JP2019135468A - 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法 - Google Patents

擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法 Download PDF

Info

Publication number
JP2019135468A
JP2019135468A JP2018018336A JP2018018336A JP2019135468A JP 2019135468 A JP2019135468 A JP 2019135468A JP 2018018336 A JP2018018336 A JP 2018018336A JP 2018018336 A JP2018018336 A JP 2018018336A JP 2019135468 A JP2019135468 A JP 2019135468A
Authority
JP
Japan
Prior art keywords
light
optical system
disturbance
disturbing
shutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018018336A
Other languages
English (en)
Inventor
宏大 山根
Kodai Yamane
宏大 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2018018336A priority Critical patent/JP2019135468A/ja
Priority to US16/222,200 priority patent/US11353564B2/en
Publication of JP2019135468A publication Critical patent/JP2019135468A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/81Camera processing pipelines; Components thereof for suppressing or minimising disturbance in the image signal generation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/21Circuitry for suppressing or minimising disturbance, e.g. moiré or halo
    • H04N5/211Ghost signal cancellation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Studio Devices (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】本件発明の課題は簡易な手法で光学系から出射した光に擾乱光成分が含まれるか否かを精度良く判別することができ、或いは分離可能な擾乱光判別装置、擾乱光分離装置、擾乱光判別方法、或いは、擾乱光分離方法を提供することにある。【解決手段】上記課題を解決するため、光学系1に変調光を投射する変調光投射部10と変調光の入射に応じて光学系1から出射した光を受光する受光部20とこれらを制御する制御部30とを備え、所定の基準光路長よりも長い光路を飛翔した光線を擾乱光成分としたとき、制御部30は光学系1から出射した光から光線飛翔距離に関する情報を取得し、当該光線飛翔距離に関する情報に基づいて光学系から出射した光1に擾乱光成分が含まれるか否かを判別することを特徴とする。【選択図】図1

