JP2019137819A - Composite structure, manufacturing method of composite structure, and heat storage method - Google Patents

Composite structure, manufacturing method of composite structure, and heat storage method Download PDF

Info

Publication number
JP2019137819A
JP2019137819A JP2018024999A JP2018024999A JP2019137819A JP 2019137819 A JP2019137819 A JP 2019137819A JP 2018024999 A JP2018024999 A JP 2018024999A JP 2018024999 A JP2018024999 A JP 2018024999A JP 2019137819 A JP2019137819 A JP 2019137819A
Authority
JP
Japan
Prior art keywords
composite structure
outer shell
heat storage
metal material
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018024999A
Other languages
Japanese (ja)
Other versions
JP7016109B2 (en
Inventor
英紀 北
Hidenori Kita
英紀 北
慎二郎 中村
Shinjiro Nakamura
慎二郎 中村
誠司 山下
Seiji Yamashita
誠司 山下
光宏 窪田
Mitsuhiro Kubota
光宏 窪田
和也 橋本
Kazuya Hashimoto
和也 橋本
文仁 尾関
Fumihito Ozeki
文仁 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceram Co Ltd
Nagoya University NUC
Mino Ceramic Co Ltd
Original Assignee
Mino Ceram Co Ltd
Nagoya University NUC
Mino Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceram Co Ltd, Nagoya University NUC, Mino Ceramic Co Ltd filed Critical Mino Ceram Co Ltd
Priority to JP2018024999A priority Critical patent/JP7016109B2/en
Publication of JP2019137819A publication Critical patent/JP2019137819A/en
Application granted granted Critical
Publication of JP7016109B2 publication Critical patent/JP7016109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

To provide a composite structure useful as a heat storage body or the like, excellent in temperature rising property, high in mechanical strength, capable of stably achieving heat storage performance, and a simple manufacturing method therefor.SOLUTION: There is provided a composite structure 10 having an inner structure part 2 consisting of a metal material, and a seamless outer shell part 4 including the inner structure part 2 and consisting of ceramics mainly containing silicon carbide formed by a reaction sintering. After coating an outer periphery surface of a molded body consisting of the metal material with a coating layer containing silicon carbide and carbon, the coating layer is heated in contact with silicon, and the outer shell part 4 is formed by reaction sintering.SELECTED DRAWING: Figure 1

Description

本発明は、蓄熱体等として有用な複合構造体及びその製造方法、並びにこの複合構造体を蓄熱体として用いた蓄熱方法に関する。   The present invention relates to a composite structure useful as a heat storage body and the like, a manufacturing method thereof, and a heat storage method using the composite structure as a heat storage body.

蓄熱方法の一つとして、相変化に伴う潜熱を利用した潜熱蓄熱が知られている。このような潜熱蓄熱を利用した蓄熱体として、その内部に潜熱蓄熱物質を有するカプセル状の蓄熱体が提案されている。   As one of heat storage methods, latent heat storage using latent heat accompanying phase change is known. As a heat storage body using such latent heat storage, a capsule-shaped heat storage body having a latent heat storage material therein has been proposed.

例えば、特許文献1では、電解めっき法によって潜熱蓄熱材の表面に一層以上の金属製被膜を形成した潜熱蓄熱カプセルが提案されている。また、特許文献2では、相変化により蓄熱又は放熱する水溶性の潜熱蓄熱物質を芯物質とし、この芯物質を無機化合物と有機高分子化合物とが複合化されて形成された複合カプセル壁で被覆した蓄熱マイクロカプセルが提案されている。   For example, Patent Document 1 proposes a latent heat storage capsule in which one or more metal coatings are formed on the surface of a latent heat storage material by electrolytic plating. In Patent Document 2, a water-soluble latent heat storage material that stores or dissipates heat by phase change is used as a core material, and this core material is covered with a composite capsule wall formed by combining an inorganic compound and an organic polymer compound. Thermal storage microcapsules have been proposed.

さらに、特許文献3では、糖類等の水溶性蓄熱材からなる芯物質と、この芯物質を被覆する、無機化合物と有機高分子化合物の複合材からなる第一カプセル壁と、この第一カプセル壁を被覆するポリマー材からなる第二カプセル壁とを有する蓄熱マイクロカプセルが提案されている。   Further, in Patent Document 3, a core substance made of a water-soluble heat storage material such as saccharide, a first capsule wall made of a composite material of an inorganic compound and an organic polymer compound covering the core substance, and the first capsule wall A heat storage microcapsule having a second capsule wall made of a polymer material that coats the substrate has been proposed.

しかしながら、特許文献1で提案された潜熱蓄熱カプセルの金属製被膜は耐熱性が低いため、高温状態での使用時に破れてしまい、内部の蓄熱物質が漏出しやすくなるといった問題があった。また、特許文献2及び3で提案された蓄熱マイクロカプセルのカプセル壁は低密度であるために強度が低い。このため、高温条件下や腐食等を生じやすい過酷な環境下で使用することは困難であった。さらに、上述した従来の蓄熱用のカプセル等はエネルギー密度が小さく、外殻部分の耐熱性が十分でないため、温度差を利用した顕熱を十分に利用することができず、エネルギー密度が小さいという問題もあった。   However, since the metal coating of the latent heat storage capsule proposed in Patent Document 1 has low heat resistance, there is a problem that the heat storage material is easily leaked because it is torn during use in a high temperature state. Moreover, since the capsule wall of the heat storage microcapsule proposed in Patent Documents 2 and 3 has a low density, the strength is low. For this reason, it has been difficult to use in a severe environment where high temperature conditions or corrosion easily occur. Furthermore, the conventional heat storage capsules described above have a small energy density, and the heat resistance of the outer shell portion is not sufficient, so that the sensible heat using the temperature difference cannot be sufficiently utilized, and the energy density is small. There was also a problem.

このような問題を解決すべく、例えば、セラミックスからなる一対の中空半球体を分割面で嵌合して形成した外殻中に金属等の内部蓄熱体を内包した蓄熱体が特許文献4で提案されている。   In order to solve such a problem, for example, Patent Document 4 proposes a heat storage body in which an internal heat storage body such as a metal is included in an outer shell formed by fitting a pair of hollow hemispheres made of ceramics on a dividing surface. Has been.

特開平11−23172号公報Japanese Patent Laid-Open No. 11-23172 特開2007−238912号公報JP 2007-238912 A 特開2009−108167号公報JP 2009-108167 A 特開2012−111825号公報JP 2012-111825 A

特許文献4で提案された蓄熱体はエネルギー密度が高く、ある程度有用なものではあった。しかしながら、使用時に、外殻を形成する一対の中空半球体の嵌合箇所から内部へと空気が侵入することがあった。このため、金属等の内部蓄熱体が酸化により劣化しやすいとともに、嵌合箇所の存在により機械的強度が不足するといった課題があった。また、外殻と内部蓄熱体との間にわずかな空隙が存在するため、この空隙が熱抵抗となって昇温速度が低下する場合があった。さらに、特許文献4で開示された製造方法では、図5に示すように、内部蓄熱体80と外殻92,94を個別に作製した後、これらを組み合わせて蓄熱体100とする必要がある。このため、製造工程が煩雑となってコスト高であるとともに、安定した性能を有する蓄熱体を定常的に製造することが困難であった。   The heat storage body proposed in Patent Document 4 has a high energy density and is useful to some extent. However, during use, air may intrude into the interior from the fitting location of the pair of hollow hemispheres that form the outer shell. For this reason, while internal heat storage bodies, such as a metal, are easy to deteriorate by oxidation, there existed a subject that mechanical strength was insufficient by presence of a fitting location. In addition, since there is a slight gap between the outer shell and the internal heat storage body, there is a case where the gap becomes a thermal resistance and the rate of temperature rise is lowered. Furthermore, in the manufacturing method disclosed in Patent Document 4, as shown in FIG. 5, after the internal heat storage body 80 and the outer shells 92 and 94 are individually manufactured, it is necessary to combine them into the heat storage body 100. For this reason, the manufacturing process is complicated and the cost is high, and it is difficult to regularly manufacture a heat storage body having stable performance.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、昇温特性に優れているとともに、機械的強度が高く、かつ、蓄熱性能を安定的に発揮しうる、蓄熱体等として有用な複合構造体を提供することにある。また、本発明の課題とするところは、上記の複合構造体の簡便な製造方法、及び上記の複合構造体を用いた蓄熱方法を提供することにある。   The present invention has been made in view of such problems of the prior art, and the object is to have excellent temperature rise characteristics, high mechanical strength, and stable heat storage performance. An object of the present invention is to provide a composite structure useful as a heat storage body and the like that can be exhibited in an effort. Moreover, the place made into the subject of this invention is providing the heat storage method using the simple manufacturing method of said composite structure, and said composite structure.

