JP2019140134A - Transparent electrode sheet and method for manufacturing the same - Google Patents

Transparent electrode sheet and method for manufacturing the same Download PDF

Info

Publication number
JP2019140134A
JP2019140134A JP2018018896A JP2018018896A JP2019140134A JP 2019140134 A JP2019140134 A JP 2019140134A JP 2018018896 A JP2018018896 A JP 2018018896A JP 2018018896 A JP2018018896 A JP 2018018896A JP 2019140134 A JP2019140134 A JP 2019140134A
Authority
JP
Japan
Prior art keywords
electrode sheet
transparent electrode
metal wiring
wiring
transparent substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018018896A
Other languages
Japanese (ja)
Other versions
JP7048337B2 (en
Inventor
正人 大澤
Masato Osawa
正人 大澤
夏樹 橋本
Natsuki Hashimoto
夏樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018018896A priority Critical patent/JP7048337B2/en
Publication of JP2019140134A publication Critical patent/JP2019140134A/en
Application granted granted Critical
Publication of JP7048337B2 publication Critical patent/JP7048337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a transparent electrode sheet which does not hinder a function of forming an organic film with a substantially uniform film thickness over the entire surface without a defect even when, for example, an organic film is formed on a surface of a transparent substrate.SOLUTION: A transparent electrode sheet St includes an insulating transparent substrate Ft and metal wirings Lx, Ly formed on a surface of the transparent substrate. A cross section of a surface layer portion Pu of the metal wirings Lx, Ly is semi-elliptical with an eccentricity in a range of 0.8322 to 0.9992.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁性の透明基材と、透明基材の表面に形成された金属配線とを備える透明電極シート及び透明電極シートの製造方法に関し、より詳しくは、可撓性の有機ELディスプレイや有機太陽電池といったフレキシブルデバイスに利用されるものに関する。   The present invention relates to a transparent electrode sheet comprising an insulating transparent substrate and a metal wiring formed on the surface of the transparent substrate, and a method for producing the transparent electrode sheet, and more specifically, a flexible organic EL display, The present invention relates to a device used for a flexible device such as an organic solar cell.

この種の透明電極シートは例えば特許文献1で知られている。このものでは、透明基材の表面に所定の金属膜をスパッタリング法等により成膜した後、金属膜をフォトリソグラフィー法によりパターニングして金属配線を形成している。このような透明電極シートをフレキシブルデバイスに利用する場合、金属配線がパターニング形成された透明基材の表面には、発光機能や発電機能のような所定の機能を発現させる有機膜が例えば真空蒸着法や塗布法により成膜されることになる。   This type of transparent electrode sheet is known from Patent Document 1, for example. In this device, after a predetermined metal film is formed on the surface of the transparent substrate by a sputtering method or the like, the metal film is patterned by a photolithography method to form a metal wiring. When such a transparent electrode sheet is used for a flexible device, an organic film that expresses a predetermined function such as a light emitting function or a power generation function is formed on the surface of a transparent base material on which a metal wiring is formed by patterning, for example, a vacuum deposition method. The film is formed by the coating method.

ここで、上記従来例の如く、金属配線をパターニング形成すると、金属配線の表層部の断面は、その縁部が角張った略矩形状となる。このため、上記方法で透明基材の表面に有機膜を成膜すると、縁部に対応する有機膜の部分の厚みが薄くなり易く、透明基材の表面全面にわたって略均等な膜厚で欠陥なく有機膜を成膜できないという問題がある。この場合、有機膜の膜厚が不均一になっていると、発光機能や発電機能といった機能を効果的に発現できない虞がある。   Here, when the metal wiring is formed by patterning as in the above-described conventional example, the cross-section of the surface layer portion of the metal wiring becomes a substantially rectangular shape with an angular edge. For this reason, when an organic film is formed on the surface of the transparent substrate by the above method, the thickness of the portion of the organic film corresponding to the edge tends to be thin, and there is no defect with a substantially uniform film thickness over the entire surface of the transparent substrate. There is a problem that an organic film cannot be formed. In this case, when the film thickness of the organic film is not uniform, there is a possibility that functions such as a light emitting function and a power generation function cannot be effectively expressed.

特開2015−156270号公報Japanese Patent Laying-Open No. 2015-156270

本発明は、以上の点に鑑み、例えば透明基材の表面に有機膜が成膜されるような場合でも、この有機膜がその表面全面に亘って略均等な膜厚で欠陥なく成膜されるという機能を阻害しない透明電極シート及び透明電極シートの製造方法を提供することをその課題とするものである。   In view of the above points, the present invention can form an organic film with a uniform thickness over the entire surface of the transparent substrate even when an organic film is formed on the surface of the transparent substrate. It is an object of the present invention to provide a transparent electrode sheet that does not impede the function of producing and a method for producing the transparent electrode sheet.

上記課題を解決するために、本発明は、絶縁性の透明基材と、透明基材の表面に形成された金属配線とを備える透明電極シートにおいて、前記金属配線の表層部の断面を離心率が0.8322〜0.9992の範囲の半楕円状としたことを特徴とする。ここで、本発明において、「表層部」といった場合、透明基材の表面から金属配線に向かう方向を上として、金属配線の幅が最大となる、透明基材表面からの高さ位置を基準とし、この基準位置より上方に位置する金属配線の部分を指す。   In order to solve the above-mentioned problems, the present invention provides a transparent electrode sheet comprising an insulating transparent base material and a metal wiring formed on the surface of the transparent base material. Is a semi-elliptical shape in the range of 0.8322 to 0.9992. Here, in the present invention, in the case of “surface layer portion”, the direction from the surface of the transparent substrate toward the metal wiring is the top, the width of the metal wiring is maximized, and the height position from the surface of the transparent substrate is used as a reference. The part of the metal wiring located above the reference position.

本発明によれば、金属配線の表層部から角張った縁部をなくして、離心率が0.8322〜0.9992の範囲の半楕円状の断面形状としたことで、例えば真空蒸着法や塗布法によって透明電極シートの表面にその金属配線を覆うように有機膜を成膜するような場合でも、有機膜の膜厚が局所的に薄くなるといった不具合は発生せず、透明基材の表面全面にわたって略均等な膜厚で欠陥なく有機膜を成膜できる。なお、本発明において離心率が0.8322より小さいと、前記有機膜に欠陥が生じるという不具合があり、0.9992より大きくなると、配線の厚みが薄くなりすぎて所望の抵抗値を実現する断面積が得られないという不具合がある。   According to the present invention, the edge portion that is angular from the surface layer portion of the metal wiring is eliminated, and the cross-sectional shape having an eccentricity in the range of 0.8322 to 0.9992 is obtained. Even when an organic film is formed on the surface of the transparent electrode sheet so as to cover the metal wiring by the method, there is no problem that the film thickness of the organic film is locally reduced. An organic film can be formed with a substantially uniform film thickness without defects. In the present invention, when the eccentricity is smaller than 0.8322, there is a defect that the organic film has a defect. When the eccentricity is larger than 0.9992, the thickness of the wiring becomes too thin to realize a desired resistance value. There is a problem that the area cannot be obtained.

また、本発明の透明電極シートを適用してフレキシブルデバイスを製作した場合、このようなフレキシブルデバイスは、使用時、曲げられたりすることが想定されるが、金属配線の表層部を楕円状の断面形状としておけば、応力集中によって有機膜が部分的に破損するといった不具合も生じない。   In addition, when a flexible device is manufactured by applying the transparent electrode sheet of the present invention, such a flexible device is assumed to be bent during use, but the surface layer portion of the metal wiring has an elliptical cross section. If the shape is adopted, there is no problem that the organic film is partially damaged by stress concentration.

本発明において、前記透明基材の表面からの前記金属配線の最大厚みが0.1μm〜1μmの範囲であることが好ましい。0.1μm未満では、金属配線に断線が生じるという不具合がある一方で、1μmを超えると、有機膜を略均一な厚みで形成できないという不具合がある。   In this invention, it is preferable that the maximum thickness of the said metal wiring from the surface of the said transparent base material is the range of 0.1 micrometer-1 micrometer. If the thickness is less than 0.1 μm, there is a problem that the metal wiring is disconnected. On the other hand, if the thickness exceeds 1 μm, the organic film cannot be formed with a substantially uniform thickness.