Description

本発明は、光学系において発生するフレアやゴースト等の擾乱光の有無を判別又は分離するための擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法に関する。
近年、固体撮像素子を用いた撮像装置が普及している。例えば、一眼レフレックスカメラ、ミラーレス一眼カメラ、デジタルスチルカメラ等のユーザによって携帯可能な撮像装置の他、建造物等に据付固定されて使用される監視用撮像装置や、車両等の移動体に据付固定されて使用される車載用撮像装置等の据付固定型の撮像装置の普及も進んでいる。
撮像装置の光学系は、一般に、複数のレンズから構成され、鏡筒に収容されている。当該光学系に入射した光の一部は、レンズの光学面又は鏡筒の内壁面で反射又は散乱する。光学面や鏡筒の内壁面には反射防止コートなどが施されているが、光学面や鏡筒の内壁面に入射した全ての光を透過又は吸収できる訳ではない。そのため、太陽や光源からの強い光が光学系に入射すると、光学系内或いは鏡筒内で繰り返し反射又は散乱した光が撮像面に到達し、撮像画像にフレアやゴーストとして現れることがある。例えば、ユーザが撮像装置を用いて夜空を撮像したときに、撮像場所の近くに街灯などの光源が存在すると、その撮像画像に街灯等に起因するゴーストが写り込む場合がある。夜空の星よりも明るくゴーストが写り込んだ撮像画像は、撮像者の撮像意図に反したものとなる。また、いわゆる逆光で撮像すると、フレアにより撮像画像全体が白っぽくなる場合がある。この場合、被写体のコントラストが低下し、全体的にぼやけた印象の撮像画像となる。
また、交通監視のため、夜間等に監視用撮像装置により道路を走行する車両を撮像したときに、その撮像画像にヘッドライトのゴーストが写り込む場合がある。ヘッドライトのゴーストによりナンバープレートに表示されるナンバーを解読することができないと、交通監視に支障が出る。さらに、近年では、自動ブレーキなどの先進運転支援システム(ADAS:Advanced Driver Assistance Systems)の普及が進みつつある。先進運転支援システムでは車載用撮像装置をセンシングカメラとして用い、障害物等の検出等を行う。しかしながら、車載用撮像装置に、対向車のヘッドライトからの光が照射されると、ゴーストやフレアが生じ、障害物等の検出が困難になる場合がある。
このように、いずれの目的で使用される撮像装置においても、ゴーストやフレアの発生は好ましくないものとして取り扱われる。
そのため、従来より、光学系内に開口径可変なフレアカッター装置を配置し、当該フレアカッター装置の位置や開口径を調節することで、光学系内(鏡筒内含む)において意図せず反射又は散乱した光(以下、擾乱光と称する。)を撮像面に到達する前に除去することが行われている(例えば、特許文献1参照)。また、取得した被写体画像から、擾乱光に起因するフレア成分をソフトウェア的に除去することも行われている(例えば、特許文献2参照)。
特開2000−81556号公報 特開2009−152921号公報
ところで、検査工程では光学系に光を照射し、撮像面に到達した擾乱光の光量に基づき、擾乱光の有無を判別することが一般に行われている。そのため、被験対象とする光学系に対する光の当て方や光量によっては、擾乱光の有無を精度良く判別することができない場合がある。また、擾乱光が生じる原因は極めて複雑である。例えば、光学面の表面の微小なキズや汚れによって擾乱光が生じる場合もあれば、光学系の設計上生じる場合もある。しかしながら、当該方法により擾乱光を精度よく判別することができたとしても、当該方法ではその原因を特定又は推定することは困難であった。そのため、上記特許文献1や特許文献2に記載されるような従来の方法を適用したとしても、その光学系で生じた擾乱光を十分に除去することはできなかった。
本件発明の課題は、簡易な手法で光学系から出射した光に擾乱光成分が含まれるか否かを精度良く判別することができ、擾乱光の発生原因面を推定可能な擾乱光判別装置及び擾乱光判別方法、或いは、簡易な手法で被験光学系から出射した光から擾乱光成分を分離可能な擾乱光分離装置又は擾乱光分離方法を提供することにある。
上記課題を解決するために、本件発明に係る擾乱光判別装置は、光学系に変調光を投射する変調光投射部と、前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、前記変調光投射部と、前記受光部とを制御する制御部と、を備え、当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記制御部は、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光に前記擾乱光成分が含まれるか否かを判別することを特徴とする。
また、上記課題を解決するために、本件発明に係る擾乱光分離装置は、光学系に変調光を投射する変調光投射部と、前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、前記変調光投射部と、前記受光部とを制御する制御部と、を備え、当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記制御部は、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光から前記擾乱光成分を分離するための擾乱光成分分離情報を生成することを特徴とする。
また、上記課題を解決するために、本件発明に係る擾乱光分離装置は、光学系に変調光を入射する変調光投射部と、前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、前記光学系と前記受光部との間に設けられる第2のシャッタと、前記変調光投射部、前記受光部及び前記第2のシャッタを制御する制御部と、を備え、当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記制御部は、前記第2のシャッタの開閉を制御して、前記光学系から出射した光のうち、前記擾乱光成分が到達しない期間のみ前記第2のシャッタが開くように、前記第2のシャッタの開閉を制御することを特徴とする。
また、上記課題を解決するために、本件発明に係る擾乱光判別方法は、光学系に変調光を入射する工程と、当該変調光の入射に応じて光学系から出射した光から光線飛翔距離に関する情報を取得する工程と、前記変調光投射部と、前記受光部とを制御する制御部と、を備え、当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光に前記擾乱光成分が含まれるか否かを判別する工程とを備えることを特徴とする。
また、上記課題を解決するために、本件発明に係る擾乱光分離方法は、光学系に変調光を入射する工程と、当該変調光の入射に応じて光学系から出射した光から光線飛翔距離に関する情報を取得する工程と、当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光から前記擾乱光成分を分離するための擾乱光成分分離情報を生成する工程とを備えることを特徴とする。
本件発明によれば、簡易な手法で被験光学系から出射した光に擾乱光成分が含まれるか否かを精度良く検出することができ、擾乱光の発生原因面を推定可能な擾乱光判別装置及び擾乱光判別方法、或いは、簡易な手法で被験光学系から出射した光に擾乱光成分を分離可能な擾乱光分離装置又は擾乱光分離方法を提供することができる。
本件発明にいう擾乱光を説明するための図である。 第1の実施の形態の擾乱光判別分離装置の構成例を示すブロック図である。 第1の実施の形態における擾乱光成分の有無の判別と分離の手順を示すフローチャートである。 第1の実施の形態の擾乱光判別分離装置の動作例を示すタイミングチャートである。 第1の実施の形態の擾乱光判別分離装置を用いて撮像した距離画像例を示す模式図である。 第2の実施の形態の擾乱光の検出と分離の手順を示すフローチャートである。 第2の実施の形態の擾乱光判別分離装置の動作例を示すタイミングチャートである。 第3の実施の形態の擾乱光判別分離装置の構成例を示すブロック図である。 第3の実施の形態の擾乱光判別分離装置の動作例を示すタイミングチャートである。 第4の実施の形態の擾乱光分離装置の構成例を示すブロック図である。 第4の実施の形態の擾乱光分離装置の動作例を示すタイミングチャートである。
以下、本件発明に係る擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法の第1の実施の形態から第4の実施の形態を説明する。以下に説明する各実施の形態は、いずれも本件発明の一態様にすぎず、本件発明は以下に説明する実施の形態に限定されるものではなく、本件発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。
各実施の形態について説明する前に、光学系、正常光及び擾乱光について説明する。
本件発明において、光学系とは1又は複数の光学素子を組み合わせて結像等の機能を実現するシステムをいう。光学系として、具体的には、撮像レンズ、顕微鏡、望遠鏡、内視鏡等の結像光学系の他、照明光学系、投影光学系、反射光学系、走査光学系等を挙げることができる。本件発明に係る擾乱光判別装置では、これらの光学系において発生した擾乱光の有無を判別することができる。また、本件発明に係る擾乱光分離装置では、これらの光学系において発生した擾乱光を分離することができる。但し、本件発明において判別及び/又は分離の対象とする擾乱光は後述する定義に従う。
次に、図1を参照しながら、正常光及び擾乱光について説明する。図1(a)及び図1(b)に示す光学系1(結像光学系)は、撮像レンズである。当該光学系1は物体側から順に、正の屈折力を有する第1レンズL1、負の屈折力を有する第2レンズL2及び正の屈折力を有する第3レンズL3を備えている。これらは、図示しない鏡筒内に配設されている。
図1(a)には軸上光線及び最大像高の光線の光路を示している。光学系1に入射した光は、フェルマーの原理に従い、光学系1内において光学的距離が最短になる光路を飛翔し、光学系1から出射する。光学系1に入射した光(入射光)は、理想的には、光学系1内において設計光路を飛翔し、光学系1を出射し像面Iに入射する。「理想的には」とは、光学系1を構成する各光学素子にキズや汚れ等の欠陥がなく、また各光学素子の表面や鏡筒の内壁面等において反射又は散乱等しない場合などを意味する。
一方、光学系1内において、入射光の一部がレンズの光学面や鏡筒の内壁面等で反射する場合がある。図1(b)に示す例では、光学系1に入射した光(の一部)が第3レンズL3の像側面において反射し、第2レンズL2、第1レンズL1を順に通過し、第1レンズL1の物体側面に到達した光が、当該第1レンズL1の物体側面において再び反射し、その反射光が第2レンズL2、第3レンズL3を順に通過し、第3レンズL3の像側面から出射した場合を示した。このように、当該光学系1に入射した光の一部は光学系1内において設計光路と異なる光路を飛翔し、像面Iに入射する。このように設計光路と異なる光路を飛翔して像面Iに入射する光線には、擾乱光(擾乱光成分)の他、バックグラウンドノイズやショットノイズなどのノイズ成分などが挙げられる。
各実施の形態では、擾乱光であるか否かを判別するための基準値として、設計光路長に基づき基準距離を予め定めておき、当該基準距離を超える光路を飛翔して像面I(受光部)に入射する光線を擾乱光(擾乱光成分)と称するものとする。それ以外を便宜的に正常光と称する。なお、「設計光路長に基づき定められた基準距離」は、設計光路長と同じ距離であってもよいし、設計光路長とは異なる距離であってもよい。光学系1の製造誤差、上記各種ノイズなどを考慮した場合、設計光路長に対して所定の距離だけ長く又は短く設定することが好ましい。また、「基準距離を超える」とは、上記基準距離よりも光線飛翔距離が長い場合であってもよいし、短い場合であってもよい。しかしながら、「基準距離」は上記設計光路長に対してどのような値を有する距離であるか、「基準距離を超える」とは基準距離よりも長いのか、短いのかなどについては予め定義しておくべきものとする。以下に説明する各実施の形態では、光学系1として、図1に示すような撮像レンズを例に挙げ、「基準距離」は設計光路長に対して所定の距離だけ長い距離を指し、「基準距離を超える」とは基準距離よりも長い場合を意味するものとする。そして、像面Iに入射する光線のうち、基準距離以下の飛翔距離を有する光線、すなわち擾乱光以外の光線を、以下の実施の形態では正常光として取り扱うものとする。
1.第1の実施の形態
1−1.構成
本件発明に係る擾乱光判別装置及び擾乱光分離装置の第1の実施の形態を説明する。第1の実施の形態において、擾乱光判別装置と擾乱光分離装置とは、図2に示す擾乱光判別分離装置100として一体に構成される。従って、以下では擾乱光判別分離装置100の構成を説明する。
