 (d, J = 8.7 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.7, 2.9 Hz, 1H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.12 (t, J = 4.3 Hz, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 169.1, 154.5, 144.7, 143.0, 136.9, 128.5, 127.9, 127.5, 115.3, 107.0, 106.4, 70.4, 67.2, 66.4, 61.2, 50.8, 14.1; HRMS (ESI+): m/z calculated for C21H25NO5 +: 372.1805, found : 372.1815. 1 H-NMR (400 MHz, CDCl 3 ) δ: 7.46-7.29 (m, 5H), 6.76 (d, J = 8.7 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.7, 2.9 Hz, 1H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.12 ( t, J = 4.3 Hz, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 169.1, 154.5, 144.7, 143.0, 136.9, 128.5, 127.9, 127.5, 115.3, 107.0, 106.4, 70.4, 67.2, 66.4, 61.2, 50.8, 14.1; HRMS (ESI +): m / z calculated for C 21 H 25 NO 5 + : 372.1805, found: 372.1815.

(3)化合物4の合成 (3) Synthesis of compound 4

オキシ塩化リン(39 μL, 0.40 mmol)と脱水ジメチルホルムアミド(1 mL)を氷冷下で混和し、窒素雰囲気下、室温で30分間攪拌した。脱水ジメチルホルムアミド(1 mL)に溶解した化合物3 (49 mg, 0.13 mmol)を加え、窒素雰囲気下、45 ℃で4時間攪拌した。室温まで放冷した後、反応溶液を氷冷した飽和炭酸水素ナトリウム水溶液(30 mL)に加え、酢酸エチル(20 mL×2)で抽出した。混合した有機層を水(20 mL×3)と飽和食塩水(20 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、化合物4を淡黄色固体として得た(46 mg, 88%)。   Phosphorus oxychloride (39 μL, 0.40 mmol) and dehydrated dimethylformamide (1 mL) were mixed under ice-cooling, and the mixture was stirred at room temperature for 30 minutes under a nitrogen atmosphere. Compound 3 (49 mg, 0.13 mmol) dissolved in dehydrated dimethylformamide (1 mL) was added, and the mixture was stirred at 45 ° C. for 4 hours under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was added to an ice-cooled saturated aqueous sodium bicarbonate solution (30 mL), and extracted with ethyl acetate (20 mL × 2). The combined organic layer was washed with water (20 mL × 3) and saturated brine (20 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 4 as a pale yellow solid (46 mg, 88%).

1H-NMR (400 MHz, CDCl3) δ: 10.3 (s, 1H), 7.51-7.31 (m, 5H), 7.22 (s, 1H), 6.48 (s, 1H), 5.16 (s, 2H), 4.65 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.26 (t, J = 4.6 Hz, 4H), 1.32 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 187.8, 168.3, 157.9, 148.6, 144.2, 136.1, 128.7, 128.3, 127.3, 118.6, 110.7, 103.3, 71.2, 66.8, 65.6, 61.4, 50.3, 14.1; HRMS (ESI+): m/z calculated for C22H26NO6 +: 400.1755, found : 400.1783. 1 H-NMR (400 MHz, CDCl 3 ) δ: 10.3 (s, 1H), 7.51-7.31 (m, 5H), 7.22 (s, 1H), 6.48 (s, 1H), 5.16 (s, 2H), 4.65 (s, 2H), 4.27 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.26 (t, J = 4.6 Hz, 4H), 1.32 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 187.8, 168.3, 157.9, 148.6, 144.2, 136.1, 128.7, 128.3, 127.3, 118.6, 110.7, 103.3, 71.2, 66.8, 65.6, 61.4, 50.3 , 14.1; HRMS (ESI +): m / z calculated for C 22 H 26 NO 6 + : 400.1755, found: 400.1783.

(4)化合物5の合成 (4) Synthesis of compound 5

化合物4 (46 mg, 0.12 mmol)を酢酸エチル(3 mL)に溶解し、10%パラジウム炭素(3.0 mg)を加えた。水素雰囲気下、室温で21時間撹拌した後、セライトを用いた濾過を行ない、触媒を除去した。濾液を減圧下濃縮し、化合物5を茶色固体として得た(27 mg, 86%)。   Compound 4 (46 mg, 0.12 mmol) was dissolved in ethyl acetate (3 mL), and 10% palladium carbon (3.0 mg) was added. After stirring for 21 hours at room temperature under a hydrogen atmosphere, filtration using celite was performed to remove the catalyst. The filtrate was concentrated under reduced pressure to obtain Compound 5 as a brown solid (27 mg, 86%).

1H-NMR (CDCl3, 400 MHz) δ: 11.2 (s, 1H), 9.65 (s, 1H), 6.90 (s, 1H), 6.41 (s, 1H), 4.62 (s, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.8 Hz, 4H), 3.31 (t, J = 4.6 Hz, 4H), 1.32 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 193.6, 168.5, 159.4, 150.6, 143.0, 117.3, 113.6, 105.8, 66.8, 66.4, 61.5, 50.2, 14.2; HRMS (ESI+): m/z calculated for C15H19NNaO6 +: 332.1105, found : 332.1134. 1 H-NMR (CDCl 3 , 400 MHz) δ: 11.2 (s, 1H), 9.65 (s, 1H), 6.90 (s, 1H), 6.41 (s, 1H), 4.62 (s, 2H), 4.29 ( q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.8 Hz, 4H), 3.31 (t, J = 4.6 Hz, 4H), 1.32 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 193.6, 168.5, 159.4, 150.6, 143.0, 117.3, 113.6, 105.8, 66.8, 66.4, 61.5, 50.2, 14.2; HRMS (ESI +): m / z calculated for C 15 H 19 NNaO 6 + : 332.1105, found: 332.1134.

(5)化合物6の合成 (5) Synthesis of compound 6

化合物5 (690 mg, 2.23 mmol)および2-ブロモメチルチアゾール5-カルボン酸エチル(893 mg, 3.57 mmol)を脱水ジメチルホルムアミド(15 mL)に溶解し、炭酸カリウムを加え、100 ℃で1.5時間撹拌した。放冷後、反応液を100 mLの水に注ぎ、得られた黄色懸濁液に1 M塩酸を滴下し、液性を酸性にした。そこに酢酸エチル:ジエチルエーテル = 1 : 1の混合溶媒を加え、抽出操作を行なった(100 mL×2)。混合した有機層を飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 5 ; 1 : 2)で精製し、化合物6を黄色固体として得た(808 mg, 79%)。   Compound 5 (690 mg, 2.23 mmol) and ethyl 2-bromomethylthiazole 5-carboxylate (893 mg, 3.57 mmol) are dissolved in dehydrated dimethylformamide (15 mL), potassium carbonate is added, and the mixture is stirred at 100 ° C for 1.5 hours. did. After allowing to cool, the reaction solution was poured into 100 mL of water, and 1 M hydrochloric acid was added dropwise to the resulting yellow suspension to make the solution acidic. A mixed solvent of ethyl acetate: diethyl ether = 1: 1 was added thereto, and extraction operation was performed (100 mL × 2). The combined organic layer was washed with saturated brine (50 mL) and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5; 1: 2) to obtain Compound 6 as a yellow solid (808 mg, 79%).

1H-NMR (400 MHz, CDCl3) δ: 8.42 (s, 1H), 7.37 (s, 1H), 7.13 (s, 1H), 7.01 (s, 1H), 4.73 (s, 2H), 4.40 (q, J = 7.1 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.94 (t, J = 4.3 Hz, 4H), 3.21 (m, 4H), 1.41 (t, J = 7.0 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 168.6, 162.6, 161.3, 151.8, 149.4, 149.2, 148.5, 142.7, 128.7, 122.1, 107.1, 105.3, 101.6, 67.1, 66.2, 61.7, 61.4, 51.4, 14.3, 14.2; HRMS (ESI+): m/z calculated for C22H25N2O7S+: 461.1377, found : 461.1398. 1 H-NMR (400 MHz, CDCl 3 ) δ: 8.42 (s, 1H), 7.37 (s, 1H), 7.13 (s, 1H), 7.01 (s, 1H), 4.73 (s, 2H), 4.40 ( q, J = 7.1 Hz, 2H), 4.30 (q, J = 7.1 Hz, 2H), 3.94 (t, J = 4.3 Hz, 4H), 3.21 (m, 4H), 1.41 (t, J = 7.0 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 168.6, 162.6, 161.3, 151.8, 149.4, 149.2, 148.5, 142.7, 128.7, 122.1, 107.1, 105.3 , 101.6, 67.1, 66.2, 61.7, 61.4, 51.4, 14.3, 14.2; HRMS (ESI +): m / z calculated for C 22 H 25 N 2 O 7 S + : 461.1377, found: 461.1398.

(6)Fura-N-1の合成 (6) Synthesis of Fura-N-1

化合物6 (30 mg, 0.065 mmol)をメタノール(2 mL)に溶解し、そこに1.2 M水酸化カリウム水溶液(272 μL, 0.33 mmol)を滴下した。室温で2時間撹拌後、1.2 M水酸化カリウム水溶液(272 μL, 0.326 mmol)を追加し、室温でさらに2時間撹拌した。反応液を0 ℃に冷却した後、1 M塩酸を滴下し、液性を酸性とした。減圧下メタノールを留去し、得られた黄色懸濁液を桐山ロートで濾過し、黄色固体を回収した。これを減圧下乾燥し、Fura-N-1を黄色固体として得た(23 mg, 89%)。   Compound 6 (30 mg, 0.065 mmol) was dissolved in methanol (2 mL), and 1.2 M aqueous potassium hydroxide solution (272 μL, 0.33 mmol) was added dropwise thereto. After stirring at room temperature for 2 hours, 1.2 M aqueous potassium hydroxide solution (272 μL, 0.326 mmol) was added, and the mixture was further stirred at room temperature for 2 hours. After the reaction solution was cooled to 0 ° C., 1 M hydrochloric acid was added dropwise to make the solution acidic. Methanol was distilled off under reduced pressure, and the resulting yellow suspension was filtered through a Kiriyama funnel to recover a yellow solid. This was dried under reduced pressure to obtain Fura-N-1 as a yellow solid (23 mg, 89%).

1H-NMR (500 MHz, D2O) δ: 7.58 (s, 1H), 6.69-6.58 (m, 2H), 6.42 (s, 1H), 4.15 (s, 2H), 3.72 (s, 4H), 2.81 (s, 4H); 13C-NMR (D2O, 125 MHz) δ 176.6, 167.2, 160.2, 149.8, 148.2, 147.9, 144.9, 140.3, 136.4, 122.7, 106.5, 103.2, 101.6, 66.9, 66.3, 51.1; HRMS (ESI-): m/z calculated for C18H15N2O7S-: 403.0605, found : 403.0603 1 H-NMR (500 MHz, D 2 O) δ: 7.58 (s, 1H), 6.69-6.58 (m, 2H), 6.42 (s, 1H), 4.15 (s, 2H), 3.72 (s, 4H) , 2.81 (s, 4H); 13 C-NMR (D 2 O, 125 MHz) δ 176.6, 167.2, 160.2, 149.8, 148.2, 147.9, 144.9, 140.3, 136.4, 122.7, 106.5, 103.2, 101.6, 66.9, 66.3 , 51.1; HRMS (ESI-): m / z calculated for C 18 H 15 N 2 O 7 S -: 403.0605, found: 403.0603

(7)Fura-N-1-AMの合成 (7) Synthesis of Fura-N-1-AM

Fura-N-1 (19 mg, 0.047 mmol)を脱水ジメチルホルムアミド(2 mL)に溶解し、そこにジイソプロピルエチルアミン(8 μL, 0.47 mmol)を加えた後に窒素置換し、混合溶液を0 ℃に冷却した。そこに酢酸ブロモメチル(23 μL, 0.235 mmol)を滴下し、窒素雰囲気下、室温で2時間撹拌した。反応液に酢酸エチルを(30 mL)加え、反応混合液を水(20 mL×3)および飽和食塩水(20 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 3 ; 1 :1)で精製し、Fura-N-1-AM(AMはアセトキシメチル基を表す。以下同じ。)を黄色固体として得た(16 mg, 64%)。   Dissolve Fura-N-1 (19 mg, 0.047 mmol) in dehydrated dimethylformamide (2 mL), add diisopropylethylamine (8 μL, 0.47 mmol) to it, purge with nitrogen, and cool the mixed solution to 0 ° C. did. Bromomethyl acetate (23 μL, 0.235 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 2 hours under a nitrogen atmosphere. Ethyl acetate (30 mL) was added to the reaction mixture, and the reaction mixture was washed with water (20 mL × 3) and saturated brine (20 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 3; 1: 1) to obtain Fura-N-1-AM (AM represents an acetoxymethyl group, the same applies hereinafter) as a yellow solid. (16 mg, 64%).

1H-NMR (CDCl3, 500 MHz) δ: 8.49 (s, 1H), 7.41 (s, 1H), 7.14 (s, 1H), 7.05 (s, 1H), 5.97 (s, 2H), 5.86 (s, 2H), 4.79 (s, 2H), 3.93 (t, J = 4.3 Hz, 4H), 3.20 (t, J = 4.0 Hz, 4H), 2.17 (s, 3H), 2.13 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 167.5, 163.6, 159.9, 152.0, 150.8, 149.0, 148.3, 143.1, 127.0, 122.0, 107.7, 106.0, 101.8, 79.5, 79.3, 67.1, 65.9, 51.4, 20.7, 20.6; HRMS (ESI+): m/z calculated for C24H25N2O11S+: 549.1174, found : 549.1194. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.49 (s, 1H), 7.41 (s, 1H), 7.14 (s, 1H), 7.05 (s, 1H), 5.97 (s, 2H), 5.86 ( s, 2H), 4.79 (s, 2H), 3.93 (t, J = 4.3 Hz, 4H), 3.20 (t, J = 4.0 Hz, 4H), 2.17 (s, 3H), 2.13 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.4, 167.5, 163.6, 159.9, 152.0, 150.8, 149.0, 148.3, 143.1, 127.0, 122.0, 107.7, 106.0, 101.8, 79.5, 79.3, 67.1, 65.9, 51.4, 20.7, 20.6; HRMS (ESI +): m / z calculated for C 24 H 25 N 2 O 11 S + : 549.1174, found: 549.1194.

(8)Fura-Nox-1-AMの合成 (8) Synthesis of Fura-Nox-1-AM

Fura-N-1-AM(14 mg, 0.026 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(2.4 mg, 0.029 mmol)とメタクロロ過安息香酸(7.0 mg, 0.029 mmol)を加え、室温で30分間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 1 : 0 ; 20 : 1)で精製し、Fura-Nox-1-AMを淡黄色固体として得た(15 mg, 100%)。   Fura-N-1-AM (14 mg, 0.026 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C, sodium bicarbonate (2.4 mg, 0.029 mmol) and metachloroperbenzoic acid (7.0 mg, 0.029 mmol) was added and stirred at room temperature for 30 minutes. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 20: 1) to obtain Fura-Nox-1-AM as a pale yellow solid (15 mg , 100%).

1H-NMR (CDCl3, 500 MHz) δ 9.24 (s, 1H), 8.54 (s, 1H), 7.49 (s, 1H), 7.09 (s, 1H), 5.98 (s, 2H), 5.88 (s, 2H), 4.97 (s, 2H), 4.92 (td, J = 11.2, 3.8 Hz, 2H), 4.75 (t, J = 10.9 Hz, 2H), 3.97-3.85 (m, 2H), 2.99 (d, J = 10.9 Hz, 2H), 2.17 (s, 3H), 2.12 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 166.4, 162.7, 159.7, 152.0, 150.7, 150.1, 145.9, 142.6, 129.1, 128.4, 110.1, 106.3, 103.7, 79.62, 79.61, 65.1, 64.8, 62.5, 20.7, 20.6; HRMS (ESI+): m/z calculated for C24H25N2O12S+: 565.1123, found : 565.1134. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.24 (s, 1H), 8.54 (s, 1H), 7.49 (s, 1H), 7.09 (s, 1H), 5.98 (s, 2H), 5.88 (s , 2H), 4.97 (s, 2H), 4.92 (td, J = 11.2, 3.8 Hz, 2H), 4.75 (t, J = 10.9 Hz, 2H), 3.97-3.85 (m, 2H), 2.99 (d, J = 10.9 Hz, 2H), 2.17 (s, 3H), 2.12 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.4, 166.4, 162.7, 159.7, 152.0, 150.7, 150.1, 145.9, 142.6, 129.1, 128.4, 110.1, 106.3, 103.7, 79.62, 79.61, 65.1, 64.8, 62.5, 20.7, 20.6; HRMS (ESI +): m / z calculated for C 24 H 25 N 2 O 12 S + : 565.1123 , found: 565.1134.

(9)化合物7の合成 (9) Synthesis of compound 7

化合物6 (59 mg, 0.13 mmol)を酢酸エチル(4 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(12 mg, 0.14 mmol)とメタクロロ過安息香酸(35 mg, 0.14 mmol)を加え、室温で30分間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール = 1 : 0 ; 30 : 1)で精製し、7を淡黄色固体として得た(51 mg, 83%)。   Compound 6 (59 mg, 0.13 mmol) was dissolved in ethyl acetate (4 mL), cooled to 0 ° C, sodium bicarbonate (12 mg, 0.14 mmol) and metachloroperbenzoic acid (35 mg, 0.14 mmol) were added. And stirred at room temperature for 30 minutes. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 30: 1) to obtain 7 as a pale yellow solid (51 mg, 83%).

1H-NMR (CDCl3, 500 MHz) δ 9.25 (s, 1H), 8.48 (s, 1H), 7.45 (s, 1H), 7.09 (s, 1H), 4.98 (td, J = 11.6, 3.8 Hz, 2H), 4.91 (s, 2H), 4.77 (t, J = 11.2 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.90 (dd, J = 11.7, 3.2 Hz, 2H), 2.96 (d, J = 11.5 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 167.4, 161.7, 161.0, 152.1, 149.9, 149.4, 146.2, 142.6, 129.9, 129.1, 109.9, 105.8, 103.6, 65.5, 64.8, 62.6, 62.0, 61.9, 14.2, 14.1; HRMS (ESI+): m/z calculated for C24H25N2O11S+: 477.1326, found : 477.1327. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.25 (s, 1H), 8.48 (s, 1H), 7.45 (s, 1H), 7.09 (s, 1H), 4.98 (td, J = 11.6, 3.8 Hz , 2H), 4.91 (s, 2H), 4.77 (t, J = 11.2 Hz, 2H), 4.41 (q, J = 7.1 Hz, 2H), 4.33 (q, J = 7.1 Hz, 2H), 3.90 (dd , J = 11.7, 3.2 Hz, 2H), 2.96 (d, J = 11.5 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H), 1.34 (t, J = 7.2 Hz, 3H); 13 C- NMR (CDCl 3 , 125 MHz) δ 167.4, 161.7, 161.0, 152.1, 149.9, 149.4, 146.2, 142.6, 129.9, 129.1, 109.9, 105.8, 103.6, 65.5, 64.8, 62.6, 62.0, 61.9, 14.2, 14.1; HRMS (ESI +): m / z calculated for C 24 H 25 N 2 O 11 S + : 477.1326, found: 477.1327.

