JP2019143180A - Low-magnetic susceptibility zirconium alloy - Google Patents

Low-magnetic susceptibility zirconium alloy Download PDF

Info

Publication number
JP2019143180A
JP2019143180A JP2018026651A JP2018026651A JP2019143180A JP 2019143180 A JP2019143180 A JP 2019143180A JP 2018026651 A JP2018026651 A JP 2018026651A JP 2018026651 A JP2018026651 A JP 2018026651A JP 2019143180 A JP2019143180 A JP 2019143180A
Authority
JP
Japan
Prior art keywords
alloy
magnetic susceptibility
strain
superelastic
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018026651A
Other languages
Japanese (ja)
Other versions
JP7138905B2 (en
Inventor
熙榮 金
Kiei Kin
熙榮 金
宮崎 修一
Shuichi Miyazaki
修一 宮崎
佑典 石井
Hironori Ishii
佑典 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tsukuba NUC
Original Assignee
University of Tsukuba NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tsukuba NUC filed Critical University of Tsukuba NUC
Priority to JP2018026651A priority Critical patent/JP7138905B2/en
Publication of JP2019143180A publication Critical patent/JP2019143180A/en
Application granted granted Critical
Publication of JP7138905B2 publication Critical patent/JP7138905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a biological metal material having low magnetic susceptibility and superelasticity.SOLUTION: A low magnetic susceptibility zirconium alloy has niobium and aluminum with the balance being zirconium and inevitable impurities. When the ratio of niobium is x in atm% and the ratio of aluminum is y in atm%, following relations are satisfied: 7≤x≤10.5, 6≤y≤11, 25≤2x+y≤27.SELECTED DRAWING: Figure 9

Description

本発明は、低磁化率ジルコニウム合金に関し、特に、2%以上の回復ひずみ、いわゆる超弾性を有する低磁化率ジルコニウム合金に関する。   The present invention relates to a low magnetic susceptibility zirconium alloy, and particularly to a low magnetic susceptibility zirconium alloy having a recovery strain of 2% or more, so-called superelasticity.

歯科のインプラント(人工歯根)や歯列矯正ワイヤ、血管を拡張するためのステント、人工関節等、人体に使用される金属には、拒絶反応、アレルギー等の少ない生体適合性の高い材料を使用する必要がある。特に、歯列矯正ワイヤや血管拡張用のステントとしては、弾性の高い材料(超弾性材料)が好ましい。
このように、超弾性を有する金属材料としては、チタン(Ti)合金や、チタン−ニッケル(Ti−Ni)合金等が従来から知られている。
For metals used in the human body, such as dental implants (artificial roots), orthodontic wires, stents for expanding blood vessels, and artificial joints, use highly biocompatible materials that have low rejection and allergies. There is a need. In particular, a highly elastic material (super elastic material) is preferable as an orthodontic wire or a stent for vascular expansion.
As described above, titanium (Ti) alloys, titanium-nickel (Ti-Ni) alloys, and the like are conventionally known as superelastic metal materials.

生体用のジルコニウム合金として、下記の特許文献1,2に記載の技術が公知である。
特許文献1(特許第6160699号公報)には、12質量%以上18質量%以下のTaと、残部がZrのZr−Ta合金において、構成相が斜方晶マルテンサイトを含むマルテンサイトからなる生体用ジルコニウム合金が記載されている。
特許文献2(特開2012−66017号公報)には、15質量%超25質量%以下のNbと、残部がZrの生体用ジルコニウム合金(Zr−Nb合金)が記載されている。
The techniques described in Patent Documents 1 and 2 below are known as biological zirconium alloys.
Patent Document 1 (Japanese Patent No. 6160699) discloses a living body composed of 12% by mass to 18% by mass of Ta and a Zr—Ta alloy having a balance of Zr, the constituent phase of which is martensite including orthorhombic martensite. Zirconium alloys for use are described.
Patent Document 2 (Japanese Patent Laid-Open No. 2012-66017) describes a biological zirconium alloy (Zr—Nb alloy) in which Nb is more than 15% by mass and 25% by mass or less and the balance is Zr.