本発明において、前記金属配線は、銀ナノ粒子を焼結してなる焼結体であることが好ましい。   In the present invention, the metal wiring is preferably a sintered body formed by sintering silver nanoparticles.

ところで、透明電極シートをフレキシブルデバイスに適用するには、金属配線の視認性が低く、高い透過率と低い抵抗値とを併せ持つことが要求されるが、このような透明電極シートを簡単に製造することは困難である。   By the way, in order to apply a transparent electrode sheet to a flexible device, it is required to have low visibility of metal wiring and to have both a high transmittance and a low resistance value. Such a transparent electrode sheet is easily manufactured. It is difficult.

そこで、本発明では、前記金属配線が格子状に形成されるものである場合、前記透明基材の表面で金属配線が夫々のびる方向をX軸方向及びY軸方向とし、X軸方向及びY軸方向で互いに隣接する夫々2本の配線で区画される透明基材の部分を単位面積部、単位面積部にて透明基材の配線のない部分を単位開口、単位開口を区画する金属配線の配線幅をW、単位開口の幅をGとし、これら配線幅Wと幅Gとで決定される単位開口の面積率を基に、単位面積部における配線の充填分画fを次式(1)で定義し、
f=W/(G+W)・・・(1)
前記充填分画fと当該透明電極シートの透過率Tとの関係が次式(2)で表されるようにすれば、フレキシブルデバイスに適用するときに要求される金属配線の低い視認性、高い透過率及び低抵抗値を併せ持つ透明電極シートを得ることができる。ここで、式(2)のTは、波長550nmにおける透過率であり、式(2)から算出されるTの値と、実測されるTの値との違いは±0.01以内である。
T=0.98−1.7f・・・(2)
Therefore, in the present invention, when the metal wiring is formed in a lattice shape, the direction in which the metal wiring extends on the surface of the transparent base is defined as the X-axis direction and the Y-axis direction, and the X-axis direction and the Y-axis Wiring of metal wiring that divides the portion of the transparent base material that is divided by two wirings adjacent to each other in the direction, unit area portion, the unit area portion that has no wiring of the transparent base material unit opening, and unit opening Based on the area ratio of the unit opening determined by the width W and the width G, the filling fraction f of the wiring in the unit area portion is expressed by the following equation (1). Define
f = W / (G + W) (1)
If the relationship between the filling fraction f and the transmittance T of the transparent electrode sheet is expressed by the following equation (2), low visibility and high visibility of metal wiring required when applied to a flexible device: A transparent electrode sheet having both transmittance and low resistance value can be obtained. Here, T in Equation (2) is the transmittance at a wavelength of 550 nm, and the difference between the T value calculated from Equation (2) and the measured T value is within ± 0.01.
T = 0.98-1.7f (2)

本発明において、前記金属配線の比抵抗が2〜30μΩ・cmである場合、前記充填分画fを0.0002〜0.048の範囲にすれば、シート抵抗が100Ω/□以下であり、かつ、波長550nmにおける透過率が90%以上である透明電極シートを得ることができる。また、前記充填分画fを0.0004〜0.048の範囲にすれば、シート抵抗が50Ω/□以下であり、かつ、波長550nmにおける透過率が90%以上である透明電極シートを得ることができる。また、前記充填分画fを0.002〜0.048の範囲にすれば、シート抵抗が10Ω/□以下であり、かつ、波長550nmにおける透過率が90%以上である透明電極シートを得ることができる。また、前記充填分画fを0.002〜0.018の範囲にすれば、シート抵抗が10Ω/□以下であり、かつ、波長550nmにおける透過率が95%以上である透明電極シートを得ることができる。   In the present invention, when the specific resistance of the metal wiring is 2 to 30 μΩ · cm, if the filling fraction f is in the range of 0.0002 to 0.048, the sheet resistance is 100Ω / □ or less, and A transparent electrode sheet having a transmittance of 90% or more at a wavelength of 550 nm can be obtained. Moreover, when the filling fraction f is in the range of 0.0004 to 0.048, a transparent electrode sheet having a sheet resistance of 50Ω / □ or less and a transmittance at a wavelength of 550 nm of 90% or more is obtained. Can do. Moreover, when the filling fraction f is in the range of 0.002 to 0.048, a transparent electrode sheet having a sheet resistance of 10Ω / □ or less and a transmittance at a wavelength of 550 nm of 90% or more is obtained. Can do. Moreover, when the filling fraction f is in the range of 0.002 to 0.018, a transparent electrode sheet having a sheet resistance of 10Ω / □ or less and a transmittance of 95% or more at a wavelength of 550 nm is obtained. Can do.

また、上記透明電極シートの製造方法は、前記金属配線が銀ナノ粒子を焼結してなる焼結体である場合、前記銀ナノ粒子を溶媒に分散させたものを印刷用のインクとし、このインクを前記透明基材の表面に印刷する工程と、印刷したインクを焼成して前記銀ナノ粒子を焼結させて金属配線とする工程とを含むことを特徴とする。印刷条件や焼成温度を適宜設定することで、上記金属配線を形成できることが確認された。尚、インクに含有される銀ナノ粒子としては、その平均粒子径が1nm〜100nmの範囲内であるものを用いることができ、また、インクに含有される溶媒としては、オクタン、ノナン、デカン、ウンデカン、ドデカン、イソデカン、イソドデカン、トルエン、キシレン、テトラリン、デカヒドロナフタレン、ドデシルベンゼン及びメシチレンから選ばれる少なくとも1種を単独でまたは組み合わせて用いることができ、特にドデシルベンゼンを好適に用いることができる。   Further, in the method for producing the transparent electrode sheet, when the metal wiring is a sintered body obtained by sintering silver nanoparticles, the silver nanoparticles dispersed in a solvent is used as a printing ink. It includes a step of printing ink on the surface of the transparent substrate, and a step of firing the printed ink to sinter the silver nanoparticles to form a metal wiring. It was confirmed that the metal wiring can be formed by appropriately setting printing conditions and firing temperature. As the silver nanoparticles contained in the ink, those having an average particle diameter in the range of 1 nm to 100 nm can be used, and as the solvent contained in the ink, octane, nonane, decane, At least one selected from undecane, dodecane, isodecane, isododecane, toluene, xylene, tetralin, decahydronaphthalene, dodecylbenzene and mesitylene can be used alone or in combination, and dodecylbenzene can be particularly preferably used.

(a)は、本発明の実施形態の透明電極シートを示す模式的平面図であり、(b)は、図1(a)のIb−Ib線に沿う模式的断面図。(A) is a schematic plan view which shows the transparent electrode sheet of embodiment of this invention, (b) is typical sectional drawing which follows the Ib-Ib line | wire of Fig.1 (a). 透明電極シートの製造装置を示す模式図。The schematic diagram which shows the manufacturing apparatus of a transparent electrode sheet. 配線の充填分画fを定義する方法を説明する図。The figure explaining the method of defining the filling fraction f of wiring. (a)は、配線の充填分画fと透過率Tとの関係を示すグラフであり、(b)は、配線の充填分画fとシート抵抗Rgとの関係を示すグラフ。(A) is a graph which shows the relationship between the filling fraction f of wiring, and the transmittance | permeability T, (b) is a graph which shows the relationship between the filling fraction f of wiring, and sheet resistance Rg.

以下、図面を参照して、本発明の実施形態の透明電極シートについて、可撓性の有機ELディスプレイや有機太陽電池といったフレキシブルデバイスに利用される場合を例に説明する。   Hereinafter, the transparent electrode sheet according to the embodiment of the present invention will be described with reference to the drawings, taking as an example a case where the transparent electrode sheet is used in a flexible device such as a flexible organic EL display or an organic solar battery.

図1は、本実施形態の透明電極シートStを示す。透明電極シートStは、絶縁性を有する透明基材Ftと、透明基材Ftの表面に格子状にパターニング形成された金属配線Lx,Lyとを備える。この金属配線Lx,Ly自体は可視光を透過しないものの、配線間に露出する透明基材Ftを可視光が透過することで、透明電極シートSt全体としての所望の可視光透過率が得られるようにしている。以下においては、透明基材Ftの表面から金属配線Lx,Lyに向かう方向を上として説明する。   FIG. 1 shows a transparent electrode sheet St of the present embodiment. The transparent electrode sheet St includes a transparent base material Ft having insulating properties, and metal wirings Lx and Ly that are patterned in a lattice pattern on the surface of the transparent base material Ft. Although the metal wirings Lx and Ly themselves do not transmit visible light, the visible light transmits the transparent base material Ft exposed between the wirings, so that a desired visible light transmittance as the entire transparent electrode sheet St can be obtained. I have to. In the following description, the direction from the surface of the transparent base material Ft toward the metal wirings Lx and Ly will be described.