(10)Fura-Nox-1の合成 (10) Synthesis of Fura-Nox-1

化合物7 (51 mg, 0.11 mmol)をメタノール(5 mL)に溶解し、そこに1.2 M水酸化カリウム水溶液(0.89 mL, 1.1 mmol)を滴下した。室温で1時間撹拌後、減圧下メタノールを留去し、1 M塩酸を滴下し、液性を酸性とした。生じた黄色懸濁液を桐山ロートで濾過し、淡黄色固体を回収した。これを減圧下乾燥し、Fura-Nox-1を淡黄色固体として得た(39 mg, 88%)。   Compound 7 (51 mg, 0.11 mmol) was dissolved in methanol (5 mL), and 1.2 M aqueous potassium hydroxide solution (0.89 mL, 1.1 mmol) was added dropwise thereto. After stirring at room temperature for 1 hour, methanol was distilled off under reduced pressure, and 1 M hydrochloric acid was added dropwise to make the liquid acidic. The resulting yellow suspension was filtered through a Kiriyama funnel to recover a pale yellow solid. This was dried under reduced pressure to obtain Fura-Nox-1 as a pale yellow solid (39 mg, 88%).

1H-NMR (5% NaOD in D2O, 500 MHz) δ 8.39 (s, 1H), 7.69 (s, 1H), 6.99 (s, 1H), 6.88 (s, 1H), 4.60-4.36 (m, 4H), 4.04 (d, J = 9.2 Hz, 2H), 3.08 (d, J = 12.0 Hz, 2H); 13C-NMR (5% NaOD in D2O, 125 MHz) δ 176.6, 167.2, 160.2, 149.8, 148.2, 147.9, 144.9, 140.3, 136.4, 122.7, 106.4, 103.2, 101.6, 66.9, 66.3, 51.2; HRMS (ESI-): m/z calculated for C24H25N2O11S-: 419.0555, found : 419.0579. 1 H-NMR (5% NaOD in D 2 O, 500 MHz) δ 8.39 (s, 1H), 7.69 (s, 1H), 6.99 (s, 1H), 6.88 (s, 1H), 4.60-4.36 (m , 4H), 4.04 (d, J = 9.2 Hz, 2H), 3.08 (d, J = 12.0 Hz, 2H); 13 C-NMR (5% NaOD in D 2 O, 125 MHz) δ 176.6, 167.2, 160.2 , 149.8, 148.2, 147.9, 144.9 , 140.3, 136.4, 122.7, 106.4, 103.2, 101.6, 66.9, 66.3, 51.2; HRMS (ESI-): m / z calculated for C 24 H 25 N 2 O 11 S -: 419.0555 , found: 419.0579.

実施例2(Fura-Nox-2の合成)
(1)化合物8の合成
Example 2 (Synthesis of Fura-Nox-2)
(1) Synthesis of compound 8

Fura-N-1(147 mg, 0.36 mmol)とイミノ二酢酸ジ-tert-ブチル(197 mg, 0.80 mmol)を脱水ジメチルホルムアミド(4 mL)に溶解し、0 ℃でDMT-MM(222 mg, 0.80 mmol)を加えた。室温で3時間撹拌した後、反応液に酢酸エチルを(30 mL)加え、反応混合液を水(20 mL×3)および飽和食塩水(20 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 2 ; 1 : 1)で精製し、化合物8を黄色固体として得た(184 mg, 59%)。   Fura-N-1 (147 mg, 0.36 mmol) and iminodiacetic acid di-tert-butyl (197 mg, 0.80 mmol) were dissolved in dehydrated dimethylformamide (4 mL), and DMT-MM (222 mg, 0.80 mmol) was added. After stirring at room temperature for 3 hours, ethyl acetate (30 mL) was added to the reaction mixture, and the reaction mixture was washed with water (20 mL × 3) and saturated brine (20 mL), dried over magnesium sulfate, and solvent Was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2; 1: 1) to obtain Compound 8 as a yellow solid (184 mg, 59%).

1H-NMR (CDCl3, 500 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.11 (d, J = 7.4 Hz, 2H), 4.82 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 3.92 (t, J = 4.3 Hz, 4H), 3.19 (m, 4H), 1.53 (s, 9H), 1.51 (s, 9H), 1.47 (s, 9H), 1.46 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 168.2, 168.1, 167.9, 167.8, 167.7, 162.9, 161.0, 151.8, 148.9, 148.8, 144.7, 142.8, 131.2, 122.2, 106.8, 106.4, 101.6, 83.2, 83.0, 82.3, 82.2, 67.6, 67.1, 55.9, 52.7, 51.5, 50.2, 49.4, 49.0, 28.0, 28.0; HRMS (ESI+): m/z calculated for C42H59N4O13S+: 859.3794, found : 859.3784. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.11 (d, J = 7.4 Hz, 2H), 4.82 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 3.92 (t, J = 4.3 Hz, 4H), 3.19 (m, 4H), 1.53 (s, 9H), 1.51 (s, 9H), 1.47 (s, 9H), 1.46 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 168.2, 168.1, 167.9, 167.8, 167.7, 162.9, 161.0, 151.8, 148.9 , 148.8, 144.7, 142.8, 131.2, 122.2, 106.8, 106.4, 101.6, 83.2, 83.0, 82.3, 82.2, 67.6, 67.1, 55.9, 52.7, 51.5, 50.2, 49.4, 49.0, 28.0, 28.0; HRMS (ESI +): m / z calculated for C 42 H 59 N 4 O 13 S + : 859.3794, found: 859.3784.

(2)Fura-N-2の合成 (2) Synthesis of Fura-N-2

化合物8 (75 mg, 0.087 mmol)をジクロロメタン(1 mL)に溶解し、0 ℃でトリフルオロ酢酸(1 mL)を滴下した。室温で7時間撹拌後、反応液をジエチルエーテル(10 mL)に加えた。生じた黄色懸濁液を桐山ロートで濾過し、得られた黄色固体を減圧下乾燥し、Fura-N-2を黄色固体として得た(40 mg, 72%)。   Compound 8 (75 mg, 0.087 mmol) was dissolved in dichloromethane (1 mL), and trifluoroacetic acid (1 mL) was added dropwise at 0 ° C. After stirring at room temperature for 7 hours, the reaction solution was added to diethyl ether (10 mL). The resulting yellow suspension was filtered through a Kiriyama funnel, and the resulting yellow solid was dried under reduced pressure to obtain Fura-N-2 as a yellow solid (40 mg, 72%).

1H-NMR (CD3OD, 500 MHz) δ: 8.09 (s, 1H), 7.48 (s, 2H), 7.46 (s, 1H), 7.37 (s, 1H), 5.06 (s, 2H), 4.47 (s, 2H), 4.36 (s, 2H), 4.30 (s, 2H), 4.21 (s, 2H), 4.06-3.86 (m, 4H), 3.37-3.33 (m, 4H); 13C-NMR (CD3OD, 125 MHz) δ 172.36, 172.35, 172.2, 172.0, 171.9, 171.8, 164.8, 162.1, 152.9, 151.0, 150.9, 150.2, 146.0, 133.0, 109.4, 108.4, 103.6, 69.4, 67.5, 53.6, 53.2, 50.2; HRMS (ESI-): m/z calculated for C26H25N4O13S-: 633.1144, found : 633.1118. 1 H-NMR (CD 3 OD, 500 MHz) δ: 8.09 (s, 1H), 7.48 (s, 2H), 7.46 (s, 1H), 7.37 (s, 1H), 5.06 (s, 2H), 4.47 (s, 2H), 4.36 (s, 2H), 4.30 (s, 2H), 4.21 (s, 2H), 4.06-3.86 (m, 4H), 3.37-3.33 (m, 4H); 13 C-NMR ( CD 3 OD, 125 MHz) δ 172.36, 172.35, 172.2, 172.0, 171.9, 171.8, 164.8, 162.1, 152.9, 151.0, 150.9, 150.2, 146.0, 133.0, 109.4, 108.4, 103.6, 69.4, 67.5, 53.6, 53.2, 50.2; HRMS (ESI-): m / z calculated for C 26 H 25 N 4 O 13 S -: 633.1144, found: 633.1118.

(3)Fura-N-2-AMの合成 (3) Synthesis of Fura-N-2-AM

Fura-N-2(34 mg, 0.054 mmol)を脱水ジメチルホルムアミド(2 mL)に溶解し、そこにジイソプロピルエチルアミン(150 μL, 0.86 mmol)を加えた後に窒素置換し、混合溶液を0 ℃に冷却した。そこに酢酸ブロモメチル(42 μL, 0.43 mmol)を滴下し、窒素雰囲気下、室温で6時間撹拌した。反応液に酢酸エチルを(50 mL)加え、反応混合液を水(20 mL×3)および飽和食塩水(20 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 1 ; 3 :1)で精製し、Fura-N-2-AMを黄色固体として得た(28 mg, 56%)。   Dissolve Fura-N-2 (34 mg, 0.054 mmol) in dehydrated dimethylformamide (2 mL), add diisopropylethylamine (150 μL, 0.86 mmol) to it, purge with nitrogen, and cool the mixed solution to 0 ° C. did. Bromomethyl acetate (42 μL, 0.43 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 6 hours under a nitrogen atmosphere. Ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (20 mL × 3) and saturated brine (20 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1; 3: 1) to obtain Fura-N-2-AM as a yellow solid (28 mg, 56%).

1H-NMR (CDCl3, 500 MHz) δ: 8.00 (s, 1H), 7.38 (s, 1H), 7.13 (s, 1H), 7.10 (s, 1H), 5.84 (brs, 4H), 5.78 (s, 2H), 5.77 (s, 2H), 4.84 (s, 2H), 4.47 (brs, 2H), 4.41 (s, 2H), 4.35 (brs, 2H), 4.30 (s, 2H), 3.90 (t, J = 4.6 Hz, 4H), 3.16 (m, 4H), 2.16 (s, 6H), 2.13 (s, 3H), 2.06 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 168.4, 167.6, 167.5, 163.2, 161.4, 151.9, 148.9, 148.5, 145.3, 142.9, 130.0, 122.2, 107.1, 106.8, 101.8, 79.8, 79.4, 67.9, 67.0, 51.4, 49.2, 48.1, 20.7, 20.5; HRMS (ESI+): m/z calculated for C38H43N4O21S+: 923.2135, found : 923.2150. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.00 (s, 1H), 7.38 (s, 1H), 7.13 (s, 1H), 7.10 (s, 1H), 5.84 (brs, 4H), 5.78 ( s, 2H), 5.77 (s, 2H), 4.84 (s, 2H), 4.47 (brs, 2H), 4.41 (s, 2H), 4.35 (brs, 2H), 4.30 (s, 2H), 3.90 (t , J = 4.6 Hz, 4H), 3.16 (m, 4H), 2.16 (s, 6H), 2.13 (s, 3H), 2.06 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5 , 169.4, 168.4, 167.6, 167.5, 163.2, 161.4, 151.9, 148.9, 148.5, 145.3, 142.9, 130.0, 122.2, 107.1, 106.8, 101.8, 79.8, 79.4, 67.9, 67.0, 51.4, 49.2, 48.1, 20.7, 20.5 ; HRMS (ESI +): m / z calculated for C 38 H 43 N 4 O 21 S + : 923.2135, found: 923.2150.

(4)Nox-2-AMの合成 (4) Synthesis of Nox-2-AM

Fura-N-2-AM (24 mg, 0.026 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(2.4 mg, 0.029 mmol)とメタクロロ過安息香酸(7.1 mg, 0.029 mmol)を加え、室温で30分間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 100 : 1 ; 15 : 1)で精製し、Fura-Nox-2-AMを淡黄色固体として得た(25 mg, 100%)。   Fura-N-2-AM (24 mg, 0.026 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C, sodium bicarbonate (2.4 mg, 0.029 mmol) and metachloroperbenzoic acid (7.1 mg, 0.029 mmol) was added and stirred at room temperature for 30 minutes. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 100: 1; 15: 1) to obtain Fura-Nox-2-AM as a pale yellow solid (25 mg , 100%).

1H-NMR (CDCl3, 500 MHz) δ 9.13 (s, 1H), 8.07 (s, 1H), 7.45 (s, 1H), 7.17 (s, 1H), 5.88 (s, 2H), 5.84 (m, 4H), 5.76 (s, 2H), 5.10 (s, 2H), 4.96 (td, J = 11.5, 3.1 Hz, 2H), 4.73 (t, J = 11.2 Hz, 2H), 4.56-4.17 (m, 8H), 3.90 (dd, J = 11.7, 3.2 Hz, 2H), 3.06 (d, J = 9.2 Hz, 2H), 2.16 (m, 9H), 2.12 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 167.5, 167.2, 167.1, 162.9, 160.4, 151.7, 149.9, 146.2, 145.6, 131.0, 129.3, 109.5, 106.1, 104.4, 80.2, 79.5, 65.3, 64.6, 62.6, 49.1, 48.4, 48.1, 20.7; HRMS (ESI+): m/z calculated for C38H42N4NaO22S+: 961.1904, found : 961.1892. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.13 (s, 1H), 8.07 (s, 1H), 7.45 (s, 1H), 7.17 (s, 1H), 5.88 (s, 2H), 5.84 (m , 4H), 5.76 (s, 2H), 5.10 (s, 2H), 4.96 (td, J = 11.5, 3.1 Hz, 2H), 4.73 (t, J = 11.2 Hz, 2H), 4.56-4.17 (m, 8H), 3.90 (dd, J = 11.7, 3.2 Hz, 2H), 3.06 (d, J = 9.2 Hz, 2H), 2.16 (m, 9H), 2.12 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.4, 167.5, 167.2, 167.1, 162.9, 160.4, 151.7, 149.9, 146.2, 145.6, 131.0, 129.3, 109.5, 106.1, 104.4, 80.2, 79.5, 65.3, 64.6, 62.6, 49.1, 48.4 , 48.1, 20.7; HRMS (ESI +): m / z calculated for C 38 H 42 N 4 NaO 22 S + : 961.1904, found: 961.1892.

(5)化合物9の合成 (5) Synthesis of compound 9

化合物8 (55 mg, 0.064 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(5.9 mg, 0.0704 mmol)とメタクロロ過安息香酸(17 mg, 0.0704 mmol)を加え、室温で1時間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 100 :1 ; 20 :1)で精製し、化合物9を淡黄色固体として得た(49 mg, 87%)。   Compound 8 (55 mg, 0.064 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C, sodium bicarbonate (5.9 mg, 0.0704 mmol) and metachloroperbenzoic acid (17 mg, 0.0704 mmol) were added. And stirred at room temperature for 1 hour. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 100: 1; 20: 1) to obtain Compound 9 as a pale yellow solid (49 mg, 87%).

1H-NMR (CDCl3, 500 MHz) δ 9.20 (s, 1H), 8.12 (s, 1H), 7.41 (s, 1H), 7.17 (s, 1H), 5.05 (s, 2H), 5.00 (td, J = 11.5, 2.9 Hz, 2H), 4.75 (t, J = 11.5 Hz, 2H), 4.26 (s, 2H), 4.20 (s, 2H), 4.13 (s, 2H), 4.08 (s, 2H), 3.89 (dd, J = 12.0 Hz, 2.9 Hz, 2H), 2.96 (d, J = 11.5 Hz, 2H), 1.55 (s, 9H), 1.53 (s, 9H), 1.51 (s, 9H), 1.46 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 168.0, 167.7, 167.6, 166.9, 162.7, 160.1, 151.6, 149.8, 146.5, 145.6, 142.3, 131.7, 129.2, 109.5, 105.7, 104.1, 83.7, 83.3, 82.5, 82.4, 65.3, 64.8, 62.6, 52.6, 50.1, 49.4, 49.0, 28.0, 28.0; HRMS (ESI+): m/z calculated for C42H59N4O14S+: 875.3743, found : 875.3737. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.20 (s, 1H), 8.12 (s, 1H), 7.41 (s, 1H), 7.17 (s, 1H), 5.05 (s, 2H), 5.00 (td , J = 11.5, 2.9 Hz, 2H), 4.75 (t, J = 11.5 Hz, 2H), 4.26 (s, 2H), 4.20 (s, 2H), 4.13 (s, 2H), 4.08 (s, 2H) , 3.89 (dd, J = 12.0 Hz, 2.9 Hz, 2H), 2.96 (d, J = 11.5 Hz, 2H), 1.55 (s, 9H), 1.53 (s, 9H), 1.51 (s, 9H), 1.46 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 168.0, 167.7, 167.6, 166.9, 162.7, 160.1, 151.6, 149.8, 146.5, 145.6, 142.3, 131.7, 129.2, 109.5, 105.7, 104.1, 83.7, 83.3, 82.5, 82.4, 65.3, 64.8, 62.6, 52.6, 50.1, 49.4, 49.0, 28.0, 28.0; HRMS (ESI +): m / z calculated for C 42 H 59 N 4 O 14 S + : 875.3743, found : 875.3737.

(6)Fura-Nox-2の合成 (6) Synthesis of Fura-Nox-2

化合物9 (48 mg, 0.055 mmol)をジクロロメタン(1.5 mL)に溶解し、0 ℃でトリフルオロ酢酸(1.5 mL)を滴下した。室温で4時間撹拌後、反応液をジエチルエーテル(50 mL)に加えた。生じた黄色懸濁液を桐山ロートで濾過し、得られた黄色固体を減圧下乾燥し、Fura-Nox-2を淡黄色固体として得た(24 mg, 67%)。   Compound 9 (48 mg, 0.055 mmol) was dissolved in dichloromethane (1.5 mL), and trifluoroacetic acid (1.5 mL) was added dropwise at 0 ° C. After stirring at room temperature for 4 hours, the reaction solution was added to diethyl ether (50 mL). The resulting yellow suspension was filtered through a Kiriyama funnel, and the resulting yellow solid was dried under reduced pressure to obtain Fura-Nox-2 as a pale yellow solid (24 mg, 67%).

1H-NMR (1% NaOD in CD3OD, 400 MHz) δ: 8.77 (s, 1H), 8.23 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 5.24-5.03 (m, 4H), 4.53 (t, J = 11.6 Hz, 2H), 4.16 (s, 4H), 4.10-3.85 (m, 6H), 3.01 (d, J = 12.1 Hz, 2H); 13C-NMR (1% NaOD in CD3OD, 100 MHz) δ 176.7, 176.2, 176.0, 175.7, 169.5, 164.4, 160.8, 153.2, 150.6, 148.4, 146.0, 142.1, 135.4, 131.2, 108.4, 107.6, 107.2, 65.7, 63.5, 56.0, 52.98, 52.96, 52.87, 52.84, 52.30, 52.28; HRMS (ESI-): m/z calculated for C26H25N4O14S-: 649.1093, found : 649.1072. 1 H-NMR (1% NaOD in CD 3 OD, 400 MHz) δ: 8.77 (s, 1H), 8.23 (s, 1H), 7.67 (s, 1H), 7.63 (s, 1H), 5.24-5.03 ( m, 4H), 4.53 (t, J = 11.6 Hz, 2H), 4.16 (s, 4H), 4.10-3.85 (m, 6H), 3.01 (d, J = 12.1 Hz, 2H); 13 C-NMR ( (1% NaOD in CD 3 OD, 100 MHz) δ 176.7, 176.2, 176.0, 175.7, 169.5, 164.4, 160.8, 153.2, 150.6, 148.4, 146.0, 142.1, 135.4, 131.2, 108.4, 107.6, 107.2, 65.7, 63.5, 56.0, 52.98, 52.96, 52.87, 52.84, 52.30, 52.28; HRMS (ESI-): m / z calculated for C 26 H 25 N 4 O 14 S -: 649.1093, found: 649.1072.