また、Niフリーな生体用超弾性チタン合金として、下記の特許文献3,4に記載の技術が公知である。
特許文献3(特許第3521253号公報)には、Nb,Taが合計で10〜20at%、Snが3〜6at%、残部がTi,Zrで構成された形状記憶特性または超弾性を有する生体用形状記憶合金((Ti,Zr)−(Nb,Ta)−Sn合金)が記載されている。
Moreover, the technique of the following patent documents 3 and 4 is well-known as Ni free superelastic titanium alloy for biological bodies.
Patent Document 3 (Patent No. 3512253) discloses a shape memory characteristic or superelasticity composed of Nb and Ta of 10 to 20 at% in total, Sn of 3 to 6 at%, and the balance of Ti and Zr. A shape memory alloy ((Ti, Zr)-(Nb, Ta) -Sn alloy) is described.

特許文献4(特許第4302604号公報)には、Ti−xTa−yNb−mZr−nMo合金において、
15mol%≦1.5x+y≦45mol%、
1mol%≦m≦20mol%、
1mol%≦n≦6mol%、
x+y+m+n≦60mol%、
を満たす生体用超弾性チタン合金が記載されている。
In patent document 4 (patent 4302604 gazette), in a Ti-xTa-yNb-mZr-nMo alloy,
15 mol% ≦ 1.5x + y ≦ 45 mol%,
1 mol% ≦ m ≦ 20 mol%,
1 mol% ≦ n ≦ 6 mol%,
x + y + m + n ≦ 60 mol%,
A superelastic titanium alloy for living body is described.

特許第6160699号公報Japanese Patent No. 6160699 特開2012−66017号公報JP 2012-66017 A 特許第3521253号公報Japanese Patent No. 3512253 特許第4302604号公報Japanese Patent No. 4302604

(従来技術の問題点)
現在、患者の診察を行う際に、MRI(Magnetic Resonance Imaging:核磁気共鳴画像法)装置を使用して、患者の体内の画像を撮影することが行われている。このとき、体内に金属物が存在していると、MRI装置の作動時に印加される磁場が、金属物の周囲で増大することとなり、撮影される画像にアーチファクト(偽像)が発生する問題がある。アーチファクトは、生体組織の磁化率(≒水の磁化率、−0.72×10−6[cm/g])と、金属材料の磁化率との差が大きくなると顕著となる。Ti合金や、Ti−Ni合金、ステンレス合金、Co−Cr合金、特許文献3,4に記載のTi系の合金では、磁化率が高くアーチファクトが発生しやすい問題がある。
また、特許文献1,2に記載の合金では、磁化率は抑えられるが、超弾性を有さないため、生体用の金属材料として使用可能な用途が限られる問題がある。
(Problems of conventional technology)
Currently, when a patient is examined, an image inside the patient's body is taken using an MRI (Magnetic Resonance Imaging) apparatus. At this time, if there is a metal object in the body, the magnetic field applied during the operation of the MRI apparatus increases around the metal object, and there is a problem that artifacts (false images) occur in the captured image. is there. Artifacts become prominent when the difference between the magnetic susceptibility of living tissue (≈water susceptibility, −0.72 × 10 −6 [cm 3 / g]) and the magnetic material susceptibility increases. Ti alloys, Ti—Ni alloys, stainless alloys, Co—Cr alloys, and Ti-based alloys described in Patent Documents 3 and 4 have a problem that the magnetic susceptibility is high and artifacts are likely to occur.
Moreover, although the magnetic susceptibility is restrained in the alloys described in Patent Documents 1 and 2, there is a problem that applications that can be used as a metal material for living bodies are limited because they do not have superelasticity.

本発明は、磁化率が低く超弾性を有する生体用金属材料を提供することを技術的課題とする。   An object of the present invention is to provide a biomedical metal material having a low magnetic susceptibility and superelasticity.

