JP2019132497A - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP2019132497A
JP2019132497A JP2018014306A JP2018014306A JP2019132497A JP 2019132497 A JP2019132497 A JP 2019132497A JP 2018014306 A JP2018014306 A JP 2018014306A JP 2018014306 A JP2018014306 A JP 2018014306A JP 2019132497 A JP2019132497 A JP 2019132497A
Authority
JP
Japan
Prior art keywords
refrigeration
evaporator
refrigerator
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018014306A
Other languages
Japanese (ja)
Other versions
JP7063641B2 (en
Inventor
良二 河井
Ryoji Kawai
良二 河井
晴樹 額賀
Haruki Nukaga
晴樹 額賀
慎一郎 岡留
Shinichiro Okadome
慎一郎 岡留
智史 小沼
Tomohito Konuma
智史 小沼
真申 小川
Masanobu Ogawa
真申 小川
大 板倉
Masaru Itakura
大 板倉
福太郎 岡田
Fukutaro Okada
福太郎 岡田
圭介 服部
Keisuke Hattori
圭介 服部
塩野 謙治
Kenji Shiono
謙治 塩野
陽平 門傳
Yohei Kadoi
陽平 門傳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Global Life Solutions Inc
Original Assignee
Hitachi Global Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Global Life Solutions Inc filed Critical Hitachi Global Life Solutions Inc
Priority to JP2018014306A priority Critical patent/JP7063641B2/en
Priority to CN202011258466.3A priority patent/CN112378146B/en
Priority to CN201811029402.9A priority patent/CN110094917A/en
Publication of JP2019132497A publication Critical patent/JP2019132497A/en
Application granted granted Critical
Publication of JP7063641B2 publication Critical patent/JP7063641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Refrigerator Housings (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

To provide a refrigerator capable of exerting high cooling efficiency in the whole refrigerator even when a load of a part of storage chambers is increased, in the refrigerator including a refrigeration chamber, a freezing chamber and a vegetable chamber.SOLUTION: A refrigerator including a first refrigeration temperature zone chamber, a second refrigeration temperature zone chamber, and a freezing temperature zone chamber, and further including a first evaporator and a first blower at a back part of the first refrigeration temperature zone chamber, and a second evaporator and a second blower at a back part of the freezing temperature zone chamber or the second freezing temperature zone chamber, further includes a first air channel for circulating air exchanging heat with the first evaporator by driving the first blower, to the first refrigeration temperature zone chamber, and a second air channel for circulating air exchanging heat with the second evaporator by driving the second blower to the freezing temperature zone chamber and the second refrigeration temperature zone chamber, and air circulation block means is disposed to block circulation of the air between the first air channel and the second air channel.SELECTED DRAWING: Figure 2

Description

本発明は,冷蔵庫に関する。   The present invention relates to a refrigerator.

本技術分野の背景技術として,例えば特開2006−64256号公報(特許文献1)がある。   As a background art in this technical field, for example, there is JP-A-2006-64256 (Patent Document 1).

特許文献1には,本体である外郭が断熱箱体で構成されており,この断熱箱体の内部空間(すなわち庫内)は,上方から冷蔵室,アイス室,冷凍や冷蔵を選べるセレクト室,冷凍室,野菜室を備え,冷蔵室は冷蔵室用蒸発器である第一蒸発器で,また,アイス室,セレクト室および冷凍室は冷凍室用蒸発器である第二蒸発器で冷却され,野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷却空気で間接的に冷却される冷蔵庫が開示されている(例えば特許文献1の図3)。   In patent document 1, the outer shell which is a main body is composed of a heat insulating box, and the internal space of this heat insulating box (that is, the inside) is a refrigerated room, an ice room, a select room where freezing or refrigeration can be selected from above, It is equipped with a freezer compartment and a vegetable compartment, the refrigerator compartment is cooled by the first evaporator which is an evaporator for the refrigerator compartment, and the ice compartment, the select compartment and the freezer compartment are cooled by the second evaporator which is an evaporator for the freezer compartment, A vegetable room is disclosed as a refrigerator that is indirectly cooled with cooling air in a freezer compartment through a partition wall between the vegetable compartment and the like (for example, FIG. 3 of Patent Document 1).

特開2006−64256号公報JP 2006-64256 A

特許文献1に記載の冷蔵庫は,冷蔵室と,冷凍温度帯室(アイス室,セレクト室,冷凍室),野菜室を備え,冷蔵室用蒸発器によって冷蔵室を冷却し,冷凍室用蒸発器によって,アイス室,セレクト室および冷凍室を冷却し,冷凍室の下方に設けられた野菜室は,冷凍室との間の隔壁などを介して,冷凍室の冷却空気で間接的に冷却する。   The refrigerator described in Patent Document 1 includes a refrigerator compartment, a freezing temperature compartment (ice compartment, select compartment, freezer compartment), and a vegetable compartment. The refrigerator compartment cools the refrigerator compartment by using the evaporator for the refrigerator compartment. Thus, the ice room, select room and freezer room are cooled, and the vegetable room provided below the freezer room is indirectly cooled with the cooling air of the freezer room through a partition wall between the freezer room and the like.

間接的に冷却する場合,野菜室の冷却能力を高めるためには隔壁を介した熱移動を促進する必要がある。一般に隔壁を介した熱移動の促進には,隔壁によって隔てられた空間(冷凍室と野菜室)の温度差を拡大することが有効となる。したがって,周囲環境温度が高い,野菜室に温度が高い食品を収納した,あるいは,食品等を挟み込むことにより野菜室扉と断熱箱体の間に隙間が生じているといった事由により野菜室の負荷が大きく,冷却能力を十分高める必要がある場合には,冷凍室を過度に低温に維持する必要があり冷却効率が低下していた。また,冷凍室と接している冷蔵室も冷凍室を過度に低温に維持することにより,間接的に冷凍室の熱影響を受けて,冷却効率が低下するという問題が生じていた。すなわち,一部の貯蔵室の負荷を冷却するために,冷蔵庫全体としての冷却効率が低下するという問題が発生していた。   When cooling indirectly, it is necessary to promote heat transfer through the partition walls in order to increase the cooling capacity of the vegetable compartment. In general, it is effective to increase the temperature difference between the spaces (freezer compartment and vegetable compartment) separated by the partition walls in order to promote heat transfer through the partition walls. Therefore, the load on the vegetable compartment may be reduced due to reasons such as high ambient temperature, food containing high temperature in the vegetable compartment, or a gap between the vegetable compartment door and the heat insulation box due to food being sandwiched. When the cooling capacity is large enough, it is necessary to keep the freezer room at an excessively low temperature, resulting in a decrease in cooling efficiency. In addition, the refrigerator compartment in contact with the freezer compartment also has a problem in that the cooling efficiency is lowered due to the heat effect of the freezer compartment indirectly by keeping the freezer compartment at an excessively low temperature. That is, in order to cool the load of some storage rooms, the problem that the cooling efficiency as the whole refrigerator fell occurred.

本発明は上記課題に鑑みてなされたものであり,冷蔵室と,冷凍室と,野菜室を備えた冷蔵庫において,一部の貯蔵室の負荷が大きくなった場合であっても,冷蔵庫全体として高い冷却効率を発揮できる冷蔵庫を提供することを目的とする。   The present invention has been made in view of the above problems, and in a refrigerator having a refrigerator compartment, a freezer compartment, and a vegetable compartment, even if the load on some storage compartments becomes large, It aims at providing the refrigerator which can exhibit high cooling efficiency.