実施例3(Fura-Nox-3の合成)
(1)化合物10の合成
Example 3 (Synthesis of Fura-Nox-3)
(1) Synthesis of compound 10

よく乾燥させたフラスコにビス(ジベンジリデンアセトン)パラジウム(0) (75 mg, 0.082 mmol)、Ruphos (192 mg, 0.42 mmol)、炭酸セシウム(2.68 g, 8.23 mmol)、脱水1,4-ジオキサン(40 mL)、化合物2 (1.50 g, 4.12 mmol)、N-Boc-ピペラジン(843 mg, 4.53 mmol)を加えた。アルゴンに置換し、100 ℃で26時間攪拌した。セライトを用いた濾過により不溶性の沈殿を除去した後、反応溶媒を減圧化留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 10 to 1 : 5)で精製し、化合物10を茶色油状物質として得た(1.39 g, 72%)。   A well-dried flask was charged with bis (dibenzylideneacetone) palladium (0) (75 mg, 0.082 mmol), Ruphos (192 mg, 0.42 mmol), cesium carbonate (2.68 g, 8.23 mmol), dehydrated 1,4-dioxane ( 40 mL), compound 2 (1.50 g, 4.12 mmol), and N-Boc-piperazine (843 mg, 4.53 mmol) were added. The atmosphere was replaced with argon, and the mixture was stirred at 100 ° C. for 26 hours. After removing the insoluble precipitate by filtration using celite, the reaction solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10 to 1: 5) to obtain Compound 10 as a brown oil (1.39 g, 72%).

1H-NMR (500 MHz, CDCl3) δ: 7.50-7.35 (m, 4H), 7.33 (t, J = 7.2 Hz, 1H), 6.76 (d, J = 8.6 Hz, 1H), 6.59 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.6, 2.9 Hz, 1H), 4.99 (s, 2H), 4.62 (s, 2H), 4.26 (q, J = 7.3 Hz, 2H), 3.59 (t, J = 4.6 Hz, 4H), 3.04 (t, J = 4.9 Hz, 4H), 1.48 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.1, 154.8, 154.5, 144.8, 143.1, 137.0, 128.6, 128.0, 127.6, 115.1, 107.4, 106.7, 79.7, 70.5, 66.4, 61.2, 50.5, 28.4, 14.2; HRMS (DART +): m/z calculated for C28H35N2O6 +: 471.2490, found : 471.2462. 1 H-NMR (500 MHz, CDCl 3 ) δ: 7.50-7.35 (m, 4H), 7.33 (t, J = 7.2 Hz, 1H), 6.76 (d, J = 8.6 Hz, 1H), 6.59 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.6, 2.9 Hz, 1H), 4.99 (s, 2H), 4.62 (s, 2H), 4.26 (q, J = 7.3 Hz, 2H), 3.59 ( t, J = 4.6 Hz, 4H), 3.04 (t, J = 4.9 Hz, 4H), 1.48 (s, 9H), 1.31 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.1, 154.8, 154.5, 144.8, 143.1, 137.0, 128.6, 128.0, 127.6, 115.1, 107.4, 106.7, 79.7, 70.5, 66.4, 61.2, 50.5, 28.4, 14.2; HRMS (DART +): m / z calculated for C 28 H 35 N 2 O 6 + : 471.2490, found: 471.2462.

(2)化合物11の合成 (2) Synthesis of compound 11

化合物10 (579 mg, 1.23 mmol)を酢酸エチル(4 mL)に溶解し、0 ℃で4 M塩酸/酢酸エチル(4 mL)を滴下した。室温で4時間撹拌後、反応液にヘキサンを加え、生じた懸濁液を桐山ロートで濾過した。得られた茶色固体とピコリン酸(151 mg, 1.23 mmol)を脱水ジメチルホルムアミドに溶解し、0 ℃でトリエチルアミン(343 μL, 2.46 mmol)とDMT-MM (340 mg, 1.23 mmol)を加えた。窒素置換した後、混合液を室温で23時間撹拌した。反応液に酢酸エチルを(50 mL)加え、反応混合液を水(50 mL×3)および飽和食塩水(50 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 3 ; 2 : 1)で精製し、化合物11を茶色油状物質として得た(357 mg, 61%)。   Compound 10 (579 mg, 1.23 mmol) was dissolved in ethyl acetate (4 mL), and 4 M hydrochloric acid / ethyl acetate (4 mL) was added dropwise at 0 ° C. After stirring at room temperature for 4 hours, hexane was added to the reaction solution, and the resulting suspension was filtered through a Kiriyama funnel. The obtained brown solid and picolinic acid (151 mg, 1.23 mmol) were dissolved in dehydrated dimethylformamide, and triethylamine (343 μL, 2.46 mmol) and DMT-MM (340 mg, 1.23 mmol) were added at 0 ° C. After purging with nitrogen, the mixture was stirred at room temperature for 23 hours. Ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (50 mL × 3) and saturated brine (50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 3; 2: 1) to obtain Compound 11 as a brown oil (357 mg, 61%).

1H-NMR (CDCl3, 500 MHz) δ: 8.61 (d, J = 5.2 Hz, 1H), 7.81 (td, J = 7.7, 1.7 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.49-7.29 (m, 6H), 6.75 (d, J = 8.6 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.55 (dd, J = 9.2, 2.9 Hz, 1H), 4.99 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.3 Hz, 2H), 3.99 (t, J = 5.0 Hz, 2H), 3.77 (t, J = 4.6 Hz, 2H), 3.21 (t, J = 4.9 Hz, 2H), 3.13 (t, J = 4.9 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.0, 167.5, 154.4, 154.0, 148.3, 144.7, 142.6, 137.1, 136.9, 128.6, 127.9, 127.5, 124.4, 123.9, 114.9, 107.5, 107.0, 70.4, 66.4, 61.2, 50.9, 50.3, 47.5, 42.6, 14.2; HRMS (ESI+): m/z calculated for C27H29N3O5 +: 498.1999, found : 498.2027. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.61 (d, J = 5.2 Hz, 1H), 7.81 (td, J = 7.7, 1.7 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H) , 7.49-7.29 (m, 6H), 6.75 (d, J = 8.6 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.55 (dd, J = 9.2, 2.9 Hz, 1H), 4.99 ( s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.3 Hz, 2H), 3.99 (t, J = 5.0 Hz, 2H), 3.77 (t, J = 4.6 Hz, 2H), 3.21 ( t, J = 4.9 Hz, 2H), 3.13 (t, J = 4.9 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.0, 167.5, 154.4, 154.0, 148.3, 144.7, 142.6, 137.1, 136.9, 128.6, 127.9, 127.5, 124.4, 123.9, 114.9, 107.5, 107.0, 70.4, 66.4, 61.2, 50.9, 50.3, 47.5, 42.6, 14.2; HRMS (ESI +) : m / z calculated for C 27 H 29 N 3 O 5 + : 498.1999, found: 498.2027.

(3)化合物12の合成 (3) Synthesis of compound 12

オキシ塩化リン(368 μL, 3.76 mmol)と脱水ジメチルホルムアミド(2 mL)を氷冷下で混和し、窒素雰囲気下、室温で30分間攪拌した。脱水ジメチルホルムアミド(3 mL)に溶解した化合物12 (357 mg, 0.75 mmol)を加え、窒素雰囲気下、45 ℃で4時間攪拌した。室温まで放冷した後、反応溶液を氷冷した飽和炭酸水素ナトリウム水溶液(100 mL)に加え、酢酸エチル(50 mL×2)で抽出した。混合した有機層を水(50 mL×5)と飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、化合物12を淡黄色固体として得た(294 mg, 78%)。   Phosphorus oxychloride (368 μL, 3.76 mmol) and dehydrated dimethylformamide (2 mL) were mixed under ice-cooling, and the mixture was stirred at room temperature for 30 minutes under a nitrogen atmosphere. Compound 12 (357 mg, 0.75 mmol) dissolved in dehydrated dimethylformamide (3 mL) was added, and the mixture was stirred at 45 ° C. for 4 hours under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was added to an ice-cooled saturated aqueous sodium bicarbonate solution (100 mL), and extracted with ethyl acetate (50 mL × 2). The combined organic layer was washed with water (50 mL × 5) and saturated brine (50 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 12 as a pale yellow solid (294 mg, 78%).

1H-NMR (400 MHz, CDCl3) δ: 10.4 (s, 1H), 8.61 (d, J = 4.3 Hz, 1H), 7.83 (td, J = 7.7, 1.9 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.52-7.32 (m, 6H), 6.50 (s, 1H), 5.15 (s, 2H), 4.66 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 4.00 (t, J = 4.8 Hz, 2H), 3.86-3.70 (m, 2H), 3.39-3.21 (m, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 187.7, 168.3, 167.5, 157.8, 153.8, 148.33, 148.28, 144.2, 137.1, 136.1, 128.7, 128.3, 127.3, 124.6, 124.1, 118.8, 110.6, 103.8, 71.2, 65.6, 61.4, 50.5, 49.7, 47.2, 42.3, 14.1; HRMS (ESI+): m/z calculated for C28H30N3O6 +: 504.2129, found : 504.2100. 1 H-NMR (400 MHz, CDCl 3 ) δ: 10.4 (s, 1H), 8.61 (d, J = 4.3 Hz, 1H), 7.83 (td, J = 7.7, 1.9 Hz, 1H), 7.69 (d, J = 7.7 Hz, 1H), 7.52-7.32 (m, 6H), 6.50 (s, 1H), 5.15 (s, 2H), 4.66 (s, 2H), 4.26 (q, J = 7.2 Hz, 2H), 4.00 (t, J = 4.8 Hz, 2H), 3.86-3.70 (m, 2H), 3.39-3.21 (m, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 187.7, 168.3, 167.5, 157.8, 153.8, 148.33, 148.28, 144.2, 137.1, 136.1, 128.7, 128.3, 127.3, 124.6, 124.1, 118.8, 110.6, 103.8, 71.2, 65.6, 61.4, 50.5, 49.7, 47.2, 42.3, 14.1; HRMS (ESI +): m / z calculated for C 28 H 30 N 3 O 6 + : 504.2129, found: 504.2100.

(4)化合物13の合成 (4) Synthesis of compound 13

化合物12 (294 mg, 0.58 mmol)をエタノール(6 mL)とジクロロメタン(3 mL)の混合溶媒に溶解し、10%パラジウム炭素(30 mg)を加えた。水素雰囲気下、室温で46時間撹拌した後、セライトを用いた濾過を行ない、触媒を除去した。濾液を減圧下濃縮し、化合物13を淡茶色固体として得た(240 mg, 99%)。   Compound 12 (294 mg, 0.58 mmol) was dissolved in a mixed solvent of ethanol (6 mL) and dichloromethane (3 mL), and 10% palladium carbon (30 mg) was added. After stirring at room temperature for 46 hours under a hydrogen atmosphere, filtration using celite was performed to remove the catalyst. The filtrate was concentrated under reduced pressure to obtain Compound 13 as a light brown solid (240 mg, 99%).

1H-NMR (CDCl3, 400 MHz) δ: 11.2 (d, J = 9.2 Hz, 1H), 9.66 (d, J = 2.4 Hz, 1H), 8.61 (d, J = 5.8 Hz, 1H), 7.83 (td, J = 7.7, 1.9 Hz, 1H), 7.77-7.62 (m, 1H), 7.40-7.36 (m, 1H), 6.90 (s, 1H), 6.42 (s, 1H), 4.71-4.55 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.00 (t, J = 4.8 Hz, 2H), 3.86-3.79 (m, 2H), 3.42 (t, J = 4.8 Hz, 2H), 3.34 (t, J = 4.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 193.6, 168.4, 167.5, 159.2, 153.7, 150.2, 148.3, 143.0, 137.2, 124.7, 124.1, 116.9, 113.8, 106.3, 66.4, 61.5, 50.2, 49.6, 47.1, 42.3, 14.2; HRMS (DART+): m/z calculated for C21H24N3O6 +: 414.1660, found : 414.1689. 1 H-NMR (CDCl 3 , 400 MHz) δ: 11.2 (d, J = 9.2 Hz, 1H), 9.66 (d, J = 2.4 Hz, 1H), 8.61 (d, J = 5.8 Hz, 1H), 7.83 (td, J = 7.7, 1.9 Hz, 1H), 7.77-7.62 (m, 1H), 7.40-7.36 (m, 1H), 6.90 (s, 1H), 6.42 (s, 1H), 4.71-4.55 (m , 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.00 (t, J = 4.8 Hz, 2H), 3.86-3.79 (m, 2H), 3.42 (t, J = 4.8 Hz, 2H), 3.34 (t, J = 4.8 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 193.6, 168.4, 167.5, 159.2, 153.7, 150.2, 148.3, 143.0 , 137.2, 124.7, 124.1, 116.9, 113.8, 106.3, 66.4, 61.5, 50.2, 49.6, 47.1, 42.3, 14.2; HRMS (DART +): m / z calculated for C 21 H 24 N 3 O 6 + : 414.1660, found : 414.1689.

(5)化合物14の合成 (5) Synthesis of compound 14

化合物13 (240 mg, 0.58 mmol)および2-ブロモメチルチアゾール5-カルボン酸エチル(218 mg, 0.87 mmol)を脱水ジメチルホルムアミド(15 mL)に溶解し、炭酸カリウム(361 mg, 2.62 mmol)を加え、100 ℃で1.5時間撹拌した。放冷後、反応液を.100 mLの水に注ぎ、得られた黄色懸濁液に1 M塩酸を滴下し、液性を酸性にした。そこに酢酸エチルを加え、抽出操作を行なった(50 mL×3)。混合した有機層を水(50 mL×3)と飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 3 ; 3 : 1)で精製し、化合物14を黄色固体として得た(158 mg, 48%)。   Compound 13 (240 mg, 0.58 mmol) and ethyl 2-bromomethylthiazole 5-carboxylate (218 mg, 0.87 mmol) are dissolved in dehydrated dimethylformamide (15 mL), and potassium carbonate (361 mg, 2.62 mmol) is added. The mixture was stirred at 100 ° C. for 1.5 hours. After allowing to cool, the reaction solution was poured into .100 mL of water, and 1 M hydrochloric acid was added dropwise to the resulting yellow suspension to make the solution acidic. Ethyl acetate was added thereto, and extraction operation was performed (50 mL × 3). The combined organic layer was washed with water (50 mL × 3) and saturated brine (50 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 3; 3: 1) to obtain Compound 14 as a yellow solid (158 mg, 48%).

1H-NMR (500 MHz, CDCl3) δ: 8.62 (m, 1H), 8.42 (s, 1H), 7.83 (td, J = 7.7, 1.7 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.45-7.32 (m, 2H), 7.13 (s, 1H), 7.02 (s, 1H), 4.73 (s, 2H), 4.40 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.06 (t, J = 4.6 Hz, 2H), 3.85 (t, J = 4.6 Hz, 2H), 3.31 (t, J = 4.9 Hz, 2H), 3.22 (t, J = 4.9 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 168.5, 167.6, 162.5, 161.3, 153.9, 151.6, 149.4, 149.3, 148.5, 148.3, 142.3, 137.1, 128.7, 124.5, 124.0, 122.4, 107.1, 104.9, 102.1, 66.1, 61.7, 61.5, 51.4, 50.8, 47.4, 42.5, 14.3, 14.2; HRMS (ESI+): m/z calculated for C28H29N4O7S+: 565.1751, found : 565.1721. 1 H-NMR (500 MHz, CDCl 3 ) δ: 8.62 (m, 1H), 8.42 (s, 1H), 7.83 (td, J = 7.7, 1.7 Hz, 1H), 7.71 (d, J = 8.0 Hz, 1H), 7.45-7.32 (m, 2H), 7.13 (s, 1H), 7.02 (s, 1H), 4.73 (s, 2H), 4.40 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 4.06 (t, J = 4.6 Hz, 2H), 3.85 (t, J = 4.6 Hz, 2H), 3.31 (t, J = 4.9 Hz, 2H), 3.22 (t, J = 4.9 Hz, 2H), 1.41 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 168.5, 167.6, 162.5, 161.3, 153.9 , 151.6, 149.4, 149.3, 148.5, 148.3, 142.3, 137.1, 128.7, 124.5, 124.0, 122.4, 107.1, 104.9, 102.1, 66.1, 61.7, 61.5, 51.4, 50.8, 47.4, 42.5, 14.3, 14.2; HRMS (ESI + ): m / z calculated for C 28 H 29 N 4 O 7 S + : 565.1751, found: 565.1721.

(6)化合物15の合成 (6) Synthesis of Compound 15

化合物14 (158 mg, 0.28 mmol)をメタノール(2 mL)とテトラヒドロフラン(3 mL)の混合溶媒に溶解し、そこに1.2 M水酸化カリウム水溶液(1.17 mL, 1.40 mmol)を滴下した。室温で2時間撹拌後、減圧下メタノールを留去し、1 M塩酸を滴下し、液性を酸性とした。生じた黄色懸濁液を桐山ロートで濾過した。得られた黄色固体とイミノ二酢酸ジ-tert-ブチル(172 mg, 0.70 mmol)を脱水ジメチルホルムアミド(4 mL)に溶解し、0 ℃でDMT-MM(193 mg, 0.70 mmol)を加えた。室温で7時間撹拌した後、反応液に酢酸エチルを(50 mL)加え、反応混合液を水(30 mL×3)および飽和食塩水(30 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 1 ; 3 :1)で精製し、化合物15を黄色固体として得た(217 mg, 81%)。   Compound 14 (158 mg, 0.28 mmol) was dissolved in a mixed solvent of methanol (2 mL) and tetrahydrofuran (3 mL), and 1.2 M aqueous potassium hydroxide solution (1.17 mL, 1.40 mmol) was added dropwise thereto. After stirring at room temperature for 2 hours, methanol was distilled off under reduced pressure, and 1 M hydrochloric acid was added dropwise to make the liquid acidic. The resulting yellow suspension was filtered through a Kiriyama funnel. The obtained yellow solid and iminodiacetic acid di-tert-butyl (172 mg, 0.70 mmol) were dissolved in dehydrated dimethylformamide (4 mL), and DMT-MM (193 mg, 0.70 mmol) was added at 0 ° C. After stirring at room temperature for 7 hours, ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (30 mL × 3) and saturated brine (30 mL), dried over magnesium sulfate, and solvent Was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 1; 3: 1) to obtain Compound 15 as a yellow solid (217 mg, 81%).