前記技術的課題を解決するために、請求項1に記載の発明の低磁化率ジルコニウム合金は、
ニオブと、
アルミニウムと、
残部のジルコニウムと、
不可避的不純物と、
からなり、
ニオブの割合をアトミックパーセントでxとし、アルミニウムの割合をアトミックパーセントでyとした場合に、
7≦x≦10.5、
6≦y≦11、
25≦2x+y≦27、
を満たすことを特徴とする。
In order to solve the technical problem, the low magnetic susceptibility zirconium alloy according to claim 1 is:
Niobium,
With aluminum,
The remaining zirconium,
With inevitable impurities,
Consists of
If the niobium percentage is x in atomic percent and the aluminum percentage is y in atomic percentage,
7 ≦ x ≦ 10.5,
6 ≦ y ≦ 11,
25 ≦ 2x + y ≦ 27,
It is characterized by satisfying.

請求項1に記載の発明によれば、磁化率が低く超弾性を有する生体用金属材料を提供することができる。   According to the first aspect of the present invention, it is possible to provide a biomaterial with a low magnetic susceptibility and super elasticity.

図1は相同定の試験の一例として合金15の試験結果の説明図である。FIG. 1 is an explanatory diagram of test results of an alloy 15 as an example of a phase identification test. 図2は各合金の相同定結果と2.5%歪み負荷除荷試験の結果の説明図である。FIG. 2 is an explanatory diagram of the phase identification result of each alloy and the result of 2.5% strain load unloading test. 図3は歪み負荷試験の模式図である。FIG. 3 is a schematic diagram of a strain load test. 図4は超弾性を有する合金の超弾性回復歪みを表したグラフである。FIG. 4 is a graph showing the superelastic recovery strain of an alloy having superelasticity. 図5はTEM観察結果の説明図である。FIG. 5 is an explanatory diagram of a TEM observation result. 図6は合金19と合金28の歪み増加サイクル試験の結果のグラフである。FIG. 6 is a graph showing the results of the strain increase cycle test of Alloy 19 and Alloy 28. 図7は合金13、合金19、合金25、合金28、合金31、合金34、合金36の超弾性回復歪みと繰り返し回数のグラフである。FIG. 7 is a graph of the superelastic recovery strain and the number of repetitions of Alloy 13, Alloy 19, Alloy 25, Alloy 28, Alloy 31, Alloy 34, and Alloy 36. 図8はDSC測定の説明図である。FIG. 8 is an explanatory diagram of DSC measurement. 図9は磁化率の測定結果のグラフである。FIG. 9 is a graph showing the measurement results of magnetic susceptibility.

本発明の実施例である下記表1に示す合金組成の合金7、合金8、合金12〜合金14、合金18〜合金20、合金24〜合金37および比較例としての合金1〜合金6、合金9〜合金11、合金21〜合金23の試験片を作製して、実験を行った。
実験に使用した試験片は、下記の方法(1)〜(7)により作製された。
(1)各金属元素のat%を計測してアルゴンアーク溶解法(3000[K]以下)により溶融して合金インゴットを作製した。すなわち、合金1(Zr−12Nb−3Al)は、12at%(アトミックパーセント)のNbと、3at%のAlと、残部(85at%)のZrの組成の合金であり、合金2(Ti−11.5Nb−3Al)は11.5at%のNbと、3at%のAlと、残部(85.5at%)のZrの組成の合金である。
(2)作製された合金の均質化処理を行った。実施例の均質化処理では、一例として、1273[K]で7.2[ks](7200秒=2時間)の間、空冷した。
(3)均質化処理がされた合金に対して、溶体化処理を行った。実施例の溶体化処理では、一例として、1273[K]で7.2[ks](7200秒=2時間)の間、水で焼き入れした。
(4)溶体化処理がされた合金に対して、50%冷間圧延を行った。
(5)冷間圧延された合金に対して、一例として、1273[K]で0.6[ks](600秒=10分)かけて、焼鈍を行った。
(6)焼鈍された合金に対して、最終厚さが0.2mmの薄板となるように、95%冷間圧延を行った。
(7)薄板の合金に対して、熱処理を行った。実施例1の熱処理では、一例として、1173[K]で1.8[ks](1800秒=30分)の間、水冷した。
Example 7 of the present invention is alloy 7, alloy 8, alloy 12 to alloy 14, alloy 18 to alloy 20, alloy 24 to alloy 37, alloy 1 to alloy 6, and alloy as comparative examples. Test specimens of 9 to Alloy 11 and Alloy 21 to Alloy 23 were produced and tested.
The test piece used for experiment was produced by the following method (1)-(7).
(1) At% of each metal element was measured and melted by an argon arc melting method (3000 [K] or less) to prepare an alloy ingot. That is, Alloy 1 (Zr-12Nb-3Al) is an alloy having a composition of 12 at% (atomic percent) Nb, 3 at% Al, and the remaining (85 at%) Zr, and alloy 2 (Ti-11. 5Nb-3Al) is an alloy having a composition of 11.5 at% Nb, 3 at% Al, and the balance (85.5 at%) of Zr.
(2) The produced alloy was homogenized. In the homogenization process of the example, as an example, air cooling was performed at 1273 [K] for 7.2 [ks] (7200 seconds = 2 hours).
(3) Solution treatment was performed on the homogenized alloy. In the solution treatment of the example, as an example, 1273 [K] was quenched with water for 7.2 [ks] (7200 seconds = 2 hours).
(4) 50% cold rolling was performed on the solution-treated alloy.
(5) As an example, the cold rolled alloy was annealed at 1273 [K] and 0.6 [ks] (600 seconds = 10 minutes).
(6) The annealed alloy was subjected to 95% cold rolling so that the final thickness was 0.2 mm.
(7) Heat treatment was performed on the thin alloy. In the heat treatment of Example 1, as an example, water cooling was performed at 1173 [K] for 1.8 [ks] (1800 seconds = 30 minutes).