上記課題を解決するために,例えば特許請求の範囲に記載の構成を採用する。   In order to solve the above problems, for example, the configuration described in the claims is adopted.

本願は上記課題を解決する手段を複数含んでいるが,その一例を挙げるならば,第一冷蔵温度帯室,第二冷蔵温度帯室,冷凍温度帯室を備え,前記第一冷蔵温度帯室の背部に第一蒸発器及び第一送風機と,前記冷凍温度帯室または前記第二冷蔵温度帯室の背部に第二蒸発器及び第二送風機を備えた冷蔵庫において,前記第一送風機の駆動により前記蒸発器と熱交換した空気を前記第一冷蔵温度帯室に流通させる第一風路と,前記第二送風機の駆動により前記第二蒸発器と熱交換した空気を前記冷凍温度帯室及び第二冷蔵温度帯室に流通させる第二風路とを備え,前記第一風路と前記第二風路の間の空気の流通を遮断する空気流通遮断手段を備えたことを特徴とする。   The present application includes a plurality of means for solving the above-described problems. For example, the first refrigeration temperature zone chamber, the second refrigeration temperature zone chamber, and the refrigeration temperature zone chamber include the first refrigeration temperature zone chamber. In the refrigerator provided with the first evaporator and the first blower on the back portion and the second evaporator and the second blower on the back portion of the freezing temperature zone chamber or the second refrigeration temperature zone chamber, by driving the first blower A first air passage through which the air heat-exchanged with the evaporator flows through the first refrigeration temperature zone chamber; and air that has exchanged heat with the second evaporator by driving the second blower. And a second air passage that circulates in the two refrigerated temperature zone chambers, and further includes an air circulation blocking means that interrupts the air flow between the first air passage and the second air passage.

本発明によれば,冷蔵室と,冷凍室と,野菜室を備えた冷蔵庫において,一部の貯蔵室の負荷が大きくなった場合であっても,冷蔵庫全体として高い冷却効率を発揮できる冷蔵庫を提供することができる。   According to the present invention, in a refrigerator having a refrigerator compartment, a freezer compartment, and a vegetable compartment, a refrigerator capable of exhibiting high cooling efficiency as a whole refrigerator even when the load on some storage compartments is increased. Can be provided.

実施例に係る冷蔵庫の正面図Front view of the refrigerator according to the embodiment 図1のA−A断面図AA sectional view of FIG. 図2のB−B断面図BB sectional view of FIG. 実施例に係る冷蔵庫の風路構成を表す模式図The schematic diagram showing the air path structure of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の冷凍サイクル構成を表す概略図Schematic showing the refrigerating cycle structure of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の蒸発器を表す図The figure showing the evaporator of the refrigerator which concerns on an Example 実施例に係る冷蔵庫の通常時の運転制御を表すフローチャートThe flowchart showing the normal operation control of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の高負荷時の運転制御を表すフローチャートThe flowchart showing the operation control at the time of high load of the refrigerator which concerns on an Example. 実施例に係る冷蔵庫の通常時の制御を表すタイムチャートの一例An example of a time chart representing normal control of the refrigerator according to the embodiment 実施例に係る冷蔵庫の高負荷時の制御を表すタイムチャートの一例An example of a time chart representing control at high load of the refrigerator according to the embodiment 冷蔵庫の蒸発器温度,理論成績係数,冷蔵室温度の関係を表すグラフGraph showing the relationship between the evaporator temperature, the coefficient of theoretical performance, and the refrigerator temperature 冷蔵庫の冷凍サイクルの状態を表すモリエル線図Mollier diagram showing the state of the refrigeration cycle of the refrigerator

以下,本発明の実施例について,適宜図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.

本発明に係る冷蔵庫の実施例について説明する。まず,実施例に係る冷蔵庫の構成を図1〜図5を参照しながら説明する。図1は実施例に係る冷蔵庫の正面図,図2は図1のA−A断面図,図3は図2のB−B断面図,図4は実施例に係る冷蔵庫の風路構成を示す模式図,図5は実施例に係る冷蔵庫の冷凍サイクルの構成を表す概略図である。冷蔵庫1の断熱箱体10は,前方に開口しており,上方から冷蔵室2(第一冷蔵温度帯室),左右に並設された製氷室3と上段冷凍室4,下段冷凍室5,野菜室6(第二冷蔵温度帯室)の順に貯蔵室を形成している。以下では,製氷室3,上段冷凍室4,下段冷凍室5は,まとめて冷凍室7(冷凍温度帯室)と呼ぶ。   An embodiment of the refrigerator according to the present invention will be described. First, the structure of the refrigerator which concerns on an Example is demonstrated, referring FIGS. 1 is a front view of a refrigerator according to the embodiment, FIG. 2 is a sectional view taken along line AA in FIG. 1, FIG. 3 is a sectional view taken along line BB in FIG. FIG. 5 is a schematic diagram illustrating the configuration of the refrigeration cycle of the refrigerator according to the embodiment. The heat insulating box 10 of the refrigerator 1 is opened forward, and from above the refrigerator compartment 2 (first refrigerator temperature zone), the ice making compartment 3 and the upper freezer compartment 4, the lower freezer compartment 5, arranged side by side on the left and right. A storage room is formed in the order of the vegetable room 6 (second refrigeration temperature zone room). Hereinafter, the ice making room 3, the upper freezing room 4, and the lower freezing room 5 are collectively referred to as a freezing room 7 (freezing temperature zone room).