1H-NMR (CDCl3, 400 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.11 (d, J = 7.4 Hz, 2H), 4.82 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 4.05 (m, 4H), 3.81 (t, J = 4.6 Hz, 2H), 3.19 (m, 4H), 3.28 (t, J = 4.6 Hz, 2H), 3.21 (t, J = 4.3 Hz, 2H), 1.53 (s, 9H), 1.51 (s, 9H), 1.47 (s, 9H), 1.45 (s, 9H); 13C-NMR (CDCl3, 100 MHz) δ 168.2, 167.9, 167.8, 167.6, 162.9, 160.9, 154.0, 151.6, 149.0, 148.8, 148.3, 144.8, 142.4, 137.0, 131.2, 124.4, 123.9, 122.5, 106.8, 106.2, 102.0, 83.2, 83.0, 82.3, 82.2, 67.6, 55.9, 52.7, 51.6, 50.7, 50.2, 49.4, 49.0, 47.5, 42.5, 28.0; HRMS (ESI+): m/z calculated for C48H62N6NaO13S+: 985.3988, found : 985.3991. 1 H-NMR (CDCl 3 , 400 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.11 (d, J = 7.4 Hz, 2H), 4.82 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 4.05 (m, 4H), 3.81 (t, J = 4.6 Hz, 2H), 3.19 (m, 4H), 3.28 (t, J = 4.6 Hz, 2H), 3.21 (t, J = 4.3 Hz, 2H), 1.53 (s, 9H), 1.51 (s, 9H), 1.47 (s, 9H), 1.45 (s, 9H ); 13 C-NMR (CDCl 3 , 100 MHz) δ 168.2, 167.9, 167.8, 167.6, 162.9, 160.9, 154.0, 151.6, 149.0, 148.8, 148.3, 144.8, 142.4, 137.0, 131.2, 124.4, 123.9, 122.5, 106.8, 106.2, 102.0, 83.2, 83.0, 82.3, 82.2, 67.6, 55.9, 52.7, 51.6, 50.7, 50.2, 49.4, 49.0, 47.5, 42.5, 28.0; HRMS (ESI +): m / z calculated for C 48 H 62 N 6 NaO 13 S + : 985.3988, found: 985.3991.

(7)Fura-N-3の合成 (7) Synthesis of Fura-N-3

化合物15 (105 mg, 0.11 mmol) をジクロロメタン(1.5 mL)に溶解し、0 ℃でトリフルオロ酢酸(1.5 mL)を滴下した。室温で4時間撹拌後、反応液をジエチルエーテル(30 mL)に加えた。生じた黄色懸濁液を桐山ロートで濾過し、得られた黄色固体を減圧下乾燥し、Fura-N-3を黄色固体として得た(64 mg, 80%)。   Compound 15 (105 mg, 0.11 mmol) was dissolved in dichloromethane (1.5 mL), and trifluoroacetic acid (1.5 mL) was added dropwise at 0 ° C. After stirring at room temperature for 4 hours, the reaction solution was added to diethyl ether (30 mL). The resulting yellow suspension was filtered through a Kiriyama funnel, and the resulting yellow solid was dried under reduced pressure to obtain Fura-N-3 as a yellow solid (64 mg, 80%).

1H-NMR (CDCl3, 500 MHz) δ 8.62 (d, J = 4.6 Hz, 1H), 8.03 (s, 1H), 7.99 (td, J = 7.7, 1.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (dd, J = 6.9, 5.2 Hz, 1H), 7.37 (s, 1H), 7.31 (s, 1H), 7.26 (s, 1H), 4.97 (s, 2H), 4.45 (s, 2H), 4.35 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.13-3.92 (m, 2H), 3.82-3.62 (m, 2H), 3.43-3.32 (m, 2H), 3.27-3.12 (m, 2H); 13C-NMR (CD3OD, 125 MHz) δ 172.3, 172.2, 172.1, 171.9, 171.5, 169.1, 164.8, 162.1, 154.4, 152.8, 150.6, 150.2, 149.6, 145.9, 141.9, 139.5, 132.8, 126.5, 125.2, 124.8, 108.7, 108.1, 103.7, 69.1, 53.1, 53.0, 52.5, 50.3, 50.2, 43.2; HRMS (ESI-); m/z calculated for C32H29N6O13S-: 737.1519, found : 737.1520. 1 H-NMR (CDCl 3 , 500 MHz) δ 8.62 (d, J = 4.6 Hz, 1H), 8.03 (s, 1H), 7.99 (td, J = 7.7, 1.7 Hz, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.53 (dd, J = 6.9, 5.2 Hz, 1H), 7.37 (s, 1H), 7.31 (s, 1H), 7.26 (s, 1H), 4.97 (s, 2H), 4.45 (s, 2H), 4.35 (s, 2H), 4.28 (s, 2H), 4.19 (s, 2H), 4.13-3.92 (m, 2H), 3.82-3.62 (m, 2H), 3.43-3.32 (m , 2H), 3.27-3.12 (m, 2H); 13 C-NMR (CD 3 OD, 125 MHz) δ 172.3, 172.2, 172.1, 171.9, 171.5, 169.1, 164.8, 162.1, 154.4, 152.8, 150.6, 150.2, 149.6, 145.9, 141.9, 139.5, 132.8, 126.5, 125.2, 124.8, 108.7, 108.1, 103.7, 69.1, 53.1, 53.0, 52.5, 50.3, 50.2, 43.2; HRMS (ESI-); m / z calculated for C 32 H 29 N 6 O 13 S -: 737.1519, found: 737.1520.

(8)Fura-N-3-AMの合成 (8) Synthesis of Fura-N-3-AM

Fura-N-3 (45 mg, 0.061 mmol)を脱水ジメチルホルムアミド(2 mL)に溶解し、そこにジイソプロピルエチルアミン(171 μL, 0.98 mmol)を加えた後に窒素置換し、混合溶液を0 ℃に冷却した。そこに酢酸ブロモメチル(48 μL, 0.49 mmol)を滴下し、窒素雰囲気下、室温で3時間撹拌した。反応液に酢酸エチルを(50 mL)加え、反応混合液を水(30 mL×5)および飽和食塩水(30 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 50 : 1)で精製し、Fura-N-3-AMを黄色固体として得た(45 mg, 72%)。   Dissolve Fura-N-3 (45 mg, 0.061 mmol) in dehydrated dimethylformamide (2 mL), add diisopropylethylamine (171 μL, 0.98 mmol) to it, purge with nitrogen, and cool the mixed solution to 0 ° C. did. Bromomethyl acetate (48 μL, 0.49 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 3 hours under a nitrogen atmosphere. Ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (30 mL × 5) and saturated brine (30 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (chloroform: methanol = 50: 1) to obtain Fura-N-3-AM as a yellow solid (45 mg, 72%).

1H-NMR (CDCl3, 500 MHz) δ 8.62 (d, J = 4.6 Hz, 1H), 8.01 (s, 1H), 7.83 (td, J = 7.7, 1.7 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.43-7.31 (m, 2H), 7.13 (s, 1H), 7.11 (s, 1H), 7.17-7.06 (m, 2H), 5.84 (brs, 4H), 5.78 (s, 2H), 5.72 (s, 2H), 4.85 (s, 2H), 4.56-4.16 (m, 8H), 4.03 (m, 2H), 3.81 (m, 2H), 3.26 (t, J = 4.6 Hz, 2H), 3.18 (t, J = 4.3 Hz, 2H), 2.16 (s, 6H), 2.12 (s, 3H), 2.05 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 168.3, 167.6, 167.5, 167.5, 163.1, 161.3, 153.9, 151.8, 148.9, 148.5, 148.3, 145.3, 142.5, 137.1, 130.1, 124.5, 123.9, 122.5, 107.1, 106.5, 102.2, 79.8, 79.4, 67.8, 51.6, 50.8, 49.2, 48.1, 47.4, 42.4, 20.6, 20.5; HRMS (ESI+): m/z calculated for C44H47N6O21S+: 1027.2509, found : 1027.2479. 1 H-NMR (CDCl 3 , 500 MHz) δ 8.62 (d, J = 4.6 Hz, 1H), 8.01 (s, 1H), 7.83 (td, J = 7.7, 1.7 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.43-7.31 (m, 2H), 7.13 (s, 1H), 7.11 (s, 1H), 7.17-7.06 (m, 2H), 5.84 (brs, 4H), 5.78 (s, 2H), 5.72 (s, 2H), 4.85 (s, 2H), 4.56-4.16 (m, 8H), 4.03 (m, 2H), 3.81 (m, 2H), 3.26 (t, J = 4.6 Hz, 2H ), 3.18 (t, J = 4.3 Hz, 2H), 2.16 (s, 6H), 2.12 (s, 3H), 2.05 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.4 , 168.3, 167.6, 167.5, 167.5, 163.1, 161.3, 153.9, 151.8, 148.9, 148.5, 148.3, 145.3, 142.5, 137.1, 130.1, 124.5, 123.9, 122.5, 107.1, 106.5, 102.2, 79.8, 79.4, 67.8, 51.6 , 50.8, 49.2, 48.1, 47.4, 42.4, 20.6, 20.5; HRMS (ESI +): m / z calculated for C 44 H 47 N 6 O 21 S + : 1027.2509, found: 1027.2479.

(9)Fura-Nox-3-AMの合成 (9) Synthesis of Fura-Nox-3-AM

Fura-N-3-AM (38 mg, 0.037 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(3.4 mg, 0.041 mmol)とメタクロロ過安息香酸(10 mg, 0.041 mmol)を加え、室温で1時間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 100 :1 ; 20 :1)で精製し、Fura-Nox-3-AMを淡黄色固体として得た(36.8 mg, 96%)。   Fura-N-3-AM (38 mg, 0.037 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C., sodium bicarbonate (3.4 mg, 0.041 mmol) and metachloroperbenzoic acid (10 mg, 0.041 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 100: 1; 20: 1) to obtain Fura-Nox-3-AM as a pale yellow solid (36.8 mg). , 96%).

1H-NMR (CDCl3, 500 MHz) δ 9.13 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 8.07 (s, 1H), 7.85 (td, J = 7.7, 1.7 Hz, 1H), 7.80 (d, J = 7.4 Hz, 1H), 7.45 (s, 1H), 7.42-7.35 (m, 1H), 7.19 (s, 1H), 5.96-5.79 (m, 6H), 5.79-5.70 (m, 2H), 5.19-4.94 (m, 3H), 4.94-4.82 (m, 1H), 4.82-4.71 (m, 1H), 4.57-4.21 (m, 9H), 4.20-4.05 (m, 2H), 3.33-3.15 (m, 1H), 3.15-3.04 (m, 1H), 2.17 (s, 6H), 2.15 (s, 3H), 2.09 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.4, 167.5, 167.4, 167.2, 167.1, 163.0, 160.4, 153.5, 151.7, 149.9, 148.3, 146.3, 145.6, 137.2, 131.1, 129.4, 124.8, 124.2, 109.3, 106.1, 104.7, 80.2, 79.5, 65.7, 65.1, 64.8, 49.2, 48.2, 42.8, 38.2, 20.67, 20.65; HRMS (ESI+): m/z calculated for C44H47N6O22S+: 1043.2464, found : 1043.2455. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.13 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 8.07 (s, 1H), 7.85 (td, J = 7.7, 1.7 Hz, 1H ), 7.80 (d, J = 7.4 Hz, 1H), 7.45 (s, 1H), 7.42-7.35 (m, 1H), 7.19 (s, 1H), 5.96-5.79 (m, 6H), 5.79-5.70 ( m, 2H), 5.19-4.94 (m, 3H), 4.94-4.82 (m, 1H), 4.82-4.71 (m, 1H), 4.57-4.21 (m, 9H), 4.20-4.05 (m, 2H), 3.33-3.15 (m, 1H), 3.15-3.04 (m, 1H), 2.17 (s, 6H), 2.15 (s, 3H), 2.09 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.4, 167.5, 167.4, 167.2, 167.1, 163.0, 160.4, 153.5, 151.7, 149.9, 148.3, 146.3, 145.6, 137.2, 131.1, 129.4, 124.8, 124.2, 109.3, 106.1, 104.7, 80.2, 79.5, 65.7 , 65.1, 64.8, 49.2, 48.2, 42.8, 38.2, 20.67, 20.65; HRMS (ESI +): m / z calculated for C 44 H 47 N 6 O 22 S + : 1043.2464, found: 1043.2455.

(10)化合物16の合成 (10) Synthesis of Compound 16

化合物15 (51 mg, 0.053 mmol)を酢酸エチル(3 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(4.9 mg, 0.058 mmol)とメタクロロ過安息香酸(14 mg, 0.058 mmol)を加え、室温で1時間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール= 100 : 1 ; 20 : 1)で精製し、化合物16を淡黄色固体として得た(37 mg, 96%)。   Compound 15 (51 mg, 0.053 mmol) was dissolved in ethyl acetate (3 mL), cooled to 0 ° C, sodium bicarbonate (4.9 mg, 0.058 mmol) and metachloroperbenzoic acid (14 mg, 0.058 mmol) were added. And stirred at room temperature for 1 hour. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 100: 1; 20: 1) to obtain Compound 16 as a pale yellow solid (37 mg, 96%).

1H-NMR (CDCl3, 500 MHz) δ 9.17 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 8.11 (s, 1H), 7.88-7.76 (m, 2H), 7.41 (s, 1H), 7.39-7.33 (m, 1H), 7.18 (s, 1H), 5.15-4.96 (m, 3H), 4.96-4.85 (m, 1H), 4.78 (d, J = 13.7 Hz, 1H), 4.46 (t, J = 12.9 Hz, 1H), 4.35-3.99 (m, 10H), 3.19 (d, J = 11.5 Hz, 1H), 3.03 (d, J = 10.9 Hz, 1H), 1.56-1.49 (m, 27H), 1.46 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 167.9, 167.7, 167.6, 167.5, 166.8, 162.7, 160.0, 153.4, 151.7, 149.7, 148.3, 146.4, 145.6, 142.0, 137.1, 131.8, 129.3, 124.7, 124.2, 109.2, 105.7, 104.4, 83.6, 83.3, 82.5, 82.4, 65.5, 65.1, 64.8, 52.6, 50.1, 49.4, 49.0, 42.7, 38.2, 28.0; HRMS (ESI+): m/z calculated for C48H62N6NaO14S+: 979.4117, found : 979.4126. 1 H-NMR (CDCl 3 , 500 MHz) δ 9.17 (s, 1H), 8.60 (d, J = 4.6 Hz, 1H), 8.11 (s, 1H), 7.88-7.76 (m, 2H), 7.41 (s , 1H), 7.39-7.33 (m, 1H), 7.18 (s, 1H), 5.15-4.96 (m, 3H), 4.96-4.85 (m, 1H), 4.78 (d, J = 13.7 Hz, 1H), 4.46 (t, J = 12.9 Hz, 1H), 4.35-3.99 (m, 10H), 3.19 (d, J = 11.5 Hz, 1H), 3.03 (d, J = 10.9 Hz, 1H), 1.56-1.49 (m , 27H), 1.46 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 167.9, 167.7, 167.6, 167.5, 166.8, 162.7, 160.0, 153.4, 151.7, 149.7, 148.3, 146.4, 145.6, 142.0 , 137.1, 131.8, 129.3, 124.7, 124.2, 109.2, 105.7, 104.4, 83.6, 83.3, 82.5, 82.4, 65.5, 65.1, 64.8, 52.6, 50.1, 49.4, 49.0, 42.7, 38.2, 28.0; HRMS (ESI +): m / z calculated for C 48 H 62 N 6 NaO 14 S + : 979.4117, found: 979.4126.

(11)Fura-Nox-3の合成 (11) Synthesis of Fura-Nox-3

化合物16 (50 mg, 0.051 mmol)をジクロロメタン(1 mL)に溶解し、0 ℃でトリフルオロ酢酸(1 mL)を滴下した。室温で3時間撹拌後、反応液をジエチルエーテル(50 mL)に加えた。生じた淡黄色懸濁液を桐山ロートで濾過し、得られた淡黄色固体を減圧下乾燥し、Fura-Nox-3を18 mg、37%の収率で淡黄色固体として得た(18 mg, 37%)。   Compound 16 (50 mg, 0.051 mmol) was dissolved in dichloromethane (1 mL), and trifluoroacetic acid (1 mL) was added dropwise at 0 ° C. After stirring at room temperature for 3 hours, the reaction solution was added to diethyl ether (50 mL). The resulting pale yellow suspension was filtered through a Kiriyama funnel, and the resulting pale yellow solid was dried under reduced pressure to obtain Fura-Nox-3 as a pale yellow solid in a yield of 18 mg and 37% (18 mg , 37%).

1H-NMR (5% NaOD/D2O, 500 MHz) δ 8.68-8.58 (m, 2H), 8.12 (s, 1H), 8.10-8.04 (m, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.66-7.57 (m, 2H), 7.50 (s, 1H), 5.16 (s, 2H), 5.11-4.92 (m, 3H), 4.70 (d, J = 13.2 Hz, 1H), 4.28-4.16 (m, 3H), 4.16-3.91 (m, 8H), 3.84 (d, J = 14.3 Hz, 1H), 3.39-3.31 (m, 1H), 3.10 (d, J = 12.0 Hz, 1H); HRMS (ESI-): m/z calculated for C32H29N6O14S-: 753.1468, found : 753.1456. 1 H-NMR (5% NaOD / D 2 O, 500 MHz) δ 8.68-8.58 (m, 2H), 8.12 (s, 1H), 8.10-8.04 (m, 1H), 7.80 (d, J = 8.0 Hz , 1H), 7.66-7.57 (m, 2H), 7.50 (s, 1H), 5.16 (s, 2H), 5.11-4.92 (m, 3H), 4.70 (d, J = 13.2 Hz, 1H), 4.28- 4.16 (m, 3H), 4.16-3.91 (m, 8H), 3.84 (d, J = 14.3 Hz, 1H), 3.39-3.31 (m, 1H), 3.10 (d, J = 12.0 Hz, 1H); HRMS (ESI-): m / z calculated for C 32 H 29 N 6 O 14 S -: 753.1468, found: 753.1456.

実施例4(Fura-Nox-4の合成)
(1)化合物17の合成
Example 4 (Synthesis of Fura-Nox-4)
(1) Synthesis of compound 17

オキシ塩化リン(662 μL, 6.8 mmol)と脱水ジメチルホルムアミド(5 mL)を氷冷下で混和し、窒素雰囲気下、室温で30分間攪拌した。脱水ジメチルホルムアミド(5 mL)に溶解した化合物10 (635 mg, 1.4 mmol)を加え、窒素雰囲気下、45 ℃で4時間攪拌した。室温まで放冷した後、反応溶液を氷冷した飽和炭酸水素ナトリウム水溶液(100 mL)に加え、酢酸エチル(100 mL×2)で抽出した。混合した有機層を水(100 mL×3)と飽和食塩水(100 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、化合物17を淡黄色固体として得た(568 mg, 84%)。   Phosphorus oxychloride (662 μL, 6.8 mmol) and dehydrated dimethylformamide (5 mL) were mixed under ice-cooling, and the mixture was stirred at room temperature for 30 minutes under a nitrogen atmosphere. Compound 10 (635 mg, 1.4 mmol) dissolved in dehydrated dimethylformamide (5 mL) was added, and the mixture was stirred at 45 ° C. for 4 hours under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was added to ice-cooled saturated aqueous sodium hydrogen carbonate solution (100 mL) and extracted with ethyl acetate (100 mL × 2). The combined organic layer was washed with water (100 mL × 3) and saturated brine (100 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 17 as a pale yellow solid (568 mg, 84%).