透明基材Ftとしては、可撓性を有するシート状のものが好ましく、例えば、プラスチックシートを用いることができる。プラスチックシートの材料としては、例えば、ポリエチレンナフタレート、ポリエチレンテレフタレート、シクロオレフィンポリマー、シクロオレフィンコポリマー及びポリイミドから選ばれる少なくとも1種を用いることができる。金属配線Lx,Lyの金属材料は、Ag、Au、Cu、Ni、Pd、In、Sn、Rh、Ru、Pt、In及びSnから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を用いることができる。尚、金属配線Lx,Lyは、必ずしも格子状に形成されていなくてもよい。   As the transparent base material Ft, a flexible sheet is preferable, and for example, a plastic sheet can be used. As a material of the plastic sheet, for example, at least one selected from polyethylene naphthalate, polyethylene terephthalate, cycloolefin polymer, cycloolefin copolymer, and polyimide can be used. The metal material of the metal wiring Lx, Ly is at least one metal selected from Ag, Au, Cu, Ni, Pd, In, Sn, Rh, Ru, Pt, In, and Sn, or at least two of these metals An alloy made of can be used. The metal wirings Lx and Ly are not necessarily formed in a lattice shape.

透明電極シートStをフレキシブルデバイスに利用する場合、図1(b)に示すように、金属配線Lx,Lyが形成された透明基材Ftの表面全面に亘って、発光機能や発電機能のような所定の機能を発現させるための有機膜Foが形成されることとなる。   When the transparent electrode sheet St is used for a flexible device, as shown in FIG. 1B, the light emitting function and the power generating function are applied over the entire surface of the transparent base material Ft on which the metal wirings Lx and Ly are formed. An organic film Fo for exhibiting a predetermined function is formed.

本実施形態では、金属配線Lx,Lyの表層部Puの断面を離心率が0.8322〜0.9992の範囲の半楕円状とした。このような表層部Puを持つ金属配線Lx,Lyは、後述する印刷、焼成により形成することが好ましい。表層部Puといった場合、金属配線Lx,Lyの幅が最大となる、透明基材Ft表面からの高さ位置(図1(b)中、一点鎖線で示す)を基準とし、この基準位置より上方に位置する金属配線の部分を指す。尚、離心率eは、下式(I)により定義することができる。式中、Wは、金属配線Lx,Lyの幅であり、d’は、透明基材Ft表面からの金属配線Lx,Lyの最大厚みdから一点鎖線で示す基準位置から透明基材Ft表面までの距離d’’を減じた厚みである。ここで、上記d’’の数値が大きいと、離心率eを上記範囲内としても、有機膜Foに欠陥が生じる虞がある。このため、上記d’’は、d/4よりも小さく設定することが好ましい。

Figure 2019140134
In the present embodiment, the cross section of the surface layer portion Pu of the metal wirings Lx and Ly has a semi-elliptical shape with an eccentricity in the range of 0.8322 to 0.9992. The metal wirings Lx and Ly having such a surface layer portion Pu are preferably formed by printing and baking described later. In the case of the surface layer portion Pu, the height position from the surface of the transparent base material Ft where the width of the metal wirings Lx and Ly is maximized (indicated by a one-dot chain line in FIG. 1B) is used as a reference, and is higher than the reference position. The part of the metal wiring located in The eccentricity e can be defined by the following formula (I). In the formula, W is the width of the metal wirings Lx and Ly, and d ′ is from the reference position indicated by the one-dot chain line from the maximum thickness d of the metal wirings Lx and Ly from the surface of the transparent base material Ft to the surface of the transparent base material Ft. Is a thickness obtained by reducing the distance d ″. Here, if the numerical value of d ″ is large, there is a possibility that defects occur in the organic film Fo even if the eccentricity e is within the above range. For this reason, it is preferable to set d ″ smaller than d / 4.
Figure 2019140134

次に、図2を参照して、上記透明電極シートStを製造する透明電極シートの製造装置(以下「製造装置MM」という)について説明する。製造装置MMは、透明基材Ftを走行させる走行手段1を備える。走行手段1は、ロール状に巻回されたシート状の透明基材Ftを繰り出す繰出ローラ11と、金属配線Lx,Lyが形成された透明基材Ft(透明電極シートSt)をロール状に巻き取る巻取ローラ12と、これら繰出ローラ11と巻取ローラ12との間で透明基材Ftを案内する複数のガイドローラ13a〜13eとを備える。繰出ローラ11,巻取ローラ12は、図示省略するモータの回転軸が接続されており、回転自在に構成されている。シート状の透明基材Ftの走行経路上には、透明基材Ftの表面に格子状にインクを印刷する印刷機2が配置されている。   Next, a transparent electrode sheet manufacturing apparatus (hereinafter referred to as “manufacturing apparatus MM”) for manufacturing the transparent electrode sheet St will be described with reference to FIG. The manufacturing apparatus MM includes traveling means 1 that causes the transparent substrate Ft to travel. The traveling means 1 winds a roll-out roller 11 that feeds a sheet-like transparent base material Ft wound in a roll shape and a transparent base material Ft (transparent electrode sheet St) on which metal wirings Lx and Ly are formed. A take-up roller 12 to be taken and a plurality of guide rollers 13a to 13e for guiding the transparent base material Ft between the feed roller 11 and the take-up roller 12 are provided. The feeding roller 11 and the take-up roller 12 are connected to a rotating shaft of a motor (not shown) and are configured to be rotatable. On the travel path of the sheet-like transparent base material Ft, a printing machine 2 that prints ink in a grid pattern on the surface of the transparent base material Ft is disposed.

印刷機2としては、例えば、グラビア印刷機を用いることができる。グラビア印刷機2を用いる場合、供給手段21aからインクタンク21に印刷用のインクIkを供給し、版胴22を回転させてその外周面に後述の金属配線Lx,Lyに対応させて形成された凹部22aにインクIkを充填し、余分なインクをブレード23で削ぎ落とし、版胴22からブランケットローラ24にインクIkを転写する。圧胴25で保持される透明基材Ftの部分が対向するブランケットローラ24に押し付けられると、透明基材FtにインクIkが印刷される。グラビア印刷機2の構成は公知であるため、これ以上の詳細な説明を省略する。グラビア印刷機2の下流には、焼成ユニット3が配置されている。   As the printer 2, for example, a gravure printer can be used. When the gravure printing machine 2 is used, the ink Ik for printing is supplied from the supply means 21a to the ink tank 21, and the plate cylinder 22 is rotated to be formed on the outer peripheral surface thereof corresponding to metal wirings Lx and Ly described later. The recess 22 a is filled with ink Ik, excess ink is scraped off by the blade 23, and the ink Ik is transferred from the plate cylinder 22 to the blanket roller 24. When the portion of the transparent base material Ft held by the impression cylinder 25 is pressed against the facing blanket roller 24, the ink Ik is printed on the transparent base material Ft. Since the configuration of the gravure printing machine 2 is known, further detailed description is omitted. A firing unit 3 is disposed downstream of the gravure printing machine 2.

焼成ユニット3は、透明基材Ftに印刷されたインクを所定温度に加熱する加熱手段31を有する。加熱手段31としては、ホットプレート、ランプ等を用いることができる。焼成ユニット3の下流側には、測定ユニット4が配置されている。測定ユニット4は、走行手段1のガイドローラを兼用する2本の導電性ローラ13d,13eと、電源41とを備える表面抵抗計であり、電源41から導電性ローラ13d,13eの間に所定の電圧を印加し、焼成後の透明電極シートStのシート抵抗Rgを測定、監視できるようになっている。測定ユニット4で測定されたシート抵抗Rgに応じて、インクIkの粘度調整や加熱手段31の焼成温度調整を行うように構成してもよい。   The firing unit 3 includes a heating unit 31 that heats the ink printed on the transparent substrate Ft to a predetermined temperature. As the heating means 31, a hot plate, a lamp, or the like can be used. A measurement unit 4 is disposed on the downstream side of the firing unit 3. The measurement unit 4 is a surface resistance meter including two conductive rollers 13d and 13e that also serve as guide rollers of the traveling means 1 and a power source 41. A predetermined resistance is provided between the power source 41 and the conductive rollers 13d and 13e. A voltage is applied, and the sheet resistance Rg of the baked transparent electrode sheet St can be measured and monitored. Depending on the sheet resistance Rg measured by the measurement unit 4, the viscosity of the ink Ik and the firing temperature of the heating means 31 may be adjusted.