冷蔵室2の前方の開口は,左右に分割された回転式の冷蔵室扉2a,2bにより開閉され,製氷室3,上段冷凍室4,下段冷凍室5,野菜室6の前方の開口は,引き出し式の製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aによってそれぞれ開閉される。冷蔵室扉2a,2bの庫内側外周には,シール部材として冷蔵室パッキン95a,95b(第一シール部材),製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5aの庫内側外周には,シール部材として冷凍室パッキン96a,96b,96c(第二シール部材),野菜室6の扉である野菜室扉6aの庫内側外周には,シール部材として野菜室パッキン97(第三シール部材)をそれぞれ備えており,各扉を閉じた際に,断熱箱体10の前縁部と接触することにより庫内外の空気の流通を抑制するようにしている。冷蔵室パッキン95a,95bの周長はそれぞれ2271mm,2441mmであり冷蔵室パッキン95a,95bの全周長(第一シール部材の周長)は4712mmである。冷凍室パッキン96a,96b,96cの周長は,それぞれ976mm,1416mm,2087mmであり,冷凍室パッキン96a,96b,96cの全周長(第二シール部材の周長)は4209mmである。また,野菜室パッキン97の周長(第三シール部材の周長)は2107mmである。なお,冷蔵室扉2a,2b,製氷室扉3a,上段冷凍室扉4a,下段冷凍室扉5a,野菜室扉6aの開閉状態は,各扉と断熱箱体10の前縁部との近接状態を検知する図示しない扉センサによって検知される。   The front opening of the refrigerating room 2 is opened and closed by rotary refrigerating room doors 2a and 2b divided into left and right, and the front opening of the ice making room 3, the upper freezing room 4, the lower freezing room 5, and the vegetable room 6 is The drawer-type ice making room door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are opened and closed. Refrigerator compartment packings 95a and 95b (first seal members), ice making door 3a, upper freezer compartment door 4a, and lower freezer compartment door 5a are provided on the outer perimeter of refrigerator compartment doors 2a and 2b. Is a freezer compartment packing 96a, 96b, 96c (second seal member) as a seal member, and a vegetable compartment packing 97 (third seal member) as a seal member on the inner periphery of the vegetable compartment door 6a which is a door of the vegetable compartment 6. When the doors are closed, the flow of air inside and outside the cabinet is suppressed by contacting the front edge of the heat insulating box 10. The peripheral lengths of the refrigerator compartment packings 95a and 95b are 2271 mm and 2441 mm, respectively, and the total peripheral length of the refrigerator compartment packings 95a and 95b (peripheral length of the first seal member) is 4712 mm. The peripheral lengths of the freezer compartment packings 96a, 96b, and 96c are 976 mm, 1416 mm, and 2087 mm, respectively, and the total peripheral lengths of the freezer compartment packings 96a, 96b, and 96c (the peripheral length of the second seal member) are 4209 mm. Moreover, the perimeter of the vegetable compartment packing 97 (perimeter of the third seal member) is 2107 mm. The open / close states of the refrigerator compartment doors 2a and 2b, the ice making compartment door 3a, the upper freezer compartment door 4a, the lower freezer compartment door 5a, and the vegetable compartment door 6a are close to each door and the front edge of the heat insulating box 10. It is detected by a door sensor (not shown) that detects.

冷蔵庫1と扉2a,2bを固定するために扉ヒンジ(図示せず)は冷蔵室2上部及び下部に設けてあり,上部の扉ヒンジは扉ヒンジカバー16で覆われている。また,扉2aには庫内の温度設定の操作を行う操作部99を設けている。   In order to fix the refrigerator 1 and the doors 2a and 2b, door hinges (not shown) are provided at the upper and lower parts of the refrigerator compartment 2, and the upper door hinges are covered with a door hinge cover 16. The door 2a is provided with an operation unit 99 for performing an operation for setting the temperature in the cabinet.

冷蔵室2の温度と,冷凍室7の温度は,操作部99を介してユーザーが維持温度レベルを選択できるようになっている。具体的には,冷蔵室2と冷凍室7の維持温度レベルの設定はそれぞれ「強」「中」「弱」の3段階に設定できるようになっており,冷蔵室2は「強」では約2℃,「中」では約4℃,「弱」では約6℃に維持され,冷凍室7は「強」では約-22℃,「中」では約−20℃,「弱」では約−18℃に維持される。なお,野菜室6は平均的に7℃程度に維持される。   The temperature of the refrigerator compartment 2 and the temperature of the freezer compartment 7 can be selected by the user via the operation unit 99. Specifically, the setting of the maintenance temperature level of the refrigerator compartment 2 and the freezer compartment 7 can be set in three stages of “strong”, “medium”, and “weak”, respectively. 2 ° C, “Medium” is maintained at about 4 ° C., “Low” is maintained at about 6 ° C., and the freezer room 7 is “High” at about −22 ° C., “Medium” is about −20 ° C., “Low” is about − Maintained at 18 ° C. The vegetable room 6 is maintained at about 7 ° C. on average.

冷蔵庫1の幅WはW=685mm(図1参照),奥行きDはD=738mm(図2参照),高さHはH=1833mm(図1参照)であり,断熱箱体10の開口部における冷蔵室高さ寸法HはH=787mm,冷凍室高さ寸法HはH=482mm,野菜室高さ寸法HはH=334mmである(図2参照)。JISC9801−3:2015に基づく全定格内容積は602Lであり,内訳は冷蔵室2の定格内容積(冷蔵室定格内容積)は308Lであり全定格内容積の51.2%,冷凍室7の定格内容積(冷凍室定格内容積)は180Lであり29.9%(全定格内容積の28%以上),野菜室6の定格内容積(野菜室定格内容積)は114Lであり全定格内容積の18.9%である。 The width W of the refrigerator 1 is W = 685 mm (see FIG. 1), the depth D is D = 738 mm (see FIG. 2), and the height H is H = 1833 mm (see FIG. 1). the refrigerating chamber height H R is H R = 787mm, freezing chamber height H F is H F = 482mm, vegetable compartment height H V is H V = 334 mm (see FIG. 2). The total rated internal volume based on JISC9801-3: 2015 is 602L, and the breakdown is that the rated internal volume of the refrigerator compartment 2 (refrigerated compartment rated internal volume) is 308L, 51.2% of the total rated internal volume, The rated internal volume (freezer compartment rated internal volume) is 180L, 29.9% (28% or more of the total rated internal volume), the vegetable room 6 rated internal volume (vegetable room rated internal volume) is 114L, and all rated contents 18.9% of the product.

図2に示すように,外箱10aと内箱10bとの間に発泡断熱材(例えば発泡ウレタン)を充填して形成される断熱箱体10により,冷蔵庫1の庫外と庫内は隔てられている。断熱箱体10には発泡断熱材に加えて複数の真空断熱材36を,鋼板製の外箱10aと合成樹脂製の内箱10bとの間に実装している。冷蔵室2と,上段冷凍室4及び製氷室3は断熱仕切壁28(空気流通遮断手段)によって隔てられ,下段冷凍室5と野菜室6は断熱仕切壁29によって隔てられている。また,製氷室3,上段冷凍室4,及び下段冷凍室5の各貯蔵室の前面側には,扉3a,4a,5aの隙間を介した庫内外の空気の流通を防ぐために,断熱仕切壁30を設けている。   As shown in FIG. 2, the outside of the refrigerator 1 and the inside of the refrigerator 1 are separated by a heat insulating box 10 formed by filling a foam heat insulating material (for example, urethane foam) between the outer box 10 a and the inner box 10 b. ing. In addition to the foam heat insulating material, a plurality of vacuum heat insulating materials 36 are mounted on the heat insulating box 10 between a steel plate outer box 10a and a synthetic resin inner box 10b. The refrigerator compartment 2, the upper freezer compartment 4 and the ice making compartment 3 are separated by a heat insulating partition wall 28 (air circulation blocking means), and the lower freezer compartment 5 and the vegetable compartment 6 are separated by a heat insulating partition wall 29. In addition, a heat insulating partition wall is provided on the front side of each storage room of the ice making room 3, the upper freezing room 4, and the lower freezing room 5 in order to prevent the flow of air inside and outside the space through the gaps of the doors 3a, 4a, 5a. 30 is provided.