(合金特性の測定試験)
前記作製方法で作製された合金の薄板を使用して、以下の1)〜6)の特性評価を行った。
1)相同定
2)2.5%歪み負荷除荷試験
3)TEM観察
4)歪み増加サイクル試験
5)DSC測定(Differential scanning calorimetry:示差走査熱量測定)
6)磁化測定
なお、相同定は、4%負荷除荷試験の前後で、XRD(X-ray diffraction:X線回折)法で、相(β相(bcc)やα″相(orthorhombic、斜方晶、マルテンサイト))の同定を行った。
また、歪み負荷除荷試験において、除荷後の加熱はヒートガンで500Kに上昇させ、その後、室温まで冷却後変位を測定し、形状回復歪みを評価した。
(Measurement test of alloy properties)
Using the alloy thin plate produced by the production method, the following characteristics evaluations 1) to 6) were performed.
1) Phase identification 2) 2.5% strain load unloading test 3) TEM observation 4) Strain increase cycle test 5) DSC measurement (Differential scanning calorimetry)
6) Magnetization measurement In addition, before and after the 4% load unloading test, the phase was identified by the XRD (X-ray diffraction) method. The phase (β phase (bcc) or α ″ phase (orthorhombic, oblique) Crystal, martensite)).
Further, in the strain load unloading test, heating after unloading was raised to 500 K with a heat gun, and then the displacement after cooling to room temperature was measured to evaluate the shape recovery strain.