すなわち、本発明によれば、以下に示す複合構造体が提供される。
[1]金属材料からなる内部構造部と、前記内部構造部を内包する、反応焼結により形成された炭化ケイ素を主成分とするセラミックスからなるシームレスな外殻部と、を備えた複合構造体。
[2]前記内部構造部と前記外殻部の間に配置される緩衝層をさらに備える前記[1]に記載の複合構造体。
[3]前記緩衝層が、窒化ホウ素及び炭素の少なくともいずれかの材料で形成されている前記[2]に記載の複合構造体。
[4]前記金属材料の融点が、1,500℃以下である前記[1]〜[3]のいずれかに記載の複合構造体。
[5]前記金属材料が、銅、アルミニウム、ニッケル、及び鉄からなる群より選択される少なくとも一種の金属である前記[4]に記載の複合材料。
[6]前記金属材料が、ケイ素を含有する前記[1]〜[5]のいずれかに記載の複合構造体。
[7]蓄熱体として用いられる前記[1]〜[6]のいずれかに記載の複合構造体。
That is, according to the present invention, the following composite structure is provided.
[1] A composite structure comprising an internal structure part made of a metal material and a seamless outer shell part made of a ceramic mainly composed of silicon carbide formed by reaction sintering and enclosing the internal structure part .
[2] The composite structure according to [1], further including a buffer layer disposed between the inner structure portion and the outer shell portion.
[3] The composite structure according to [2], wherein the buffer layer is made of at least one of boron nitride and carbon.
[4] The composite structure according to any one of [1] to [3], wherein the melting point of the metal material is 1,500 ° C. or lower.
[5] The composite material according to [4], wherein the metal material is at least one metal selected from the group consisting of copper, aluminum, nickel, and iron.
[6] The composite structure according to any one of [1] to [5], wherein the metal material contains silicon.
[7] The composite structure according to any one of [1] to [6], which is used as a heat storage body.

また、本発明によれば、以下に示す複合構造体の製造方法が提供される。
[8]前記[1]〜[7]のいずれかに記載の複合構造体の製造方法であって、前記金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程と、得られた前記被焼成体の少なくとも前記被覆層をケイ素と接触させた状態で加熱し、反応焼結により前記外殻部を形成する工程と、を有する複合構造体の製造方法。
Moreover, according to this invention, the manufacturing method of the composite structure shown below is provided.
[8] The method for producing a composite structure according to any one of [1] to [7], wherein the outer peripheral surface of the molded body made of the metal material is coated with a coating layer containing silicon carbide and carbon. A composite structure comprising: a step of obtaining a fired body; and a step of heating at least the coating layer of the obtained fired body in contact with silicon and forming the outer shell portion by reactive sintering. Manufacturing method.

さらに、本発明によれば、以下に示す蓄熱方法が提供される。
[9]前記[7]に記載の複合構造体を前記内部構造部の溶融点以上の温度に加熱して、前記複合構造体に蓄熱させる工程を有する蓄熱方法。
Furthermore, according to this invention, the thermal storage method shown below is provided.
[9] A heat storage method including a step of heating the composite structure according to [7] to a temperature equal to or higher than a melting point of the internal structure portion to store heat in the composite structure.

本発明によれば、昇温特性に優れているとともに、機械的強度が高く、かつ、蓄熱性能を安定的に発揮しうる、蓄熱体等として有用な複合構造体を提供することができる。また、本発明によれば、上記の複合構造体の簡便な製造方法、及び上記の複合構造体を用いた蓄熱方法を提供することができる。   According to the present invention, it is possible to provide a composite structure useful as a heat storage body or the like that has excellent temperature rise characteristics, high mechanical strength, and can stably exhibit heat storage performance. Moreover, according to this invention, the simple manufacturing method of said composite structure and the thermal storage method using said composite structure can be provided.

本発明の複合構造体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the composite structure of this invention. 本発明の複合構造体の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the composite structure of this invention. 本発明の複合構造体の製造方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing method of the composite structure of this invention. 本発明の複合構造体の製造方法の他の実施形態を示す模式図である。It is a schematic diagram which shows other embodiment of the manufacturing method of the composite structure of this invention. 従来の蓄熱体の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the conventional heat storage body. 各要因が複合構造体の昇温特性に及ぼす影響を示すグラフである。It is a graph which shows the influence which each factor has on the temperature rising characteristic of a composite structure. 各要因が複合構造体の機械的強度に及ぼす影響を示すグラフである。It is a graph which shows the influence which each factor has on the mechanical strength of a composite structure.

<複合構造体>
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の複合構造体は、金属材料からなる内部構造部と、この内部構造部を内包する、反応焼結により形成された炭化ケイ素を主成分とするセラミックスからなるシームレスな外殻部とを備える。以下、本発明の複合構造体の詳細について説明する。
<Composite structure>
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments. The composite structure of the present invention includes an internal structure portion made of a metal material and a seamless outer shell portion made of a ceramic mainly composed of silicon carbide formed by reaction sintering, which encloses the internal structure portion. . Hereinafter, details of the composite structure of the present invention will be described.

図1は、本発明の複合構造体の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の複合構造体10は、内部構造部2と、この内部構造部2を内包するシームレスな外殻部4とを備える。   FIG. 1 is a cross-sectional view schematically showing one embodiment of the composite structure of the present invention. As shown in FIG. 1, the composite structure 10 of the present embodiment includes an internal structure portion 2 and a seamless outer shell portion 4 that encloses the internal structure portion 2.

(内部構造部)
複合構造体10を構成する内部構造部2は金属材料によって形成されており、主として内部蓄熱体として機能する部分である。複合構造体10を1,000〜1,500℃の温度域の廃熱を回収して再利用する蓄熱体として用いる場合を考慮すると、内部構造部2を構成する金属材料の融点は1,500℃以下であることが好ましく、1,000〜1,400℃であることがさらに好ましい。このような金属材料としては、例えば、銅、アルミニウム、ニッケル、及び鉄などを挙げることができる。これらの金属材料は、一種単独で又は二種以上を組み合わせて用いることができる。
(Internal structure)
The internal structure part 2 which comprises the composite structure 10 is formed of the metal material, and is a part which mainly functions as an internal heat storage body. Considering the case where the composite structure 10 is used as a heat storage body that recovers and reuses waste heat in the temperature range of 1,000 to 1,500 ° C., the melting point of the metal material constituting the internal structure portion 2 is 1,500. It is preferably not higher than ° C., more preferably 1,000 to 1,400 ° C. Examples of such a metal material include copper, aluminum, nickel, and iron. These metal materials can be used individually by 1 type or in combination of 2 or more types.