上記製造装置MMは、公知のマイクロコンピュータやシーケンサ等を備えた制御手段(図示省略)を備え、制御手段により、印刷機2、焼成ユニット3及び測定ユニット4の稼働等を統括管理するほか、インクIkの濃度調整や、加熱手段31の焼成温度の調整を行うことができるようになっている。以下、上記製造装置MMを用いて実施される透明電極シートStの製造方法について説明する。   The manufacturing apparatus MM includes control means (not shown) including a known microcomputer, sequencer, etc., and controls the operation of the printing machine 2, the baking unit 3, and the measurement unit 4 by the control means. It is possible to adjust the concentration of Ik and the baking temperature of the heating means 31. Hereinafter, the manufacturing method of the transparent electrode sheet St implemented using the said manufacturing apparatus MM is demonstrated.

先ず、走行手段1を構成する複数のローラ13a〜13eに透明基材Ftを巻き掛けた後、繰出ローラ11を回転させて透明基材Ftを繰り出すと共に巻取ローラ12を回転させて透明基材Ftを巻き取ることで透明基材Ftを走行させる。これと共に、印刷ユニット2の供給手段21aからインクタンク(インク貯留部)21に予め調製された印刷用インクIkを供給し、版胴22を回転させてその外周面に後述する金属配線Lx,Lyに対応させて形成された凹部22aにインクIkを充填し、余分なインクIkをブレード23で削ぎ落とし、版胴22からブランケットローラ24にインクIkを転写する。圧胴25で保持される透明基材Ftの部分が対向するブランケットローラ24に押し付けられると、ブランケットローラ24から透明基材FtにインクIkが印刷される。印刷されるインクの厚みは、焼成後の透明基材Ftの表面からの金属配線Lx,Lyの最大厚みdが0.1μm〜1μmの範囲になるように設定される。   First, after winding the transparent base material Ft around the plurality of rollers 13a to 13e constituting the traveling means 1, the feeding roller 11 is rotated to feed the transparent base material Ft, and the winding roller 12 is rotated to turn the transparent base material Ft. The transparent base material Ft is made to run by winding up Ft. At the same time, the printing ink Ik prepared in advance is supplied from the supply means 21a of the printing unit 2 to the ink tank (ink storage unit) 21, and the plate cylinder 22 is rotated so that the metal wirings Lx and Ly described later are formed on the outer peripheral surface thereof. The ink Ik is filled in the recess 22 a formed corresponding to the above, and the excess ink Ik is scraped off by the blade 23, and the ink Ik is transferred from the plate cylinder 22 to the blanket roller 24. When the portion of the transparent base material Ft held by the impression cylinder 25 is pressed against the opposing blanket roller 24, the ink Ik is printed from the blanket roller 24 onto the transparent base material Ft. The thickness of the ink to be printed is set so that the maximum thickness d of the metal wirings Lx and Ly from the surface of the transparent substrate Ft after firing is in the range of 0.1 μm to 1 μm.

ここで、印刷用のインクIkとしては、分散剤で表面が覆われたAgナノ粒子と、このAgナノ粒子を分散させるための溶媒たる低極性溶媒とを含むAgインクが好適に用いられる。Agインクの市販の製品の商品名としては、例えば、AgナノメタルインクAg1T(株式会社アルバック製)を挙げることができる。Agナノ粒子としては、その平均粒子径が1nm〜100nmの範囲内であるものを用いることができる。平均粒子径が1nm未満になると、比表面積が増大してAgナノ粒子表面を被覆する分散剤の量が増大するため、焼成時に分散剤の脱離が不十分になり、金属配線の抵抗値が高くなる場合がある。一方、平均粒子径が100nmを超えると、Agインク中のAgナノ粒子の分散性が低下するという場合がある。分散剤としては、炭素数6〜18の脂肪酸及び炭素数6〜12の脂肪族アミンの少なくとも一方を用いることができる。分散剤の炭素数が6未満では、Agインク中でのAgナノ粒子の分散性が低下する場合がある一方で、炭素数が12を超えると、焼成時にAgナノ粒子表面からの脂肪酸や脂肪族アミンの脱離が不十分となり、金属配線の抵抗値が高くなる場合がある。これらの脂肪酸や脂肪族アミンは公知であるため、ここでは詳細な説明を省略する。   Here, as the ink Ik for printing, an Ag ink containing Ag nanoparticles whose surface is covered with a dispersant and a low-polarity solvent as a solvent for dispersing the Ag nanoparticles is preferably used. As a brand name of the commercial product of Ag ink, Ag nano metal ink Ag1T (made by ULVAC, Inc.) can be mentioned, for example. As the Ag nanoparticles, those having an average particle diameter in the range of 1 nm to 100 nm can be used. When the average particle diameter is less than 1 nm, the specific surface area increases and the amount of the dispersant covering the Ag nanoparticle surface increases, so that the detachment of the dispersant becomes insufficient at the time of firing, and the resistance value of the metal wiring is reduced. May be higher. On the other hand, when the average particle diameter exceeds 100 nm, the dispersibility of Ag nanoparticles in the Ag ink may decrease. As the dispersant, at least one of a fatty acid having 6 to 18 carbon atoms and an aliphatic amine having 6 to 12 carbon atoms can be used. If the carbon number of the dispersant is less than 6, the dispersibility of Ag nanoparticles in the Ag ink may be lowered. On the other hand, if the carbon number exceeds 12, the fatty acid or aliphatic from the Ag nanoparticle surface at the time of firing. In some cases, the amine is insufficiently desorbed and the resistance value of the metal wiring is increased. Since these fatty acids and aliphatic amines are known, detailed description thereof is omitted here.

グラビア印刷機2により透明基材Ft表面に印刷されたインクは、焼成ユニット3の加熱手段31を用いて所定温度に加熱、焼成される。これにより、Agナノ粒子から分散剤が脱離し、Agナノ粒子同士が焼結して金属配線Lx,Lyとすることができる。焼成温度は、120〜250℃の範囲で設定することができる。透明基材Ftの表面に金属配線Lx,Lyが形成された透明電極シートStは、巻取ローラ12で巻き取られる。   The ink printed on the surface of the transparent substrate Ft by the gravure printer 2 is heated and baked to a predetermined temperature using the heating means 31 of the baking unit 3. As a result, the dispersant is desorbed from the Ag nanoparticles, and the Ag nanoparticles can be sintered to form the metal wirings Lx and Ly. The firing temperature can be set in the range of 120 to 250 ° C. The transparent electrode sheet St on which the metal wirings Lx and Ly are formed on the surface of the transparent substrate Ft is wound up by the winding roller 12.