図1は相同定の試験の一例として合金15の試験結果の説明図である。
図1に示すように、応力負荷と加熱によって、β相とα″相の相変態を確認することができた。したがって、Zrをベースとする実施例の合金でも、Ti合金と同じメカニズムで形状記憶特性が表れることがわかった。
図2は各合金の相同定結果と2.5%歪み負荷除荷試験の結果の説明図である。
図3は歪み負荷試験の模式図である。
図2において、各合金1〜37における相同定結果と歪み負荷曲線を示す。図3において、歪み負荷曲線において、実施例である合金7、合金8、合金12〜合金14、合金18〜合金20、合金24〜合金37では、除荷時の弾性復元による歪みの回復量εelだけでなく、超弾性による歪みの回復εseが見られる。なお、弾性分の歪みεelと超弾性分の歪みεseを合わせたものが回復歪みεrであり、塑性変形によるひずみがεresとなる。
したがって、合金7、合金8、合金12〜合金14、合金18〜合金20、合金24〜合金37は超弾性を有する合金である。
FIG. 1 is an explanatory diagram of test results of an alloy 15 as an example of a phase identification test.
As shown in FIG. 1, the phase transformation of the β phase and the α ″ phase could be confirmed by stress loading and heating. Therefore, the Zr-based alloy of the example was shaped by the same mechanism as the Ti alloy. It was found that memory characteristics appeared.
FIG. 2 is an explanatory diagram of the phase identification result of each alloy and the result of 2.5% strain load unloading test.
FIG. 3 is a schematic diagram of a strain load test.
In FIG. 2, the phase identification result and strain load curve in each alloy 1-37 are shown. In FIG. 3, in the strain load curve, in the alloy 7, alloy 8, alloy 12 to alloy 14, alloy 18 to alloy 20, and alloy 24 to alloy 37, which are examples, the strain recovery amount ε due to elastic recovery at the time of unloading. In addition to el , strain recovery ε se due to superelasticity can be seen. Incidentally, a recovery strain epsilon r The combined strain epsilon el and superelastic component of strain epsilon se elastic component, distortion due to the plastic deformation is epsilon res.
Accordingly, the alloy 7, the alloy 8, the alloy 12 to the alloy 14, the alloy 18 to the alloy 20, and the alloy 24 to the alloy 37 are superelastic alloys.

図2の結果から、超弾性を有するNb濃度とAl濃度との関係は、ニオブの割合をat%でxとし、アルミニウムの割合をat%でyとした場合に、
7≦x≦10.5、
6≦y≦11、
25≦2x+y≦27、
を満足する範囲と規定される。
なお、Nbが7at%より少ない場合は、50%冷間圧延ができず、試料作製ができなかった。
From the results of FIG. 2, the relationship between the superelastic Nb concentration and the Al concentration is as follows when the ratio of niobium is x in at% and the ratio of aluminum is y in at%.
7 ≦ x ≦ 10.5,
6 ≦ y ≦ 11,
25 ≦ 2x + y ≦ 27,
Is defined as a range that satisfies the above.
In addition, when Nb was less than 7 at%, 50% cold rolling could not be performed and sample preparation was not possible.

図4は超弾性を有する合金の超弾性回復歪みを表したグラフである。
図4において、前述した超弾性を有する合金において、合金19、合金25、合金28、合金31、合金34は2%を超える超弾性回復歪みを有し、特に、合金25、合金28は4%を超える(約4.3%)超弾性回復歪みを有することが確認された。
FIG. 4 is a graph showing the superelastic recovery strain of an alloy having superelasticity.
In FIG. 4, in the above-described alloy having superelasticity, the alloy 19, alloy 25, alloy 28, alloy 31, and alloy 34 have a superelastic recovery strain exceeding 2%, and in particular, the alloy 25 and alloy 28 have 4%. It was confirmed to have a superelastic recovery strain greater than (approximately 4.3%).

図5はTEM観察結果の説明図である。
図5において、合金5、合金9、合金14、合金19の各TEM画像を見ると、Nb濃度が同一で、Al濃度を増加させると、ω相(マルテンサイトを阻害する相)が減少していき、合金19では、ほとんど消えたことが確認された。
FIG. 5 is an explanatory diagram of a TEM observation result.
In FIG. 5, when TEM images of alloy 5, alloy 9, alloy 14, and alloy 19 are viewed, the Nb concentration is the same, and when the Al concentration is increased, the ω phase (phase that inhibits martensite) decreases. It was confirmed that the alloy 19 almost disappeared.