擾乱光判別分離装置100は、図2に示すように、光源部10(変調光投射部)と、距離画像センサ20(受光部)と、制御ユニット30(制御部)とを備えている。第1の実施の形態では、制御ユニット30の制御下、光源部10から光学系1にパルス光(変調光)を投射する。そして、光源部10から投射されたパルス光が光学系1に入射すると、それに応じて光学系1から出射した光(光学系1の応答光)を距離画像センサ20において受光する。以下、光学系1から出射した光を光学系1からの出射光と称する。制御ユニット30ではこの光学系1からの出射光に基づき、演算等を行い光線飛翔距離に関する情報を取得する。そして、制御ユニット30では、この光線飛翔距離に関する情報に基づき、光学系1からの出射光に擾乱光が含まれるか否かを判別し、光学系1からの出射光から擾乱光を分離するための擾乱光分離情報を生成するものとしている。なお、図2に模式的に示すように、光学系1は、光源部10と、距離画像センサ20との間に配置され、光源部10から投射されるパルス光が光学系1に入射し、パルス光の入射に伴う光学系1からの出射光が距離画像センサ20に入射するようにこれらの配置が決定される。また、光学系1は鏡筒に収容され、距離画像センサ20には光学系1からの出射光以外の光が入射しないように構成されているものとする。以下、各部の構成を説明する。
(1)光源部10
本実施の形態において、光源部10はパルス光源であり、例えば、発光素子と、発光素子を駆動する駆動回路等から構成することができる。発光素子として、例えば、所定の波長の光線を発する発光ダイオード又はレーザダイオードを用いることができる。駆動回路は制御ユニット30から送信される発光制御信号を受信し、その発光制御信号に従って発光素子を発光させる。本実施の形態では、光源部10は所定の波長の光線を例えば、数n秒〜数十n秒の発光パルス幅で間欠的に発光する。また、発光パルス幅は、測定を要する光線飛翔距離、距離画像センサ20における電荷転送クロック幅等に応じて、適宜適切な値に設定することができる。ここでは、説明の便宜上、光源部10はパルス波(矩形波)を光学系1に投射するものとする。しかしながら、本件発明において光源部10(変調光投射部)が光学系1に投射する光の波形はパルス波に限定されるものではなく、正弦波等であってもよい。すなわち、光源部10は、発光素子と、発光素子が発した光の振幅、周波数、位相など変調する駆動回路(変調回路)等を備え、時間に対して光量が変化する光(変調光)を投射する光源であれば、その具体的な構成は特に限定されるものではない。光源部10が正弦波等の他の変調光を光学系1に投射する場合であっても、以下説明する擾乱光判別分離装置100と同様の構成により同様の機能を実現することができる。
次に、光源部10から光学系1に投射される光の波長について説明する。まず、光源部10から投射される光の波長は、距離画像センサ20が受光感度を有する波長であることが前提となる。距離画像センサ20において、光学系1から出射した光を検出することができなければ、光学系1内における入射光の光線飛翔距離を演算することができないためである。
次に、光源部10から光学系1に投射される光は、光学系1の使用波長域内の波長であることが好ましい。光の屈折は波長に依存する。光学系1の使用波長域と異なる波長域の光を光学系1に投射することにより、光学系1からの出射光に擾乱光成分が含まれるか否かを判別したとしても、その光学系1の使用波長域における擾乱光の発生の有無を精度よく判別することはできない。入射光の波長によって光学系1内における入射光の光路が異なるためである。そのため、撮像レンズのように、複数の光学素子からなる光学系を光学系1とする場合は、光源部10から光学系1に投射される光は、光学系1の使用波長域内の波長であることが特に好ましい。
以上の点を満たせば、光源部10が光学系1に投射する光の波長は特に限定されるものではなく、上述した可視光波長域(380nm−750nm)、近赤外波長域(0.75μm−1.4μm)、赤外波長域(1.4μm−15μm)線、遠赤外波長域(15μm−1,000μm)等の任意の波長域内の任意の波長とすることができる。
(2)距離画像センサ20
距離画像センサ20は光学系1からの出射光を受光する。本実施の形態において、距離画像センサ20は、受光面(像面I)に図示しない複数の受光素子(フォトダイオード等)を備える。距離画像センサ20は複数の画素を有し、1画素は少なくとも1つの受光素子を含む。距離画像センサ20は光学系1からの出射光を受光すると、受光の際に発生した電荷を蓄積し、それを信号電圧に変換して受光信号(応答信号)として出力する。距離画像センサ20から出力される受光信号に基づいて、制御ユニット30では、各画素毎に受光した光の光線飛翔距離を演算し、距離画像データを生成する。なお、上述したとおり、距離画像センサ20は、光源部10が発する光の波長に対して受光感度を有することが求められる。
本実施の形態では距離画像センサ20として、TOF(Time of Flight)方式のCCD(Charge-Coupled Device)センサを用いる。距離画像センサ20は、一般に、被写体の距離画像を得るために用いられる。TOF方式のCCDセンサは、二次元に配列された複数の画素(図示略)を備える。各画素を構成する受光素子は2つ以上の電荷蓄積部(図示略)を備える。距離画像センサ20は各受光素子毎に受光した際に発生した電荷を、制御ユニット30の制御下、いずれか一の電荷蓄積部又はいずれか一以上の電荷蓄積部に蓄積させる。各受光素子に設けられる電荷蓄積部の数や、どのようなタイミングでどの電荷蓄積部に電荷を振り分けるかは特に限定されるものではないが、本実施の形態では各受光素子は第1の電荷蓄積部と第2の電荷蓄積部とを備えるものとして以下説明する。
1回(1フレーム)の撮像を行う際に、所定の露光時間の間、距離画像センサ20は露光される。その間、光源部10は、所定のパルス幅で1回以上発光し、距離画像センサ20は間欠的に光を受光する。そして、光学系1からの出射光を受光した際に発生した電荷は、第1の電荷蓄積部と第2の電荷蓄積部とに交互に振り分けて蓄積される。所定の露光時間経過後、第1の電荷蓄積部及び第2の電荷蓄積部にそれぞれ蓄積された電荷に応じた信号電圧がそれぞれ第1の受光信号、第2の受光信号として制御ユニット30に出力される。
なお、本実施の形態において、距離画像センサ20は、受光面において受光した光の飛翔距離を求めることのできるセンサであれば、上述のTOF方式のCCDセンサに限らず、SPAD(Single Photon Avalanche Diode)を用いてもよい。この場合、距離画像センサ20としてTOF方式のCCDセンサを用いる場合と、SPADを用いる場合とでは、制御ユニット30による距離画像センサ20の制御は細かい点において種々の違いは生じる。しかしながら、光学系1からの出射光を距離画像センサ20において受光することで、光学系1内における光線飛翔距離に関する情報を取得することができれば、受光部を構成する距離画像センサ20はどのようなものであってもよい。
(3)制御ユニット30
制御ユニット30は、機能的な構成として、以下に説明するタイミング生成部31と、信号処理部32と、光線飛翔距離情報生成部33と、制御部34とを備える。制御ユニット30は、例えば、AFE(アナログフロントエンド)、A/D変換部、DSP(Digital signal processor)、ASIC(application specific integrated circuit)或いはFPGA(field programmable gate array)などを組み合わせて構成することができる。また、演算装置として、CPU、RAM、ROM等を備えたマイクロプロセッサ(MPU)を用いることもできる。しかしながら、制御ユニット30の物理的な構成は、以下に説明する各部の機能を実現することができればその具体的な回路構成は限定されるものではない。
i)タイミング生成部31
タイミング生成部31は、上記発光制御信号を生成し、光源部10に出力する。また、タイミング生成部31は、上記露光制御信号を生成し、距離画像センサ20に出力する。
ii)信号処理部32
信号処理部32は、距離画像センサ20から出力されたアナログ信号としての第1の受光信号及び第2の受光信号に対して、それぞれ電圧レベルを整えたり、ノイズを除去したり、増幅するなどの各種信号処理を施し、それをデジタル信号に変換するなどの処理を行う。
信号処理部32は、例えば、AFEやA/D変換器等から構成することができるが、上述したとおり、その物理的な構成は特に限定されるものではない。
iii)光線飛翔距離情報生成部33
光線飛翔距離情報生成部33は、上述の演算装置などから構成され、その機能的な構成として距離演算部33aと、距離画像生成部33bとを備える。プログラムメモリに予め格納された距離演算プログラム、距離画像生成プログラムをデータメモリの一部を作業領域として読み出し、演算装置(演算器)により演算することにより、これら各部の機能が実現される。
距離演算部33aは、距離画像センサ20から信号処理部32を介して出力された第1の受光信号と、第2の受光信号に基づき、距離演算部33aにおいて各画素毎に受光した光線の光線飛翔距離を演算する。
距離画像生成部33bは、距離演算部33aにおいて算出された各画素毎の光線飛翔距離に基づき、受光面に受光した光学系1からの出射光の距離画像を形成するための距離画像データを生成する。
iv)制御部34
制御部34は、上述の演算装置などから構成され、光源部10及び距離画像センサ20を制御する。プログラムメモリには、光源部10及び距離画像センサ20を制御するためのプログラムの他、次に説明する擾乱光の判別や、擾乱光分離情報を生成するために必要な手順が定義されたプログラムや各種データが予め格納されている。制御部34はプログラムメモリに格納されたこれらのプログラムをデータメモリの一部を作業領域として読み出し、演算器により演算することにより、各部の動作を制御すると共に、擾乱光の判別と分離に関わる以下の動作を行う。なお、光線飛翔距離情報生成部33と、制御部34とは機能的には別個の構成であるが、物理的な構成は同一であってもよい。すなわち、光線飛翔距離情報生成部33と、制御部34とが一つのFPGAなどにより実現されていてもよい。
1−2.動作
1−2−1.概要
次に、当該擾乱光判別分離装置100の動作の概要を説明する。擾乱光の判別と分離に際し、制御部34は、距離画像センサ20が各画素毎に受光した光学系1からの出射光に基づいて、光線飛翔距離を演算し(Step11)、その光線飛翔距離に基づき光学系1からの出射光に擾乱光成分が含まれるか否かを判別する(Step12〜Step14)。この際、上述したように、検査対象とする光学系1の設計光路長に基づき定めた基準距離と、距離画像センサ20において受光した光学系1からの出射光の光線飛翔距離とに基づき、基準距離を超える光線飛翔距離を有する場合に擾乱光成分を含むと判別する。なお、基準距離は、光源部10から光学系1の入射面までの距離、光学系1の出射面から距離画像センサ20の受光面までの距離なども加味した上で設定される。
光学系1からの出射光の光線飛翔距離が基準距離を超えない場合、すなわち光線飛翔距離に異常がない場合(Step12:No)、光学系1からの出射光に擾乱光成分は含まれない、すなわち擾乱光の発生なしと判別し(Step13)、光学系1からの出射光を正常光として出力する(Step16)。光学系1からの出射光の光線飛翔距離が基準距離を超える場合、すなわち光線飛翔距離が異常である場合(Step12:Yes)、光学系1からの出射光に擾乱光成分が含まれる、すなわち擾乱光が発生すると判別し(Step14)、既知の光源応答波形に基づき光学系1からの出射光から擾乱光成分を分離するための擾乱光分離情報を生成し、光学系1からの出射光から擾乱光成分を分離し(Step15)、正常光を出力する(Step16)。以下、各手順の詳細を説明する。
1−2−2.光線飛翔距離取得工程(Step11)
図4に示すタイミングチャートを参照しつつ、距離画像センサ20が各画素毎に受光した光学系1からの出射光に基づいて、光学系1内における光線飛翔距離を取得する手順を説明する。
(1)光源部10の発光
光線飛翔距離を演算するにあたり、制御部34は、タイミング生成部31に光源部10に発光制御信号を送信するよう制御する。光源部10は、タイミング生成部31から入力された発光制御信号に従って所定のパルス幅でパルス光を発光する。
図4(1)は光源部10の発光期間を示す。本実施の形態では、図4(1)に示す様に、光源部10は(a)−(d)の間発光し、(d)−(g)の間消灯する。これを1周期とし、所定のタイミングマージンtm((g)−(h)の間)を介して、所定の露光時間の間、光源部10は1回以上パルス発光する。本実施の形態では、光源部10は、所定の露光時間の間、予め定められた所定の回数(例えば、数百回〜数万回)パルス発光を繰り返す。但し、所定の露光時間における光源部10の発光回数は、距離画像センサ20において擾乱光成分の有無を判別するために十分な光量を確保することができれば特に限定されるものではなく、当該条件を満たすことができれば、所定の露光時間における光源部10の発光回数は1回でもよい。
(2)光学系1からの出射光の受光
光源部10がパルス発光を開始すると、光源部10から投射された光は光学系1の入射面に到達する。そして、光学系1に入射した光は、光学系1内の光路を飛翔し、光学系1の出射面から出射し、距離画像センサ20に到達する。
(i)正常光