本実施形態によれば、金属配線Lx,Lyの表層部Puから角張った縁部をなくして、離心率が0.8322〜0.9992の範囲の半楕円状の断面形状としたことで、例えば真空蒸着法によって透明電極シートStの表面にその金属配線Lx,Lyを覆うように有機膜Foを成膜するような場合でも、有機膜Foの膜厚が局所的に薄くなるといった不具合は発生せず、透明基材Ftの表面全面にわたって略均等な膜厚で欠陥なく有機膜Foを成膜できる。なお、本発明において離心率が0.8322より小さいと、前記有機膜に欠陥が生じるという不具合がある。この場合、金属ナノ粒子と溶媒とを含む金属ナノインクを印刷用のインクとし、このインクを透明基材の表面に印刷し、印刷したインクを焼成して金属ナノ粒子を焼結させる際、印刷条件や焼成温度を適宜設定することで、上記金属配線を形成できる。この効果を確認するために、以下の実験を行った。即ち、印刷用のインクIkとして前述のAgナノメタルインク(株式会社アルバック製)を用いて、配線幅Wを2.02μm,4.25μm,5.08μm,7.33μm,9.03μm,10.13μmと変化させると共に、厚みdを0.21μm,0.42μm,0.56μm,0.69μm,0.89μm,1.01μmと変化させて金属配線Lx,Lyを夫々形成し、金属配線Lx,Lyが形成された透明基材表面に、ポリチオフェン系の高分子溶液をアプリケータにより塗布し、100℃で1分間の硬化処理を行うことで有機膜たる導電性ポリマー膜(荒川化学工業製、商品名「アラコートAS601D」)を0.3〜0.4μmの膜厚で形成した。さらに、有機膜の上に、蒸着法により断面加工・観察用の保護膜となる白金層を約0.3μmの厚みで形成したものを試料とした。このようにして得た試料を収束イオンビーム(FIB)により断面加工し、その試料の断面を走査透過型電子顕微鏡により観察した結果を、金属配線の離心率と共に表1に示す。観察結果は、透明基材の表面全面に亘って略均等な膜厚で欠陥なく有機膜を成膜できたものを「○」とし、膜厚が略均等でなかったり欠陥が生じたものを「×」とした。これによれば、離心率を0.8322〜0.9992の範囲にすることで、基材表面全面に亘って略均等な膜厚で欠陥なく有機膜を成膜できることが判った。また、離心率は、0.8322〜0.9989の範囲がより好ましく、0.9458〜0.9934の範囲が特に好ましいことが、観察結果から判った。表1に示していないが、離心率が0.9992を超えると(例えば0.9995)、金属配線が薄くなりすぎて所望の抵抗値を実現する断面積が得られなくなるという不具合がある。この不具合は、上述のように、d’’がd/4よりも小さい場合に顕著に現れる。   According to the present embodiment, by removing the angular edge from the surface layer portion Pu of the metal wirings Lx and Ly, and having a semi-elliptical cross-sectional shape with an eccentricity in the range of 0.8322 to 0.9992, for example, Even when the organic film Fo is formed on the surface of the transparent electrode sheet St so as to cover the metal wirings Lx and Ly by the vacuum deposition method, the problem that the film thickness of the organic film Fo is locally reduced does not occur. First, the organic film Fo can be formed without defects with a substantially uniform film thickness over the entire surface of the transparent substrate Ft. In the present invention, when the eccentricity is smaller than 0.8322, there is a problem that defects occur in the organic film. In this case, when printing the metal nano ink containing the metal nanoparticles and the solvent as an ink for printing, printing the ink on the surface of the transparent substrate, and firing the printed ink to sinter the metal nanoparticles, the printing conditions The metal wiring can be formed by appropriately setting the firing temperature. In order to confirm this effect, the following experiment was conducted. That is, the above-described Ag nanometal ink (manufactured by ULVAC, Inc.) is used as the printing ink Ik, and the wiring width W is 2.02 μm, 4.25 μm, 5.08 μm, 7.33 μm, 9.03 μm, 10.13 μm. And the thickness d is changed to 0.21 μm, 0.42 μm, 0.56 μm, 0.69 μm, 0.89 μm, and 1.01 μm to form the metal wirings Lx and Ly, respectively, and the metal wirings Lx and Ly. A polythiophene-based polymer solution is applied to the surface of the transparent substrate with an applicator and cured at 100 ° C. for 1 minute to form a conductive polymer film (trade name, manufactured by Arakawa Chemical Industries, Ltd.) that is an organic film. “ARACOAT AS601D”) was formed to a thickness of 0.3 to 0.4 μm. Further, a sample obtained by forming a platinum layer having a thickness of about 0.3 μm on the organic film by a vapor deposition method as a protective film for cross-section processing and observation was used. Table 1 shows the results of cross-section processing of the sample thus obtained with a focused ion beam (FIB) and observation of the cross-section of the sample with a scanning transmission electron microscope together with the eccentricity of the metal wiring. The observation results are `` O '' when the organic film can be formed without defects with a substantially uniform film thickness over the entire surface of the transparent substrate, and `` O '' when the film thickness is not substantially uniform or with defects. × ”. According to this, it has been found that by setting the eccentricity in the range of 0.8322 to 0.9992, an organic film can be formed without defects with a substantially uniform film thickness over the entire surface of the substrate. Further, it was found from the observation results that the eccentricity is more preferably in the range of 0.8322 to 0.9989, and particularly preferably in the range of 0.9458 to 0.9934. Although not shown in Table 1, when the eccentricity exceeds 0.9992 (for example, 0.9995), there is a problem that the metal wiring becomes too thin to obtain a cross-sectional area that realizes a desired resistance value. As described above, this defect is noticeable when d ″ is smaller than d / 4.

Figure 2019140134
Figure 2019140134

ところで、透明電極シートStをフレキシブルデバイスに適用するには、上記金属配線Lx,Lyの視認性が低く、高い透過率と低い抵抗値とを併せ持つことが更に要求されるが、このような透明電極シートStを簡単に製造することは困難である。そこで、本実施形態では、以下に説明するように配線の充填分画fを定義し、充填分画fが所定の範囲内の値になるように金属配線Lx,Lyの配線幅Wと単位開口の幅Gとを決定するようにした。即ち、図3も参照して、透明基材Ft表面で金属配線Lx,Lyが夫々のびる方向をX軸方向及びY軸方向とし、X軸方向及びY軸方向で互いに隣接する夫々2本の配線(X軸方向で互いに隣接する2本の配線Lx,LxとY軸方向で互いに隣接する2本の配線Ly,Ly)で区画される透明基材Ftの部分を単位面積部A、透明基材Ftの配線Lx,Lyのない部分を単位開口Ou、単位開口Ouを区画する配線の線幅をW、単位開口の幅をGとすると、単位開口の面積率Sは、これら線幅Wと幅Gとを用いて下式(A)のように表すことができ、この面積率Sは、単位面積部Aにおける配線の充填分画fを用いて下式(B)のように表すことができる。
S=G/(G+W)・・・(A)
S=(1−f)・・・(B)
By the way, in order to apply the transparent electrode sheet St to a flexible device, it is further required that the metal wirings Lx and Ly have low visibility and have both a high transmittance and a low resistance value. It is difficult to easily manufacture the sheet St. Therefore, in the present embodiment, the wiring filling fraction f is defined as described below, and the wiring width W and the unit opening of the metal wirings Lx and Ly are set so that the filling fraction f becomes a value within a predetermined range. The width G is determined. That is, referring also to FIG. 3, the directions in which the metal wirings Lx and Ly extend on the surface of the transparent substrate Ft are the X-axis direction and the Y-axis direction, respectively, and two wirings adjacent to each other in the X-axis direction and the Y-axis direction. A portion of the transparent base material Ft defined by (two wirings Lx, Lx adjacent to each other in the X-axis direction and two wirings Ly, Ly adjacent to each other in the Y-axis direction) is a unit area portion A, transparent base material The area ratio S of the unit opening is defined as the line width W and the width of the unit opening Ou, where the portion of the Ft without the wirings Lx and Ly is the unit opening Ou, the line width of the wiring partitioning the unit opening Ou is W, and the width of the unit opening is G. The area ratio S can be expressed as the following formula (B) using the filling fraction f of the wiring in the unit area portion A. .
S = G 2 / (G + W) 2 (A)
S = (1-f) 2 (B)

上式(A)及び(B)を基に、配線の充填分画fは下式(1)のように定義することができる。
f=W/(G+W)・・・(1)
Based on the above formulas (A) and (B), the filling fraction f of the wiring can be defined as the following formula (1).
f = W / (G + W) (1)

また、透明電極シートStの可視光の透過率Tは、配線Lx,Lyの充填分画fを用いて下式(2)で表すことができる。但し、透過率Tは、透明基材Ftの寄与を無視した値である。
T=(1−f)・・・(2)
The visible light transmittance T of the transparent electrode sheet St can be expressed by the following equation (2) using the filling fraction f of the wirings Lx and Ly. However, the transmittance T is a value ignoring the contribution of the transparent substrate Ft.
T = (1-f) 2 (2)

配線の配線の充填分画fが1よりも十分に小さい場合、上式(2)は、下式(3)で近似される。
T=1−2f・・・(3)
When the wiring filling fraction f of the wiring is sufficiently smaller than 1, the above equation (2) is approximated by the following equation (3).
T = 1-2f (3)