内部構造部2を構成する金属材料は、ケイ素を含有することが好ましい。後述する複合構造体の製造方法では、金属材料からなる成形体の外周面を被覆層で被覆した被焼成体を所定温度に加熱する。このため、固体から液体への相変態の際に収縮するケイ素を金属材料に含有させておくことで、加熱に伴って溶融した金属材料の過度の膨張を抑制することができる。これにより、得られる複合構造体に欠損等が生じにくくなるとともに、得られる複合構造体の熱伝導性等の特性をさらに向上させることができる。   The metal material constituting the internal structure 2 preferably contains silicon. In the method for manufacturing a composite structure described later, a fired body in which the outer peripheral surface of a molded body made of a metal material is coated with a coating layer is heated to a predetermined temperature. For this reason, the excessive expansion | swelling of the metal material fuse | melted with the heating can be suppressed by making the metal material contain the silicon | silicone which shrink | contracts in the phase transformation from a solid to a liquid. As a result, defects and the like are less likely to occur in the obtained composite structure, and characteristics such as thermal conductivity of the obtained composite structure can be further improved.

内部構造部2を構成する金属材料がケイ素を含有する場合において、金属材料中のケイ素の含有量は、2〜35質量%であることが好ましく、5〜30質量%であることがさらに好ましく、10〜25質量%であることが特に好ましい。金属材料中のケイ素の含有量が2質量%未満であると、ケイ素を含有させることによって得られる効果が不十分になる。一方、金属材料中のケイ素の含有量が35質量%超であると、ケイ素の特性が顕在化しやすく、金属材料自体の熱的特性等が不十分になる場合がある。   When the metal material constituting the internal structure portion 2 contains silicon, the silicon content in the metal material is preferably 2 to 35% by mass, more preferably 5 to 30% by mass, It is particularly preferably 10 to 25% by mass. When the content of silicon in the metal material is less than 2% by mass, the effect obtained by including silicon becomes insufficient. On the other hand, when the content of silicon in the metal material is more than 35% by mass, the characteristics of silicon are easily manifested, and the thermal characteristics of the metal material itself may be insufficient.

(外殻部)
複合構造体10を構成する外殻部4は、セラミックスによって形成されている。また、このセラミックスは、反応焼結により形成された炭化ケイ素を主成分として含有する。本実施形態の複合構造体10は、このようなセラミックスによって形成された外殻部4によって内部構造部2を被覆したものであるため、良好な昇温特性を有するとともに、優れた機械的強度を示す。外殻部4を形成するセラミックスに含まれる炭化ケイ素の量は特に限定されないが、50体積%以上であることが好ましく、90体積%以上であることがさらに好ましい。
(Outer shell)
The outer shell portion 4 constituting the composite structure 10 is made of ceramics. Moreover, this ceramic contains silicon carbide formed by reactive sintering as a main component. Since the composite structure 10 of the present embodiment covers the internal structure portion 2 with the outer shell portion 4 formed of such ceramics, it has good temperature rise characteristics and excellent mechanical strength. Show. The amount of silicon carbide contained in the ceramic forming the outer shell portion 4 is not particularly limited, but is preferably 50% by volume or more, and more preferably 90% by volume or more.

また、外殻部4は、嵌合部、接合部、又は隙間等が実質的に存在しない、いわゆるシームレスな部分である。このため、外殻部4を通じて外部から空気が侵入しにくく、内部構造部2が劣化しにくい。さらに、外殻部4に嵌合部や隙間が実質的に存在しないことから、優れた機械的強度が発揮される。   The outer shell portion 4 is a so-called seamless portion in which a fitting portion, a joint portion, a gap, or the like does not substantially exist. For this reason, it is difficult for air to enter from the outside through the outer shell portion 4, and the internal structure portion 2 is not easily deteriorated. Furthermore, since the fitting part and the gap are not substantially present in the outer shell part 4, excellent mechanical strength is exhibited.

(緩衝層)
図2は、本発明の複合構造体の他の実施形態を模式的に示す断面図である。図2に示すように、本実施形態の複合構造体20は、内部構造部2と外殻部4の間に配置される緩衝層6をさらに備えることが好ましい。後述する複合構造体の製造方法では、金属材料からなる成形体の外周面を被覆層で被覆した被焼成体を所定温度に加熱する。このため、所定箇所に緩衝層を配置することで、加熱に伴って溶融した金属材料の膨張により生ずる応力を緩衝することができる。また、緩衝層を配置することで、加熱に伴って溶融した金属材料が外部に流出しやすくなるのを抑制することも期待される。すなわち、緩衝層は、遮蔽層としての機能をも具備することが好ましい。緩衝層を配置することで、得られる複合構造体に欠損等が生じにくくなるとともに、得られる複合構造体の熱伝導性等の特性をさらに向上させることができる。
(Buffer layer)
FIG. 2 is a cross-sectional view schematically showing another embodiment of the composite structure of the present invention. As shown in FIG. 2, it is preferable that the composite structure 20 of the present embodiment further includes a buffer layer 6 disposed between the inner structure portion 2 and the outer shell portion 4. In the method for manufacturing a composite structure described later, a fired body in which the outer peripheral surface of a molded body made of a metal material is coated with a coating layer is heated to a predetermined temperature. For this reason, the stress which arises by expansion | swelling of the metal material fuse | melted with the heating can be buffered by arrange | positioning a buffer layer in a predetermined location. In addition, it is expected that by disposing the buffer layer, it is possible to prevent the metal material melted with heating from easily flowing out. That is, it is preferable that the buffer layer also has a function as a shielding layer. By disposing the buffer layer, it is difficult to cause defects or the like in the obtained composite structure, and characteristics such as thermal conductivity of the obtained composite structure can be further improved.

緩衝層6の厚みは特に限定されないが、3mm以下とすることが好ましく、1mm以下とすることがさらに好ましい。緩衝層6の厚みが3mm超であると、外部から内部構造部2への熱伝導が阻害されやすくなる場合がある。   The thickness of the buffer layer 6 is not particularly limited, but is preferably 3 mm or less, and more preferably 1 mm or less. When the thickness of the buffer layer 6 exceeds 3 mm, heat conduction from the outside to the internal structure portion 2 may be easily inhibited.

緩衝層6を構成する材料としては、窒化ホウ素、炭素等を挙げることができる。これらの材料は、一種単独で又は二種を組み合わせて用いることができる。   Examples of the material constituting the buffer layer 6 include boron nitride and carbon. These materials can be used individually by 1 type or in combination of 2 types.

本発明の複合構造体は、(i)堅牢でシームレスな外殻部、及び(ii)この外殻部に内包された金属材料からなる内部構造部、といった、物理的にも化学的にも顕著に相違する二つの構造部分を備える。このため、本発明の複合構造体は、その特性を生かし、例えば、鉄鋼の転炉などの1,000℃以上の高温かつ腐食しやすい過酷な環境下で廃熱回収するための蓄熱体;輻射を利用した発熱体等として有用である。その他、本発明の複合構造体が、耐食性に優れているとともに熱伝導率が高いものであることを利用すれば、触媒基材、放熱基板、及び熱交換機への適用も期待される。   The composite structure of the present invention is physically and chemically prominent such as (i) a robust and seamless outer shell, and (ii) an inner structure made of a metal material included in the outer shell. It has two different structural parts. For this reason, the composite structure of the present invention takes advantage of the characteristics thereof, for example, a heat storage body for recovering waste heat under a high temperature of 1,000 ° C. or more and a harsh environment susceptible to corrosion, such as a steel converter; It is useful as a heating element using In addition, if the composite structure of the present invention is excellent in corrosion resistance and has high thermal conductivity, application to a catalyst base, a heat dissipation substrate, and a heat exchanger is also expected.