図6は合金19と合金28の歪み増加サイクル試験の結果のグラフである。
図7は合金13、合金19、合金25、合金28、合金31、合金34、合金36の超弾性回復歪みと繰り返し回数のグラフである。
図6、図7において、各合金において、歪み負荷試験を繰り返すと、一度超弾性特性が上昇した後、少しずつ超弾性特性が低下することが確認された。合金13や合金19では、5回目以降は超弾性特性が低下し始めるが、合金25と合金28、合金31、合金34は、合金13や合金19に比べて、繰り返しに強いことが確認された。特に、合金28は7回目でも超弾性特性がほとんど低下しないことが確認された。
FIG. 6 is a graph showing the results of the strain increase cycle test of Alloy 19 and Alloy 28.
FIG. 7 is a graph of the superelastic recovery strain and the number of repetitions of Alloy 13, Alloy 19, Alloy 25, Alloy 28, Alloy 31, Alloy 34, and Alloy 36.
6 and 7, when the strain load test was repeated for each alloy, it was confirmed that after the superelastic property was once increased, the superelastic property was gradually decreased. In the alloy 13 and the alloy 19, the superelastic characteristics began to decrease after the fifth time, but it was confirmed that the alloy 25, the alloy 28, the alloy 31, and the alloy 34 were more resistant to repetition than the alloy 13 and the alloy 19. . In particular, it was confirmed that the alloy 28 hardly deteriorated in superelastic properties even at the seventh time.

図8はDSC測定の説明図である。
DSC測定では、各合金において、Nbの濃度の変化とAlの濃度の変化と逆変態温度との関係を測定した。図8において、Nb濃度が増加するほど逆変態温度が低下することが確認された。なお、温度低下は、Nb濃度1at%あたり、−114[K]であった。また、Al濃度が増加するほど逆変態温度が低下することも確認された。なお、温度低下は、Al濃度1at%あたり、−48[K]であった。
FIG. 8 is an explanatory diagram of DSC measurement.
In the DSC measurement, for each alloy, the relationship between the change in the Nb concentration, the change in the Al concentration, and the reverse transformation temperature was measured. In FIG. 8, it was confirmed that the reverse transformation temperature decreases as the Nb concentration increases. The temperature decrease was −114 [K] per Nb concentration of 1 at%. It was also confirmed that the reverse transformation temperature decreased as the Al concentration increased. The temperature decrease was −48 [K] per Al concentration of 1 at%.

図9は磁化率の測定結果のグラフである。
図9には、各合金において、Nbの濃度を変化させた場合と、Alの濃度を変化させた場合の合金の磁化率の推移を計測した結果を示す。
図9において、各合金は、2×10−6[cm/g]未満、さらに言えば、1.7×10−6[cm/g]未満の磁化率の合金が得られることが分かった。ここで、純チタンは磁化率が3.25×10−6[cm/g]であり、Ti−Ni合金は磁化率が3.30×10−6[cm/g]である。したがって、チタン系の合金に比べて、約半分の磁化率を有する超弾性合金が得られた。なお、純ジルコニウムは磁化率が1.31×10−6[cm/g]であるが、超弾性特性は有さない。例えば、超弾性特性を有する合金25は磁化率が1.66×10−6[cm/g]であった。
また、図9の結果から、Nbの濃度を増加させると、磁化率が上昇することが確認された。これは、Nbの磁化率(2.20×10−6[cm/g])がZrよりも高いためと考えられる。また、Alの濃度が増加すると、磁化率が上昇した後に低下することも確認された。最初に磁化率が上昇するのは、ω相の抑制効果が向上するためと考えられ、後に磁化率が低下するのはAlの磁化率(0.61×10−6[cm/g])がZrの磁化率よりも低いためと考えられる。
FIG. 9 is a graph showing the measurement results of magnetic susceptibility.
FIG. 9 shows the results of measuring the transition of the magnetic susceptibility of each alloy when the Nb concentration is changed and when the Al concentration is changed.
In FIG. 9, it is found that each alloy can obtain an alloy having a magnetic susceptibility of less than 2 × 10 −6 [cm 3 / g], more specifically, less than 1.7 × 10 −6 [cm 3 / g]. It was. Here, the pure titanium has a magnetic susceptibility of 3.25 × 10 −6 [cm 3 / g], and the Ti—Ni alloy has a magnetic susceptibility of 3.30 × 10 −6 [cm 3 / g]. Therefore, a superelastic alloy having a magnetic susceptibility about half that of a titanium-based alloy was obtained. Pure zirconium has a magnetic susceptibility of 1.31 × 10 −6 [cm 3 / g], but does not have superelastic characteristics. For example, the alloy 25 having superelastic characteristics has a magnetic susceptibility of 1.66 × 10 −6 [cm 3 / g].
Further, from the results of FIG. 9, it was confirmed that the magnetic susceptibility increases when the concentration of Nb is increased. This is presumably because the magnetic susceptibility of Nb (2.20 × 10 −6 [cm 3 / g]) is higher than Zr. It was also confirmed that when the Al concentration increases, the magnetic susceptibility increases and then decreases. The first increase in magnetic susceptibility is thought to be due to an improvement in the suppression effect of the ω phase, and the subsequent decrease in magnetic susceptibility is due to the magnetic susceptibility of Al (0.61 × 10 −6 [cm 3 / g]). Is considered to be lower than the magnetic susceptibility of Zr.