光学系1からの出射光に含まれる正常光、すなわち上記基準距離以下の飛翔距離を有する光線が距離画像センサ20に到達するのは、光源部10の発光開始から、所定の遅れ時間(delay1-1)が経過した後になる。図4(2)に示す例では、(a)−(b)の長さに相当する遅れ時間(delay1-1)経過後に、距離画像センサ20に正常光が(b)−(e)の間到達するものとした。この遅れ時間(delay1-1)はその光学系1に固有の時間である。当該遅れ時間(delay1-1)は、例えば、光学シミュレーション、或いは、基準光学系を用いた測定結果等により、既知の情報として取得しておき、制御部34のデータメモリなどに予め格納しておくことができる。なお、基準光学系とは、光学系1と同じ光学構成を有する光学系であり、且つ、擾乱光の発生量、すなわち各画素毎の擾乱光成分の光量レベルが製造者、使用者、或いは第三者機関などが定めた許容レベル以下であることが予め確認された光学系をいう。また、距離画像センサ20において受光する正常光の信号波形についても同様であり、既知の情報として取得しておき、制御部34のデータメモリなどに予め格納しておくことができる。
(ii)擾乱光
光学系1からの出射光に含まれる擾乱光は、正常光に遅れて距離画像センサ20に到達する。図4(3)に示す例では、光源部10の発光開始から、(a)−(c)の長さに相当する遅れ時間(delay1-2)が経過した後に、擾乱光が距離画像センサ20に到達するものとした。当該擾乱光の発生の有無、遅れ時間(delay1-2)及び擾乱光の信号波形は、当該擾乱光判別分離装置100により擾乱光の判別、分離情報の生成が終了するまで未知の情報である。
(iii)受光信号(応答信号)
次に、距離画像センサ20における受光動作について説明する。距離画像センサ20は所定の露光時間の間露光され、その間に蓄積した電荷を受光信号として制御ユニット30に出力する。この受光信号は、光源部10から光学系1に対して所定のパルス幅を有するパルス光を信号入力に対する光学系1の応答信号に相当する。
上述したとおり、本実施の形態では、距離画像センサ20としてTOF方式のCCDセンサを用いる。当該実施の形態では、光源部10のオン/オフに同期して、第1の電荷蓄積部と第2の電荷蓄積部とに交互に電荷が振り分けられるものとする。すなわち、第1の電荷蓄積部と第2の電荷蓄積部とが光源部10のオン/オフに同期して、オン/オフが切り替えられる。
ここで、図4(2)、(3)に示すように、距離画像センサ20には(a)−(b)の間は光学系1からの出射光が到達しない。(b)−(c)の間は正常光のみが到達する。(c)−(e)の間は正常光と擾乱光とが重畳されて到達する。(e)−(f)の間は擾乱光のみが到達する。(f)−(g)の間は距離画像センサ20には光学系1からの出射光は到達しない。
第1の電荷蓄積部は、(a)−(d)の間オンされる。そのため、第1の電荷蓄積部には(b)−(c)の間に距離画像センサ20に到達した正常光と、(c)−(d)の間に距離画像センサ20に到達した正常光及び擾乱光の重畳光のそれぞれの光量に応じた電荷が蓄積される(図4(4)参照)。
第2の電荷蓄積部は、(d)−(g)の間オンされる。そのため、第2の電荷蓄積部には、(d)−(e)の間に距離画像センサ20に到達した正常光及び擾乱光の重畳光と、(e)−(f)の間に距離画像センサ20に到達した擾乱光のそれぞれの光量に応じた電荷が蓄積される(図3(5)参照)。タイミングマージンtmの間((g)−(h))は第1の電荷蓄積部及び第2の電荷蓄積部はオフとなる。
所定の露光時間の距離画像センサ20では、上記の動作を繰り返し行う。そして、所定の露光時間経過後、第1の電荷蓄積部及び第2の電荷蓄積部にそれぞれ蓄積された電荷に応じた信号電圧が、それぞれ第1の受光信号、第2の受光信号として制御ユニット30に出力される。なお、受光信号は、この第1の受光信号と第2の受光信号とから構成される。
(3)光線飛翔距離の演算
制御ユニット30は、距離画像センサ20から受光信号が入力されると、信号処理部32において上記信号処理を施し、光線飛翔距離情報生成部33の距離演算部33aでは、この第1の受光信号と第2の受光信号の信号強度の比率に基づいて、各画素毎に受光した光線の飛翔距離を演算し、距離画像生成部33bでは各画素毎に演算した光線飛翔距離に基づいて距離画像データを生成する。
上記一連の動作により、所定の露光時間の間に実行される1回(1シークエンス)分の受光動作(撮像動作)により、各画素毎の光線飛翔距離が取得され、距離画像データに基づき、光学系1内の光線飛翔距離を反映した距離画像を形成することができる。
1−2−3.判別工程(Step12〜Step14)
制御部34では、上記のようにして各画素毎に取得した光線飛翔距離と、上記基準距離と対比し、光線飛翔距離が基準距離を超えるか否かを判別する(Step12)。Step12において、光線飛翔距離が基準距離以下であると判別した場合(Step12:No)、光学系1からの出射光には擾乱光成分が含まれていない、すなわち当該光学系1では擾乱光の発生無しと判定し(Step13)、処理を終了する。
一方、Step12において、光線飛翔距離が基準距離を超えると判別した場合(Step12:Yes)、当該光学系1では擾乱光が発生ありと判定する(Step14)。
ここで、上記Step13、Step14において、擾乱光の発生無し、擾乱光の発生有りといった判定結果を制御ユニット30に接続された図示しない表示装置等に表示等させてもよい。また、判定結果と共に図5に模式的に示す距離画像を表示装置等に表示等させてもよい。なお、距離画像については後述する。
1−2−4.擾乱光分離情報生成工程(Step15)
光学系1からの出射光の光線飛翔距離が基準距離を超え(Step12:Yes)、当該光学系1において擾乱光が発生すると判定された場合(Step13)、制御部34では、光学系1からの出射光の信号波形と、データメモリ等に予め格納された既知の正常光波形とに基づき、光学系1からの出射光から擾乱光成分を分離するための擾乱光分離情報を生成し(Step15)、処理を終了する。
なお、上記一連の処理は、各画素毎に行われるものとする。
1−3.原因面の推定又は特定
上記判別工程(Step12〜Step14)において、光学系1からの出射光に擾乱光成分が含まれると判定された場合、どの面において擾乱光が発生しているのかを推定又は特定する方法について説明する。
上述したとおり、Step11において各画素毎に光線飛翔距離を取得することができる。一方、光学系1の設計光路長、光学系1を構成する各光学面間の距離、鏡筒の形状等は既知の光学設計情報である。また背景に関する距離情報等についても既知の情報として取得しておくことができる。これらの被験光学系の光学設計情報等と、Step11で取得した擾乱光成分の光線飛翔距離とに基づき、光学系1内における擾乱光の飛翔光路を解析することができる。
光学系1内における擾乱光の飛翔光路が明らかになれば、どの面において擾乱光が発生する原因面を推定又は特定することが可能になる。例えば、図1(b)に示す例では、第3レンズL3の像側面において反射した光が第2レンズL2を通過し、第1レンズL1の像側面で反射している。レンズ面に入射した光の一部がレンズ面において反射することは通常である。よって、図1(b)に示す例では第1レンズL1の物体側面に反射防止コート等の表面処理の不具合による反射率の異常や、微小なキズや汚れなど、入射光の異常な反射又は散乱を引き起こす要因が存在することが考えられる。その他の擾乱光成分の飛翔光路を解析することにより、擾乱光が発生する原因面を特定することが可能になる。
1−4.距離画像を用いた擾乱光の判別
上記ではStep12〜Step14において光線飛翔距離に基づいて光学系1からの出射光に擾乱光成分が含まれるか否かを判別した。しかしながら、当該擾乱光判別分離装置100において、必ずしも制御部34に擾乱光成分の有無を判別させなくてもよい。例えば、Step11において取得した各画素毎の光線飛翔距離に基づいて生成した距離画像データに基づいて、図5に示すような距離画像を表示装置等に表示させ、或いは画像出力装置等により紙などの出力媒体に出力させ、観察者が距離画像に基づき擾乱光成分の有無を判別してもよい。なお、当該距離画像は、光学系1により撮像した光源の距離画像に相当する。
当該距離画像の一例を図5に示す。図5(a)は、例えば、上記した基準光学系を光学系1としたときの距離画像を模式的に表した図であり、図5(b)は光学系1内において擾乱光が発生しているときの距離画像を模式的に表した図である。また、説明を簡便にするため、図5(a)、(b)には背景の表示を省略した。
図5(a)には、光源像2が表示されている。一方、図5(b)には、光源像2の周囲に、第1の擾乱光像3と、第2の擾乱光像4とが表示されている。ハッチングの相違は、それぞれの光線飛翔距離の相違を示している。このように、表示装置等に表示又は画像出力装置等により出力媒体に出力された距離画像に基づき、観察者が擾乱光成分の有無を容易に判別することができる。
このように光学系1から出射した光学系1からの出射光に基づき距離画像を生成し、当該距離画像に基づき擾乱光の発生の有無を判別する方法によれば、光学系1に対して光源部10から上記と同様にパルス光を投射して、通常の撮像画像(可視光像)を取得し、当該撮像画像に基づき擾乱光の発生の有無を判別する方法と比較して、以下の点が優れている。
撮像画像に基づき擾乱光の発生の有無を判別する方法では、光学系1に対する光の当て方や光量によっては、像面Iに到達する擾乱光の光量が少なく、撮像画像において擾乱光像を観察することが困難な場合がある。その結果、図5(b)に示した第1の擾乱光像3と第2の擾乱光像4のうち、いずれか一方しか観察することができない場合や、いずれも観察することができない場合も想定される。
また、第1の擾乱光像3と第2の擾乱光像4とは、光学系1内における光線飛翔距離が異なる擾乱光によって形成される距離画像である。通常の撮像画像では図5(b)に示す第1の擾乱光像3と第2の擾乱光像4とを区別して観察することが困難であることが想定される。さらに、通常の撮像画像では、光学系1内における擾乱光の光線飛翔距離を判別することはできない。通常の撮像画像に基づき、両者を判別することができない要因として、次の2点が挙げられる。まず、通常の撮像画像では、光源像、背景像、フレアやゴーストなどの擾乱光像、バックグラウンドノイズやショットノイズなどのノイズに起因する像などが写り混むが、これらは主として光量に基づきいずれの像であるかが判別される。各像の光量は、撮像条件等によって容易に変動する。すなわち、各像に対して、各像を判別可能な指標となる光量値が存在する訳ではない。そのため、擾乱光像であるか否かを判別するための閾値といった、客観的な判断基準を設定することができない。次に、撮像画像において、光量差が測定可能な範囲を超えて大きい場合、或いは各像の光量差が小さすぎる場合は、各像の光量差を判別することができない場合がある。そのため、撮像画像に複数の像が近接して写り混んでいる場合に、各像の光量差を判別することができず、複数の像が一つの像として観察され得る。すなわち、光量という物理量のみでは、撮像画像に写り混んでいる像の数(種類)を判別すること自体も困難である。そのため、撮像画像にフレアやゴーストなどが観察されることにより、擾乱光が発生することが確認できても、上述のとおり、第1の擾乱光像3と第2の擾乱光像4とを区別して観察することができない場合があり、その原因面を推定又は特定することができないことが想定される。
これに対して、距離画像では各画素につき、各画素で受光した光線の距離に関する情報が付加される。この距離に関する情報は光線飛翔距離に由来する物理量である。光線飛翔距離は、各像に対応する被写体と光学系1との間の距離、或いは擾乱光の発生原因等によって増減した光線の飛翔距離などによって固有の値をとる。すなわち、光源像2の近傍に擾乱光像が写り混む場合、光量差に基づき、両者を区別して観察することは困難であるが、距離画像では、光源像2は、光源像2に固有の光線飛翔距離を有する像として表示され、擾乱光像は光源像2とは異なる光線飛翔距離を有する像として表示されるため、これらを区別することは容易である。同様に、擾乱光像2と、擾乱光像3とを光量差に基づいて区別して観察することは困難であるが、距離画像では、擾乱光像2は、その発生原因に固有の飛翔距離を有する像として表示され、擾乱光像3についてもその発生原因に固有の飛翔距離を有する像として表示される。そのため、距離画像においては、光源像2と、擾乱光像3,4との区別は容易である。従って、当該方法によれば、擾乱光の光量によらず擾乱光を精度よく判別することができる。また、光学系1内における光線飛翔距離の異なる擾乱光はそれぞれ別の像として観察される。複数の擾乱光像が観察された場合、各擾乱光像の光線飛翔距離と、上述した既知の光学設計情報等に基づいて、光学系1内における光路を解析することで、擾乱光が発生する原因面を推定又は特定することが可能になる。
1−5.擾乱光分離情報の利用