<複合構造体の製造方法>
次に、本発明の複合構造体の製造方法について説明する。本発明の複合構造体の製造方法は、上述の複合構造体を製造する方法であり、金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程(工程(1))と、得られた被焼成体の少なくとも被覆層をケイ素と接触させた状態で加熱し、反応焼結により外殻部を形成する工程(工程(2))とを有する。以下、本発明の複合構造体の製造方法の詳細について説明する。
<Method for producing composite structure>
Next, the manufacturing method of the composite structure of this invention is demonstrated. The method for producing a composite structure of the present invention is a method for producing the above-described composite structure, and the outer peripheral surface of a molded body made of a metal material is coated with a coating layer containing silicon carbide and carbon to obtain a fired body. A step (step (1)) and a step (step (2)) in which at least the coating layer of the obtained fired body is heated in contact with silicon and the outer shell is formed by reactive sintering. . Hereinafter, the detail of the manufacturing method of the composite structure of this invention is demonstrated.

(工程(1))
工程(1)では、金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して、被焼成体を得る。成形体を構成する金属材料は、内部構造部を形成するための前述の金属材料と同様のものを挙げることができる。なお、金属材料からなる成形体の外周面上に前述した緩衝層を形成してもよい。緩衝層を形成するには、例えば、窒化ホウ素や炭素の粉末を適当な分散媒(水、エタノール等)に分散させて得られるスラリーを成形体の外周面上に塗布すればよい。
(Process (1))
In step (1), the outer peripheral surface of a molded body made of a metal material is coated with a coating layer containing silicon carbide and carbon to obtain a body to be fired. Examples of the metal material constituting the molded body include the same metal materials as those described above for forming the internal structure portion. In addition, you may form the buffer layer mentioned above on the outer peripheral surface of the molded object which consists of metal materials. In order to form the buffer layer, for example, a slurry obtained by dispersing boron nitride or carbon powder in an appropriate dispersion medium (water, ethanol, etc.) may be applied on the outer peripheral surface of the molded body.

図3は、本発明の複合構造体の製造方法の一実施形態を示す模式図である。被焼成体を得るには、まず、金属材料からなる成形体12の外周面上に炭化ケイ素及び炭素を含有する粉体層14を形成して、粉体被覆物16を得る(図3(A)、(B))。この粉体層14は、例えば、炭化ケイ素の粉末及び炭素の粉末を適当な分散媒(水、エタノール等)に分散させて得られるスラリーを成形体12の外周面上に塗布することで形成することができる。得られた粉体被覆物16を回転混合器20のチャンバー18に入れ、チャンバー18を回転させて粉体被覆物16を転動させる(図3(C))。これにより、金属材料からなる成形体12の外周面が、粉体層よりも緻密な被覆層22で被覆された被焼成体30を得ることができる(図3(D))。   FIG. 3 is a schematic view showing one embodiment of the method for producing a composite structure of the present invention. In order to obtain a to-be-fired body, first, a powder layer 14 containing silicon carbide and carbon is formed on the outer peripheral surface of a molded body 12 made of a metal material to obtain a powder coating 16 (FIG. 3A). ), (B)). The powder layer 14 is formed, for example, by applying a slurry obtained by dispersing silicon carbide powder and carbon powder in an appropriate dispersion medium (water, ethanol, etc.) on the outer peripheral surface of the molded body 12. be able to. The obtained powder coating 16 is put into the chamber 18 of the rotary mixer 20, and the chamber 18 is rotated to roll the powder coating 16 (FIG. 3C). Thereby, the to-be-fired body 30 by which the outer peripheral surface of the molded object 12 which consists of metal materials was coat | covered with the coating layer 22 denser than a powder layer can be obtained (FIG.3 (D)).

また、以下の方法によって被焼成体を得ることもできる。図4は、本発明の複合構造体の製造方法の他の実施形態を示す模式図である。まず、金属材料からなる成形体12の形状に対応する、炭化ケイ素及び炭素を含有する外殻成形体32a,32bを製造する(図4(A))。そして、製造した外殻成形体32a,32bの内部に成形体12を収容すれば、金属材料からなる成形体12の外周面が被覆層34で被覆された被焼成体40を得ることができる(図(B))。外殻成形体32a,32bは、例えば、炭化ケイ素の粉末及び炭素の粉末を適当なバインダーと混合した後、成形及び脱脂等することによって製造することができる。なお、図4(A)、(B)に示すような2以上の外殻成形体32a,32bを製造する場合、これらの当接部には、例えば、嵌合部42を構成するためのネジ部を形成しておくことが好ましい。   Moreover, a to-be-fired body can also be obtained with the following method. FIG. 4 is a schematic view showing another embodiment of the method for producing a composite structure of the present invention. First, outer shell molded bodies 32a and 32b containing silicon carbide and carbon corresponding to the shape of the molded body 12 made of a metal material are manufactured (FIG. 4A). And if the molded object 12 is accommodated in the manufactured outer shell molded bodies 32a and 32b, the to-be-fired body 40 by which the outer peripheral surface of the molded object 12 which consists of metal materials was coat | covered with the coating layer 34 can be obtained. (B). The outer shell molded bodies 32a and 32b can be manufactured, for example, by mixing silicon carbide powder and carbon powder with an appropriate binder, and then molding and degreasing. In the case where two or more outer shell molded bodies 32a and 32b as shown in FIGS. 4A and 4B are manufactured, for example, a screw for constituting the fitting portion 42 is provided in these contact portions. It is preferable to form a part.

工程(2)では、工程(1)で得た被焼成体の少なくとも被覆層をケイ素と接触させた状態で加熱する。具体的には、図3(E)及び図4(C)に示すように、ケイ素を入れた容器に被焼成体30,40を入れ、所定の温度に加熱する。ケイ素の融点は約1,400℃であるため、1,500℃前後に加熱することでケイ素は溶融して溶融ケイ素50となる。これにより、被焼成体30,40の被覆層22,34をケイ素に接触させた状態で加熱することができる。溶融状態となったケイ素(溶融ケイ素50)は被覆層22,34に浸透するとともに、炭素と反応焼結して炭化ケイ素が形成される。これにより、炭化ケイ素を主成分とするセラミックスからなる外殻部4が形成され、内部構造部2と、内部構造部2を内包するシームレスな外殻部4とを備えた複合構造体10を得ることができる(図3(F)及び図4(D))。   In step (2), at least the coating layer of the body to be fired obtained in step (1) is heated while being in contact with silicon. Specifically, as shown in FIGS. 3E and 4C, the objects to be fired 30 and 40 are placed in a container containing silicon and heated to a predetermined temperature. Since the melting point of silicon is about 1,400 ° C., the silicon is melted into a molten silicon 50 by heating to around 1,500 ° C. Thereby, it can heat in the state which contacted the coating layers 22 and 34 of the to-be-fired bodies 30 and 40 with silicon. Silicon in a molten state (molten silicon 50) penetrates into the coating layers 22 and 34 and is reactively sintered with carbon to form silicon carbide. As a result, the outer shell portion 4 made of ceramics mainly composed of silicon carbide is formed, and the composite structure 10 including the internal structure portion 2 and the seamless outer shell portion 4 that encloses the internal structure portion 2 is obtained. (FIG. 3 (F) and FIG. 4 (D)).