前述の結果から、本実施例の各合金では、磁化率が2×10−6[cm/g]よりも低く、MRIアーチファクトが発生しにくいとともに、超弾性を有する。また、ジルコニウムとニオブは生体適合性も高く、生体用金属材料として好適に使用することが可能である。 From the above results, each alloy of this example has a magnetic susceptibility lower than 2 × 10 −6 [cm 3 / g], hardly generates MRI artifacts, and has superelasticity. Zirconium and niobium have high biocompatibility and can be suitably used as a biomaterial.

以上、本発明の実施例を詳述したが、本発明は、前記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内で、種々の変更を行うことが可能である。
例えば、高い生体適合性を利用して、人工骨や人工関節、インプラント(人工歯根)、歯列矯正ワイヤ、ステント等の手術や治療等で使用される生体・医療部材に好適に利用可能であるが、これに限定されない。例えば、超弾性(高柔軟性)、高強度を利用して、眼鏡のフレームやゴルフクラブ、サスペンションやスプリング等の自動車、二輪車用部品、テントのポール等のレジャー用品等にも好適に適用可能である。
As mentioned above, although the Example of this invention was explained in full detail, this invention is not limited to the said Example, A various change is performed within the range of the summary of this invention described in the claim. It is possible.
For example, by utilizing high biocompatibility, it can be suitably used for biological / medical members used in surgery and treatment such as artificial bones, artificial joints, implants (artificial roots), orthodontic wires, and stents. However, it is not limited to this. For example, it can be suitably applied to spectacle frames and golf clubs, automobiles such as suspensions and springs, motorcycle parts, leisure goods such as tent poles, etc. by utilizing superelasticity (high flexibility) and high strength. is there.

Claims (1)

ニオブと、
アルミニウムと、
残部のジルコニウムと、
不可避的不純物と、
からなり、
ニオブの割合をアトミックパーセントでxとし、アルミニウムの割合をアトミックパーセントでyとした場合に、
7≦x≦10.5、
6≦y≦11、
25≦2x+y≦27、
を満たすことを特徴とする低磁化率ジルコニウム合金。
Niobium,
With aluminum,
The remaining zirconium,
With inevitable impurities,
Consists of
If the niobium percentage is x in atomic percent and the aluminum percentage is y in atomic percentage,
7 ≦ x ≦ 10.5,
6 ≦ y ≦ 11,
25 ≦ 2x + y ≦ 27,
A low magnetic susceptibility zirconium alloy characterized by satisfying
JP2018026651A 2018-02-19 2018-02-19 Superelastic low magnetic susceptibility zirconium alloy Active JP7138905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018026651A JP7138905B2 (en) 2018-02-19 2018-02-19 Superelastic low magnetic susceptibility zirconium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018026651A JP7138905B2 (en) 2018-02-19 2018-02-19 Superelastic low magnetic susceptibility zirconium alloy

Publications (2)

Publication Number Publication Date
JP2019143180A true JP2019143180A (en) 2019-08-29
JP7138905B2 JP7138905B2 (en) 2022-09-20

Family

ID=67771961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018026651A Active JP7138905B2 (en) 2018-02-19 2018-02-19 Superelastic low magnetic susceptibility zirconium alloy

Country Status (1)