上記分離工程(Step15)において生成される擾乱光分離情報は、擾乱光判別分離装置100において検査対象とされた当該光学系1が製品としてユーザ等に用いられるときに、当該光学系1により形成される光学像を補正するための補正情報として用いることができる。例えば、光学系1が撮像装置の撮像レンズであった場合、当該光学系1が取り付けられる撮像装置に当該擾乱光分離情報を補正情報として予め保持させておき、その撮像装置において、像面Iにおいて受光した結像光(画像信号)から擾乱光成分を信号処理により除去可能に構成しておけば、フレアやゴースト等のない被写体像を得ることができる。或いは、画像処理ソフトがインストールされたパーソナルコンピュータ(PC)等において、当該光学系1と対応付けられた擾乱光分離情報を保持させておき、当該光学系1を用いて撮像された撮像画像を、PC等において読み出し、上記擾乱光分離情報を用いて画像処理を施し、フレアやゴースト等のない被写体像を生成してもよい。
なお、上記説明した擾乱光判別分離装置100は、光学系1を製造する際の検査工程において用いることを想定しているが、当該擾乱光判別分離装置100を撮像装置等の光学機器として構成してもよい。その場合、その光学機器に取り付けられた光学系1を、その光学機器において検査モード等として、擾乱光発生の有無を判別することができる。また、その光学機器により光学像等を得る場合に、その光学機器においてStep15において生成した擾乱光分離情報を用いて、光学系1からの出射光から擾乱光成分を分離してもよい。これらの具体的な態様は特に限定されるものではない。
2.第2の実施の形態
次に、本件発明に係る擾乱光判別装置及び擾乱光分離装置の第2の実施の形態を説明する。第2の実施の形態において、擾乱光判別装置と擾乱光分離装置とは、擾乱光判別分離装置100として一体に構成される。また、第2の実施の形態の擾乱光判別分離装置100は、第1の実施の形態の擾乱光判別分離装置100と略同一であるが、制御部34により実行される動作が一部異なる。従って、同様の構成要素については同じ符号を付して、その説明を省略し、ここでは、第2の実施の形態の擾乱光判別分離装置100の動作のみ説明する。
2−1.擾乱光の判別と分離
2−1−1.概要
まず、第2の実施の形態における擾乱光の判別と分離の手順の概要を説明する。第2の実施の形態の擾乱光判別分離装置100では、擾乱光の判別と分離に際し、各画素毎に受光した光学系1からの出射光から光線飛翔距離に関する情報を取得する(Step21)。
次に、Step21において取得した各画素毎の光線飛翔距離に基づき、当該光線飛翔距離が基準距離を超えるか否かを判別し、擾乱光の発生の有無を判定する(Step22〜Step24)。
光学系1からの出射光に擾乱光成分が含まれる場合、既知の光源応答波形に基づき逆畳込演算を行い(Step25)、当該光学系1からの出射光から擾乱光成分を分離するための擾乱光分離情報を生成する(Step26)。
第2の実施の形態では、第1の実施の形態と略同様にして擾乱光の判別と分離が行われるが、上述した各工程のうち、光線飛翔距離取得工程(Step21)、逆畳込演算工程(Step25)及び擾乱光分離情報生成工程(Step26)は、第1の実施の形態にとは異なる処理を含む工程、又は第1の実施の形態にはない工程である。その他の工程は、第1の実施の形態と略同様であるため、ここでは説明を省略し、以下光線飛翔距離取得工程(Step21)と、畳込演算工程(Step25)及び擾乱光分離情報生成工程(Step26)について説明する。
2−1−2.光線飛翔距離取得工程(Step21)
(1)第1シークエンス
以下、図6を参照しながら説明する。光学系1内の光線飛翔距離を取得するに際し、制御部34は第1の実施の形態と同様の手順で所定の露光時間の間に光源部10(変調光投射部)により光学系1に対してパルス光を投射させつつ、距離画像センサ20により光学系1からの出射光を受光させる一連の動作を実行させ、距離画像センサ20から受光信号を制御ユニット30に出力させる。この第1シークエンス(図6(a)〜(h)・・・)の受光動作は第1の実施の形態と同様である。
具体的には、制御部34は光源部10及び距離画像センサ20を制御して、(a)−(g)の間は第1の実施の形態と同様に光源部10にパルス発光させ、距離画像センサ20には光学系1から出射したその光学系1からの出射光を受光させる。受光の際に発生した電荷を第1の電荷蓄積部及び第2の電荷蓄積部に所定のタイミングで振り分けさせる。これを1周期とし、所定のタイミングマージンtm((g)−(h)の間)を介して、所定の露光時間の間、当該動作を1回以上繰り返す。これが第1シークエンス目の動作である。
(2)第2シークエンス
次に、第2シークエンス目の動作について説明する。図6に示すように、第1シークエンスの動作が完了すると、距離画像センサ20側における第1の電荷蓄積部及び第2の電荷蓄積部のオン/オフを切り替えるタイミングは変更せず、第1シークエンスと比較して光源部10をオン/オフさせるタイミングをΔt×1秒遅らせる。図6においては、(a’)の時点から2シークエンス目が開始する。2シークエンス目では(a’)の時点で第1の電荷蓄積部をオンした後、Δt×1秒が経過した(b’)の時点で発光部におけるパルス発光を開始させる。発光部の発光開始のタイミングがΔt×1秒遅延した以外は、1シークエンス目と同様に発光部に発光させながら、距離画像センサ20に光学系1からの出射光を受光する受光動作を行わせる。そして、所定の露光時間の間、当該動作を1シークエンス目と同じ回数繰り返させる。なお、Δtは予め定められた所定の遅延時間である。発光パルス幅及び距離画像センサ20の露光時間等に応じて、Δtは適宜適切な値に設定することができる
(3)第3シークエンス以降
そして、第2シークエンス目の動作が完了すると、距離画像センサ20側における第1の電荷蓄積部及び第2の電荷蓄積部のオン/オフを切り替えるタイミングは変更せず、光源部10をオン/オフさせるタイミングを第1シークエンスと比較してΔt×2秒((a’’)−(b’’)の間)遅らせる。
上記のように、1シークエンス分の受光動作が終了する毎に、光源部10のパルス光の発光タイミング(投射タイミング)に対して、距離画像センサ20の光学系1からの出射光の受光開始のタイミングを相対的にΔt×(N−1)秒ずらしながら、Nシークエンス分の受光信号を取得することで、光源部10によるパルス光の発光と、当該パルス光の入射に応じた当該光学系1からの出射光、すなわち応答信号(インパルス応答)との畳み込みが得られる。
(4)応答信号の信号波形取得
また、第2の実施の形態では、上記のようにNシークエンス分の受光信号を取得することで、Δt秒毎の第1の受光信号と第2の受光信号の信号強度比の変化を明らかにすることができる。すなわち、第2の実施の形態によれば、Nシークエンス分の受光信号に基づき、距離画像センサ20が受光した光学系1からの出射光のΔt秒毎の光量の時間変化を取得することができる。よって、距離画像センサ20から出力される受光信号、すなわち応答信号の信号強度の時間変化、すなわち応答信号の信号波形を取得することができる。
2−1−3.逆畳込演算(Step25)
Step21において取得した応答信号には、正常光成分と擾乱光成分とが含まれる。当該応答信号の信号波形は上述のようにして取得することができるため、逆畳込演算を行うことで、距離画像センサ20が受光した擾乱光に起因する未知の光源応答信号の信号波形を明らかにすることができる。
2−1−4.擾乱光分離情報生成工程(Step26)
制御部34では、上記のように演算して求めた擾乱光の信号波形を光学系1からの出射光から擾乱光を分離するための擾乱光分離情報として生成する。擾乱光分離情報の利用の態様等は第1の実施の形態と同様である。
第2の実施の形態の擾乱光判別分離装置100によれば、Nシークエンス分の受光信号を取得することで、光学系1からの出射光の信号波形を明らかにすることができる。そのため、光学系1からの出射光から擾乱光成分を分離するための擾乱光分離情報についても、第1の実施の形態と比較するとより多くの情報に基づいて生成することができるため、光学系1からの出射光から擾乱光成分を精度よく分離することが可能になる。
2−3.擾乱光成分の判別
第2の実施の形態において、光学系1からの出射光から擾乱光成分の有無を判別する際、第1の実施の形態と同様に行うことができる。その際、1シークエンス分の受光動作により距離画像センサ20から出力された受光信号に基づいて、光学系1からの出射光に擾乱光成分が含まれるか否かを判別してもよいし、Nシークエンス分の受光動作により応答信号の信号波形を明らかにした上で、光学系1からの出射光に擾乱光成分が含まれるか否かを判別してもよい。
また、Step25において逆畳込演算を行うことにより、光線飛翔距離に対する信号強度の分布を得ることができる。具体的には、光学系1からの出射光に含まれる正常光成分、第1の擾乱光成分、第2の擾乱光成分、・・・第nの擾乱光成分(但し、nは1以上の整数)について、各光線飛翔距離の異なる成分毎にその信号強度を明らかにすることができる。つまり、光線飛翔距離に対する信号強度の分布を得ることができ、当該情報に基づいて種々の分析を行うことができる。例えば、像面に複数のゴーストが重なり合って写り混んでいる場合でも、各ゴースト毎にその信号強度が明らかになるため、各ゴースト毎にその光量を算出することが可能になり、各ゴーストを分離することが可能になる。また、光学系1内で反射を繰り返すことにより、像面Iにゴーストとして現れる擾乱光成分の信号強度の分布は、光線飛翔距離に対して鋭いピークとなって現れる。一方、光源等から強い光が入射することにより、像面Iにフレアとなって現れる擾乱光成分の信号強度の分布は、光線飛翔距離に対して幅の広い分布となって現れる。すなわち、光線飛翔距離に対する信号強度の分布を解析することにより、像面上のある画素で受光した光が、設計光路を飛翔した光線に起因するのか、レンズ面の表面処理の不具合によって反射した光線に起因するのか、或いは光学系1内において意図せず散乱した光線に起因するのか等の原因を推定することが可能になるほか、それぞれの光量を算出することができ、擾乱光成分の分離が可能になる。
また、像面Iにフレアとなって現れる擾乱光成分の光線飛翔距離は、正常光(光源)の光線飛翔距離との差が小さい。そのため、例えば、図6に示す光線飛翔距離取得工程(Step21)において取得した光線飛翔距離だけでは、正常光であるのか擾乱光であるのかを明確に区別することが困難である場合がある。そのため、上記Step22において、本来は擾乱光成分が存在するにも関わらず、擾乱光の発生なしと判定してしまう場合がある。そこで、図6に示すフローチャートとは別に、擾乱光成分の有無を判別する際に、上述のとおりNシークエンス分の受光信号を取得し、応答信号の信号波形を明らかにした後に、上記逆畳込演算を行って光線飛翔距離に対する信号強度の分布を得た上で、擾乱光成分の有無を判別してもよい。また、図6に示すStep22の判別結果によらず、上記逆畳込演算を行えば、光学系1からの出射光の擾乱光成分が含まれているか否かを明確に判別することができない場合であっても、光学系1からの出射光から擾乱光成分を分離するための擾乱光分離情報を生成することができる。
3.第3の実施の形態
次に、図8及び図9を参照しながら本件発明に係る擾乱光判別装置及び擾乱光分離装置の第3の実施の形態を説明する。
3−1.構成
まず、図8を参照しながら、第3の実施の形態の擾乱光判別分離装置200の構成を説明する。第1の実施の形態及び第2の実施の形態と同様に、擾乱光判別分離装置200は擾乱光判別装置と擾乱光分離装置とを一体に構成したものである。
第3の実施の形態の擾乱光判別分離装置200は、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置100と略同一である。しかしながら、第3の実施の形態の擾乱光判別分離装置200は、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置100とは、本件発明にいう変調光投射部の構成が異なる。第1の実施の形態及び第2の実施の形態では、本件発明にいう変調光投射部を光源部10として構成した。そして、光源部10から光学系1にパルス光(変調光)を投射するものとした。
これに対して、第3の実施の形態の擾乱光判別分離装置200では、光源部10の代わりに、第1のシャッタS1を光学系1の入射側に設け、当該第1のシャッタS1を高速に開閉することで光学系1にパルス光を入射するものとした。第1のシャッタS1は高速シャッタであり、例えば、数十n秒の間隔、好ましくは数n秒の間隔で開閉を切り替えることができる。制御部34は、タイミング生成部31により第1のシャッタS1に対して開閉信号を入力させる。第1のシャッタS1は、タイミング生成部31から入力される開閉信号に従って、開と閉とを切り替える。その他の構成は第1の実施の形態及び第2の実施の形態と同じであるため、同様の構成要素については同じ符号を付して、その説明を省略する。
3−2.動作
次に、図9を参照しながら、第3の実施の形態の擾乱光判別分離装置200の動作を説明する。第3の実施の形態では、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置100の光源部10に代えて、第1のシャッタS1を高速に開閉することで、光学系1に対してパルス光を入射する。例えば、図9(1)に示すように、図4(1)における光源部10のオン/オフが切り替えられるタイミングと同じタイミングで、第1のシャッタS1を開閉すれば、第1の実施の形態において説明した図3、図4と同じ手順により擾乱光成分の判別や分離を行うことができる。