なお、図4(C)及び(D)に示すように、嵌合部42の隙間にも溶融ケイ素が含浸するため、含浸したケイ素と炭素が反応して炭化ケイ素が形成される。これにより、嵌合部42の隙間は実質的に消失し、シームレスな外殻部4を形成することができる。   As shown in FIGS. 4C and 4D, since the molten silicon is also impregnated in the gaps between the fitting portions 42, the impregnated silicon and carbon react to form silicon carbide. Thereby, the clearance gap of the fitting part 42 lose | disappears substantially, and the seamless outer shell part 4 can be formed.

<蓄熱方法>
次に、本発明の蓄熱方法について説明する。本発明の蓄熱方法は、前述の複合構造体を蓄熱体として使用する方法である。すなわち、本発明の蓄熱方法は、前述の複合構造体(蓄熱体)を内部構造部の溶融点以上の温度に加熱して、複合構造体に蓄熱させる工程(蓄熱工程)を有する。
<Heat storage method>
Next, the heat storage method of the present invention will be described. The heat storage method of the present invention is a method of using the above-described composite structure as a heat storage body. That is, the heat storage method of the present invention includes a step (heat storage step) in which the above-described composite structure (heat storage body) is heated to a temperature equal to or higher than the melting point of the internal structure portion to store heat in the composite structure.

蓄熱工程では、例えば、溶融前の内部構造部の顕熱、溶融前の内部構造部の潜熱、溶融状態の内部構造部の顕熱、及び外殻部の顕熱の総和の熱量(蓄熱体の全熱量)に対して、外殻部の顕熱の蓄熱量が20%以上となるように、複合構造体を加熱して蓄熱させることが好ましい。このような蓄熱方法によれば、溶融前の内部構造部の顕熱、溶融前の内部構造部の潜熱、溶融状態の内部構造部の顕熱、及び外殻部の顕熱の全てを利用することができ、エネルギー密度の高い蓄熱を実現することができる。なお、これらの顕熱及び潜熱は、下記式(1)を用いて算出することができる。そして、算出した顕熱及び潜熱に基づき、複合構造体を加熱する温度を決定することができる。   In the heat storage process, for example, the total amount of sensible heat of the internal structure part before melting, the latent heat of the internal structure part before melting, the sensible heat of the internal structure part in the molten state, and the sensible heat of the outer shell part (of the heat storage body It is preferable to store the composite structure by heating so that the sensible heat storage amount of the outer shell portion is 20% or more with respect to the total heat amount). According to such a heat storage method, all of the sensible heat of the internal structure part before melting, the latent heat of the internal structure part before melting, the sensible heat of the internal structure part in the molten state, and the sensible heat of the outer shell part are used. And heat storage with high energy density can be realized. These sensible heat and latent heat can be calculated using the following formula (1). And based on the calculated sensible heat and latent heat, the temperature which heats a composite structure can be determined.

Figure 2019137819
Figure 2019137819

上記式(1)中、Tiは初期温度、Teは最終温度、mは質量、Cpsは固定状態における比熱、Cplは液体状態における比熱、Lは潜熱を示す。   In the above formula (1), Ti is the initial temperature, Te is the final temperature, m is the mass, Cps is the specific heat in the fixed state, Cpl is the specific heat in the liquid state, and L is the latent heat.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified.

<複合構造体の製造>
(実施例1−1〜1−12)
[金属材料からなる成形体(コア成形体)の製造]
(1)Cu、(2)Cu−10%Si、及び(3)Cu−25%Siからなる3種類の球状のコア成形体を鋳造法により製造した。製造したコア成形体の直径は、いずれも約18.5mmであった。
<Manufacture of composite structure>
(Examples 1-1 to 1-12)
[Manufacture of molded body made of metal material (core molded body)]
Three types of spherical core molded bodies made of (1) Cu, (2) Cu-10% Si, and (3) Cu-25% Si were produced by a casting method. The diameters of the manufactured core molded bodies were all about 18.5 mm.

[外殻部の形成(製法1)]
炭化ケイ素(SiC)粉末(平均粒径:約1μm)及びカーボン(C)粉末(平均粒径:約2μm)を、SiC:C=90:10の質量比となるように秤量するとともに、混合して混合粉末を得た。得られた混合粉末にエタノールを分散媒として添加してスラリーを調製した。調製したスラリーをコア成形体の表面に塗布した。同一成分の混合粉末を所定量投入した回転混合機のチャンバーに、その表面にスラリーを塗布したコア成形体を入れた。回転混合器のチャンバーを20分間回転させてコア成形体を転動させ、コア成形体の外周面上に炭化ケイ素及び炭素を含む被覆層が形成された被焼成体を得た。得られた被焼成体は、その直径が約22mmの球体であった。
[Formation of outer shell (production method 1)]
Silicon carbide (SiC) powder (average particle size: about 1 μm) and carbon (C) powder (average particle size: about 2 μm) are weighed and mixed so as to have a mass ratio of SiC: C = 90: 10. To obtain a mixed powder. To the obtained mixed powder, ethanol was added as a dispersion medium to prepare a slurry. The prepared slurry was applied to the surface of the core molded body. A core molded body having a slurry applied to the surface thereof was placed in a rotary mixer chamber in which a predetermined amount of mixed powder of the same component was charged. The core molded body was rolled by rotating the chamber of the rotary mixer for 20 minutes to obtain a fired body in which a coating layer containing silicon carbide and carbon was formed on the outer peripheral surface of the core molded body. The obtained fired body was a sphere having a diameter of about 22 mm.

粒径数mmのケイ素粗粒を敷いた黒鉛容器内に被焼成体を入れ、アルゴンガス中、1,500℃まで加熱昇温した。ケイ素の融点は約1,400℃である。このため、溶融状態となったケイ素が被覆層を構成する炭化ケイ素粉末の間隙に浸透するとともに、炭素と反応して炭化ケイ素が形成された(反応焼結)。これにより、内部構造と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、加熱により内部のコア成形体も一時溶融するが、外部に流出する等してその形状を失うことはなかった。得られた複合構造体は、その直径が約22mmの球体であった。すなわち、反応焼結により実質的な寸法収縮は生じなかった。   The object to be fired was placed in a graphite container in which silicon coarse particles having a particle diameter of several mm were laid, and heated to 1,500 ° C. in argon gas. The melting point of silicon is about 1,400 ° C. For this reason, the silicon in the molten state penetrates into the gaps of the silicon carbide powder constituting the coating layer, and reacts with carbon to form silicon carbide (reactive sintering). As a result, a composite structure including an internal structure and an outer shell mainly composed of silicon carbide enclosing the internal structure was obtained. In addition, although the internal core molded body was also temporarily melted by heating, it did not lose its shape by flowing out to the outside. The obtained composite structure was a sphere having a diameter of about 22 mm. That is, substantial dimensional shrinkage did not occur by reaction sintering.

(実施例2−1〜2−12)
[金属材料からなる成形体(コア成形体)の製造]
窒化ホウ素(BN)をスラリー状としたものを実施例1〜12で製造した3種類のコア成形体の表面に塗布して、厚さ約1mmの緩衝層をそれぞれ形成した。このように緩衝層を形成したものをコア成形体として用いた。
(Examples 2-1 to 2-12)
[Manufacture of molded body made of metal material (core molded body)]
Boron nitride (BN) in slurry form was applied to the surfaces of the three types of core molded bodies produced in Examples 1 to 12 to form buffer layers having a thickness of about 1 mm. What formed the buffer layer in this way was used as a core molding.