ここで、上式(3)を検証するために、以下の実験を行った。即ち、印刷用のインクIkとして前述のAgナノメタルインク(株式会社アルバック製)を用いて、金属配線Lx,Lyの配線幅Wを5μm、配線の厚みを0.6μmとし、単位開口Ouの幅Gが100,150,200,300,500,1000μm(このとき、充填分画fは、0.048,0.032,0.024,0.016,0.010,0.005)となるように金属配線Lx,Lyを形成し、それぞれの透明電極シートStの透過率Tを測定し、透過率Tの測定値をプロットしたものを図4(a)に示す。これら充填分画fと透過率Tの測定値との間には相関関係があり、この相関関係から1次の近似直線を求めたところ、下式(4)が得られた。下式(4)は、上式(3)と概略一致はするものの、完全には一致していない。この不一致は、光の散乱による拡散透過光の影響によるものと考えられる。つまり、配線の断面形状が、上記の条件を満たす半楕円形状とした場合に、理論式とは異なり、最終的に得られる透明電極の透過率が、下式(4)に示される関係となることが見出された。ここで、式(4)のTは、波長550nmにおける透過率であり、式(4)から算出されるTの値と、実測されるTの値との違いは±0.01以内である。
T=0.98−1.7f・・・(4)
Here, in order to verify the above equation (3), the following experiment was performed. That is, the above-described Ag nanometal ink (manufactured by ULVAC, Inc.) is used as the printing ink Ik, the wiring width W of the metal wirings Lx and Ly is 5 μm, the thickness of the wiring is 0.6 μm, and the width G of the unit opening Ou. Is 100, 150, 200, 300, 500, 1000 μm (in this case, the filling fraction f is 0.048, 0.032, 0.024, 0.016, 0.010, 0.005). FIG. 4A shows a case where the metal wirings Lx and Ly are formed, the transmittance T of each transparent electrode sheet St is measured, and the measured values of the transmittance T are plotted. There is a correlation between the filling fraction f and the measured value of the transmittance T. When a first-order approximate straight line was obtained from this correlation, the following equation (4) was obtained. Although the following formula (4) roughly matches the above formula (3), it does not completely match. This discrepancy is thought to be due to the influence of diffuse transmitted light due to light scattering. That is, when the cross-sectional shape of the wiring is a semi-elliptical shape that satisfies the above conditions, the transmittance of the transparent electrode that is finally obtained becomes the relationship represented by the following formula (4), unlike the theoretical formula. It was found. Here, T in Equation (4) is the transmittance at a wavelength of 550 nm, and the difference between the T value calculated from Equation (4) and the measured T value is within ± 0.01.
T = 0.98-1.7f (4)

また、上記のように単位開口Ouの幅Gを変化させて金属配線Lx,Lyを夫々形成し、透明電極シートFtのシート抵抗Rg(Ω/□)を夫々測定した。   Further, as described above, the metal wirings Lx and Ly were formed by changing the width G of the unit opening Ou, and the sheet resistance Rg (Ω / □) of the transparent electrode sheet Ft was measured.

ここで、透明電極シートFtのシート抵抗Rgは、下式(5)のように表される。
Rf=ηρ/d=R・f・・・(5)
Here, the sheet resistance Rg of the transparent electrode sheet Ft is represented by the following formula (5).
Rf = ηρ / d = R g · f (5)

上式(5)中、Rfは、充填分画fが1のとき、即ち、透明基材Ftの全面がAgで覆われた場合)のシート抵抗であり、ηは、補正因子であり、ρは、バルクのAgの比抵抗(1.6μΩ・cm)であり、dは、配線の厚みである。本実施形態のようにインクIkを塗布して配線Lx,Lyを形成する場合、得られる配線Lx,Lyの比抵抗は、バルクのAgの比抵抗よりも高くなるため、補正因子ηが用いられている。   In the above equation (5), Rf is the sheet resistance when the filling fraction f is 1, that is, when the entire surface of the transparent substrate Ft is covered with Ag, η is a correction factor, and ρ Is the specific resistance (1.6 μΩ · cm) of bulk Ag, and d is the thickness of the wiring. When the wirings Lx and Ly are formed by applying the ink Ik as in this embodiment, the specific resistance of the obtained wirings Lx and Ly is higher than the specific resistance of the bulk Ag, and thus the correction factor η is used. ing.

上記測定したシート抵抗Rgと充填分画f=1を上式(5)に代入してシート抵抗Rfを夫々算出し、その平均値Rfを算出した結果、下式(6)のようにRf=0.142Ω/□となった。
Rf=ηρ/d=0.142(Ω/□)・・・(6)
The measured sheet resistance Rg and the filling fraction f = 1 are substituted into the above equation (5) to calculate the sheet resistance Rf, and the average value Rf is calculated. As a result, Rf = It was 0.142Ω / □.
Rf = ηρ / d = 0.142 (Ω / □) (6)

配線の厚みd=0.6μmを上式(6)に代入すると、下式(7)が得られる。
ηρ=8.5μΩ・cm・・・(7)
Substituting the wiring thickness d = 0.6 μm into the above equation (6), the following equation (7) is obtained.
ηρ = 8.5 μΩ · cm (7)

上式(5)及び上式(6)より、下式(8)が得られる。
Rg=0.142/f・・・(8)
From the above equation (5) and the above equation (6), the following equation (8) is obtained.
Rg = 0.142 / f (8)

上式(8)で表される曲線と、シート抵抗Rgの測定値とを図4(b)に示す。これより、充填分画fとシート抵抗Rgとの間には、式(4)及び式(8)に示す相関関係があることが判った。   FIG. 4B shows the curve represented by the above formula (8) and the measured value of the sheet resistance Rg. From this, it was found that there is a correlation shown in the equations (4) and (8) between the filling fraction f and the sheet resistance Rg.

このように、本発明者らは、鋭意研究を重ね、上式(1)のように定義した配線の充填分画fと、波長550nmにおける透過率T及び抵抗値Rgとの間に式(4)及び式(8)に示す相関関係があることを知見するのに至った。この知見に基づけば、所望の透過率Tと抵抗値Rgを実現する充填分画fの範囲を設定することができる。例えば、90%以上の透過率Tと100Ω/□以下の抵抗値Rgを実現する充填分画fの範囲は、0.001以上0.048以下であり、90%以上の透過率Tと50Ω/□以下の抵抗値Rgを実現する充填分画fの範囲は、0.003以上0.048以下であり、90%以上の透過率Tと10Ω/□以下の抵抗値Rgを実現する充填分画fの範囲は、0.014以上0.048以下であり、95%以上の透過率Tと10Ω/□以下の抵抗値Rgを実現する充填分画fの範囲は、0.014以上0.018以下である。   As described above, the present inventors have conducted intensive research and found that there is an equation (4) between the filling fraction f of the wiring defined as the above equation (1), the transmittance T and the resistance value Rg at a wavelength of 550 nm. ) And the formula (8) have been found to be correlated. Based on this knowledge, it is possible to set the range of the filling fraction f that realizes the desired transmittance T and resistance value Rg. For example, the range of the filling fraction f that achieves a transmittance T of 90% or more and a resistance value Rg of 100Ω / □ or less is 0.001 or more and 0.048 or less, and a transmittance T of 90% or more and 50Ω / □ or less. The range of the filling fraction f that realizes the following resistance value Rg is 0.003 or more and 0.048 or less, and the filling fraction that realizes a transmittance T of 90% or more and a resistance value Rg of 10Ω / □ or less. The range of f is 0.014 or more and 0.048 or less, and the range of the filling fraction f that realizes a transmittance T of 95% or more and a resistance value Rg of 10Ω / □ or less is 0.014 or more and 0.018. It is as follows.

ところで、上述の如くAgインクを格子状に印刷したものを焼成することで得られる金属配線Lx,Lyの比抵抗ηρは、その焼成温度にもよるが、一般には2〜30μΩ・cmの範囲で変動する。また、上述の如く金属配線Lx,Lyの厚みは、0.1〜1μmの範囲であることが好ましい。   By the way, the specific resistance ηρ of the metal wirings Lx and Ly obtained by firing the Ag ink printed in a lattice shape as described above is generally in the range of 2 to 30 μΩ · cm, although it depends on the firing temperature. fluctuate. Further, as described above, the thickness of the metal wirings Lx and Ly is preferably in the range of 0.1 to 1 μm.