一方、図示は省略したが、図7(1)における光源部10のオン/オフが切り替えられるタイミングと同じタイミングで第1のシャッタS1を開閉すると共に、距離画像センサ20においては図7(4)、(5)に示すように受光動作を行わせることで、第2の実施の形態において説明した図6、図7と同じ手順により擾乱光成分の判別や分離を行うことができる。すなわち、上述した畳込みにより応答信号の信号波形を得たり、逆畳込演算を行い、擾乱光分離情報を生成することもできる。
第3の実施の形態では、本件発明にいう変調光投射部を第1の実施の形態及び第2の実施の形態で説明した光源部10に代えて、第1のシャッタS1により構成することで、以下の点が有利である。
第1の実施の形態及び第2の形態の擾乱光判別分離装置100は、光学系1を製品として出荷する際の検査段階等において、光学系1が製品として要求されるレベルの品質を維持しているか否かを検査するために用いられる。或いは、製品として要求されるレベルの品質を維持しているが擾乱光判別分離装置100により個々の光学系1によって個体差のように生じる擾乱光成分を予め検出しておき、擾乱光分離情報を予め生成しておくことで、その光学系1が組み込まれる光学機器に擾乱光分離情報を光学像を補正するための補正情報として保持させること等を想定したものである。
一方、第3の実施の形態の擾乱光判別分離装置200によれば、例えば、光学系1に第1のシャッタS1を設け、当該光学系1を撮像レンズとして備えた撮像装置として具現化することができる。すなわち、擾乱光判別分離機能を備えた撮像装置(200)として実現することができる。例えば、被写体を撮像する際に、当該撮像装置(200)を用いて擾乱光の発生の有無を判別し、擾乱光が発生する場合には擾乱光を光学系1からの出射光から分離するための擾乱光分離情報を生成しておく。その後、被写体を撮像すれば、擾乱光分離情報に基づいて、撮像光から擾乱光成分を容易に分離することが可能になる。
そのため、例えば、ユーザが当該撮像装置(200)を用いて夜空を撮像したときも、撮像画像に街灯等の光源に起因するゴーストが写り込むことを抑制し、撮像者の撮像意図に沿った撮像画像を得ることができる。また、逆光で撮像する場合、撮像レンズの構成等によりフレア等の発生を完全に抑制することは困難である。しかしながら、当該撮像装置(200)を用いれば、逆光で撮像する場合もフレア等の発生を抑制することが可能になる。同様に、交通監視用の撮像装置や、車載用撮像装置に当該撮像装置(200)を適用すれば、それらの使用される環境下によらず、ゴーストやフレアの発生を抑制し、鮮明な被写体像を得ることが容易になる。
つまり、第3の実施の形態によれば、製品として要求されるレベルを満足した光学系を搭載した光学機器に、上記第1のシャッタS1及び擾乱光の判別及び分離に関する制御機構を搭載することで、使用段階において回避することが困難であった特定の条件下で発生するフレアやゴーストの発生を抑制することが可能になる。
なお、図8では、光学系1の外部、入射側に第1のシャッタS1を配置しているが、第1のシャッタS1の配置は図8に示す例に限定されるものではなく、光学系1内に配置してもよい。光学系1内に第1のシャッタS1を配置すれば、第1のシャッタS1の径を光学系1を構成する光学要素と同程度の大きさとすることができ、第1のシャッタS1の小型化を図ることができる。
4.第4の実施の形態
次に、図10及び図11を参照しながら本件発明に係る擾乱光分離装置の第4の実施の形態を説明する。当該擾乱光分離装置300は、光学系1において設計光路を飛翔する正常光と、設計光路と異なる光路を飛翔する擾乱光とを分離するための装置である。
4−1.構成
まず、図10を参照しながら、第4の実施の形態の擾乱光分離装置300の構成を説明する。第4の実施の形態の擾乱光分離装置300は、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置100と略同一の構成を有する。しかしながら、第4の実施の形態の擾乱光分離装置300は、本件発明にいう擾乱光判別装置を備えていない点において、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置とは相違する。また、第4の実施の形態の擾乱光分離装置300は、第1の実施の形態及び第2の実施の形態の擾乱光判別分離装置100とは、本件発明にいう変調光投射部の構成が異なる。第4の実施の形態では、第3の実施の形態と同様に、光源部10の代わりに第1のシャッタS1を備え、第1のシャッタS1を高速に開閉することにより、光学系1にパルス光を投射する。
第1のシャッタS1は、第3の実施の形態と同様に高速シャッタである。第1のシャッタS1は、例えば、数十n秒の間隔、好ましくは数n秒の間隔で開閉を切り替え可能であることが好ましい。制御部34は、タイミング生成部31により第1のシャッタS1に対して開閉信号を入力させる。第1のシャッタS1は、タイミング生成部31から入力される開閉信号に従って、開と閉とを切り替える。
第4の実施の形態の擾乱光分離装置300では、距離画像センサ20の代わりに、イメージャ320(固体撮像素子/受光部)を用い、光学系1とイメージャ320との間に第2のシャッタS2を備える。
イメージャ320は、光学系1の使用波長域内の波長の光に対して受光感度を有すればよく、その具体的な態様は特に限定されるものではない。例えば、光学系1が可視光域を使用波長域とする場合、可視光波長域の光線に受光感度を有すればよい。また、光学系1が赤外波長域を使用波長域とする場合、赤外波長域の光線に受光感度を有すればよい。
第4の実施の形態の擾乱光分離装置300では、光学系1から出射した正常光が第2のシャッタS2に到達する期間のみ開くように、第2のシャッタS2の開閉が制御される。受光させるものとした。第2のシャッタS2のシャッタ速度は第1のシャッタS1のシャッタ速度と同等であることが好ましく、例えば、数n秒〜数十n秒の間隔で開閉を切り替え可能であることが好ましい。
4−2.動作
次に、図11を参照しながら、第4の実施の形態の擾乱光分離装置300の動作を説明する。
(1)第1のシャッタS1
図11(1)は第1のシャッタS1の開閉期間を示す。本実施の形態では、(a)−(b)の間、第1のシャッタS1は開き、(b)−(c)の間第1のシャッタS1は閉じている。これを1周期とし、所定のタイミングマージンtm((c)−(d)の間)を介して、所定の露光時間の間、第1のシャッタS1は1回以上開閉する。本実施の形態では、第1のシャッタS1は、所定の露光時間の間、予め定められた所定の回数(例えば、数百回〜数万回)開閉動作を繰り返す。但し、所定の露光時間における第1のシャッタS1の発光回数は、イメージャ320において正常光に基づく被写体像を形成するために十分な光量を確保することができれば特に限定されるものではなく、当該条件を満たすことができれば、所定の露光時間における第1のシャッタS1の開閉回数は1回でもよい。第1のシャッタS1の当該動作に伴い、光学系1にはパルス光が入射する。
(2)第2のシャッタS2
図11(2)は第2のシャッタS2の開閉期間を示す。第2のシャッタS2は、次に説明する正常光が第2のシャッタS2に到達する期間のみ開かれ、その他の期間は閉じられる。
(3)正常光
図11(3)は正常光が第2のシャッタS2に到達する期間を示す。第1のシャッタS1が開状態にある(a)−(b)の間、光学系1に入射した光は光学系1内を飛翔する。そのため、光学系1の光学系1からの出射光に含まれる正常光が第2のシャッタS2に到達するのは、第1のシャッタS1が開いた時点(a)から、所定の遅れ時間(delay4-1)が経過した後になる。図11(3)に示す例では、(a)−(c)の長さに相当する遅れ時間(delay4-1)経過後に、イメージャ320に正常光が(c)−(e)の間到達するものとした。この遅れ時間(delay4-1)はその光学系1に固有の時間である。当該遅れ時間(delay4-1)は、第1の実施の形態等と同様に、例えば、光学シミュレーション、或いは、基準光学系を用いた測定結果等により、既知の情報として取得しておき、制御部34のデータメモリなどに予め格納しておくことができる。
制御部34は、予め格納された上記遅れ時間(delay4-1)に基づいて、第2のシャッタS2の開閉制御を行う。
(4)擾乱光
図11(4)は擾乱光が第2のシャッタS2に到達する期間を示す。光学系1から出射した光学系1からの出射光に含まれる擾乱光は、正常光に遅れて第2のシャッタS2に到達する。図11(4)に示す例では、第1のシャッタS1が開いた時点から(a)−(c)の長さに相当する遅れ時間(delay4-2)が経過した後に、擾乱光が第2のシャッタS2に到達するものとした。
(5)イメージャ320
図11(5)はイメージャ320に光が到達する期間を示す。イメージャ320は、所定の露光時間の間、受光した光を蓄積し、それを受光信号として制御ユニット30に出力する。しかしながら、当該第4の実施の形態は、イメージャ320の入射側に第2のシャッタS2を備える。そのため、イメージャ320に光が到達する期間は第2のシャッタS2の開閉動作により制御される。
上述したとおり、第2のシャッタS2は正常光が第2のシャッタS2に到達する期間のみ開かれる。第2のシャッタS2を通過した光は(c)−(d)の期間に相当する時間を掛けてイメージャ320に到達する。そのため、図11(5)に示す例では、第2のシャッタS2が開いた時点(c)から、(c)−(d)の遅れ時間経過後、第2のシャッタS2が開いていた期間と同じ時間((d)−(f))光を受光する。図11(5)に示す例では、擾乱光が第2のシャッタS2に到達するのは、(e)の時点である。このとき、第2のシャッタS2は閉じられる。そのため、図11に示す例では擾乱光は第2のシャッタS2により遮断され、イメージャ320には正常光のみが到達する。
よって、第4の実施の形態では、擾乱光の判別動作を行わずとも、擾乱光成分を光学系1からの出射光から除去することができる。なお、図11に示した例では、正常光が第2のシャッタS2に到達する期間と、擾乱光が第2のシャッタS2に到達する期間との重なりはない。しかしながら、実際には、正常光が第2のシャッタS2に到達する期間と、擾乱光が第2のシャッタS2に到達する期間とが重なる場合がある。そのため、その場合は、正常光のみが第2のシャッタS2に到達する期間のみ第2のシャッタS2を開く構成にすれば、イメージャ320に正常光のみを受光させることができる。
なお、第2のシャッタS2を開く時間((c)−(d))をtsとし、擾乱光が第2のシャッタS2に到達するまでの遅れ時間(delay4-2)((a)−(e))をtdとしたとき、ts<1.5tdであることが好ましく、ts<tdであることが好ましく、上記したようにtsは正常光のみ受光する期間と同じであることが好ましい。
第4の実施の形態の擾乱光分離装置300は、第3の形態の擾乱光判別分離装置200と同様に、光学系1の入射側に第1のシャッタS1を設け、光学系1の出射側に第2のシャッタS2を設け、当該光学系1を撮像レンズとして備えた撮像装置として具現化することができる。すなわち、擾乱光分離機能を備えた撮像装置(300)として実現することができ、第3の実施の形態と同様の作用効果を得ることができる。
また、第4の実施の形態の擾乱光分離装置300と同じ構成により、第1の実施の形態及び第2の実施の形態で述べた擾乱光の判別及び分離を行うこともできる。すなわち、第1の実施の形態及び第2の実施の形態の擾乱光分離装置100において、光源部10を第1のシャッタS1に置換し、距離画像センサ20を第2のシャッタS2及びイメージャ320に置換した場合も、第1の実施の形態及び第2の実施の形態で述べた手順と略同様の手順により擾乱光の判別及び分離動作を行うことができる。また、第1の実施の形態〜第3の実施の形態の擾乱光判別分離装置100,200を用いて、正常光のみが到達する期間のみ距離画像センサ20に光を受光させることにより、第1の実施の形態〜第3の実施の形態の擾乱光判別分離装置100,200第4の実施の形態と同様の擾乱光分離装置として実現することができる。
本件発明によれば、簡易な手法で被験光学系から出射した光に擾乱光成分が含まれるか否かを精度良く判別することができ、擾乱光の発生原因面を推定可能な擾乱光判別装置及び擾乱光判別方法、或いは、簡易な手法で被験光学系から出射した光に擾乱光成分を分離可能な擾乱光分離装置又は擾乱光分離方法を提供することができる。
1 光学系(被験光学系)
2 光源像
3 第1の擾乱光像
4 第2の擾乱光像
10 光源部
20 距離画像センサ
30 制御ユニット
31 タイミング生成部
32 信号処理部
33 光線飛翔距離情報生成部
33a 距離演算部
33b 距離画像生成部
34 制御部
100 擾乱光判別分離装置
200 擾乱光判別分離装置
300 擾乱光分離装置
320 イメージャ
L1 第1レンズ
L2 第2レンズ
L3 第3レンズ
I 像面
tm タイミングマージン
S1 第1のシャッタ
S2 第2のシャッタ