1H-NMR (500 MHz, CDCl3) δ: 10.3 (s, 1H), 7.49-7.31 (m, 6H), 7.22 (s, 1H), 6.48 (s, 1H), 5.15 (s, 2H), 4.65 (s, 3H), 4.27 (q, J = 7.3 Hz, 3H), 3.61 (t, J = 4.9 Hz, 5H), 3.27-3.12 (m, 4H), 1.66 (s, 1H), 1.49 (s, 9H), 1.32 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 187.8, 168.3, 157.8, 154.7, 148.7, 144.2, 136.1, 128.7, 128.3, 127.3, 118.6, 110.6, 103.7, 79.9, 71.2, 65.6, 61.4, 49.9, 49.8, 28.4, 14.2; HRMS (DART+): m/z calculated for C27H35N2O7 +: 499.2439, found : 499.2441. 1 H-NMR (500 MHz, CDCl 3 ) δ: 10.3 (s, 1H), 7.49-7.31 (m, 6H), 7.22 (s, 1H), 6.48 (s, 1H), 5.15 (s, 2H), 4.65 (s, 3H), 4.27 (q, J = 7.3 Hz, 3H), 3.61 (t, J = 4.9 Hz, 5H), 3.27-3.12 (m, 4H), 1.66 (s, 1H), 1.49 (s , 9H), 1.32 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 187.8, 168.3, 157.8, 154.7, 148.7, 144.2, 136.1, 128.7, 128.3, 127.3, 118.6, 110.6, 103.7, 79.9, 71.2, 65.6, 61.4, 49.9, 49.8, 28.4, 14.2; HRMS (DART +): m / z calculated for C 27 H 35 N 2 O 7 + : 499.2439, found: 499.2441.

(2)化合物18の合成 (2) Synthesis of compound 18

化合物17 (568 mg, 1.14 mmol)をエタノール(15 mL)とジクロロメタン(3 mL)の混合溶媒に溶解し、10%パラジウム炭素(30 mg)を加えた。水素雰囲気下、室温で46時間撹拌した後、セライトを用いた濾過を行ない、触媒を除去した。濾液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1 : 20 ;1 : 10)で精製し、化合物18を白色固体として得た(173 mg, 37%)。   Compound 17 (568 mg, 1.14 mmol) was dissolved in a mixed solvent of ethanol (15 mL) and dichloromethane (3 mL), and 10% palladium carbon (30 mg) was added. After stirring at room temperature for 46 hours under a hydrogen atmosphere, filtration using celite was performed to remove the catalyst. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20; 1:10) to obtain Compound 18 as a white solid (173 mg, 37%).

1H-NMR (CDCl3, 500 MHz) δ 11.2 (s, 1H), 9.64 (s, 1H), 6.90 (s, 1H), 6.41 (s, 1H), 4.62 (s, 2H), 4.27 (q, J = 6.9 Hz, 2H), 3.61 (t, J = 5.2 Hz, 4H), 3.25 (t, J = 5.2 Hz, 4H), 1.48 (s, 9H), 1.31 (t, J = 6.9 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 193.6, 168.5, 159.3, 154.7, 150.6, 143.0, 117.1, 113.7, 106.2, 80.0, 66.4, 61.5, 49.7, 28.4, 14.2; HRMS (DART+): m/z calculated for C20H29N2O7 +: 409.1969, found : 409.1955. 1 H-NMR (CDCl 3 , 500 MHz) δ 11.2 (s, 1H), 9.64 (s, 1H), 6.90 (s, 1H), 6.41 (s, 1H), 4.62 (s, 2H), 4.27 (q , J = 6.9 Hz, 2H), 3.61 (t, J = 5.2 Hz, 4H), 3.25 (t, J = 5.2 Hz, 4H), 1.48 (s, 9H), 1.31 (t, J = 6.9 Hz, 3H ); 13 C-NMR (CDCl 3 , 125 MHz) δ 193.6, 168.5, 159.3, 154.7, 150.6, 143.0, 117.1, 113.7, 106.2, 80.0, 66.4, 61.5, 49.7, 28.4, 14.2; HRMS (DART +): m / z calculated for C 20 H 29 N 2 O 7 + : 409.1969, found: 409.1955.

(3)化合物19の合成 (3) Synthesis of Compound 19

化合物18 (135 mg, 0.33 mmol)および2-ブロモメチルチアゾール5-カルボン酸エチル(122 mg, 0.49 mmol)を脱水ジメチルホルムアミド(5 mL)に溶解し、炭酸カリウム(206 mg, 1.49 mmol)を加え、100 ℃で1.5時間撹拌した。放冷後、反応液を.50 mLの飽和炭酸水素ナトリウム水溶液に注ぎ、そこに酢酸エチルを加え、抽出操作を行なった(50 mL)。有機層を水(50 mL×3)と飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 :5 ; 1 : 3)で精製し、化合物19を黄色固体として得た(127 mg, 48%)。   Compound 18 (135 mg, 0.33 mmol) and ethyl 2-bromomethylthiazole 5-carboxylate (122 mg, 0.49 mmol) are dissolved in dehydrated dimethylformamide (5 mL), and potassium carbonate (206 mg, 1.49 mmol) is added. The mixture was stirred at 100 ° C. for 1.5 hours. After allowing to cool, the reaction mixture was poured into .50 mL of saturated aqueous sodium hydrogen carbonate solution, and ethyl acetate was added thereto for extraction operation (50 mL). The organic layer was washed with water (50 mL × 3) and saturated brine (50 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5; 1: 3) to obtain Compound 19 as a yellow solid (127 mg, 48%).

1H-NMR (500 MHz, CDCl3) δ: 8.42 (s, 1H), 7.38 (s, 1H), 7.12 (s, 1H), 7.02 (s, 1H), 4.72 (s, 2H), 4.41 (q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.66 (t, J = 4.6 Hz, 4H), 3.14 (t, J = 4.6 Hz, 4H), 1.50 (s, 9H), 1.41 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 125 MHz) δ 168.6, 162.6, 161.3, 154.8, 151.6, 149.4, 149.2, 148.5, 142.7, 128.7, 122.2, 107.2, 105.1, 102.0, 79.8, 66.2, 61.7, 61.4, 50.9, 28.4, 14.3, 14.2; HRMS (ESI+): m/z calculated for C27H34N3O8S+: 560.2061, found : 560.2085. 1 H-NMR (500 MHz, CDCl 3 ) δ: 8.42 (s, 1H), 7.38 (s, 1H), 7.12 (s, 1H), 7.02 (s, 1H), 4.72 (s, 2H), 4.41 ( q, J = 7.1 Hz, 2H), 4.29 (q, J = 7.1 Hz, 2H), 3.66 (t, J = 4.6 Hz, 4H), 3.14 (t, J = 4.6 Hz, 4H), 1.50 (s, 9H), 1.41 (t, J = 7.2 Hz, 3H), 1.33 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ 168.6, 162.6, 161.3, 154.8, 151.6, 149.4 , 149.2, 148.5, 142.7, 128.7, 122.2, 107.2, 105.1, 102.0, 79.8, 66.2, 61.7, 61.4, 50.9, 28.4, 14.3, 14.2; HRMS (ESI +): m / z calculated for C 27 H 34 N 3 O 8 S + : 560.2061, found: 560.2085.

(4)化合物20の合成 (4) Synthesis of compound 20

化合物19 (147 mg, 0.26 mmol)をメタノール(1 mL)とテトラヒドロフラン(3 mL)の混合溶媒に溶解し、そこに1.2 M水酸化カリウム水溶液(1.32 mL, 1.32 mmol)を滴下した。室温で1時間撹拌後、減圧下メタノールを留去し、飽和塩化アンモニウム水溶液を滴下し、反応液を中和した。生じた黄色懸濁液を桐山ロートで濾過した。得られた黄色固体とイミノ二酢酸ジ-tert-ブチル(142 mg, 0.58 mmol)を脱水ジメチルホルムアミド(4 mL)に溶解し、0 ℃でEt3N (183 μL, 1.32 mmol)とDMT-MM (100 mg, 0.58 mmol)を加えた。室温で8時間撹拌した後、反応液に酢酸エチルを(50 mL)加え、反応混合液を水(30 mL×3)および飽和食塩水(50 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 5 ; 1 : 1)で精製し、化合物20を黄色固体として得た(154 mg, 61%)。 Compound 19 (147 mg, 0.26 mmol) was dissolved in a mixed solvent of methanol (1 mL) and tetrahydrofuran (3 mL), and 1.2 M aqueous potassium hydroxide solution (1.32 mL, 1.32 mmol) was added dropwise thereto. After stirring at room temperature for 1 hour, methanol was distilled off under reduced pressure, and a saturated aqueous ammonium chloride solution was added dropwise to neutralize the reaction solution. The resulting yellow suspension was filtered through a Kiriyama funnel. The obtained yellow solid and iminodiacetic acid di-tert-butyl (142 mg, 0.58 mmol) were dissolved in dehydrated dimethylformamide (4 mL), and Et 3 N (183 μL, 1.32 mmol) and DMT-MM were dissolved at 0 ° C. (100 mg, 0.58 mmol) was added. After stirring at room temperature for 8 hours, ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (30 mL × 3) and saturated brine (50 mL), dried over magnesium sulfate, and solvent Was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5; 1: 1) to obtain Compound 20 as a yellow solid (154 mg, 61%).

1H-NMR (CDCl3, 500 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.10 (s, 1H), 7.09 (s, 1H), 4.92 (s, 2H), 4.27 (s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 4.05 (m, 6H), 3.76-3.47 (m, 4H), 3.11 (t, J = 4.6 Hz, 4H), 1.56-1.48 (m, 27H), 1.47 (s, 9H), 1.46 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 174.0, 171.1, 168.2, 168.1, 167.9, 167.8, 167.7, 162.9, 161.0, 154.8, 151.7, 148.8, 148.9, 144.7, 142.8, 131.2, 122.4, 106.8, 106.4, 101.9, 83.2, 83.1, 82.4, 82.2, 79.7, 67.6, 55.9, 52.7, 51.0, 50.2, 49.4, 49.0, 28.4, 28.03, 28.00; HRMS (ESI+): m/z calculated for C47H67N5NaO14S+: 980.4297, found : 980.4284. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.00 (s, 1H), 7.32 (s, 1H), 7.10 (s, 1H), 7.09 (s, 1H), 4.92 (s, 2H), 4.27 ( s, 2H), 4.19 (s, 2H), 4.16 (s, 2H), 4.13 (s, 2H), 4.05 (m, 6H), 3.76-3.47 (m, 4H), 3.11 (t, J = 4.6 Hz , 4H), 1.56-1.48 (m, 27H), 1.47 (s, 9H), 1.46 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 174.0, 171.1, 168.2, 168.1, 167.9, 167.8 , 167.7, 162.9, 161.0, 154.8, 151.7, 148.8, 148.9, 144.7, 142.8, 131.2, 122.4, 106.8, 106.4, 101.9, 83.2, 83.1, 82.4, 82.2, 79.7, 67.6, 55.9, 52.7, 51.0, 50.2, 49.4 , 49.0, 28.4, 28.03, 28.00; HRMS (ESI +): m / z calculated for C 47 H 67 N 5 NaO 14 S + : 980.4297, found: 980.4284.

(5)Fura-N-4-AMの合成 (5) Synthesis of Fura-N-4-AM

化合物20 (154 mg, 0.16 mmol)をジクロロメタン(2 mL)に溶解し、0 ℃でトリフルオロ酢酸(2 mL)を滴下した。室温で2時間撹拌後、反応液をジエチルエーテル(10 mL)に加えた。生じた黄色懸濁液を桐山ロートで濾過した。得られた黄色固体を脱水ジメチルホルムアミド(2 mL)に溶解し、そこにジイソプロピルエチルアミン(65 μL, 0.37 mmol)と脱水ジメチルホルムアミド(1 mL)に溶解した二炭酸ジ-tert-ブチル(81 mg, 0.37 mmol)を加え、室温で12時間撹拌した。減圧下、反応溶媒の残量が0.5 mLとなるまで濃縮した後、濃縮した反応液を30 mLのジエチルエーテルへと加えた。生じた橙色懸濁液を桐山ロートを用いて濾過し、沈殿を集めた。得られた黄色固体を脱水ジメチルホルムアミド(3 mL)に溶解し、そこにジイソプロピルエチルアミン(347 μL, 1.98 mmol)を加えた後に窒素置換し、混合溶液を0 ℃に冷却した。そこに酢酸ブロモメチル(97 μL, 0.99 mmol)を滴下し、窒素雰囲気下、室温で18時間撹拌した。反応液に酢酸エチルを(50 mL)加え、反応混合液を水(50 mL×5)および飽和食塩水(50 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 2 ; 4 : 1)で精製し、Fura-N-4-AMを黄色固体として得た(43 mg, 34%)。   Compound 20 (154 mg, 0.16 mmol) was dissolved in dichloromethane (2 mL), and trifluoroacetic acid (2 mL) was added dropwise at 0 ° C. After stirring at room temperature for 2 hours, the reaction solution was added to diethyl ether (10 mL). The resulting yellow suspension was filtered through a Kiriyama funnel. The obtained yellow solid was dissolved in dehydrated dimethylformamide (2 mL), and di-tert-butyl dicarbonate (81 mg, 81 mg, 0.37 mmol) was added and the mixture was stirred at room temperature for 12 hours. After concentration under reduced pressure until the remaining amount of the reaction solvent reached 0.5 mL, the concentrated reaction solution was added to 30 mL of diethyl ether. The resulting orange suspension was filtered using a Kiriyama funnel to collect the precipitate. The obtained yellow solid was dissolved in dehydrated dimethylformamide (3 mL), diisopropylethylamine (347 μL, 1.98 mmol) was added thereto, and then purged with nitrogen, and the mixed solution was cooled to 0 ° C. Bromomethyl acetate (97 μL, 0.99 mmol) was added dropwise thereto, and the mixture was stirred at room temperature for 18 hours under a nitrogen atmosphere. Ethyl acetate (50 mL) was added to the reaction mixture, and the reaction mixture was washed with water (50 mL × 5) and saturated brine (50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 2; 4: 1) to obtain Fura-N-4-AM as a yellow solid (43 mg, 34%).

1H-NMR (CDCl3, 500 MHz) δ: 8.00 (s, 1H), 7.38 (s, 1H), 7.11 (s, 1H), 5.84 (brs, 4H), 5.78 (s, 2H), 5.77 (s, 2H), 4.85 (s, 2H), 4.48 (brs, 2H), 4.40 (s, 4.40), 4.36 (s, 2H), 4.30 (s, 2H), 3.71-3.53 (m, 4H), 3.19-2.97 (m, 4H), 2.17 (s, 6H), 2.13 (s, 3H), 2.06 (s, 3H), 1.50 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 169.4, 169.3, 168.4, 167.6, 167.5, 163.1, 161.3, 154.7, 151.8, 148.8, 148.4, 145.3, 142.9, 130.0, 122.3, 107.0, 106.7, 102.0, 79.7, 79.4, 67.9, 50.9, 49.2, 48.0, 28.3, 20.6, 20.4; HRMS (ESI+): m/z calculated for C43H52N5O22S+: 1022.2819, found : 1022.2797. 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.00 (s, 1H), 7.38 (s, 1H), 7.11 (s, 1H), 5.84 (brs, 4H), 5.78 (s, 2H), 5.77 ( s, 2H), 4.85 (s, 2H), 4.48 (brs, 2H), 4.40 (s, 4.40), 4.36 (s, 2H), 4.30 (s, 2H), 3.71-3.53 (m, 4H), 3.19 -2.97 (m, 4H), 2.17 (s, 6H), 2.13 (s, 3H), 2.06 (s, 3H), 1.50 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.4, 169.3, 168.4, 167.6, 167.5, 163.1, 161.3, 154.7, 151.8, 148.8, 148.4, 145.3, 142.9, 130.0, 122.3, 107.0, 106.7, 102.0, 79.7, 79.4, 67.9, 50.9, 49.2, 48.0, 28.3, 20.6, 20.4; HRMS (ESI +): m / z calculated for C 43 H 52 N 5 O 22 S + : 1022.2819, found: 1022.2797.

(6)Fura-Nox-4-AMの合成 (6) Synthesis of Fura-Nox-4-AM

Fura-N-4-AM(20.6 mg, 0.020 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(1.9 mg, 0.022 mmol)とメタクロロ過安息香酸(6.4 mg, 0.022 mmol)を加え、室温で1時間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 100 : 1 ; 30 : 1)で精製し、Fura-Nox-4-AMを淡黄色固体として得た(16 mg, 78%)。   Fura-N-4-AM (20.6 mg, 0.020 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C, sodium bicarbonate (1.9 mg, 0.022 mmol) and metachloroperbenzoic acid (6.4 mg, 0.022 mmol) was added, and the mixture was stirred at room temperature for 1 hour. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 100: 1; 30: 1) to obtain Fura-Nox-4-AM as a pale yellow solid (16 mg , 78%).

1H-NMR (CDCl3, 500 MHz) δ: 9.15 (s, 1H), 8.07 (s, 1H), 7.47 (s, 1H), 7.16 (s, 1H), 6.07-5.81 (m, 6H), 5.77 (s, 2H), 5.03 (s, 2H), 4.77 (s, 2H), 4.46 (s, 2H), 4.36 (s, 2H), 4.29 (s, 2H), 4.23 (s, 2H), 4.20-3.90 (m, 4H), 3.06 (d, J = 10.3 Hz, 2H), 2.16 (s, 9H), 2.12 (s, 3H), 1.52 (s, 9H); 13C-NMR (CDCl3, 125 MHz) δ 169.5, 169.48, 169.45, 167.5, 167.2, 167.0, 163.0, 160.5, 154.6, 151.8, 150.0, 146.3, 145.7, 131.1, 129.4, 109.5, 106.2, 104.5, 80.4, 80.2, 79.8, 79.5, 65.4, 64.4, 51.6, 49.0, 48.4, 48.1, 28.4, 20.7; HRMS (ESI+): m/z calculated for C43H52N5O23S+: 1038.2768, found : 1038.2772. 1 H-NMR (CDCl 3 , 500 MHz) δ: 9.15 (s, 1H), 8.07 (s, 1H), 7.47 (s, 1H), 7.16 (s, 1H), 6.07-5.81 (m, 6H), 5.77 (s, 2H), 5.03 (s, 2H), 4.77 (s, 2H), 4.46 (s, 2H), 4.36 (s, 2H), 4.29 (s, 2H), 4.23 (s, 2H), 4.20 -3.90 (m, 4H), 3.06 (d, J = 10.3 Hz, 2H), 2.16 (s, 9H), 2.12 (s, 3H), 1.52 (s, 9H); 13 C-NMR (CDCl 3 , 125 MHz) δ 169.5, 169.48, 169.45, 167.5, 167.2, 167.0, 163.0, 160.5, 154.6, 151.8, 150.0, 146.3, 145.7, 131.1, 129.4, 109.5, 106.2, 104.5, 80.4, 80.2, 79.8, 79.5, 65.4, 64.4 , 51.6, 49.0, 48.4, 48.1, 28.4, 20.7; HRMS (ESI +): m / z calculated for C 43 H 52 N 5 O 23 S + : 1038.2768, found: 1038.2772.