[外殻部の形成(製法2)]
炭化ケイ素(SiC)粉末(平均粒径:約1μm)及びカーボン(C)粉末(平均粒径:約2μm)を、SiC:C=90:10の質量比となるように秤量し、機械的に混合して約3,000gの混合粉末を得た。得られた混合粉末と、ポリエチレン、ワックス、及びステアリン酸を含む有機系のバインダーとを加圧ニーダ内に投入し、バインダーの融点以上の温度に加熱しながら十分に混練した後、冷却して固化させた。なお、炭化ケイ素の比重を3.22、及び炭素の比重を2.26とし、バインダーの配合量は約50体積%とした。冷却して得た固化物を破砕してペレットを得た。得られたペレットを射出成形機に投入して射出成形した後、アルゴンガス中、600℃に加熱して脱脂処理して、図4に示すような中空半球体である外殻成形体(直径:約22mm)を得た。一対の外殻成形体の内部にコア成形体を入れるとともに、外殻成形体をネジ部で嵌合した。これにより、コア成形体の外周面上に炭化ケイ素及び炭素を含む被覆層(外殻成形体)が形成された被焼成体を得た。なお、被覆層の嵌合部には、わずかな隙間が残っている。
[Formation of outer shell (production method 2)]
Silicon carbide (SiC) powder (average particle size: about 1 μm) and carbon (C) powder (average particle size: about 2 μm) were weighed so as to have a mass ratio of SiC: C = 90: 10 and mechanically About 3,000 g of mixed powder was obtained by mixing. The obtained mixed powder and an organic binder containing polyethylene, wax, and stearic acid are put into a pressure kneader, kneaded sufficiently while heating to a temperature higher than the melting point of the binder, and then cooled and solidified. I let you. The specific gravity of silicon carbide was 3.22, the specific gravity of carbon was 2.26, and the binder content was about 50% by volume. The solidified product obtained by cooling was crushed to obtain pellets. The obtained pellets were put into an injection molding machine and injection molded, and then degreased by heating to 600 ° C. in an argon gas, so that the outer shell molded body (diameter: About 22 mm). The core molded body was placed inside the pair of outer shell molded bodies, and the outer shell molded body was fitted with a screw portion. Thereby, the to-be-fired body by which the coating layer (outer shell molded object) containing silicon carbide and carbon was formed on the outer peripheral surface of a core molded object was obtained. A slight gap remains in the fitting portion of the coating layer.

粒径数mmのケイ素粗粒を敷いた黒鉛容器内に被焼成体を入れ、アルゴンガス中、1,500℃まで加熱昇温した。ケイ素の融点は約1,400℃である。このため、溶融状態となったケイ素が被覆層を構成する炭化ケイ素粉末の間隙に浸透するとともに、炭素と反応して炭化ケイ素が形成された(反応焼結)。これにより、内部構造部と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、加熱により内部のコア成形体も一時溶融するが、外部に流出する等してその形状を失うことはなかった。得られた複合構造体は、その直径が約22mmの球体であった。すなわち、反応焼結により実質的な寸法収縮は生じなかった。また、嵌合部の隙間にもケイ素が含浸し、炭素と反応して炭化ケイ素が形成されたことで、嵌合部の隙間は消失していた。   The object to be fired was placed in a graphite container in which silicon coarse particles having a particle diameter of several mm were laid, and heated to 1,500 ° C. in argon gas. The melting point of silicon is about 1,400 ° C. For this reason, the silicon in the molten state penetrates into the gaps of the silicon carbide powder constituting the coating layer, and reacts with carbon to form silicon carbide (reactive sintering). As a result, a composite structure including an internal structure part and an outer shell part mainly composed of silicon carbide enclosing the internal structure part was obtained. In addition, although the internal core molded body was also temporarily melted by heating, it did not lose its shape by flowing out to the outside. The obtained composite structure was a sphere having a diameter of about 22 mm. That is, substantial dimensional shrinkage did not occur by reaction sintering. Moreover, the gap | interval of the fitting part disappeared because the gap of the fitting part was impregnated with silicon and reacted with carbon to form silicon carbide.

(比較例1−1〜1−12)
[外殻部の形成(製法3)]
炭化ケイ素(α−SiC)粉末(屋久島電工社製、平均粒径:0.72mm)粉末100gに対して、アルミナ(Al23)(昭和電工社製)3%、及び炭化ホウ素(B4C)粉末1〜5%をそれぞれ添加し、ポリエチレン製の容器に入れた。エタノール中、ナイロン製ボールを用いた湿式ボールミルにより20時間混合した後、乾燥して混合粉末を得た。得られた混合粉末55体積部と、アクリル樹脂及びワックスを含むバインダー45体積部とを混合し、約3,000gの混合物を得た。得られた混合物を加圧ニーダに入れ、バインダーの融点以上の温度に加熱しながら十分に混練した後、冷却して固化させた。冷却して得た固化物を破砕してペレットを得た。得られたペレットを射出成形機に投入して射出成形し、中空半球体である成形体(直径:約25mm)を得た。得られた成形体を、アルゴンガス中、600℃に加熱して脱脂処理した後、2,100℃まで加熱して焼結させた。これにより、直径約22mm、肉厚1mm、相対密度99%の、図5に示すような中空半球体である外殻部を得た。
(Comparative Examples 1-1 to 1-12)
[Formation of outer shell (production method 3)]
3% of alumina (Al 2 O 3 ) (manufactured by Showa Denko KK) and boron carbide (B 4 ) with respect to 100 g of silicon carbide (α-SiC) powder (manufactured by Yakushima Electric Works, average particle size: 0.72 mm) C) 1 to 5% of powder was added and placed in a polyethylene container. After mixing for 20 hours in a wet ball mill using nylon balls in ethanol, the mixture was dried to obtain a mixed powder. 55 parts by volume of the obtained mixed powder and 45 parts by volume of a binder containing an acrylic resin and a wax were mixed to obtain about 3,000 g of a mixture. The obtained mixture was put into a pressure kneader, kneaded sufficiently while being heated to a temperature equal to or higher than the melting point of the binder, and then cooled and solidified. The solidified product obtained by cooling was crushed to obtain pellets. The obtained pellets were put into an injection molding machine and injection molded to obtain a molded body (diameter: about 25 mm) as a hollow hemisphere. The obtained molded body was degreased by heating to 600 ° C. in an argon gas, and then heated to 2,100 ° C. for sintering. Thus, an outer shell portion having a diameter of about 22 mm, a wall thickness of 1 mm, and a relative density of 99%, which is a hollow hemisphere as shown in FIG. 5, was obtained.

[一体化]
一対の外殻部の内部にコア成形体を入れるとともに、外殻部の接合面(嵌合部)に耐熱性の無機接着剤(商品名「アロンセラミック」、登録商標、東亞合成社製)を薄く塗布した。外殻部をネジ部で嵌合した後、約150℃で加熱して接着した。これにより、内部構造部と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、嵌合部の隙間を完全に埋めることはできず、わずかな隙間が存在していた。
[Integrated]
A core molded body is placed inside a pair of outer shell portions, and a heat-resistant inorganic adhesive (trade name “Aron Ceramic”, registered trademark, manufactured by Toagosei Co., Ltd.) is applied to the joint surface (fitting portion) of the outer shell portions. Thinly applied. After the outer shell portion was fitted with the screw portion, it was heated and bonded at about 150 ° C. As a result, a composite structure including an internal structure part and an outer shell part mainly composed of silicon carbide enclosing the internal structure part was obtained. It should be noted that the gap between the fitting portions could not be completely filled, and there was a slight gap.