Claims (15)

  1. 光学系に変調光を投射する変調光投射部と、
    前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、
    前記変調光投射部と、前記受光部とを制御する制御部と、を備え、
    当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、
    前記制御部は、
    前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光に前記擾乱光成分が含まれるか否かを判別すること、
    を特徴とする擾乱光判別装置。
  2. 前記変調光投射部は前記光学系に変調光を投射する光源である請求項1に記載の擾乱光判別装置。
  3. 前記変調光投射部は、前記光学系の入射側に設けられる第1のシャッタを備え、該第1のシャッタを所定のタイミングで開閉させることで、前記光学系にパルス光を投射する請求項1に記載の擾乱光判別装置。
  4. 前記受光部は、距離画像センサを備える請求項1から請求項3のいずれか一項に記載の擾乱光判別装置。
  5. 前記受光部と、前記光学系との間に第2のシャッタが設けられ、前記制御部は第2のシャッタの開閉を制御することにより前記受光部の受光動作を制御する請求項1から請求項3のいずれか一項に記載の擾乱光判別装置。
  6. 光学系に変調光を投射する変調光投射部と、
    前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、
    前記変調光投射部と、前記受光部とを制御する制御部と、を備え、
    当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、
    前記制御部は、
    前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光から前記擾乱光成分を分離するための擾乱光成分分離情報を生成すること、
    を特徴とする擾乱光分離装置。
  7. 前記制御部は、
    前記変調光投射部により前記光学系に対して前記変調光を投射させつつ、前記受光部に前記光学系から出射した光を受光させる1シークエンスの動作を実行させる毎に、前記変調光の投射タイミングに対して、前記前記光学系から出射した光の受光開始のタイミングを相対的にΔt×(N−1)秒(但し、Nは1以上の整数)ずらしてNシークエンス実行させることにより、前記光学系から出射した光の信号波形に関する受光信号情報を取得し、
    前記受光信号情報に基づいて、前記擾乱光分離情報を生成する請求項6に記載の擾乱光分離装置。
  8. 前記制御部は、前記擾乱光分離情報に基づいて、前記光学系から出射した光から前記擾乱光成分を分離する請求項6又は請求項7に記載の擾乱光分離装置。
  9. 前記変調光投射部は前記光学系に変調光を投射する光源である請求項6から請求項8のいずれか一項に記載の擾乱光判別装置。
  10. 前記変調光投射部は、前記光学系の入射側に設けられる第1のシャッタを備え、該第1のシャッタを所定のタイミングで開閉させることで、前記光学系にパルス光を投射する請求項6から請求項8のいずれか一項に記載の擾乱光判別装置。
  11. 前記受光部は、距離画像センサを備える請求項6から請求項8のいずれか一項に記載の擾乱光判別装置。
  12. 前記受光部と、前記光学系との間に第2のシャッタが設けられ、前記制御部は第2のシャッタの開閉を制御することにより前記受光部の受光動作を制御する請求項6から請求項8のいずれか一項に記載の擾乱光判別装置。
  13. 光学系に変調光を入射する変調光投射部と、
    前記変調光の入射に応じて前記光学系から出射した光を受光する受光部と、
    前記光学系と前記受光部との間に設けられる第2のシャッタと、
    前記変調光投射部、前記受光部及び前記第2のシャッタを制御する制御部と、
    を備え、
    当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、
    前記制御部は、
    前記第2のシャッタの開閉を制御して、前記光学系から出射した光のうち、前記擾乱光成分が到達しない期間のみ前記第2のシャッタが開くように、前記第2のシャッタの開閉を制御することを特徴とする擾乱光分離装置。
  14. 光学系に変調光を入射する工程と、
    当該変調光の入射に応じて光学系から出射した光から光線飛翔距離に関する情報を取得する工程と、
    前記変調光投射部と、前記受光部とを制御する制御部と、を備え、
    当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光に前記擾乱光成分が含まれるか否かを判別する工程と、
    を備えることを特徴とする擾乱光判別方法。
  15. 光学系に変調光を入射する工程と、
    当該変調光の入射に応じて光学系から出射した光から光線飛翔距離に関する情報を取得する工程と、
    当該光学系の設計光路長に基づき定められた基準距離を超える光路を飛翔して前記受光部に入射する光線を擾乱光成分としたとき、前記光学系から出射した光から取得される光線飛翔距離に基づいて、前記光学系から出射した光から前記擾乱光成分を分離するための擾乱光成分分離情報を生成する工程と、
    を備えることを特徴とする擾乱光分離方法。
JP2018018336A 2018-02-05 2018-02-05 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法 Pending JP2019135468A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018018336A JP2019135468A (ja) 2018-02-05 2018-02-05 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法
US16/222,200 US11353564B2 (en) 2018-02-05 2018-12-17 Disturbance light identifying apparatus, disturbance light separating apparatus, disturbance light identifying method, and disturbance light separating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018018336A JP2019135468A (ja) 2018-02-05 2018-02-05 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法