そこで、比抵抗ηρが2μΩ・cm,10μΩ・cm,20μΩ・cm,30μΩ・cm、配線の厚みdが0.1μm,0.3μm,0.6μm,1.0μmの場合に得られる金属配線Lx,Lyを有する透明電極シートのシート抵抗Rgが100Ω/□以下となる充填分画fの下限値を上式(5)により求めた結果を表2に示す。   Therefore, the metal wiring Lx obtained when the specific resistance ηρ is 2 μΩ · cm, 10 μΩ · cm, 20 μΩ · cm, 30 μΩ · cm, and the wiring thickness d is 0.1 μm, 0.3 μm, 0.6 μm, and 1.0 μm. Table 2 shows the results of obtaining the lower limit value of the filling fraction f at which the sheet resistance Rg of the transparent electrode sheet having Ly and Ly is 100 Ω / □ or less by the above equation (5).

Figure 2019140134
Figure 2019140134

表2に示すように、シート抵抗Rgが100Ω/□以下となる充填分画fの下限値は0.0002である。一方、波長550nmにおける透過率Tが90%以上となるのは、前述の通り、式(4)により、配線充填分画fが0.0048以下の場合である。従って、シート抵抗Rgが100Ω/□以下、かつ、透過率Tが90%以上となる充填分画fの範囲は、0.0002以上0.048以下である。   As shown in Table 2, the lower limit value of the filling fraction f at which the sheet resistance Rg is 100Ω / □ or less is 0.0002. On the other hand, the transmittance T at a wavelength of 550 nm is 90% or more when the wiring filling fraction f is 0.0048 or less according to the equation (4) as described above. Therefore, the range of the filling fraction f in which the sheet resistance Rg is 100Ω / □ or less and the transmittance T is 90% or more is 0.0002 or more and 0.048 or less.

また、比抵抗ηρが2μΩ・cm,10μΩ・cm,20μΩ・cm,30μΩ・cm、配線の厚みdが0.1μm,0.3μm,0.6μm,1.0μmの場合に得られる金属配線Lx,Lyを有する透明電極シートのシート抵抗Rgが50Ω/□以下となる充填分画fの下限値を上式(5)により求めた結果を表3に示す。   Further, the metal wiring Lx obtained when the specific resistance ηρ is 2 μΩ · cm, 10 μΩ · cm, 20 μΩ · cm, 30 μΩ · cm, and the wiring thickness d is 0.1 μm, 0.3 μm, 0.6 μm, and 1.0 μm. Table 3 shows the results of obtaining the lower limit value of the filling fraction f at which the sheet resistance Rg of the transparent electrode sheet having Ly and Ly is 50 Ω / □ or less by the above equation (5).

Figure 2019140134
Figure 2019140134

表3に示すように、シート抵抗Rgが50Ω/□以下となる充填分画fの下限値は0.0004である。一方、波長550nmにおける透過率Tが90%以上となるのは、前述の通り、式(4)により、充填分画fが0.0048以下の場合である。従って、シート抵抗Rgが50Ω/□以下、かつ、透過率Tが90%以上となる充填分画fの範囲は、0.0004以上0.048以下である。   As shown in Table 3, the lower limit value of the filling fraction f at which the sheet resistance Rg is 50Ω / □ or less is 0.0004. On the other hand, the transmittance T at a wavelength of 550 nm is 90% or more, as described above, when the filling fraction f is 0.0048 or less according to the equation (4). Therefore, the range of the filling fraction f in which the sheet resistance Rg is 50Ω / □ or less and the transmittance T is 90% or more is 0.0004 or more and 0.048 or less.

また、比抵抗ηρが2μΩ・cm,10μΩ・cm,20μΩ・cm,30μΩ・cm、配線の厚みdが0.1μm,0.3μm,0.6μm,1.0μmの場合に得られる金属配線Lx,Lyを有する透明電極シートのシート抵抗Rgが10Ω/□以下となる充填分画fの下限値を上式(5)により求めた結果を表4に示す。   Further, the metal wiring Lx obtained when the specific resistance ηρ is 2 μΩ · cm, 10 μΩ · cm, 20 μΩ · cm, 30 μΩ · cm, and the wiring thickness d is 0.1 μm, 0.3 μm, 0.6 μm, and 1.0 μm. Table 4 shows the results obtained by calculating the lower limit value of the filling fraction f at which the sheet resistance Rg of the transparent electrode sheet having Ly is 10Ω / □ or less by the above equation (5).

Figure 2019140134
Figure 2019140134

表4に示すように、シート抵抗Rgが10Ω/□以下となる充填分画fの下限値は0.0020である。一方、波長550nmにおける透過率Tが90%以上となるのは、前述の通り、式(4)により、充填分画fが0.0048以下の場合である。従って、シート抵抗Rgが10Ω/□以下、かつ、透過率Tが90%以上となる充填分画fの範囲は、0.0020以上0.048以下である。   As shown in Table 4, the lower limit value of the filling fraction f at which the sheet resistance Rg is 10 Ω / □ or less is 0.0020. On the other hand, the transmittance T at a wavelength of 550 nm is 90% or more, as described above, when the filling fraction f is 0.0048 or less according to the equation (4). Therefore, the range of the filling fraction f in which the sheet resistance Rg is 10Ω / □ or less and the transmittance T is 90% or more is 0.0020 or more and 0.048 or less.

そして、充填分画fが上記何れかの範囲内となるように、金属配線Lx,Lyの配線幅Wと幅Gの値を設定し、その設定値に基づき版胴22の凹部22aを形成すれば、フレキシブルデバイスに適用するときに要求される高い透過率Tと低い抵抗値Rgを持つ透明電極シートStを実現することができる。このとき、配線幅Wを10μm未満、好ましくは、5μm以下に設定すれば、金属配線Lx,Lyの視認性を低くすることができる。   Then, the values of the wiring widths W and G of the metal wirings Lx and Ly are set so that the filling fraction f falls within any one of the above ranges, and the concave portion 22a of the plate cylinder 22 is formed based on the set values. For example, a transparent electrode sheet St having a high transmittance T and a low resistance value Rg required when applied to a flexible device can be realized. At this time, if the wiring width W is set to less than 10 μm, preferably 5 μm or less, the visibility of the metal wirings Lx and Ly can be lowered.

以上、本発明の実施形態について説明したが、本発明は上記のものに限定されるものではない。例えば、上記実施形態では、インクに含有される金属ナノ粒子の金属としてAgを用いる場合を例に説明したが、金属は、Agに限定されず、Au、Cu、Ni、Pd、In、Sn、Rh、Ru、Pt、In及びSnから選択された少なくとも1種の金属又はこれらの金属の少なくとも2種からなる合金を選択して用いることができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to said thing. For example, in the above embodiment, the case where Ag is used as the metal of the metal nanoparticles contained in the ink has been described as an example. However, the metal is not limited to Ag, and Au, Cu, Ni, Pd, In, Sn, It is possible to select and use at least one metal selected from Rh, Ru, Pt, In and Sn or an alloy made of at least two of these metals.

上記実施形態では、印刷機2としてグラビア印刷機を用いる場合を例に説明したが、印刷機2はこれに限定されず、親水部と疎水部を形成した刷版(アルミ板)を備える平版印刷機を用いることができる。平版印刷機としては、刷版の親水部に水を供給すると共に刷版の疎水部にインクタンクから所定濃度のインクIkを供給し、これをブランケットに転写して印刷する公知の構成を有するものを用いることができるため、ここではこれ以上の説明を省略する。   In the above embodiment, a case where a gravure printing machine is used as the printing machine 2 has been described as an example. However, the printing machine 2 is not limited to this, and lithographic printing including a printing plate (aluminum plate) in which a hydrophilic part and a hydrophobic part are formed. A machine can be used. The lithographic printing machine has a known configuration in which water is supplied to the hydrophilic portion of the printing plate and ink Ik of a predetermined concentration is supplied from the ink tank to the hydrophobic portion of the printing plate, and this is transferred to a blanket for printing. Therefore, further explanation is omitted here.