冷蔵室2の扉2a,2bの庫内側には上方に開口した複数の扉ポケット33a,33b,33cと,複数の棚34a,34b,34c,34dを設け,複数の貯蔵スペースに区画されている。なお,最上部の扉ポケット33aの開口高さ(図2中の破線)は最上段の棚34aよりも高い位置に設けられている。冷凍室7及び野菜室6には,それぞれ扉3a,4a,5a,6aと一体に引き出される製氷室容器(図示せず),上段冷凍室容器4b,下段冷凍室容器5b,野菜室容器6bを備えている。野菜室容器6bは,上下2段に分かれており,下段側の前方には飲料のボトル類を収納できるボトル収納スペース6cを備えている。ボトル収納スペース6cの高さ寸法は,1.5Lや2Lの飲料のボトルを立てて収納できるように305mm以上確保している(本実施例では315mm)。また,飲料用のボトルを収納可能なことは,カタログや取扱説明書,広告媒体等の文面,図,写真,映像を通じてユーザーに周知される。   A plurality of door pockets 33a, 33b, 33c opened upward and a plurality of shelves 34a, 34b, 34c, 34d are provided on the inner side of the doors 2a, 2b of the refrigerator compartment 2 and partitioned into a plurality of storage spaces. . The opening height (broken line in FIG. 2) of the uppermost door pocket 33a is provided at a position higher than that of the uppermost shelf 34a. The freezer compartment 7 and the vegetable compartment 6 are respectively provided with an ice making container (not shown), an upper freezer container 4b, a lower freezer container 5b, and a vegetable compartment container 6b that are pulled out integrally with the doors 3a, 4a, 5a, 6a. I have. The vegetable compartment container 6b is divided into two upper and lower tiers, and a bottle storage space 6c is provided in front of the lower tier for storing beverage bottles. The height of the bottle storage space 6c is 305 mm or more (315 mm in this embodiment) so that 1.5L and 2L beverage bottles can be stood and stored. Also, the ability to store beverage bottles is made known to users through catalogs, instruction manuals, texts such as advertising media, diagrams, photographs, and videos.

断熱仕切壁28の上方には,冷蔵室2の温度帯より低めに設定可能なチルドルーム35を設けている。チルドルーム35は,ユーザーが操作部99を介して設定温度を選択することができる。具体的には,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」と,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」の何れかに設定することができる。   A chilled room 35 that can be set lower than the temperature range of the refrigerator compartment 2 is provided above the heat insulating partition wall 28. In the chilled room 35, the user can select a set temperature via the operation unit 99. Specifically, it can be set to either “temperature level 1” maintained at about 0 to 3 ° C. of the refrigeration temperature zone or “temperature level 2” maintained at about −3 to 0 ° C. of the refrigeration temperature zone. it can.

また,チルドルーム35の左側方には製氷水タンク(図示せず)を備えている。製氷水タンクの背部には給水ポンプ(図示せず)が備えられている。また,製氷水タンクと給水ポンプ,給水ポンプから断熱仕切壁28を通って製氷室3内の製氷皿(図示せず)の上部に至るまでは給水配管(図示せず)で接続されており,給水ポンプの駆動によって製氷水タンクから製氷皿に水を供給できるようになっている。製氷皿は離氷機構(図示せず)と接続されており,離氷機構の作動によって製氷皿から氷が製氷室容器に落下するようになっている。ユーザーは操作部99を介して自動製氷機能のON/OFFを選択することができ,自動製氷機能をONにした場合には,製氷水タンク内の水が給水ポンプの駆動によって定期的に製氷皿に給水され,所定時間経過後自動的に離氷機構が作動して,製氷室容器に氷が落下する。   An ice making water tank (not shown) is provided on the left side of the chilled room 35. A water supply pump (not shown) is provided at the back of the ice making water tank. In addition, the ice making water tank and the water supply pump are connected by a water supply pipe (not shown) from the water supply pump through the heat insulating partition wall 28 to the upper part of the ice making tray (not shown) in the ice making chamber 3, The water can be supplied from the ice making water tank to the ice tray by driving the water supply pump. The ice tray is connected to an ice removing mechanism (not shown), and the ice is dropped from the ice tray to the ice chamber container by the operation of the ice removing mechanism. The user can select ON / OFF of the automatic ice making function via the operation unit 99. When the automatic ice making function is turned ON, the water in the ice making water tank is periodically made by the water supply pump. The ice removal mechanism is automatically activated after a predetermined time, and the ice falls into the ice chamber container.

冷蔵室2の略背部には冷蔵用蒸発器室8aを備えており,冷蔵用蒸発器室8a内には,フィンチューブ式熱交換器である冷蔵用蒸発器14a(第一蒸発器)が収納されている。冷蔵用蒸発器14aの上方には冷蔵用ファン9a(第一送風機)を備えている。また,冷蔵室2背部の幅方向の略中心には冷蔵室送風路11を備えており,冷蔵室送風路11の上部には,吹き出す空気を上方に指向させる指向手段を備えた冷蔵室吐出口11aを備えている。なお,本実施例の冷蔵庫では,冷蔵室吐出口11aの指向手段として,冷蔵室吐出口11aの開口面を上方に向けている。冷蔵室吐出口11aから上方に向けて吹き出された冷却空気は,図2中に矢印で示すように冷蔵室2の天井面を沿って流れて冷蔵室2の前方の領域に到達し,棚34a,34b,34cの前方に生じる扉ポケット33a,33b,33cとの隙間を流れ,棚34cと棚34dの間の空間の左後方に設けられた開口92(図3参照)を介してチルドルーム35の後方空間に入り,冷蔵用蒸発器室8aの下部前面,下部左側面,下部右前面に設けられた冷蔵室戻り風路15a,15b,15c(図3参照)から冷蔵用蒸発器室8aに戻る。また,棚34cと棚34dの間の空間を流れた空気の一部は,棚34cと棚34dの間の空間の右後方に設けられた冷蔵室戻り風路15d(図3参照)から冷蔵用蒸発器室8aに戻る。なお,冷蔵室戻り風路15cの一部には,冷蔵室2を流れる空気と接するように脱臭部材91(一例としてオープンセル構造脱臭部材)を備えている。   A refrigeration evaporator chamber 8a is provided substantially at the back of the refrigeration chamber 2, and a refrigeration evaporator 14a (first evaporator), which is a fin-tube heat exchanger, is accommodated in the refrigeration evaporator chamber 8a. Has been. A refrigeration fan 9a (first blower) is provided above the refrigeration evaporator 14a. Further, a refrigerator compartment air passage 11 is provided at a substantially center in the width direction of the back of the refrigerator compartment 2, and a refrigerator outlet having an orientation means for directing the air to be blown upward is provided above the refrigerator compartment air passage 11. 11a. In the refrigerator of the present embodiment, the opening surface of the refrigerator compartment discharge port 11a is directed upward as the directing means of the refrigerator compartment discharge port 11a. The cooling air blown upward from the refrigerating chamber discharge port 11a flows along the ceiling surface of the refrigerating chamber 2 as shown by an arrow in FIG. 2, reaches the area in front of the refrigerating chamber 2, and reaches the shelf 34a. , 34b, 34c flows through the gaps between the door pockets 33a, 33b, 33c, and the chilled room 35 through an opening 92 (see FIG. 3) provided at the left rear of the space between the shelf 34c and the shelf 34d. To the refrigeration evaporator chamber 8a from the refrigeration chamber return air passages 15a, 15b, 15c (see FIG. 3) provided on the lower front surface, the lower left surface, and the lower right front surface of the refrigeration evaporator chamber 8a. Return. Further, a part of the air flowing through the space between the shelf 34c and the shelf 34d is used for refrigeration from the refrigerator compartment return air passage 15d (see FIG. 3) provided at the right rear of the space between the shelf 34c and the shelf 34d. Return to the evaporator chamber 8a. A part of the refrigerating room return air passage 15c is provided with a deodorizing member 91 (open cell structure deodorizing member as an example) so as to be in contact with the air flowing through the refrigerating room 2.