(7)Fura-Nox-4の合成 (7) Synthesis of Fura-Nox-4

Fura-Nox-4-AM (15 mg, 0.015 mmol)をメタノール(1 mL)に溶解し、そこに水(1 mL)に溶解した炭酸カリウム(44 mg, 0.32 mmol)を加えた。室温で1時間撹拌した後、反応溶媒を減圧下留去し、残渣を逆相Sep-Packカートリッジ(C18, 10 g, H2O : MeCN = 1 : 0 ; 3 : 1)を用いて精製し、Fura-Nox-4を無色固体として得た(10 mg, 93%)。 Fura-Nox-4-AM (15 mg, 0.015 mmol) was dissolved in methanol (1 mL), and potassium carbonate (44 mg, 0.32 mmol) dissolved in water (1 mL) was added thereto. After stirring at room temperature for 1 hour, the reaction solvent was distilled off under reduced pressure, and the residue was purified using a reverse-phase Sep-Pack cartridge (C18, 10 g, H 2 O: MeCN = 1: 0; 3: 1). Fura-Nox-4 was obtained as a colorless solid (10 mg, 93%).

1H-NMR (CD3OD, 500 MHz) δ: 8.75 (s, 1H), 8.21 (s, 1H), 7.67 (s, 1H), 7.61 (s, 1H), 5.18 (s, 2H), 5.03-4.94 (m, 2H), 4.19-4.08 (m, 6H), 4.03 (s, 2H), 3.96 (s, 2H), 3.91-3.70 (m, 2H), 3.13-3.02 (m, 2H), 1.52 (s, 9H); 13C-NMR (CD3OD, 100 MHz) δ 176.5, 175.9, 175.6, 169.3, 164.3, 161.4, 160.7, 156.1, 153.4, 150.6, 148.4, 145.9, 141.9, 135.6, 131.4, 108.2, 107.6, 107.5, 82.0, 67.5, 65.3, 55.9, 52.8, 52.7, 52.1, 30.8, 28.7, 24.3; HRMS (ESI-): m/z calculated for C31H34N5O15S-: 748.1778, found : 748.1791. 1 H-NMR (CD 3 OD, 500 MHz) δ: 8.75 (s, 1H), 8.21 (s, 1H), 7.67 (s, 1H), 7.61 (s, 1H), 5.18 (s, 2H), 5.03 -4.94 (m, 2H), 4.19-4.08 (m, 6H), 4.03 (s, 2H), 3.96 (s, 2H), 3.91-3.70 (m, 2H), 3.13-3.02 (m, 2H), 1.52 (s, 9H); 13 C-NMR (CD 3 OD, 100 MHz) δ 176.5, 175.9, 175.6, 169.3, 164.3, 161.4, 160.7, 156.1, 153.4, 150.6, 148.4, 145.9, 141.9, 135.6, 131.4, 108.2 , 107.6, 107.5, 82.0, 67.5 , 65.3, 55.9, 52.8, 52.7, 52.1, 30.8, 28.7, 24.3; HRMS (ESI-): m / z calculated for C 31 H 34 N 5 O 15 S -: 748.1778, found : 748.1791.

(8)Fura-N-4の合成 (8) Synthesis of Fura-N-4

Fura-N-4-AM(19 mg, 0.019 mmol)をメタノール(1.5 mL)に溶解し、そこに水(1 mL)に溶解した炭酸カリウム(53 mg, 0.38 mmol)を加えた。室温で1時間撹拌した後、反応溶媒を減圧下留去し、残渣を逆相Sep-Packカートリッジ(C18, 10 g, H2O : MeCN = 1 : 0 ; 3 : 1)を用いて精製し、Fura-N-4を黄色固体として得た(12 mg, 89%)。 Fura-N-4-AM (19 mg, 0.019 mmol) was dissolved in methanol (1.5 mL), and potassium carbonate (53 mg, 0.38 mmol) dissolved in water (1 mL) was added thereto. After stirring at room temperature for 1 hour, the reaction solvent was distilled off under reduced pressure, and the residue was purified using a reverse-phase Sep-Pack cartridge (C18, 10 g, H 2 O: MeCN = 1: 0; 3: 1). Fura-N-4 was obtained as a yellow solid (12 mg, 89%).

1H-NMR (CD3OD, 500 MHz) δ: 7.46 (s, 1H), 7.36 (s, 1H), 7.20 (s, 1H), 4.97 (s, 2H), 4.16 (s, 4H), 4.06 (s, 2H), 3.96 (s, 2H), 3.70-3.53 (m, 4H), 3.19-3.06 (m, 4H), 1.48 (s, 9H); 13C-NMR (CD3OD, 125 MHz) δ 175.4, 174.7, 174.3, 169.3, 163.2, 160.5, 160.1, 155.2, 151.4, 149.4, 148.8, 144.2, 142.6, 132.9, 122.7, 106.6, 106.1, 101.3, 79.8, 66.6, 54.6, 51.5, 51.4, 51.34, 51.32, 50.9, 50.8, 50.7, 27.3; HRMS (ESI-): m/z calculated for C31H34N5O14S-: 732.1828, found : 732.1825. 1 H-NMR (CD 3 OD, 500 MHz) δ: 7.46 (s, 1H), 7.36 (s, 1H), 7.20 (s, 1H), 4.97 (s, 2H), 4.16 (s, 4H), 4.06 (s, 2H), 3.96 (s, 2H), 3.70-3.53 (m, 4H), 3.19-3.06 (m, 4H), 1.48 (s, 9H); 13 C-NMR (CD 3 OD, 125 MHz) δ 175.4, 174.7, 174.3, 169.3, 163.2, 160.5, 160.1, 155.2, 151.4, 149.4, 148.8, 144.2, 142.6, 132.9, 122.7, 106.6, 106.1, 101.3, 79.8, 66.6, 54.6, 51.5, 51.4, 51.34, 51.32 , 50.9, 50.8, 50.7, 27.3 ; HRMS (ESI-): m / z calculated for C 31 H 34 N 5 O 14 S -: 732.1828, found: 732.1825.

実施例5(Fura-Nox-5の合成)
(1)化合物22の合成
Example 5 (Synthesis of Fura-Nox-5)
(1) Synthesis of compound 22

化合物21 (277 mg, 1.17 mmol)(J. Chem. Soc., Perkin Trans. 1 1981, No. 0, 2120.を参照)及び2-ブロモメチルチアゾール5-カルボン酸エチル(380 mg, 1.52 mmol)を脱水ジメチルホルムアミド(7 mL)に溶解し、炭酸カリウムを加え、100 ℃で1.5時間撹拌した。放冷後、反応液を100 mLの水に注ぎ、得られた黄色懸濁液に1 M塩酸を滴下し、液性を酸性にした。そこに酢酸エチル(100 mL)を加え、抽出操作を行なった。混合した有機層を飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 5 ; 1 : 2)で精製し、化合物22を黄色固体として得た(353 mg, 78%)。   Compound 21 (277 mg, 1.17 mmol) (see J. Chem. Soc., Perkin Trans. 1 1981, No. 0, 2120.) and ethyl 2-bromomethylthiazole 5-carboxylate (380 mg, 1.52 mmol) Was dissolved in dehydrated dimethylformamide (7 mL), potassium carbonate was added, and the mixture was stirred at 100 ° C. for 1.5 hr. After allowing to cool, the reaction solution was poured into 100 mL of water, and 1 M hydrochloric acid was added dropwise to the resulting yellow suspension to make the solution acidic. Ethyl acetate (100 mL) was added thereto, and extraction operation was performed. The combined organic layer was washed with saturated brine (50 mL) and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 5; 1: 2) to obtain Compound 22 as a yellow solid (353 mg, 78%).

1H-NMR (400 MHz, CDCl3) δ 8.42 (s, 1H), 7.40 (s, 1H), 7.12 (s, 1H), 7.05 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 4.04-3.85 (7H), 3.21-2.97 (4H), 1.50-1.29 (3H); 13C-NMR (100 MHz, CDCl3) δ: 162.8, 161.3, 151.0, 150.5, 149.4, 148.9, 142.3, 128.6, 122.3, 107.2, 102.6, 101.4, 67.1, 61.7, 55.9, 51.4, 14.3; HRMS (ESI+): m/z calculated for C19H21N2O5S+: 389.1166, found : 389.1138. 1 H-NMR (400 MHz, CDCl 3 ) δ 8.42 (s, 1H), 7.40 (s, 1H), 7.12 (s, 1H), 7.05 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H ), 4.04-3.85 (7H), 3.21-2.97 (4H), 1.50-1.29 (3H); 13 C-NMR (100 MHz, CDCl 3 ) δ: 162.8, 161.3, 151.0, 150.5, 149.4, 148.9, 142.3, 128.6, 122.3, 107.2, 102.6, 101.4, 67.1, 61.7, 55.9, 51.4, 14.3; HRMS (ESI +): m / z calculated for C 19 H 21 N 2 O 5 S + : 389.1166, found: 389.1138.

(2)化合物23の合成 (2) Synthesis of compound 23

化合物22 (13 mg, 0.034 mmol)を酢酸エチル(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(3.1 mg, 0.037 mmol)とメタクロロ過安息香酸(9.8 mg, 0.037 mmol)を加え、室温で30分間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 1 : 0 ; 20 :1)で精製し、化合物23を淡黄色沈殿として得た(13 mg, 96%)。   Compound 22 (13 mg, 0.034 mmol) was dissolved in ethyl acetate (2 mL), cooled to 0 ° C, sodium bicarbonate (3.1 mg, 0.037 mmol) and metachloroperbenzoic acid (9.8 mg, 0.037 mmol) were added. And stirred at room temperature for 30 minutes. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 20: 1) to obtain Compound 23 as a pale yellow precipitate (13 mg, 96%).

1H-NMR (CDCl3, 400 MHz) δ 9.19 (s, 1H), 8.48 (s, 1H), 7.47 (s, 1H), 7.22 (s, 1H), 4.97-4.62 (m, 4H), 4.41 (q, J = 7.1 Hz, 2H), 3.88 (d, J = 9.7 Hz, 2H), 2.93 (d, J = 9.7 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H); 13C-NMR (100 MHz, CDCl3) δ: 161.9, 161.1, 152.0, 149.6, 149.5, 148.1, 142.5, 129.9, 129.2, 109.4, 105.9, 103.6, 64.7, 62.6, 61.9, 56.3, 14.3; HRMS (ESI+): m/z calculated for C19H20N2NaO6S+: 427.0934, found : 427.0959. 1 H-NMR (CDCl 3 , 400 MHz) δ 9.19 (s, 1H), 8.48 (s, 1H), 7.47 (s, 1H), 7.22 (s, 1H), 4.97-4.62 (m, 4H), 4.41 (q, J = 7.1 Hz, 2H), 3.88 (d, J = 9.7 Hz, 2H), 2.93 (d, J = 9.7 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H); 13 C- NMR (100 MHz, CDCl 3 ) δ: 161.9, 161.1, 152.0, 149.6, 149.5, 148.1, 142.5, 129.9, 129.2, 109.4, 105.9, 103.6, 64.7, 62.6, 61.9, 56.3, 14.3; HRMS (ESI +): m / z calculated for C 19 H 20 N 2 NaO 6 S + : 427.0934, found: 427.0959.

(3)Fura-Nox-5の合成 (3) Synthesis of Fura-Nox-5

化合物23 (12 mg, 0.030 mmol)をメタノール(2 mL)に溶解し、そこに1 M水酸化カリウム水溶液(297 μL, 0.30 mmol)を滴下した。室温で1時間撹拌後、反応液を0 ℃に冷却し、6 M塩酸を滴下して液性を酸性とした。減圧下メタノールを留去し、得られた黄色懸濁液を桐山ロートで濾過し、黄色固体を回収した。これをシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:0;2:1)により精製し、Fura-Nox-5を淡黄色固体として得た(7.5 mg, 67%)。   Compound 23 (12 mg, 0.030 mmol) was dissolved in methanol (2 mL), and 1 M aqueous potassium hydroxide solution (297 μL, 0.30 mmol) was added dropwise thereto. After stirring at room temperature for 1 hour, the reaction solution was cooled to 0 ° C., and 6 M hydrochloric acid was added dropwise to make the solution acidic. Methanol was distilled off under reduced pressure, and the resulting yellow suspension was filtered through a Kiriyama funnel to recover a yellow solid. This was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 2: 1) to obtain Fura-Nox-5 as a pale yellow solid (7.5 mg, 67%).

1H-NMR (D2O, 500 MHz) δ 8.11 (s, 1H), 7.34 (s, 1H), 6.52 (s, 1H), 6.49 (s, 1H), 4.64 (t, J = 10.0 Hz, 2H), 4.42 (t, J = 11.7 Hz, 2H), 3.97 (d, J = 10.9 Hz, 2H), 3.64 (s, 3H), 2.90 (d, J = 12.0 Hz, 2H); 13C-NMR (NaOD/D2O, 100 MHz) δ 171.6, 169.1, 161.9, 153.1, 150.9, 150.4, 142.4, 140.9, 131.9, 109.2, 108.4, 107.5, 66.9, 65.1, 62.3, 58.8. 1 H-NMR (D 2 O, 500 MHz) δ 8.11 (s, 1H), 7.34 (s, 1H), 6.52 (s, 1H), 6.49 (s, 1H), 4.64 (t, J = 10.0 Hz, 2H), 4.42 (t, J = 11.7 Hz, 2H), 3.97 (d, J = 10.9 Hz, 2H), 3.64 (s, 3H), 2.90 (d, J = 12.0 Hz, 2H); 13 C-NMR (NaOD / D 2 O, 100 MHz) δ 171.6, 169.1, 161.9, 153.1, 150.9, 150.4, 142.4, 140.9, 131.9, 109.2, 108.4, 107.5, 66.9, 65.1, 62.3, 58.8.

(4)Fura-N-5の合成 (4) Synthesis of Fura-N-5

化合物22 (353 mg, 0.91 mmol)をメタノール(10 mL)とテトラヒドロフラン(5 mL)の混合溶媒に溶解し、そこに1 M水酸化ナトリウム水溶液(4.55 mL, 4.55 mmol)を滴下した。室温で6時間撹拌後、反応液を0 ℃に冷却し、1 M塩酸を滴下して液性を酸性とした。減圧下メタノールを留去し、得られた黄色懸濁液を桐山ロートで濾過し、黄色固体を回収した。これを減圧下乾燥し、Fura-N-5を黄色固体として得た(258 mg, 79%)。   Compound 22 (353 mg, 0.91 mmol) was dissolved in a mixed solvent of methanol (10 mL) and tetrahydrofuran (5 mL), and 1 M aqueous sodium hydroxide solution (4.55 mL, 4.55 mmol) was added dropwise thereto. After stirring at room temperature for 6 hours, the reaction solution was cooled to 0 ° C., and 1 M hydrochloric acid was added dropwise to make the solution acidic. Methanol was distilled off under reduced pressure, and the resulting yellow suspension was filtered through a Kiriyama funnel to recover a yellow solid. This was dried under reduced pressure to obtain Fura-N-5 as a yellow solid (258 mg, 79%).

1H-NMR (C5D5N, 400 MHz) δ 8.89 (s, 1H), 7.70 (s, 1H), 7.18 (s, 2H), 3.93 (t, J = 4.3 Hz, 4H), 3.83 (s, 3H), 3.16 (t, J = 4.3 Hz, 4H); 13C-NMR (C5D5N, 100 MHz) δ 164.2, 162.3, 151.5, 151.2, 149.8, 149.5, 143.0, 132.3, 122.6, 107.5, 103.8, 101.7, 67.2, 56.1, 51.7. 1 H-NMR (C 5 D 5 N, 400 MHz) δ 8.89 (s, 1H), 7.70 (s, 1H), 7.18 (s, 2H), 3.93 (t, J = 4.3 Hz, 4H), 3.83 ( s, 3H), 3.16 (t, J = 4.3 Hz, 4H); 13 C-NMR (C 5 D 5 N, 100 MHz) δ 164.2, 162.3, 151.5, 151.2, 149.8, 149.5, 143.0, 132.3, 122.6, 107.5, 103.8, 101.7, 67.2, 56.1, 51.7.

実施例6(Fura-Nox-6の合成)
(1)化合物24の合成
Example 6 (synthesis of Fura-Nox-6)
(1) Synthesis of Compound 24

4-ベンジルオキシ-2-ブロモフェノール (1.41 g, 5.00 mmol)(Tetrahedron Lett., 2012, 53, 2432を参照)をジメチルホルムアミド (15 mL)に溶解し、そこに炭酸カリウム(1.04 g, 7.5 mmol)およびブロモ酢酸-tert-ブチル(807 μL, 5.5 mmol)を加えた。窒素置換し、室温にて2時間攪拌後、反応液に酢酸エチルを(100 mL)加えた。反応混合液を水(50 mL×3)、飽和食塩水(50 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル : ヘキサン= 1 : 20 ; 1 : 10)で精製し、化合物24を無色油状物質として得た(1.60 g, 81%)。   4-Benzyloxy-2-bromophenol (1.41 g, 5.00 mmol) (see Tetrahedron Lett., 2012, 53, 2432) was dissolved in dimethylformamide (15 mL) and potassium carbonate (1.04 g, 7.5 mmol) ) And bromoacetic acid-tert-butyl (807 μL, 5.5 mmol) were added. After purging with nitrogen and stirring at room temperature for 2 hours, ethyl acetate (100 mL) was added to the reaction solution. The reaction mixture was washed with water (50 mL × 3) and saturated brine (50 mL), dried over magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 20; 1:10) to obtain Compound 24 as a colorless oil (1.60 g, 81%).