A…単位面積部、f…充填分画、Ft…透明基材、Ik…インク、Lx,Ly…金属配線、Ou…単位開口、Pu…金属配線Lx,Lyの表層部、W…金属配線Lx,Lyの配線幅。   A: Unit area part, f: Filling fraction, Ft: Transparent base material, Ik ... Ink, Lx, Ly ... Metal wiring, Ou: Unit opening, Pu ... Surface layer part of metal wiring Lx, Ly, W ... Metal wiring Lx , Ly wiring width.

Claims (6)

絶縁性の透明基材と、透明基材の表面に形成された金属配線とを備える透明電極シートにおいて、
前記金属配線の表層部の断面を離心率が0.8322〜0.9992の範囲の半楕円状としたことを特徴とする透明電極シート。
In a transparent electrode sheet comprising an insulating transparent substrate and metal wiring formed on the surface of the transparent substrate,
A transparent electrode sheet, wherein a cross section of a surface layer portion of the metal wiring has a semi-elliptical shape with an eccentricity in a range of 0.8322 to 0.9992.
前記透明基材の表面からの前記金属配線の最大厚みが0.1μm〜1μmの範囲であることを特徴とする請求項1記載の透明電極シート。   The transparent electrode sheet according to claim 1, wherein the maximum thickness of the metal wiring from the surface of the transparent substrate is in the range of 0.1 μm to 1 μm. 前記金属配線は、銀ナノ粒子を焼結してなる焼結体であることを特徴とする請求項1又は2記載の透明電極シート。   The transparent electrode sheet according to claim 1, wherein the metal wiring is a sintered body obtained by sintering silver nanoparticles. 請求項3記載の透明電極シートであって、前記金属配線が格子状に形成されるものにおいて、
前記透明基材の表面で金属配線が夫々のびる方向をX軸方向及びY軸方向とし、X軸方向及びY軸方向で互いに隣接する夫々2本の配線で区画される透明基材の部分を単位面積部、単位面積部にて透明基材の配線のない部分を単位開口、単位開口を区画する金属配線の線幅をW、単位開口の幅をGとし、これら線幅Wと幅Gとで決定される単位開口の面積率を基に、単位面積部における配線の充填分画fを次式(1)で定義し、
f=W/(G+W)・・・(1)
前記充填分画fと当該透明電極シートの透過率Tとの関係が次式(2)で表されることを特徴とする透明電極シート。
T=0.98−1.7f・・・(2)
The transparent electrode sheet according to claim 3, wherein the metal wiring is formed in a lattice shape.
The direction in which the metal wiring extends on the surface of the transparent substrate is defined as the X-axis direction and the Y-axis direction, and the portion of the transparent substrate divided by two wires adjacent to each other in the X-axis direction and the Y-axis direction is a unit. In the area portion and the unit area portion, the portion of the transparent substrate without wiring is a unit opening, the metal wiring dividing the unit opening is W, the unit opening width is G, and these line width W and width G are Based on the determined area ratio of the unit opening, the filling fraction f of the wiring in the unit area portion is defined by the following equation (1):
f = W / (G + W) (1)
The relationship between the said filling fraction f and the transmittance | permeability T of the said transparent electrode sheet is represented by following Formula (2), The transparent electrode sheet characterized by the above-mentioned.
T = 0.98-1.7f (2)
請求項4記載の透明電極シートであって、前記金属配線の比抵抗が2〜30μΩ・cmであるものにおいて、
前記充填分画fが0.0002〜0.048の範囲であることを特徴とする透明電極シート。
The transparent electrode sheet according to claim 4, wherein the metal wire has a specific resistance of 2 to 30 μΩ · cm.
The transparent electrode sheet, wherein the filling fraction f is in the range of 0.0002 to 0.048.
請求項3〜5のいずれか1項記載の透明電極シートの製造方法であって、
前記銀ナノ粒子を溶媒に分散させたものを印刷用のインクとし、このインクを前記透明基材の表面に印刷する工程と、
印刷したインクを焼成して前記銀ナノ粒子を焼結させて金属配線とする工程とを含むことを特徴とする透明電極シートの製造方法。
A method for producing a transparent electrode sheet according to any one of claims 3 to 5,
A process in which the silver nanoparticles dispersed in a solvent is used as a printing ink, and the ink is printed on the surface of the transparent substrate.
And baking the printed ink to sinter the silver nanoparticles to form a metal wiring.
JP2018018896A 2018-02-06 2018-02-06 Manufacturing method of transparent electrode sheet and transparent electrode sheet Active JP7048337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018018896A JP7048337B2 (en) 2018-02-06 2018-02-06 Manufacturing method of transparent electrode sheet and transparent electrode sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018896A JP7048337B2 (en) 2018-02-06 2018-02-06 Manufacturing method of transparent electrode sheet and transparent electrode sheet

Publications (2)

Publication Number Publication Date
JP2019140134A true JP2019140134A (en) 2019-08-22
JP7048337B2 JP7048337B2 (en) 2022-04-05

Family

ID=67695477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018896A Active JP7048337B2 (en) 2018-02-06 2018-02-06 Manufacturing method of transparent electrode sheet and transparent electrode sheet

Country Status (1)

Country Link
JP (1) JP7048337B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508418A (en) * 2003-09-29 2007-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spin printing of electronic and display components
JP2011171015A (en) * 2010-02-16 2011-09-01 Sumitomo Osaka Cement Co Ltd Low-resistance transparent conductive film, manufacturing method therefor, solar cell, and electronic apparatus
WO2015111715A1 (en) * 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 Wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007508418A (en) * 2003-09-29 2007-04-05 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Spin printing of electronic and display components
JP2011171015A (en) * 2010-02-16 2011-09-01 Sumitomo Osaka Cement Co Ltd Low-resistance transparent conductive film, manufacturing method therefor, solar cell, and electronic apparatus
WO2015111715A1 (en) * 2014-01-24 2015-07-30 トッパン・フォームズ株式会社 Wiring board

Also Published As

Publication number Publication date
JP7048337B2 (en) 2022-04-05

Similar Documents

Publication Publication Date Title
EP2820657B1 (en) Conductive nanowire films
Angmo et al. Roll‐to‐roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration
US10645760B2 (en) Heater device and method for producing the same
DE112015005621T5 (en) Flat flexible carrier for use in steering wheel heating and / or detection
US11270809B2 (en) Dispersing element, method for manufacturing structure with conductive pattern using the same, and structure with conductive pattern
US10895794B2 (en) Electrochromic device having a patterned electrode free of indium tin oxide (ITO)
CN103460304A (en) Transparent conductive film, substrate with transparent conductive film, and method for manufacturing same
CN107113981B (en) Substrate for printed wiring board and method for manufacturing substrate for printed wiring board
US20150064057A1 (en) Methods for producing nio nanoparticle thin films and patterning of ni conductors by nio reductive sintering and laser ablation
US8723193B2 (en) Multi-layer wiring substrate, active matrix substrate, image display apparatus using the same, and multi-layer wiring substrate manufacturing method
US20160211505A1 (en) Method of manufacturing electrode of secondary battery by esd method
US8968824B2 (en) Method for producing silver conductive film
EP3078031B1 (en) Manufacturing conductive thin films comprising graphene and metal nanowires
DE102005002837A1 (en) Transparent electrode manufacturing method, e.g. for organic light emitting diode, involves providing data set that contains data representing structure of conductive paths to be manufactured, where paths form structured electrode layer
WO2013124254A1 (en) Method for contacting a semiconductor substrate, more particularly for contacting solar cells, and solar cells contacted thereby
Ohsawa et al. Flexible transparent electrode of gravure offset printed invisible silver-grid laminated with conductive polymer
EP3494184B1 (en) Formulations and processes for producing highly conductive copper patterns
DE102012016375B4 (en) Process for the preparation of dielectric elastomer actuators
JP2019140134A (en) Transparent electrode sheet and method for manufacturing the same
US10717889B2 (en) Conductor composition ink, conductor, laminate, laminated wiring board and electronic equipment
JP2017069001A (en) Method for forming conductive pattern, and conductive pattern
JP5963205B2 (en) Method for forming carbon-based material film
DE102014200443B4 (en) Sensor element for determining strains
DE102015120531A1 (en) Method for producing a membrane electrode assembly
JP7048386B2 (en) Transparent electrode sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150