<評価>
(昇温特性)
製造した複合構造体の中心部に直径0.5mmの穴をあけた。あけた穴を通じて、その先端が内部構造部の中心に位置するように熱電対を挿入した。約1,150℃に加熱した炉内に熱電対を挿入した状態の複合構造体を投入した。中心部の温度がほぼ一定となるまでの時間(到達時間)を測定し、昇温特性の指標とした。到達時間の測定結果を表1に示す。また、測定した到達時間の分散分析の結果を表2に示す。さらに、各要因が複合構造体の昇温特性に及ぼす影響を示すグラフを図6に示す。分散分析に当たっては、タグチメソッドに基づき、L36直交表を用いて策定した。また、各データの誤差と効果を切り分けるとともに、統計学的な効果の有無を評価する指標としてSN比を採用した。
<Evaluation>
(Temperature rise characteristics)
A hole with a diameter of 0.5 mm was made in the center of the manufactured composite structure. A thermocouple was inserted through the hole so that its tip was positioned at the center of the internal structure. A composite structure in which a thermocouple was inserted into a furnace heated to about 1,150 ° C. was charged. The time (arrival time) until the temperature of the central part becomes substantially constant was measured and used as an index of temperature rise characteristics. Table 1 shows the measurement results of the arrival time. Table 2 shows the result of analysis of variance of the measured arrival times. Furthermore, a graph showing the influence of each factor on the temperature rise characteristics of the composite structure is shown in FIG. In the analysis of variance, an L36 orthogonal table was used based on the Taguchi method. Moreover, while separating the error and effect of each data, the SN ratio was adopted as an index for evaluating the presence or absence of a statistical effect.

(機械的強度)
強度試験機を使用し、製造した複合構造体に圧縮荷重を付与した。複合構造体が破壊した時点の荷重(圧壊荷重)を測定し、機械的強度の指標とした。圧壊荷重の測定結果を表1に示す。また、測定した圧壊荷重の分散分析の結果を表3に示す。さらに、各要因が複合構造体の機械的強度に及ぼす影響を示すグラフを図7に示す。分散分析に当たっては、タグチメソッドに基づき、L36直交表を用いて策定した。また、各データの誤差と効果を切り分けるとともに、統計学的な効果の有無を評価する指標としてSN比を採用した。
(Mechanical strength)
A compressive load was applied to the manufactured composite structure using a strength tester. The load (crush load) at the time when the composite structure broke was measured and used as an index of mechanical strength. Table 1 shows the measurement results of the crushing load. Table 3 shows the results of analysis of variance of the measured crushing load. Furthermore, the graph which shows the influence which each factor has on the mechanical strength of a composite structure is shown in FIG. In the analysis of variance, an L36 orthogonal table was used based on the Taguchi method. Moreover, while separating the error and effect of each data, the SN ratio was adopted as an index for evaluating the presence or absence of a statistical effect.

Figure 2019137819
Figure 2019137819

Figure 2019137819
Figure 2019137819

Figure 2019137819
Figure 2019137819

表1に示すように、実施例の複合構造体は比較例の複合構造体に比して所定の温度までの到達時間が短く、昇温特性に優れていることがわかる。さらに、実施例の複合構造体は比較例の複合構造体に比して圧壊荷重が大きく、機械的強度に優れていることがわかる。   As shown in Table 1, it can be seen that the composite structure of the example has a short time to reach a predetermined temperature as compared with the composite structure of the comparative example, and is excellent in temperature rise characteristics. Furthermore, it can be seen that the composite structure of the example has a larger crushing load and superior mechanical strength than the composite structure of the comparative example.

また、表2及び図6(グラフ)に示すように、P値を基準にした検定結果から、外殻部の構造が複合構造体の昇温特性に対して有意であることがわかる。また、SN比については、製法1で作製した構造の外殻部が最も大きく、効果が高いことがわかる。なお、製法2で作製した構造の外殻部については、製法1で作製した外殻部に若干劣るものの、製法3で作製した外殻部に比べてSN比が大きいことがわかる。また、内部構造部にケイ素を含有させることで、性能が若干向上したことがわかる。これは、ケイ素をコア成形体に含有させることで固液相変態に伴う寸法変化が抑制され、内部構造部と外殻部の隙間が小さくなったためと考えらえる。   Moreover, as shown in Table 2 and FIG. 6 (graph), it can be seen from the test results based on the P value that the structure of the outer shell is significant for the temperature rise characteristics of the composite structure. Moreover, about SN ratio, it turns out that the outer shell part of the structure produced by the manufacturing method 1 is the largest, and an effect is high. In addition, although it is a little inferior to the outer shell part produced by the manufacturing method 1 about the outer shell part produced by the manufacturing method 2, it turns out that SN ratio is large compared with the outer shell part produced by the manufacturing method 3. It can also be seen that the performance was slightly improved by including silicon in the internal structure. This is considered to be because the dimensional change accompanying the solid-liquid phase transformation was suppressed by containing silicon in the core molded body, and the gap between the internal structure portion and the outer shell portion was reduced.

さらに、表3及び図7(グラフ)に示すように、外殻部の構造が複合構造体の機械的強度に対して有意であることがわかる。製法3で作製した従来の嵌合構造を有する外殻部には不可避的な隙間が残存している。このため、比較例の複合構造体では外殻部に残存した隙間が破壊の原因となる欠陥となりやすいのに比べて、実施例の複合構造体の外殻部には隙間が実質的に存在せず、破壊の原因となる欠陥がほとんど生じないためであると考えられる。比較例の複合構造体では、設計上、外殻部と内部構造部の間に隙間が生ずる。これに対し、実施例の複合構造体では外殻部と内部構造部の間に隙間が実質的に生じておらず、外殻部と内部構造部が密着しているため、熱抵抗が低下して熱伝導性が向上したと考えられる。さらに、外殻部の内面に内部構造部の表面が接触しているために、外殻部に発生する引張応力が低下し、機械的強度が向上したと考えられる。   Furthermore, as shown in Table 3 and FIG. 7 (graph), it can be seen that the structure of the outer shell is significant with respect to the mechanical strength of the composite structure. An inevitable gap remains in the outer shell portion having the conventional fitting structure manufactured by the manufacturing method 3. For this reason, in the composite structure of the comparative example, the gap remaining in the outer shell portion is likely to be a defect that causes destruction, whereas the outer shell portion of the composite structure of the example has substantially no gap. This is probably because defects that cause destruction hardly occur. In the composite structure of the comparative example, a gap is generated between the outer shell portion and the inner structure portion by design. On the other hand, in the composite structure of the example, there is substantially no gap between the outer shell portion and the inner structure portion, and the outer shell portion and the inner structure portion are in close contact with each other. It is thought that the thermal conductivity was improved. Furthermore, since the surface of the internal structure portion is in contact with the inner surface of the outer shell portion, it is considered that the tensile stress generated in the outer shell portion is reduced and the mechanical strength is improved.

本発明の複合構造体は、例えば、鉄鋼の転炉などの1,000℃以上の高温かつ腐食しやすい過酷な環境下で廃熱回収するための蓄熱体として有用である。   The composite structure of the present invention is useful, for example, as a heat storage body for recovering waste heat in a high temperature of 1,000 ° C. or more and a harsh environment that easily corrodes, such as a steel converter.