Country Link
JP (1) JP7138905B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282450A (en) * 1989-04-24 1990-11-20 Koji Hashimoto Highly corrosion resistant amorphous aluminum alloy
JPH059631A (en) * 1991-07-05 1993-01-19 Sumitomo Metal Ind Ltd Wear resistant zirconium alloy
US20080071347A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having alloy compositions
JP2010075413A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Metallic biomaterial and medical device
WO2013035269A1 (en) * 2011-09-05 2013-03-14 国立大学法人 筑波大学 Super elastic zirconium alloy for biological use, medical instrument and glasses
JP2015212400A (en) * 2012-08-28 2015-11-26 国立大学法人 東京医科歯科大学 Zirconium alloy, bone anchor, and method of producing zirconium alloy
CN105463253A (en) * 2015-12-25 2016-04-06 燕山大学 Low-expansion-coefficient zirconium alloy and preparation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282450A (en) * 1989-04-24 1990-11-20 Koji Hashimoto Highly corrosion resistant amorphous aluminum alloy
JPH059631A (en) * 1991-07-05 1993-01-19 Sumitomo Metal Ind Ltd Wear resistant zirconium alloy
US20080071347A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having alloy compositions
JP2010075413A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Metallic biomaterial and medical device
WO2013035269A1 (en) * 2011-09-05 2013-03-14 国立大学法人 筑波大学 Super elastic zirconium alloy for biological use, medical instrument and glasses
JP2015212400A (en) * 2012-08-28 2015-11-26 国立大学法人 東京医科歯科大学 Zirconium alloy, bone anchor, and method of producing zirconium alloy
CN105463253A (en) * 2015-12-25 2016-04-06 燕山大学 Low-expansion-coefficient zirconium alloy and preparation method thereof

Also Published As

Publication number Publication date
JP7138905B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
Niinomi et al. Development of new metallic alloys for biomedical applications
Mehjabeen et al. Zirconium alloys for orthopaedic and dental applications
Hanawa Overview of metals and applications
Lin et al. Novel Ti-Ta-Hf-Zr alloys with promising mechanical properties for prospective stent applications
JP4523179B2 (en) Biomedical aids or implants
US7722805B2 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
Ramezannejad et al. New insights into nickel-free superelastic titanium alloys for biomedical applications
Abd-elrhman et al. Compatibility assessment of new V-free low-cost Ti–4.7 Mo–4.5 Fe alloy for some biomedical applications
Málek et al. The effect of Zr on the microstructure and properties of Ti-35Nb-XZr alloy
Liu et al. Deformation-induced changeable Young's modulus with high strength in β-type Ti–Cr–O alloys for spinal fixture
Narushima New-generation metallic biomaterials
US20110070121A1 (en) Beta-based titanium alloy with low elastic modulus
US20170327928A1 (en) Titanium alloy
JP5924825B2 (en) Superelastic zirconium alloy for living body, medical instrument and glasses
Tian et al. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents
Li et al. Towards bone-like elastic modulus in TiNbSn alloys with large recovery strain for biomedical applications
Tasaki et al. Martensitic transformation and shape memory effect of TiZrHf-based multicomponent alloys
JP7036276B2 (en) Zr-Nb-based alloy material, manufacturing method of the alloy material, and Zr-Nb-based alloy product
Chiu et al. Phase constituent and microstructure manipulations via annealing for enhancements of mechanical property and functionalities of Ti–Au–Cr–Ta biomedical shape memory alloys
JP7138905B2 (en) Superelastic low magnetic susceptibility zirconium alloy
O’Brien et al. Initial exploration of Ti–Ta, Ti–Ta–Ir and Ti–Ir alloys: candidate materials for coronary stents
Ma et al. Effect of various annealing temperature on microstructure and properties of metastable β-Type Ti-35Nb-2Ta-3Zr alloy for biomedical applications
Johannsen et al. Laser beam powder bed fusion of novel biomedical Titanium/Niobium/Tantalum alloys: Powder synthesis, microstructure evolution and mechanical properties
Li et al. Microstructure, mechanical properties and springback behaviour of Ti‑6Al‑4V alloy connection rod for spinal fixation device
CN111032891B (en) Artifact-free superelastic alloy

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220831

R150 Certificate of patent or registration of utility model

Ref document number: 7138905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150