冷凍室7の略背部には冷凍用蒸発器室8bを備えており,冷凍用蒸発器室8b内には,フィンチューブ式熱交換器である冷凍用蒸発器14b(第二蒸発器)が収納されている。冷凍用蒸発器14bの上方には冷凍用ファン9bを備えている。また,冷凍室7の背部には冷凍室送風路12を備えており,冷凍用ファン9b(第二送風機)の前方の冷凍室送風路12には複数の冷凍室吐出口12aを備えている。冷凍室用蒸発器室8bの下部前方には冷凍室7に送られた空気が戻る冷凍室戻り風路17(図2及び図3参照)を備えている。   A refrigeration evaporator chamber 8b is provided substantially at the back of the freezer compartment 7, and a refrigeration evaporator 14b (second evaporator), which is a fin-tube heat exchanger, is accommodated in the refrigeration evaporator chamber 8b. Has been. A freezing fan 9b is provided above the freezing evaporator 14b. A freezer compartment air passage 12 is provided at the back of the freezer compartment 7, and a plurality of freezer compartment discharge ports 12 a are provided in the freezer compartment air passage 12 in front of the freezing fan 9 b (second blower). A freezer compartment return air passage 17 (see FIGS. 2 and 3) through which air sent to the freezer compartment 7 returns is provided in front of the lower part of the freezer compartment evaporator chamber 8b.

野菜室6への風路となる野菜室送風路13は,冷凍室送風路12の右下方から分岐形成され,断熱仕切壁29を通過している。野菜室送風路13の出口となる野菜室吐出口13aは,野菜室6背部右上の断熱仕切壁29下面の高さと略一致するように設けられ,下方に開口している。野菜室送風路13には,野菜室6の冷却制御手段である野菜室ダンパ19を備えている(図3参照)。野菜室6と冷凍室7の間の断熱仕切壁29の左下部前方には,野菜室戻り流入口18aを備えており,断熱仕切壁29内を通過する野菜室戻り風路18を介して冷凍用蒸発器室8bの下部前方に設けられた野菜室戻り流出口18bに至る流路が形成されている。   The vegetable room air passage 13 serving as an air passage to the vegetable room 6 is branched from the lower right side of the freezer compartment air passage 12 and passes through the heat insulating partition wall 29. The vegetable room discharge port 13a serving as the outlet of the vegetable room air passage 13 is provided so as to substantially coincide with the height of the lower surface of the heat insulating partition wall 29 at the upper right of the back of the vegetable room 6 and opens downward. The vegetable room air passage 13 is provided with a vegetable room damper 19 which is a cooling control means for the vegetable room 6 (see FIG. 3). A vegetable room return inlet 18a is provided in front of the lower left part of the heat insulating partition wall 29 between the vegetable room 6 and the freezing room 7 and is frozen through the vegetable room return air passage 18 passing through the heat insulating partition wall 29. A flow path to the vegetable room return outlet 18b provided in front of the lower part of the evaporator room 8b is formed.

次に,本実施例に係る冷蔵庫の風路構成について図4を参照しながら説明する。冷蔵用蒸発器14aと熱交換して低温になった空気は,冷蔵用ファン9aを駆動することにより,冷蔵室送風路11,冷蔵室吐出口11aを介して冷蔵室2に送風され,冷蔵室2内を冷却する。冷蔵室2に送られた空気は,冷蔵室戻り風路15a,15b,15c及び15d(図3参照)から冷蔵用蒸発器室8aに戻る。以下,この冷蔵用蒸発器室8aから冷蔵室2を流れて冷蔵用蒸発器室8aに戻る風路を冷蔵風路111(第一風路)と呼ぶ。また,冷凍用蒸発器14bと熱交換して低温になった空気は,冷凍用ファン9bを駆動することにより,冷凍室送風路12,冷凍室吐出口12aを介して冷凍室7に送風され,冷凍室7内を冷却する。冷凍室7に送られた空気は,冷凍室戻り風路17から冷凍用蒸発器室8bに戻る。また,野菜室ダンパ19が開放状態の場合には,冷凍室送風路12に流入した冷却空気の一部が野菜室送風路13を流れ,野菜室吐出口13aを介して野菜室6に至り,野菜室6内を冷却する。野菜室6に送られた空気は,野菜室戻り風路18を流れて冷凍用蒸発器室8bに戻る。以下,この冷凍用蒸発器室8bから冷凍室7を流れて冷凍用蒸発器室8bに戻る風路と,冷凍用蒸発器室8bから野菜室6を流れて冷凍用蒸発器室8bに戻る風路を冷凍野菜風路112(第二風路)と呼ぶ。   Next, the air path configuration of the refrigerator according to the present embodiment will be described with reference to FIG. The air that has become low temperature by exchanging heat with the refrigeration evaporator 14a is sent to the refrigeration room 2 via the refrigeration room air passage 11 and the refrigeration room discharge port 11a by driving the refrigeration fan 9a. 2 is cooled. The air sent to the refrigerating chamber 2 returns to the refrigerating evaporator chamber 8a from the refrigerating chamber return air passages 15a, 15b, 15c and 15d (see FIG. 3). Hereinafter, the air passage that flows from the refrigeration evaporator chamber 8a through the refrigeration chamber 2 and returns to the refrigeration evaporator chamber 8a is referred to as a refrigeration air passage 111 (first air passage). In addition, the air that has become low temperature by exchanging heat with the freezing evaporator 14b is sent to the freezing room 7 through the freezing room air passage 12 and the freezing room discharge port 12a by driving the freezing fan 9b. The inside of the freezer compartment 7 is cooled. The air sent to the freezer compartment 7 returns from the freezer compartment return air passage 17 to the freezer evaporator chamber 8b. In addition, when the vegetable compartment damper 19 is in an open state, a part of the cooling air flowing into the freezer compartment air passage 12 flows through the vegetable compartment air passage 13 and reaches the vegetable compartment 6 through the vegetable compartment discharge port 13a. Cool the vegetable compartment 6. The air sent to the vegetable compartment 6 flows through the vegetable compartment return air passage 18 and returns to the freezing evaporator compartment 8b. Hereinafter, an air path that flows from the freezing evaporator chamber 8b through the freezing chamber 7 and returns to the freezing evaporator chamber 8b, and an air flow that flows from the freezing evaporator chamber 8b through the vegetable chamber 6 and returns to the freezing evaporator chamber 8b. The road is called a frozen vegetable air path 112 (second air path).