1H-NMR (CDCl3, 400 MHz) δ 7.48-7.29 (m, 5H), 7.22 (d, J = 2.9 Hz, 1H), 6.85 (dd, J = 9.2, 2.9 Hz, 1H), 6.78 (d, J = 8.7 Hz, 1H), 4.99 (s, 2H), 4.52 (s, 2H), 1.47 (s, 9H); 13C-NMR (CDCl3, 100 MHz) δ 167.7, 153.9, 149.1, 136.5, 128.6, 128.1, 127.5, 120.1, 114.9, 114.5, 112.9, 82.4, 70.7, 67.5, 28.0; HRMS (DART+): m/z calculated for C19H22BrO4 +: 393.0702, found : 397.0717. 1 H-NMR (CDCl 3 , 400 MHz) δ 7.48-7.29 (m, 5H), 7.22 (d, J = 2.9 Hz, 1H), 6.85 (dd, J = 9.2, 2.9 Hz, 1H), 6.78 (d , J = 8.7 Hz, 1H), 4.99 (s, 2H), 4.52 (s, 2H), 1.47 (s, 9H); 13 C-NMR (CDCl 3 , 100 MHz) δ 167.7, 153.9, 149.1, 136.5, 128.6, 128.1, 127.5, 120.1, 114.9, 114.5, 112.9, 82.4, 70.7, 67.5, 28.0; HRMS (DART +): m / z calculated for C 19 H 22 BrO 4 + : 393.0702, found: 397.0717.

(2)化合物25の合成 (2) Synthesis of compound 25

よく乾燥させたフラスコにビス(ジベンジリデンアセトン)パラジウム(0) (75 mg, 0.0814 mmol)、Ruphos (190 mg, 0.407 mmol)、炭酸セシウム(2.65 mg, 8.14 mmol)、脱水1,4-ジオキサン(2 mL)、化合物24 (1.60 g, 4.07 mmol)、モルホリン(423 μL, 4.88 mmol)を加えた。アルゴンに置換し、100 ℃で20時間攪拌した。セライトを用いた濾過により不溶性の沈殿を除去した後、反応溶媒を減圧化留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 10 ; 1 : 3)で精製し、化合物25を淡黄色油状物質として得た(794 mg, 49%)。   In a well-dried flask, bis (dibenzylideneacetone) palladium (0) (75 mg, 0.0814 mmol), Ruphos (190 mg, 0.407 mmol), cesium carbonate (2.65 mg, 8.14 mmol), dehydrated 1,4-dioxane ( 2 mL), compound 24 (1.60 g, 4.07 mmol), and morpholine (423 μL, 4.88 mmol) were added. The atmosphere was replaced with argon, and the mixture was stirred at 100 ° C. for 20 hours. After removing the insoluble precipitate by filtration using celite, the reaction solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10; 1: 3) to obtain Compound 25 as a pale yellow oil (794 mg, 49%).

1H-NMR (400 MHz, CDCl3) δ: 7.46-7.29 (m, 5H), 6.76 (d, J = 8.7 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.7, 2.9 Hz, 1H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.12 (t, J = 4.3 Hz, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13C-NMR (CDCl3, 100 MHz) δ 169.1, 154.5, 144.7, 143.0, 136.9, 128.5, 127.9, 127.5, 115.3, 107.0, 106.4, 70.4, 67.2, 66.4, 61.2, 50.8, 14.1; HRMS (DART+): m/z calculated for C23H30NO5 +: 400.2118, found : 400.2133. 1 H-NMR (400 MHz, CDCl 3 ) δ: 7.46-7.29 (m, 5H), 6.76 (d, J = 8.7 Hz, 1H), 6.60 (d, J = 2.9 Hz, 1H), 6.53 (dd, J = 8.7, 2.9 Hz, 1H), 5.00 (s, 2H), 4.63 (s, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.88 (t, J = 4.6 Hz, 4H), 3.12 ( t, J = 4.3 Hz, 4H), 1.31 (t, J = 7.2 Hz, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ 169.1, 154.5, 144.7, 143.0, 136.9, 128.5, 127.9, 127.5, 115.3, 107.0, 106.4, 70.4, 67.2, 66.4, 61.2, 50.8, 14.1; HRMS (DART +): m / z calculated for C 23 H 30 NO 5 + : 400.2118, found: 400.2133.

(3)化合物26の合成 (3) Synthesis of Compound 26

オキシ塩化リン(70 μL, 0.751 mmol)と脱水ジメチルホルムアミド(1 mL)を氷冷下で混和し、窒素雰囲気下、室温で30分間攪拌した。脱水ジメチルホルムアミド (1 mL)に溶解した化合物25 (100 mg, 0.250 mmol)を加え、窒素雰囲気下、45 ℃で4時間攪拌した。室温まで放冷した後、反応溶液を氷冷した飽和炭酸水素ナトリウム水溶液(40 mL)に加え、酢酸エチル(30 mL×2)で抽出した。混合した有機層を水(20 mL×3)と飽和食塩水(20 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、化合物26を淡黄色固体として得た(53 mg, 50%)。   Phosphorus oxychloride (70 μL, 0.751 mmol) and dehydrated dimethylformamide (1 mL) were mixed under ice-cooling, and the mixture was stirred at room temperature for 30 minutes under a nitrogen atmosphere. Compound 25 (100 mg, 0.250 mmol) dissolved in dehydrated dimethylformamide (1 mL) was added, and the mixture was stirred at 45 ° C. for 4 hours under a nitrogen atmosphere. After allowing to cool to room temperature, the reaction solution was added to ice-cooled saturated aqueous sodium hydrogen carbonate solution (40 mL) and extracted with ethyl acetate (30 mL × 2). The combined organic layer was washed with water (20 mL × 3) and saturated brine (20 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure to obtain Compound 26 as a pale yellow solid (53 mg, 50%).

1H-NMR (500 MHz, CDCl3) δ: 10.35 (s, 1H), 7.48-7.32 (m, 5H), 7.20 (s, 1H), 6.48 (s, 1H), 5.16 (s, 2H), 4.54 (s, 2H), 3.88 (t, J = 4.6 Hz, 5H), 3.25 (t, J = 4.6 Hz, 5H), 1.50 (s, 9H);13C-NMR (100 MHz, CDCl3) δ: 187.7, 167.4, 157.7, 148.5, 144.2, 136.2, 128.7, 128.3, 127.4, 118.6, 110.3, 103.3, 82.5, 71.2, 66.9, 65.9, 50.3, 28.0; HRMS (DART+): m/z calculated for C24H30NO6 +: 428.2068, found : 428.2044. 1 H-NMR (500 MHz, CDCl 3 ) δ: 10.35 (s, 1H), 7.48-7.32 (m, 5H), 7.20 (s, 1H), 6.48 (s, 1H), 5.16 (s, 2H), 4.54 (s, 2H), 3.88 (t, J = 4.6 Hz, 5H), 3.25 (t, J = 4.6 Hz, 5H), 1.50 (s, 9H); 13 C-NMR (100 MHz, CDCl 3 ) δ : 187.7, 167.4, 157.7, 148.5, 144.2, 136.2, 128.7, 128.3, 127.4, 118.6, 110.3, 103.3, 82.5, 71.2, 66.9, 65.9, 50.3, 28.0; HRMS (DART +): m / z calculated for C 24 H 30 NO 6 + : 428.2068, found: 428.2044.

(4)化合物27の合成 (4) Synthesis of Compound 27

化合物26 (847 mg, 1.98 mmol)を酢酸エチル(40 mL)に溶解し、10%パラジウム炭素(20 mg)を加えた。水素雰囲気下、室温で24時間撹拌した後、セライトを用いた濾過を行ない、触媒を除去した。濾液を減圧下濃縮し、化合物27を黄色油状物質として得た(74 mg, quant.)。   Compound 26 (847 mg, 1.98 mmol) was dissolved in ethyl acetate (40 mL), and 10% palladium carbon (20 mg) was added. The mixture was stirred at room temperature for 24 hours under a hydrogen atmosphere, and then filtered using Celite to remove the catalyst. The filtrate was concentrated under reduced pressure to obtain Compound 27 as a yellow oil (74 mg, quant.).

1H-NMR (CDCl3, 500 MHz) δ: 11.20 (s, 1H), 9.63 (s, 1H), 6.86 (s, 1H), 6.41 (s, 1H), 4.51 (s, 2H), 3.99-3.74 (m, 4H), 3.32 (t, J = 4.9 Hz, 4H), 1.50 (s, 9H); 13C-NMR (125 MHz, CDCl3) δ: 193.5, 167.5, 159.2, 150.4, 143.1, 116.7, 113.6, 105.8, 82.6, 66.8, 66.7, 50.1, 28.1; HRMS (DART+): m/z calculated for C17H24NO6 +: 338.1598, found : 338.1591. 1 H-NMR (CDCl 3 , 500 MHz) δ: 11.20 (s, 1H), 9.63 (s, 1H), 6.86 (s, 1H), 6.41 (s, 1H), 4.51 (s, 2H), 3.99- 3.74 (m, 4H), 3.32 (t, J = 4.9 Hz, 4H), 1.50 (s, 9H); 13 C-NMR (125 MHz, CDCl 3 ) δ: 193.5, 167.5, 159.2, 150.4, 143.1, 116.7 , 113.6, 105.8, 82.6, 66.8, 66.7, 50.1, 28.1; HRMS (DART +): m / z calculated for C 17 H 24 NO 6 + : 338.1598, found: 338.1591.

(5)化合物28の合成 (5) Synthesis of compound 28

化合物27 (570 mg, 1.69 mmol)および2-ブロモメチルチアゾール5-カルボン酸エチル(634 mg, 2.54 mmol)を脱水ジメチルホルムアミド(8 mL)に溶解し、炭酸カリウム(1.05 g, 7.61 mmol)を加え、100 ℃で1.5時間撹拌した。放冷後、反応液を.100 mLの水に注ぎ、得られた黄色懸濁液に1 M塩酸を滴下し、液性を酸性にした。そこに酢酸エチル(100 mL)を加え、抽出操作を行なった。有機層を水(50 mL×3)および飽和食塩水(50 mL)で洗浄した後、無水硫酸マグネシウムで乾燥させた。溶媒を減圧留去し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル: ヘキサン = 1 : 10 ; 1 : 3)で精製し、化合物28を黄色固体として得た(692 mg, 84%)。   Compound 27 (570 mg, 1.69 mmol) and ethyl 2-bromomethylthiazole 5-carboxylate (634 mg, 2.54 mmol) are dissolved in dehydrated dimethylformamide (8 mL), and potassium carbonate (1.05 g, 7.61 mmol) is added. The mixture was stirred at 100 ° C. for 1.5 hours. After allowing to cool, the reaction solution was poured into .100 mL of water, and 1 M hydrochloric acid was added dropwise to the resulting yellow suspension to make the solution acidic. Ethyl acetate (100 mL) was added thereto, and extraction operation was performed. The organic layer was washed with water (50 mL × 3) and saturated brine (50 mL), and then dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: hexane = 1: 10; 1: 3) to obtain Compound 28 as a yellow solid (692 mg, 84%).

1H-NMR (500 MHz, CDCl3) δ: 8.42 (s, 1H), 7.37 (s, 1H), 7.13 (s, 1H), 6.98 (s, 1H), 4.62 (s, 2H), 4.40 (q, J = 7.3 Hz, 2H), 3.94 (t, J = 4.6 Hz, 5H), 3.21 (t, J = 4.0 Hz, 4H), 1.51 (s, 9H), 1.41 (t, J = 7.2 Hz, 3H); 13C-NMR (125 MHz, CDCl3) δ: 167.6, 162.7, 161.3, 151.6, 149.1, 148.5, 142.6, 128.6, 122.1, 107.2, 104.7, 101.6, 82.5, 67.1, 66.5, 61.7, 51.3, 28.1, 14.3; HRMS (ESI+): m/z calculated for C24H29N2O7S+: 489.1690, found : 489.1676. 1 H-NMR (500 MHz, CDCl 3 ) δ: 8.42 (s, 1H), 7.37 (s, 1H), 7.13 (s, 1H), 6.98 (s, 1H), 4.62 (s, 2H), 4.40 ( q, J = 7.3 Hz, 2H), 3.94 (t, J = 4.6 Hz, 5H), 3.21 (t, J = 4.0 Hz, 4H), 1.51 (s, 9H), 1.41 (t, J = 7.2 Hz, 3C); 13 C-NMR (125 MHz, CDCl 3 ) δ: 167.6, 162.7, 161.3, 151.6, 149.1, 148.5, 142.6, 128.6, 122.1, 107.2, 104.7, 101.6, 82.5, 67.1, 66.5, 61.7, 51.3, 28.1, 14.3; HRMS (ESI +): m / z calculated for C 24 H 29 N 2 O 7 S + : 489.1690, found: 489.1676.

(6)Fura-N-6の合成 (6) Synthesis of Fura-N-6

化合物28 (30 mg, 0.0615 mmol)をエタノール(1.5 mL)と水(1.5 mL)の混合溶媒に溶解し、そこに1.2 M水酸化カリウム水溶液(61.5 μL, 0.0615 mmol)を滴下した。室温で6時間撹拌した後、Amberlite CG Type-Iを加え、反応溶液を中和した。反応液を濾過し、濾液を減圧化濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール = 1 : 0 ; 50 : 1)で精製し、黄色固体の化合物29を得た(9.0 mg, 24%)。   Compound 28 (30 mg, 0.0615 mmol) was dissolved in a mixed solvent of ethanol (1.5 mL) and water (1.5 mL), and 1.2 M aqueous potassium hydroxide solution (61.5 μL, 0.0615 mmol) was added dropwise thereto. After stirring at room temperature for 6 hours, Amberlite CG Type-I was added to neutralize the reaction solution. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 50: 1) to obtain a yellow solid compound 29 (9.0 mg, 24%).

得られた化合物29 (9.0 mg)と2-アミノエチルトリフェニルホスホニウムブロミド(9.4 mg, 0.0215 mmol)を脱水ジメチルホルムアミド(2 mL)に溶解し、0 ℃でDMT-MM(5.9 mg, 0.0215 mmol)を加えた。室温で15時間撹拌した後、反応液にヘキサフルオロリン酸カリウム(36 mg, 0.195 mmol)を加えた。室温で1時間撹拌した後、酢酸エチルを(20 mL)加え、反応混合液を水(20 mL×3)および飽和食塩水(20 mL)で洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール= 1 : 0 ;30 :1)で精製し、Fura-N-6を黄色固体として得た(6.8 mg, 39%)。   The obtained compound 29 (9.0 mg) and 2-aminoethyltriphenylphosphonium bromide (9.4 mg, 0.0215 mmol) were dissolved in dehydrated dimethylformamide (2 mL), and DMT-MM (5.9 mg, 0.0215 mmol) at 0 ° C. Was added. After stirring at room temperature for 15 hours, potassium hexafluorophosphate (36 mg, 0.195 mmol) was added to the reaction solution. After stirring at room temperature for 1 hour, ethyl acetate (20 mL) was added, and the reaction mixture was washed with water (20 mL × 3) and saturated brine (20 mL), dried over magnesium sulfate, and the solvent was removed under reduced pressure. Distilled off. The residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 30: 1) to obtain Fura-N-6 as a yellow solid (6.8 mg, 39%).

1H-NMR (CDCl3, 400 MHz) δ: 8.27 (s, 1H), 7.88-7.79 (m, 3H), 7.79-7.65 (m, 12H), 7.62-7.52 (m, 1H), 7.33 (s, 1H), 7.27 (s, 2H), 7.13 (s, 1H), 6.97 (s, 1H), 4.61 (s, 2H), 3.94 (t, J = 4.3 Hz, 4H), 3.90-3.79 (m, 2H), 3.68-3.51 (m, 2H), 3.29-3.11 (m, 4H), 1.50 (s, 9H); HRMS (ESI+): m/z calculated for C42H43N3O6PS+: 748.2605, found : 748.2624. 1 H-NMR (CDCl 3 , 400 MHz) δ: 8.27 (s, 1H), 7.88-7.79 (m, 3H), 7.79-7.65 (m, 12H), 7.62-7.52 (m, 1H), 7.33 (s , 1H), 7.27 (s, 2H), 7.13 (s, 1H), 6.97 (s, 1H), 4.61 (s, 2H), 3.94 (t, J = 4.3 Hz, 4H), 3.90-3.79 (m, 2H), 3.68-3.51 (m, 2H), 3.29-3.11 (m, 4H), 1.50 (s, 9H); HRMS (ESI +): m / z calculated for C 42 H 43 N 3 O 6 PS + : 748.2605 , found: 748.2624.

(7)Fura-Nox-6の合成 (7) Synthesis of Fura-Nox-6

Fura-N-6 (6.1 mg, 0.0068 mmol)をジクロロメタン(2 mL)に溶解し、0 ℃に冷却した後に炭酸水素ナトリウム(0.63 mg, 0.0075 mmol)とメタクロロ過安息香酸(1.9 mg, 0.0075 mmol)を加え、室温で30分間撹拌した。反応溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー(クロロホルム : メタノール= 1 : 0 ; 20 :1)で精製し、Fura-Nox-6を淡黄色沈殿として得た(3.3 mg, 53%)。   Dissolve Fura-N-6 (6.1 mg, 0.0068 mmol) in dichloromethane (2 mL), cool to 0 ° C, then add sodium bicarbonate (0.63 mg, 0.0075 mmol) and metachloroperbenzoic acid (1.9 mg, 0.0075 mmol) And stirred at room temperature for 30 minutes. After evaporating the reaction solvent under reduced pressure, the residue was purified by silica gel column chromatography (chloroform: methanol = 1: 0; 20: 1) to obtain Fura-Nox-6 as a pale yellow precipitate (3.3 mg, 53 %).

1H-NMR (CDCl3, 400 MHz) δ 8.79 (s, 1H), 8.25 (s, 1H), 7.94-7.85 (m, 9H), 7.84-7.71 (m, 6H), 7.61 (d, J = 1.0 Hz, 1H), 7.50 (s, 1H), 5.23-5.00 (m, 2H), 4.54 (t, J = 10.9 Hz, 2H), 4.05-3.88 (m, 2H), 3.88-3.68 (m, 4H), 3.10-2.98 (m, 2H), 1.53 (s, 9H); HRMS (ESI+): m/z calculated for C42H43N3O7PS+: 764.2554, found : 764.2544.427.0959. 1 H-NMR (CDCl 3 , 400 MHz) δ 8.79 (s, 1H), 8.25 (s, 1H), 7.94-7.85 (m, 9H), 7.84-7.71 (m, 6H), 7.61 (d, J = 1.0 Hz, 1H), 7.50 (s, 1H), 5.23-5.00 (m, 2H), 4.54 (t, J = 10.9 Hz, 2H), 4.05-3.88 (m, 2H), 3.88-3.68 (m, 4H ), 3.10-2.98 (m, 2H), 1.53 (s, 9H); HRMS (ESI +): m / z calculated for C 42 H 43 N 3 O 7 PS + : 764.2554, found: 764.2544.427.0959.

試験例1(各種分光学的測定)
各種Fura-Noxのヘム鉄応答性を蛍光分光光度計(日本分光、FP-6600)にて調査した。測定は全て50 mM HEPES緩衝液中pH 7.4にて実施した。また、Fura-Noxの濃度は2 μM(1 mM DMSO溶液をストック溶液とした)とし、ヘミン 2 μM(1 mM DMSO溶液をストック溶液とした)とグルタチオン(1 mM、100 mM水溶液をストック溶液とした)を添加し、一時間後における蛍光スペクトル変化を測定し、スペクトル変化前後における極大蛍光波長における蛍光強度比を算出した(表1参照)。
Test example 1 (various spectroscopic measurements)
The heme iron responsiveness of various Fura-Nox was investigated with a fluorescence spectrophotometer (JASCO, FP-6600). All measurements were performed at pH 7.4 in 50 mM HEPES buffer. The concentration of Fura-Nox is 2 μM (1 mM DMSO solution is used as stock solution), hemin 2 μM (1 mM DMSO solution is used as stock solution) and glutathione (1 mM, 100 mM aqueous solution is used as stock solution). The fluorescence spectrum change after 1 hour was measured, and the fluorescence intensity ratio at the maximum fluorescence wavelength before and after the spectrum change was calculated (see Table 1).