Publications (1)

Publication Number Publication Date
JP2019135468A true JP2019135468A (ja) 2019-08-15

Family

ID=67476004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018018336A Pending JP2019135468A (ja) 2018-02-05 2018-02-05 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法

Country Status (2)

Country Link
US (1) US11353564B2 (ja)
JP (1) JP2019135468A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506528B2 (ja) 2020-05-26 2024-06-26 株式会社タムロン 眼科装置、眼科検査装置、及び眼科検査システム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813541B2 (ja) * 2018-07-26 2021-01-13 ファナック株式会社 光学系異常を検出する測距装置
RU2717252C1 (ru) * 2019-09-03 2020-03-19 Владимир Эльич Пашковский Устройство фиксации изображения длительной экспозиции

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318104A (ja) * 2001-04-20 2002-10-31 Victor Co Of Japan Ltd 光学撮像装置、光学測距装置
JP2006172772A (ja) * 2004-12-13 2006-06-29 Yoshikawa Kasei Kk 配光制御部材及び照射装置
JP2006313815A (ja) * 2005-05-09 2006-11-16 Nikon Corp 結像性能シミュレーション方法及び装置、並びに露光方法及び装置
JP2014178244A (ja) * 2013-03-15 2014-09-25 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4121193B2 (ja) 1998-09-04 2008-07-23 株式会社タムロン フレアカッター機構を有するインナーフォーカスズームレンズ
JP2009152921A (ja) 2007-12-21 2009-07-09 Panasonic Corp フレア補正装置
WO2011108207A1 (ja) * 2010-03-01 2011-09-09 コニカミノルタオプト株式会社 ゴースト検出装置およびそれを用いる撮像装置、ゴースト検出方法、および、ゴースト除去方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318104A (ja) * 2001-04-20 2002-10-31 Victor Co Of Japan Ltd 光学撮像装置、光学測距装置
JP2006172772A (ja) * 2004-12-13 2006-06-29 Yoshikawa Kasei Kk 配光制御部材及び照射装置
JP2006313815A (ja) * 2005-05-09 2006-11-16 Nikon Corp 結像性能シミュレーション方法及び装置、並びに露光方法及び装置
JP2014178244A (ja) * 2013-03-15 2014-09-25 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7506528B2 (ja) 2020-05-26 2024-06-26 株式会社タムロン 眼科装置、眼科検査装置、及び眼科検査システム

Also Published As

Publication number Publication date
US11353564B2 (en) 2022-06-07
US20190242984A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
EP3367660B1 (en) A camera device comprising a dirt detection unit
BE1023788B1 (nl) Systeem en methode voor het bepalen van de afstand tot een object
CN101430796B (zh) 图像产生方法和设备
US20120026318A1 (en) Camera system for detecting a state of a vehicle window pane
JP6363804B2 (ja) 赤外線撮像装置及びその制御方法、並びに車両
US20110273564A1 (en) Camera system and method for detecting the surroundings of a vehicle
JP5424708B2 (ja) 焦点検出装置
CN104024827A (zh) 图像处理装置、图像捕捉方法和车辆
US9875423B2 (en) Image pickup apparatus that calculates light amount change characteristic, electronic apparatus, and method of calculating light amount change characteristic
US11662443B2 (en) Method and apparatus for determining malfunction, and sensor system
US20230179841A1 (en) Gating camera
JP6467516B2 (ja) 距離画像取得装置付きプロジェクタ装置及びプロジェクション方法
US20230273305A1 (en) Window Occlusion Imager Near Focal Plane
US20200408916A1 (en) Distance measurement device having external light illuminance measurement function and external light illuminance measurement method
JP2019135468A (ja) 擾乱光判別装置、擾乱光分離装置、擾乱光判別方法及び擾乱光分離方法
JP6775119B2 (ja) 距離測定装置
JP2018159685A (ja) 距離測定装置
US20220400198A1 (en) Imaging apparatus, control method for imaging apparatus, and storage medium
US9354052B2 (en) Shared-aperture electro-optic imaging and ranging sensor
JP6505295B2 (ja) 撮像装置、その制御方法、および制御プログラム
CN112887627B (zh) 增加LiDAR设备动态范围的方法、光检测测距LiDAR设备及机器可读介质
CN112887628B (zh) 光探测和测距设备及增加其动态范围的方法
JP6077872B2 (ja) 焦点検出装置及びその制御方法
CN112351270B (zh) 确定故障的方法和装置以及传感器***
Alantev et al. Gated-viewing system with an electronic shutter on a CCD image sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220309