本実施例の冷蔵庫では,冷蔵用ファン9aは翼径が100mmの遠心ファン(後向きファン)であり,冷凍用ファン9bは翼径が110mmの軸流ファン(プロペラファン)である。遠心ファンは軸方向から吸込んだ空気を90度転向して径方向に吹き出す特性を有する。一方,軸流ファンは軸方向から吸込んだ空気を軸方向に吹き出す特性を有する。したがって,軸方向に吸込んだ流れを90度転向させる風路では,遠心ファンが実装性に優れ,軸方向に吸込んだ流れを軸方向に吹き出す風路では軸流ファンが実装性に優れる。従って,冷蔵用ファン9aとしては,前方から吸込んだ空気を,90度転向して上方の冷蔵室送風路11に吹き出す構成となるため,遠心ファンである後向きファンを採用し,冷凍用ファン9bとしては,後方から吸込んだ空気を前方の冷凍室送風路12に吹き出す構成となるために,軸流ファンであるプロペラファンを採用してスペース効率が高い冷蔵庫としている。   In the refrigerator of the present embodiment, the refrigeration fan 9a is a centrifugal fan (backward fan) having a blade diameter of 100 mm, and the refrigeration fan 9b is an axial fan (propeller fan) having a blade diameter of 110 mm. The centrifugal fan has a characteristic that the air sucked from the axial direction is turned 90 degrees and blown out in the radial direction. On the other hand, the axial fan has a characteristic of blowing out air sucked from the axial direction in the axial direction. Therefore, the centrifugal fan is excellent in mountability in the air passage that turns the flow sucked in the axial direction by 90 degrees, and the axial fan is excellent in mountability in the air passage that blows out the flow sucked in the axial direction in the axial direction. Accordingly, since the refrigeration fan 9a is configured to turn the air sucked from the front 90 degrees and blow it out to the upper refrigeration chamber air passage 11, a rearward fan, which is a centrifugal fan, is adopted as the refrigeration fan 9b. Has a configuration in which the air sucked from the rear is blown out to the front freezer compartment air passage 12, so that a propeller fan, which is an axial fan, is used to provide a highly space-efficient refrigerator.

図2及び図3に示すように,冷蔵室2,冷凍室7,野菜室6の庫内背面側には,冷蔵室温度センサ41(第一負荷検知手段),冷凍室温度センサ42(第二負荷検知手段),野菜室温度センサ43を備え,それぞれ冷蔵室2,冷凍室7,野菜室6の温度を検知している。また,冷蔵用蒸発器14aの上部には冷蔵用蒸発器温度センサ40a,冷凍用蒸発器14bの上部には冷凍用蒸発器温度センサ40bを備え,冷蔵用蒸発器14a,及び冷凍用蒸発器14bの温度を検知している。また,冷蔵庫1の天井部の扉ヒンジカバー16の内部には,外気(庫外空気)の温度,湿度を検知する外気温湿度センサ37を備え,扉2a,2b,3a,4a,5a,6aには,開閉状態をそれぞれ検知する扉センサ(不図示)を備えている。   As shown in FIGS. 2 and 3, on the rear side of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, there are a refrigerator compartment temperature sensor 41 (first load detecting means), a freezer compartment temperature sensor 42 (second compartment). Load detecting means) and a vegetable room temperature sensor 43, which detect the temperatures of the refrigerator compartment 2, the freezer compartment 7, and the vegetable compartment 6, respectively. Further, a refrigeration evaporator temperature sensor 40a is provided above the refrigeration evaporator 14a, and a refrigeration evaporator temperature sensor 40b is provided above the refrigeration evaporator 14b. The refrigeration evaporator 14a and the refrigeration evaporator 14b are provided. The temperature is detected. Further, inside the door hinge cover 16 on the ceiling of the refrigerator 1 is provided with an outside air temperature / humidity sensor 37 for detecting the temperature and humidity of the outside air (outside air), and the doors 2a, 2b, 3a, 4a, 5a, 6a. Are provided with door sensors (not shown) for detecting the open / closed state.

また,冷凍用蒸発器室8bの下部には,冷凍用蒸発器14bを加熱する除霜ヒータ21を備えている。除霜ヒータ21は,例えば50W〜200Wの電気ヒータで,本実施例では150Wのラジアントヒータを設けている。冷凍用蒸発器14bの除霜時に発生した除霜水(融解水)は,冷凍用蒸発器室8bの下部に備えた樋23bに流下し,排水口22b,冷凍用排水管27bを介して冷蔵庫1の後方(背面側)下部に設けられた機械室39に至り,機械室39内に設置された圧縮機24の上部の蒸発皿32に排出される。   In addition, a defrosting heater 21 for heating the freezing evaporator 14b is provided below the freezing evaporator chamber 8b. The defrost heater 21 is, for example, an electric heater of 50 W to 200 W, and a 150 W radiant heater is provided in this embodiment. The defrost water (melted water) generated when the refrigeration evaporator 14b is defrosted flows down to the tub 23b provided at the lower part of the refrigeration evaporator chamber 8b, and is stored in the refrigerator via the drain port 22b and the refrigeration drain pipe 27b. 1 reaches the machine room 39 provided at the lower part of the rear (back side), and is discharged to the evaporating dish 32 above the compressor 24 installed in the machine room 39.

また,冷蔵用蒸発器14aの除霜方法については後述するが,冷蔵用蒸発器14aの除霜時に発生した除霜水は,冷蔵用蒸発器室8aの下部に備えた樋23aに流下し,排水口22a,冷蔵用排水管27aを介して圧縮機24の上部に備えた蒸発皿32に排出される。   Further, although a defrosting method for the refrigeration evaporator 14a will be described later, the defrost water generated at the time of defrosting the refrigeration evaporator 14a flows down to the tub 23a provided in the lower part of the refrigeration evaporator chamber 8a. It is discharged to the evaporating dish 32 provided on the upper part of the compressor 24 through the drain port 22a and the refrigeration drain pipe 27a.

機械室39内には,上述の圧縮機24,蒸発皿32とともに,フィンチューブ式熱交換器である庫外放熱器50a,庫外ファン26を備えている。庫外ファン26の駆動により圧縮機24,庫外放熱器50a蒸発皿32に空気が流れ,圧縮機24と庫外放熱器50aからの放熱が促進され,省エネルギー性能を高めるとともに,蒸発皿32に通風することで,蒸発皿32に溜まった除霜水の蒸発を促進して溢水を抑制し,信頼性を高めている。   In the machine room 39, the above-described compressor 24 and evaporating dish 32 are provided, as well as an outside heat radiator 50a and an outside fan 26 that are fin-tube heat exchangers. By driving the external fan 26, air flows into the compressor 24 and the external radiator 50a evaporating dish 32, heat dissipation from the compressor 24 and the external radiator 50a is promoted, energy saving performance is improved, and By ventilating, the evaporation of defrosted water accumulated in the evaporating dish 32 is promoted to suppress overflow and improve reliability.

図3に示すように,樋23aには,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101を備えている。また,冷蔵用排水管27aには排水管上部ヒータ102及び排水管下部ヒータ103を備えている。なお,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103は,何れも除霜ヒータ21よりも容量が低いヒータであり,本実施例では樋ヒータ101を6W,排水管上部ヒータ102を3W,排水管下部ヒータ103を1Wとしている。   As shown in FIG. 3, the eaves 23 a includes an eaves heater 101 that melts the defrost water frozen in the eaves 23 a. The refrigeration drain pipe 27 a includes a drain pipe upper heater 102 and a drain pipe lower heater 103. The dredge heater 101, the drain pipe upper heater 102, and the drain pipe lower heater 103 are all heaters having a capacity lower than that of the defrost heater 21. In this embodiment, the dredge heater 101 is 6 W and the drain pipe upper heater 102 is 3W, drain pipe lower heater 103 is 1W.