(1)ヘム鉄選択性の評価
ヘム鉄選択性について確認するため、10 μM二価鉄イオン(FeSO4)とグルタチオン(1 mM)を2 μMのFura-Nox誘導体と混合し、同様に一時間後の蛍光スペクトル変化および蛍光強度比を算出した。また、励起波長は365 nmとした(図1)。
(1) Evaluation of heme iron selectivity To confirm heme iron selectivity, 10 μM divalent iron ion (FeSO 4 ) and glutathione (1 mM) were mixed with 2 μM Fura-Nox derivative, and the same was applied for one hour. Later changes in fluorescence spectrum and fluorescence intensity ratio were calculated. The excitation wavelength was 365 nm (FIG. 1).

比較対象化合物として、二価鉄イオン応答性プローブであるRhoNox-1 (Chem. Sci. 2013, 4, 1250)、HMRhoNox-M (Org. Biomol. Chem. 2014, 12, 6590)、SiRhoNox-1 (Chem. Sci. 2017, 8, 4598)についても同条件にてヘミン又は二価鉄イオンと混合し、それぞれのプローブに対応する波長での蛍光スペクトル測定を実施した。   As comparative compounds, RhoNox-1 (Chem. Sci. 2013, 4, 1250), HMRhoNox-M (Org. Biomol. Chem. 2014, 12, 6590), SiRhoNox-1 ( Chem. Sci. 2017, 8, 4598) were mixed with hemin or divalent iron ions under the same conditions, and fluorescence spectra were measured at wavelengths corresponding to the respective probes.

図1(a-i)に、ヘム鉄蛍光プローブ Fura-Nox類縁体(a-f)及び二価鉄イオン蛍光プローブ(g-i)における、ヘミン(2 μM、黒太線)又は二価鉄イオン(10 μM、黒実線)に対する蛍光応答の結果を示す。各グラフにおいて、黒点線は反応前の蛍光応答を、灰色実線は1 mMグルタチオンのみの場合の蛍光応答を示す。ヘミン、二価鉄イオンとの反応時は1 mMグルタチオン存在下で反応した。励起波長は、(a-f)では365 nm、(g,h)では540 nm、(i)では630 nmとした。   Fig. 1 (ai) shows hemin (2 μM, thick black line) or divalent iron ion (10 μM, solid black line) in heme iron fluorescent probe Fura-Nox analog (af) and divalent iron ion fluorescent probe (gi). ) Shows the result of fluorescence response to. In each graph, the black dotted line shows the fluorescence response before the reaction, and the gray solid line shows the fluorescence response in the case of 1 mM glutathione alone. During the reaction with hemin and divalent iron ions, the reaction was performed in the presence of 1 mM glutathione. The excitation wavelength was 365 nm for (a-f), 540 nm for (g, h), and 630 nm for (i).

図2(a)に、各プローブのヘミン又は二価鉄イオンに対する蛍光応答性を比較した結果を示す。Fura-Nox-1からFura-Nox-6についてはそれぞれI(580)/I(430)、I(580)/I(430)、I(550)/I(425)、I(580)/I(430)、I(570)/I(430)、I(570)/I(430)の値を、プローブのみの場合を1として相対値をプロットした。但し、I(x)はx nmにおける蛍光強度を示す。棒グラフの白色はプローブのみ、灰色は二価鉄イオン(10 μM)、黒色はヘミン(2 μM)の結果を示す。実験条件は図1の実験と同様である。   FIG. 2 (a) shows the results of comparing the fluorescence responsiveness of each probe to hemin or divalent iron ions. For Fura-Nox-1 to Fura-Nox-6, I (580) / I (430), I (580) / I (430), I (550) / I (425), I (580) / I Relative values were plotted with the values of (430), I (570) / I (430), and I (570) / I (430) as 1 for the probe alone. However, I (x) represents the fluorescence intensity at x nm. In the bar graph, white indicates the probe only, gray indicates the divalent iron ion (10 μM), and black indicates the hemin (2 μM). The experimental conditions are the same as in the experiment of FIG.

図2(b)は、図2(a)におけるFura-Nox-1からFura-Nox-5の部分を拡大したものである。   FIG. 2 (b) is an enlarged view of Fura-Nox-1 to Fura-Nox-5 in FIG. 2 (a).

図1及び図2に示す結果から、全てのFura-Noxシリーズについて、二価鉄イオンの応答に比較してヘム鉄であるヘミンに対してのみ顕著な蛍光強度変化を示した。   From the results shown in FIGS. 1 and 2, all Fura-Nox series showed a significant change in fluorescence intensity only for hemin, which is heme iron, compared to the response of divalent iron ions.

また、同条件における二価鉄イオンに対するヘム鉄に対する選択性は表2のとおりである。特に、Fura-Nox-2からFura-Nox-6のFura-Noxシリーズについては、10倍以上の高い選択性を示し、良好なヘム鉄選択性が確認できた。   Moreover, the selectivity with respect to heme iron with respect to a bivalent iron ion in the same conditions is as Table 2. In particular, the Fura-Nox series from Fura-Nox-2 to Fura-Nox-6 showed 10 times or more high selectivity, and good heme iron selectivity was confirmed.

比較対象化合物である公知のキサンテン系色素を母核としたN−オキシド型二価鉄イオン蛍光プローブであるRhoNox-1、HMRhoNox-M、及びSiRhoNox-1は、二価鉄イオン及びヘム鉄の両方に対し反応し、ヘム鉄に対する選択性がほとんどないことがわかる。   RhoNox-1, HMRhoNox-M, and SiRhoNox-1, which are N-oxide type divalent iron ion fluorescent probes having a known xanthene dye as a host nucleus as a comparison target compound, are both divalent iron ions and heme iron It can be seen that there is almost no selectivity for heme iron.

従って、本発明のFura-Noxシリーズは、公知のキサンテン系色素を母核としたN−オキシド型二価鉄イオン蛍光プローブとは化学構造が大きく異なると共に、ヘム鉄に対する高い選択性(応答性)を示すことから全く異なる挙動を示すことが分かった。   Therefore, the Fura-Nox series of the present invention is greatly different in chemical structure from the N-oxide type divalent iron ion fluorescent probe having a known xanthene dye as a mother nucleus, and has high selectivity (responsiveness) to heme iron It was found that the behavior was completely different.

(2)金属イオン選択性の評価
金属イオン選択性試験については、金属種としてMnSO4、CoSO4、NiSO4、FeSO4、FeCl3、CuSO4、ZnSO4、NaCl、KCl、MgCl2、CaCl2を用い、遷移金属イオンについては10 mMのストック溶液を、アルカリ金属、アルカリ土類金属イオンは1 Mのストック溶液を作成し、これらを使用した。銅(I)については10 mM の[Cu(CH3CN)4]PF4のアセトニトリル溶液を作成し、これを用いた。上記のストック溶液を用いて20 μMの遷移金属イオンおよび1 mMのアルカリ、アルカリ土類金属イオンを2 μMのFura-Nox誘導体に添加し、一時間後の575 nmにおける蛍光強度を比較した。その結果を、図3に示す。
(2) Metal ion selectivity evaluation For metal ion selectivity tests, MnSO 4 , CoSO 4 , NiSO 4 , FeSO 4 , FeCl 3 , CuSO 4 , ZnSO 4 , NaCl, KCl, MgCl 2 , CaCl 2 are used as metal species. Were used to prepare a 10 mM stock solution for transition metal ions and a 1 M stock solution for alkali metal and alkaline earth metal ions. For copper (I), a 10 mM [Cu (CH 3 CN) 4 ] PF 4 acetonitrile solution was prepared and used. Using the above stock solution, 20 μM transition metal ions and 1 mM alkali and alkaline earth metal ions were added to 2 μM Fura-Nox derivatives, and the fluorescence intensity at 575 nm after 1 hour was compared. The result is shown in FIG.

図3は、各種金属イオン種に対するFura-Noxシリーズの蛍光応答性を比較した結果である。金属イオン濃度は、Na, K, Mg, Caイオンは、いずれも1 mMとし、他の金属イオンは、20 μMとした。   FIG. 3 is a result of comparison of fluorescence responsiveness of the Fura-Nox series to various metal ion species. The metal ion concentration was 1 mM for Na, K, Mg, and Ca ions, and 20 μM for other metal ions.

図3の結果より、Fura-Noxシリーズは、ヘム鉄に対する高い選択性を示すが、遊離の二価鉄イオン、及びその他の遷移金属イオンに対しては全く応答しないことが明らかになった。   From the results shown in FIG. 3, it was revealed that the Fura-Nox series shows high selectivity for heme iron, but does not respond at all to free divalent iron ions and other transition metal ions.

本発明化合物は、ヘム鉄に対する高い選択性を有するため、ヘム鉄選択的蛍光プローブとして有用である。   Since the compound of the present invention has high selectivity for heme iron, it is useful as a heme iron selective fluorescent probe.

Claims (11)

式(I):
(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。
は、−O−又は−S−である。)
で表される化合物又はその塩。
Formula (I):
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.
R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.
Y 1 is —O— or —S—. )
Or a salt thereof.
式(I)において、
が、式:−COORで表される基、又は式:−CONR で表される基であり、
が、置換基として式:−COORで表される基、及び式:−CONR で表される基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基であり、
当該Rが、
(A1)水素原子、又は
(A2)アルキル基であり、当該アルキル基は、下記(A2-1)〜(A2-3)からなる群より選ばれる少なくとも1種の基を有していてもよく、
(A2-1)アルキルカルボニルオキシ基、
(A2-2)ホスホニウム残基、
(A2-3)アルキルオキシ基、
当該Rが、同一又は異なって、
(B1)水素原子、又は
(B2)アルキル基であり、当該アルキル基は、下記(B2-1)〜(B2-5)からなる群より選ばれる少なくとも1種の基を有していてもよく、
(B2-1)カルボキシル基、
(B2-2)アルキルオキシカルボニル基、
(B2-3)(アルキルカルボニルオキシ)アルキルオキシカルボニル基、
(B2-4)ホスホニウム残基、
(B2-5)(アルキルオキシ)アルキルオキシカルボニル基、
及びRが共に式:−COORで表される基を有する場合、Rは同一又は異なっていてもよく、
及びRが共に式:−CONR で表される基を有する場合、Rは同一又は異なっていてもよい、
請求項1に記載の化合物又はその塩。
In formula (I):
R 1 is a group represented by the formula: —COOR A , or a group represented by the formula: —CONR B 2 ;
R 4 is an alkyl group which may have at least one selected from the group consisting of a group represented by the formula: —COOR A and a group represented by the formula: —CONR B 2 as a substituent. ,
The RA is
(A1) a hydrogen atom, or
(A2) is an alkyl group, and the alkyl group may have at least one group selected from the group consisting of the following (A2-1) to (A2-3);
(A2-1) alkylcarbonyloxy group,
(A2-2) phosphonium residue,
(A2-3) an alkyloxy group,
The R B are the same or different,
(B1) a hydrogen atom, or
(B2) is an alkyl group, and the alkyl group may have at least one group selected from the group consisting of the following (B2-1) to (B2-5);
(B2-1) carboxyl group,
(B2-2) an alkyloxycarbonyl group,
(B2-3) (alkylcarbonyloxy) alkyloxycarbonyl group,
(B2-4) a phosphonium residue,
(B2-5) (alkyloxy) alkyloxycarbonyl group,
When R 1 and R 4 both have a group represented by the formula: —COOR A , R A may be the same or different;
When R 1 and R 4 both have a group represented by the formula: —CONR B 2 , R B may be the same or different;
The compound according to claim 1 or a salt thereof.
式(I)において、
(式中、R及びRは前記に同じ。)
で表される基が、式(A):
(式中、Zは、結合手、−O−、−CH−、又は−NR−であり。Rは、水素原子、アルキル基、アルキルカルボニル基、アリールカルボニル基、ヘテロアリールカルボニル基、又はアルキルオキシカルボニル基である。)
で表される基である、
請求項1又は2に記載の化合物又はその塩。
In formula (I):
(Wherein R 2 and R 3 are the same as above)
The group represented by formula (A):
(In the formula, Z represents a bond, —O—, —CH 2 —, or —NR Z —. R Z represents a hydrogen atom, an alkyl group, an alkylcarbonyl group, an arylcarbonyl group, a heteroarylcarbonyl group, Or an alkyloxycarbonyl group.)
Is a group represented by
The compound or its salt of Claim 1 or 2.
式(I)において、Yが−S−である、請求項1〜3のいずれかに記載の化合物又はその塩。 In the formula (I), Y 1 is -S-, or a salt thereof according to claim 1. 請求項1〜4のいずれかに記載の化合物又はその塩を含む蛍光プローブ。 The fluorescent probe containing the compound or its salt in any one of Claims 1-4. 請求項5に記載の蛍光プローブを用いてヘム鉄を検出する方法。 A method for detecting heme iron using the fluorescent probe according to claim 5. (1)ヘム鉄を含む検体と、前記[5]に記載の蛍光プローブとを混合する工程、及び(2)得られた混合物の蛍光スペクトルを測定する工程を含む、請求項6に記載の方法。 The method according to claim 6, comprising: (1) mixing a specimen containing heme iron and the fluorescent probe according to [5]; and (2) measuring a fluorescence spectrum of the obtained mixture. . 式(I):
(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
及びRは、同一又は異なって、アルキル基である、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。
は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(9):
(式中、記号は前記に同じ。)
で表される化合物を酸化反応に付し、必要に応じて塩を形成することを特徴とする、製造方法。
Formula (I):
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.
R 2 and R 3 are the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring together with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.
R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.
Y 1 is —O— or —S—. )
Wherein the compound represented by formula (9):
(In the formula, the symbols are the same as above.)
A production method comprising subjecting a compound represented by the formula to an oxidation reaction to form a salt as necessary.
式(I−B):
(式中、
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
alkはアルキレン基を示し、
は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(I−A):
(式中、R及びRは同一又は異なってアルキル基を示し、R、R、及びYは前記に同じ。)
で表される化合物を加水分解し、必要に応じて塩を形成することを特徴とする、製造方法。
Formula (IB):
(Where
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.
alk represents an alkylene group,
Y 1 is —O— or —S—. )
A method for producing a compound represented by formula (I-A):
(In the formula, R 5 and R 6 are the same or different and each represents an alkyl group, and R 2 , R 3 and Y 1 are the same as above.)
The method represented by the formula is hydrolyzed to form a salt if necessary.
式(I−F):
(式中、
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
41はアルキル基を示し、
は、−O−又は−S−である。)
で表される化合物又はその塩の製造方法であって、式(I−E):
(式中、Rは同一又は異なってアルキル基を示し、R、R、及びYは前記に同じ。)
で表される化合物を加水分解し、必要に応じて塩を形成することを特徴とする、製造方法。
Formula (IF):
(Where
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.
R 41 represents an alkyl group,
Y 1 is —O— or —S—. )
Wherein the compound represented by formula (IE):
(In the formula, R 6 is the same or different and represents an alkyl group, and R 2 , R 3 , and Y 1 are the same as above.)
The method represented by the formula is hydrolyzed to form a salt if necessary.
式(9):
(式中、
は、カルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有する基である。
及びRは、同一又は異なって、アルキル基であるか、或いは、R及びRは、互いに結合して隣接するN−オキシドの窒素原子(N)と共に環を形成していてもよく、当該環は置換基を有していてもよい。
は、置換基としてカルボキシル基、カルボン酸エステル基、及びカルボン酸アミド基からなる群より選ばれる少なくとも1種を有していてもよいアルキル基である。
は、−O−又は−S−である。)
で表される化合物又はその塩。
Formula (9):
(Where
R 1 is a group having at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group.
R 2 and R 3 may be the same or different and are an alkyl group, or R 2 and R 3 may be bonded to each other to form a ring with the nitrogen atom (N) of the adjacent N-oxide. The ring may have a substituent.
R 4 is an alkyl group which may have at least one selected from the group consisting of a carboxyl group, a carboxylic acid ester group, and a carboxylic acid amide group as a substituent.
Y 1 is —O— or —S—. )
Or a salt thereof.
JP2018034775A 2018-02-28 2018-02-28 Fluorescence probe Pending JP2019147776A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018034775A JP2019147776A (en) 2018-02-28 2018-02-28 Fluorescence probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018034775A JP2019147776A (en) 2018-02-28 2018-02-28 Fluorescence probe

Publications (1)

Publication Number Publication Date
JP2019147776A true JP2019147776A (en) 2019-09-05

Family

ID=67850113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018034775A Pending JP2019147776A (en) 2018-02-28 2018-02-28 Fluorescence probe

Country Status (1)

Country Link
JP (1) JP2019147776A (en)

Similar Documents

Publication Publication Date Title
JP6351511B2 (en) Synthesis of asymmetric Si rhodamine and rhodol
US9329184B2 (en) Fluorescent probe
JP5588962B2 (en) Fluorescent probe for protease measurement
JP5228190B2 (en) Peroxynitrite fluorescent probe
US10451640B2 (en) Iron (II) ion detection agent and detection method using same
US9701667B2 (en) Coumarin-based fluorogenic agents and uses thereof for specific protein labelling
JPWO2005024049A1 (en) Fluorescent probe
US9688857B2 (en) Fluorescent probe
US20220220373A1 (en) Fluorescent probes for monoacylglycerol lipase (magl)
JP4402191B2 (en) Zinc fluorescent probe
JP6165065B2 (en) Fluorescent probe
JP2018145126A (en) Fluorescent probe for detection of carboxypeptidase activity
JPWO2015083799A1 (en) Near-infrared quencher
JP2019147776A (en) Fluorescence probe
US7109043B2 (en) Fluorescent probe for magnesium ion determination
JP2016193897A (en) Ph dependent fluorescence compound
JP4929452B2 (en) New coumarin derivatives
JP2018150245A (en) Novel iridium complex, oxygen concentration measurement reagent, oxygen concentration measuring method, and synthetic intermediate
EP1946102A1 (en) Coumarin-based amino acids for use in enzyme activity and substrate specificity assays
JP2021127305A (en) Compound having sulfonylaniline skeleton or salt thereof or organic fluorescence material having the same
CA3226795A1 (en) 2-diazo-3-oxo-2,3-dihydrospiro[indene-1,9'-xanthene] derivatives and similar compounds as photoactive fluorescent compounds for protein labeling
JPWO2020111279A1 (en) Fluorescent probe for detecting carboxypeptidase activity
KR20110029850A (en) A chemodosimeter approach to fluorescent sensing and imaging of inorganic and methylmercury species