2:内部構造部
4:外殻部
6:緩衝層
10,20:複合構造体
12:(金属材料からなる)成形体
14:粉体層
16:粉体被覆物
18:チャンバー
20:回転混合器
22,34:被覆層
30,40:被焼成体
50:溶融ケイ素
32a,32b:外殻成形体
42:嵌合部
80:内部蓄熱体
92,94:外殻
100:蓄熱体
2: Internal structure part 4: Outer shell part 6: Buffer layer 10, 20: Composite structure 12: Molded body (made of metal material) 14: Powder layer 16: Powder coating 18: Chamber 20: Rotating mixer 22, 34: coating layers 30, 40: body to be fired 50: molten silicon 32a, 32b: outer shell molded body 42: fitting portion 80: internal heat storage body 92, 94: outer shell 100: heat storage body

Claims (9)

金属材料からなる内部構造部と、
前記内部構造部を内包する、反応焼結により形成された炭化ケイ素を主成分とするセラミックスからなるシームレスな外殻部と、を備えた複合構造体。
An internal structure made of a metal material;
A composite structure comprising: a seamless outer shell made of ceramics mainly composed of silicon carbide formed by reactive sintering, including the inner structure.
前記内部構造部と前記外殻部の間に配置される緩衝層をさらに備える請求項1に記載の複合構造体。   The composite structure according to claim 1, further comprising a buffer layer disposed between the inner structure portion and the outer shell portion. 前記緩衝層が、窒化ホウ素及び炭素の少なくともいずれかの材料で形成されている請求項2に記載の複合構造体。   The composite structure according to claim 2, wherein the buffer layer is made of at least one of boron nitride and carbon. 前記金属材料の融点が、1,500℃以下である請求項1〜3のいずれか一項に記載の複合構造体。   4. The composite structure according to claim 1, wherein a melting point of the metal material is 1,500 ° C. or less. 前記金属材料が、銅、アルミニウム、ニッケル、及び鉄からなる群より選択される少なくとも一種の金属である請求項4に記載の複合材料。   The composite material according to claim 4, wherein the metal material is at least one metal selected from the group consisting of copper, aluminum, nickel, and iron. 前記金属材料が、ケイ素を含有する請求項1〜5のいずれか一項に記載の複合構造体。   The composite structure according to any one of claims 1 to 5, wherein the metal material contains silicon. 蓄熱体として用いられる請求項1〜6のいずれか一項に記載の複合構造体。   The composite structure as described in any one of Claims 1-6 used as a thermal storage body. 請求項1〜7のいずれか一項に記載の複合構造体の製造方法であって、
前記金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程と、
得られた前記被焼成体の少なくとも前記被覆層をケイ素と接触させた状態で加熱し、反応焼結により前記外殻部を形成する工程と、
を有する複合構造体の製造方法。
A method for producing a composite structure according to any one of claims 1 to 7,
Coating the outer peripheral surface of the molded body made of the metal material with a coating layer containing silicon carbide and carbon to obtain a fired body;
Heating at least the coating layer of the obtained fired body in contact with silicon, and forming the outer shell by reactive sintering;
The manufacturing method of the composite structure which has this.
請求項7に記載の複合構造体を前記内部構造部の溶融点以上の温度に加熱して、前記複合構造体に蓄熱させる工程を有する蓄熱方法。   The heat storage method which has the process of heating the composite structure of Claim 7 to the temperature more than the melting point of the said internal structure part, and making the said composite structure store heat.
JP2018024999A 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage Active JP7016109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024999A JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024999A JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Publications (2)

Publication Number Publication Date
JP2019137819A true JP2019137819A (en) 2019-08-22
JP7016109B2 JP7016109B2 (en) 2022-02-04

Family

ID=67693477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024999A Active JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Country Status (1)

Country Link
JP (1) JP7016109B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480873A (en) * 2020-11-30 2021-03-12 武汉科技大学 Corundum-mullite composite shell phase-change heat storage ball and preparation method thereof
CN113636843A (en) * 2021-09-10 2021-11-12 南京航空航天大学 Ultralight ceramic foam composite heat storage material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113486A (en) * 1987-07-06 1989-05-02 Lanxide Technol Co Lp Heat accumulating medium and its production
JP2002162182A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2012111825A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Heat storing body and method
WO2013061978A2 (en) * 2011-10-24 2013-05-02 国立大学法人北海道大学 Latent heat storage material, and heat storage body
JP2015048393A (en) * 2013-08-30 2015-03-16 株式会社金星 Heat reservoir
WO2015162929A1 (en) * 2014-04-24 2015-10-29 国立大学法人北海道大学 Latent heat storage body, latent heat storage body manufacturing method and heat exchange material
WO2017200021A1 (en) * 2016-05-17 2017-11-23 国立大学法人北海道大学 Latent-heat storage material microcapsules and process for producing latent-heat storage material microcapsules

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01113486A (en) * 1987-07-06 1989-05-02 Lanxide Technol Co Lp Heat accumulating medium and its production
JP2002162182A (en) * 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2012111825A (en) * 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Heat storing body and method
WO2013061978A2 (en) * 2011-10-24 2013-05-02 国立大学法人北海道大学 Latent heat storage material, and heat storage body
JP2015048393A (en) * 2013-08-30 2015-03-16 株式会社金星 Heat reservoir
WO2015162929A1 (en) * 2014-04-24 2015-10-29 国立大学法人北海道大学 Latent heat storage body, latent heat storage body manufacturing method and heat exchange material
WO2017200021A1 (en) * 2016-05-17 2017-11-23 国立大学法人北海道大学 Latent-heat storage material microcapsules and process for producing latent-heat storage material microcapsules

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480873A (en) * 2020-11-30 2021-03-12 武汉科技大学 Corundum-mullite composite shell phase-change heat storage ball and preparation method thereof
CN112480873B (en) * 2020-11-30 2021-07-20 武汉科技大学 Corundum-mullite composite shell phase-change heat storage ball and preparation method thereof
CN113636843A (en) * 2021-09-10 2021-11-12 南京航空航天大学 Ultralight ceramic foam composite heat storage material and preparation method thereof

Also Published As

Publication number Publication date
JP7016109B2 (en) 2022-02-04

Similar Documents

Publication Publication Date Title
Zhong et al. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer
Chu et al. Mechanical and electrical properties of carbon‐nanotube‐reinforced Cu–Ti alloy matrix composites
US6110268A (en) Sintered brake lining and method for its manufacture
JP2012111825A (en) Heat storing body and method
CN104871251B (en) Used by nuclear reactor part
JP7016109B2 (en) Composite structure, method for manufacturing composite structure, and method for heat storage
Song et al. High-performance thermal energy storage and thermal management via starch-derived porous ceramics-based phase change devices
CN102676901A (en) Process for preparing SiC/Al electronic packaging materials by means of pressureless infiltration
CN107523734A (en) Compound high temperature phase-change heat-storage material of aluminium nitride ceramics and preparation method thereof
US20210384426A1 (en) Phase change thermal storage ceramic and preparation method thereof
US8357623B2 (en) Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same
EP0388348B1 (en) A method of producing selfsupporting aluminum titanate composites and products relating thereto
Günay et al. High‐Temperature Compressive Behavior of Refractory Alumina–Niobium Composite Material
JPS5941380A (en) Castable metal complex friction material
JP4998458B2 (en) Ceramic sintered body, sliding component using the same, and method for producing ceramic sintered body
US5139979A (en) Method of producing self-supporting aluminum titanate composites and products relating thereto
JP7264374B2 (en) COMPOSITE STRUCTURE, COMPOSITE STRUCTURE MANUFACTURING METHOD, AND HEAT STORAGE METHOD
JP2013194927A (en) Regenerative heat exchanger and heat input/output method using the same
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP2023017146A (en) Composite structure, method for manufacturing the same, and heat storage method
Lü et al. Research on modification of steel fiber in investment casting shell
JP2001073102A (en) Carbon fiber dispersed aluminum matrix composite material having high thermal conductivity and low thermal expansibility
JP2023128245A (en) Latent-heat heat-storage material molded body and method for producing the same
JP2772488B2 (en) Method for producing polycrystalline composite ceramic coating and method for producing molded polycrystalline composite ceramic
WO2024076539A2 (en) Conductive ceramic composites for high temperature thermal energy storage

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114