ここで,冷蔵用ファン9aを駆動すると,冷蔵用蒸発器室8aの右上に設けられた冷蔵室戻り口15bを介して,冷蔵室2からの戻り空気を樋23aに向けて下方に流し,樋23aを加熱して温度を上げるようにしている。これにより,樋23aにおいて凍結した除霜水を融解させる樋ヒータ101の加熱量を低減する効果が得られ,省エネルギー性能を高めることができる。   Here, when the refrigeration fan 9a is driven, the return air from the refrigeration chamber 2 flows downward toward the tub 23a through the refrigeration chamber return port 15b provided at the upper right of the refrigeration evaporator chamber 8a. 23a is heated to raise the temperature. Thereby, the effect of reducing the heating amount of the firewood heater 101 that melts the defrosted water frozen in the firewood 23a is obtained, and the energy saving performance can be enhanced.

また,排水管27a下部は,冷凍室7及び冷凍用蒸発器室8bよりも外箱10aに近接させている。これにより,排水管27aにおいて凍結した除霜水を融解させる排水管下部ヒータ103の加熱量を低減することができ,省エネルギー性能が高くなる。   The lower part of the drain pipe 27a is closer to the outer box 10a than the freezer compartment 7 and the freezer evaporator compartment 8b. Thereby, the heating amount of the drain pipe lower heater 103 for melting the defrost water frozen in the drain pipe 27a can be reduced, and the energy saving performance is improved.

冷蔵庫1の天井部(図2参照)には,制御装置の一部であるCPU,ROMやRAM等のメモリ,インターフェース回路等を搭載した制御基板31を配置している。制御基板31は,冷蔵室温度センサ41,冷凍室温度センサ42,野菜室温度センサ43,蒸発器温度センサ40a,40b等と接続され,前述のCPUは,これらの出力値や操作部99の設定,前述のROMに予め記録されたプログラム等を基に,圧縮機24や冷蔵用ファン9a,冷凍用ファン9bのON/OFFや回転速度制御,除霜ヒータ21,樋ヒータ101,排水管上部ヒータ102,排水管下部ヒータ103,及び,後述する三方弁52の制御等を行っている。   On the ceiling of the refrigerator 1 (see FIG. 2), a control board 31 on which a CPU, a memory such as a ROM and a RAM, an interface circuit, etc., which are a part of the control device are mounted. The control board 31 is connected to the refrigerator compartment temperature sensor 41, the freezer compartment temperature sensor 42, the vegetable compartment temperature sensor 43, the evaporator temperature sensors 40a, 40b, etc., and the CPU described above sets these output values and the operation unit 99. , Based on a program or the like recorded in advance in the ROM, the compressor 24, the refrigeration fan 9a, the refrigeration fan 9b ON / OFF and the rotational speed control, the defrost heater 21, the soot heater 101, the drain pipe upper heater 102, the drain pipe lower heater 103, and a three-way valve 52, which will be described later, are controlled.

図5は,実施例1に係る冷蔵庫の冷凍サイクル(冷媒流路)である。本実施例の冷蔵庫1では,圧縮機24(押除量9.2cc),冷媒の放熱を行う庫外放熱器50aと壁面放熱配管50b,断熱仕切壁28,29,30の前縁部への結露を抑制する結露抑制配管50c(庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを放熱手段と呼ぶ),冷媒流制御手段である三方弁52,冷媒を減圧させる減圧手段である冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53b,冷媒と庫内の空気を熱交換させて,庫内の熱を吸熱する冷蔵用蒸発器14a,及び,冷凍用蒸発器14bを備えている。また,三方弁52の上流には,冷凍サイクル中の水分を除去するドライヤ51を備え,冷蔵用蒸発器14aの下流と,冷凍用蒸発器14bの下流には,それぞれ液冷媒が圧縮機24に流入するのを防止する冷蔵用気液分離器54a,冷凍用気液分離器54bを備えている。さらに冷凍用気液分離器54bの下流には逆止弁56を備えている。これらの構成要素を冷媒配管により接続することで冷凍サイクルを構成している。なお本実施例の冷蔵庫においては,冷蔵用蒸発器14a及び冷凍用蒸発器14bの温度を,圧縮機24,冷蔵用ファン9a,冷凍用ファン9bの回転速度によって調整するため,圧縮機24,冷蔵用ファン9a,冷凍用ファン9bを蒸発器温度調整手段と呼ぶ。また,冷媒には可燃性冷媒のイソブタンを用いており,冷媒量封入量は88gである。   FIG. 5 is a refrigeration cycle (refrigerant flow path) of the refrigerator according to the first embodiment. In the refrigerator 1 of the present embodiment, the compressor 24 (pushing amount 9.2 cc), the external heat radiator 50a that radiates the refrigerant, the wall surface heat radiating pipe 50b, and the front edges of the heat insulating partition walls 28, 29, and 30 are provided. Condensation suppression piping 50c that suppresses condensation (external heat radiator 50a, external heat radiator 50b, and condensation suppression piping 50c are referred to as heat dissipation means), a three-way valve 52 that is a refrigerant flow control means, and a pressure reduction means that decompresses the refrigerant. A refrigeration capillary tube 53a, a refrigeration capillary tube 53b, a refrigeration evaporator 14a that absorbs heat in the refrigerator by exchanging heat between the refrigerant and the air in the refrigerator, and a refrigeration evaporator 14b are provided. Further, a dryer 51 for removing moisture in the refrigeration cycle is provided upstream of the three-way valve 52, and liquid refrigerant is supplied to the compressor 24 downstream of the refrigeration evaporator 14a and downstream of the refrigeration evaporator 14b, respectively. A refrigeration gas / liquid separator 54a and a refrigeration gas / liquid separator 54b for preventing the inflow are provided. Further, a check valve 56 is provided downstream of the refrigeration gas-liquid separator 54b. A refrigeration cycle is configured by connecting these components through refrigerant piping. In the refrigerator of this embodiment, the temperature of the refrigeration evaporator 14a and the refrigeration evaporator 14b is adjusted by the rotational speed of the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b. The fan 9a and the refrigerating fan 9b are referred to as evaporator temperature adjusting means. In addition, flammable refrigerant isobutane is used as the refrigerant, and the amount of refrigerant enclosed is 88 g.

三方弁52は,流出口52aと,流出口52bを備えており,流出口52aを開放状態,流出口52bを閉鎖状態として,冷蔵用キャピラリチューブ53a側に冷媒を流す状態1(冷蔵モード),流出口52aを閉鎖状態,流出口52bを開放状態として,冷凍用キャピラリチューブ53b側に冷媒を流す状態2(冷凍モード),及び,流出口52a,52bの何れも閉鎖状態とする状態3(全閉モード)を備えた冷媒流制御弁である。   The three-way valve 52 includes an outflow port 52a and an outflow port 52b. With the outflow port 52a in an open state and the outflow port 52b in a closed state, the refrigerant flows into the chilling capillary tube 53a side 1 (refrigeration mode), State 2 (freezing mode) in which the outlet 52a is closed and the outlet 52b is opened, and the refrigerant flows to the freezing capillary tube 53b side, and state 3 (all the outlets 52a and 52b are closed) (Closed mode).

三方弁52が状態1(冷蔵モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態1(流出口52aが開放状態,流出口52bが閉鎖状態)となっているため,続いて,冷媒は冷蔵用キャピラリチューブ53aを流れて減圧され冷蔵用蒸発器14aに至り,冷蔵室2の戻り空気と熱交換する。冷蔵用蒸発器14aを出た冷媒は,冷蔵用気液分離器54aを通り,キャピラリチューブ53aとの接触部57aを流れることでキャピラリチューブ53a内を流れる冷媒と熱交換した後に圧縮機24に戻る。   When the three-way valve 52 is controlled in the state 1 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the external heat radiator 50a, the external heat radiator 50b, and the dew condensation suppression pipe 50c to radiate heat, and the dryer 51 To the three-way valve 52. Since the three-way valve 52 is in the state 1 (the outlet 52a is in the open state and the outlet 52b is in the closed state), the refrigerant flows through the refrigeration capillary tube 53a and is depressurized to reach the refrigeration evaporator 14a. Heat exchange with the return air of the refrigerator compartment 2 is performed. The refrigerant that has exited the refrigeration evaporator 14a passes through the refrigeration gas-liquid separator 54a, flows through the contact portion 57a with the capillary tube 53a, exchanges heat with the refrigerant flowing in the capillary tube 53a, and then returns to the compressor 24. .

三方弁52が状態2(冷凍モード)に制御されている場合,圧縮機24から吐出した冷媒は,庫外放熱器50a,庫外放熱器50b,結露抑制配管50cを流れて放熱し,ドライヤ51を介して三方弁52に至る。三方弁52は状態2(流出口52aが閉鎖状態,流出口52bが開放状態)となっているため,続いて,冷媒は冷凍用キャピラリチューブ53bを流れて減圧されて低温化し,冷凍用蒸発器14bで,冷凍室7の戻り空気及び野菜室6の戻り空気(野菜室ダンパ19が開放状態の場合)と熱交換する。冷凍用蒸発器14bを出た冷媒は,冷凍用気液分離器54bを通り,キャピラリチューブ53bとの接触部57bを流れることでキャピラリチューブ53b内を流れる冷媒と熱交換した後に圧縮機24に戻る。   When the three-way valve 52 is controlled to the state 2 (refrigeration mode), the refrigerant discharged from the compressor 24 flows through the external heat radiator 50a, the external heat radiator 50b, and the dew condensation suppression pipe 50c to radiate heat, and the dryer 51 To the three-way valve 52. Since the three-way valve 52 is in the state 2 (the outlet 52a is closed and the outlet 52b is open), the refrigerant flows through the refrigeration capillary tube 53b to be depressurized and reduced in temperature. In 14b, heat exchange is performed with the return air of the freezer compartment 7 and the return air of the vegetable compartment 6 (when the vegetable compartment damper 19 is in an open state). The refrigerant exiting the refrigeration evaporator 14b passes through the refrigeration gas-liquid separator 54b, flows through the contact portion 57b with the capillary tube 53b, exchanges heat with the refrigerant flowing in the capillary tube 53b, and returns to the compressor 24. .

三方弁52が状態3(全閉モード)に制御されている場合,圧縮機24を駆動すると,冷蔵用キャピラリチューブ53a,冷凍用キャピラリチューブ53bから冷媒が供給されない状態となるため,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒が放熱手段側に回収される(詳細は後述)。   When the three-way valve 52 is controlled to the state 3 (fully closed mode), when the compressor 24 is driven, the refrigerant is not supplied from the refrigeration capillary tube 53a and the freezing capillary tube 53b. The refrigerant in 14a or the refrigerant in the refrigeration evaporator 14b is collected on the heat radiating means side (details will be described later).

本実施例の冷蔵庫は,三方弁52を状態1(冷蔵モード)に制御し,圧縮機24を駆動状態,冷蔵用ファン9aを駆動状態,冷凍用ファン9bを停止状態とすることで冷蔵室2を冷却する「冷蔵運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を開放状態,冷蔵用ファン9aを駆動状態,または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍室7と野菜室6を冷却する「冷凍野菜運転」,三方弁52を状態2(冷凍モード)に制御し,圧縮機24を駆動状態,野菜室ダンパ19を閉鎖状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを駆動状態とすることで冷凍室7を冷却する「冷凍運転」,三方弁52を状態3(全閉モード)に制御し,圧縮機24を駆動状態として,冷蔵用蒸発器14a内の冷媒,または,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する「冷媒回収運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを停止状態,冷凍用ファン9bを停止状態とする「運転停止」,三方弁52を状態2(冷凍モード)且つ圧縮機24を駆動状態に制御,または,三方弁52を状態3(全閉モード)且つ圧縮機24を停止状態に制御して,冷蔵用蒸発器14aに冷媒が流れない状態として冷蔵用ファンを駆動状態として,冷蔵用蒸発器14aの表面に成長した霜や蒸発器自体の蓄冷熱で冷蔵室2を冷却しつつ冷蔵用蒸発器14aの除霜を行う「冷蔵用蒸発器除霜運転」,三方弁52を状態3(全閉モード)として圧縮機24を停止状態,冷蔵用ファン9aを駆動状態または停止状態,冷凍用ファン9bを停止状態,除霜ヒータ21を通電状態とすることで,冷凍用蒸発器14bの除霜を行う「冷凍用蒸発器除霜運転」の各運転を適宜実施することで,冷蔵庫1の庫内各貯蔵室を冷却する。   In the refrigerator of this embodiment, the three-way valve 52 is controlled to be in state 1 (refrigeration mode), the compressor 24 is driven, the refrigeration fan 9a is driven, and the refrigeration fan 9b is stopped. “Refrigeration operation” for cooling the refrigerator, the three-way valve 52 is controlled to state 2 (freezing mode), the compressor 24 is driven, the vegetable compartment damper 19 is opened, the refrigeration fan 9a is driven or stopped, "Frozen vegetable operation" that cools the freezer compartment 7 and the vegetable compartment 6 by setting the fan 9b in the driving state, the three-way valve 52 is controlled to the state 2 (freezing mode), the compressor 24 is driven, and the vegetable compartment damper 19 is closed, refrigeration fan 9a is driven or stopped, and refrigeration fan 9b is driven to “freeze operation” to cool freezer compartment 7, and three-way valve 52 is set to state 3 (fully closed mode). Control and drive compressor 24 "Refrigerant recovery operation" in which the refrigerant in the refrigeration evaporator 14a or the refrigerant in the refrigeration evaporator 14b is recovered to the heat radiating means side, and the three-way valve 52 is in state 3 (fully closed mode). “Stop operation” in which the refrigeration fan 9a is stopped and the refrigeration fan 9b is stopped, the three-way valve 52 is controlled to the state 2 (refrigeration mode) and the compressor 24 is driven, or the three-way valve 52 is stopped. Is controlled in the state 3 (fully closed mode) and the compressor 24 is stopped, and the refrigerant is not flown into the refrigeration evaporator 14a, the refrigeration fan is driven, and it has grown on the surface of the refrigeration evaporator 14a. Compressor with refrigeration evaporator defrosting operation to defrost refrigeration evaporator 14a while refrigeration chamber 2 is cooled with frost or cold storage heat of evaporator itself, with three-way valve 52 in state 3 (fully closed mode) 24 is stopped, refrigeration fan Each operation of “refrigeration evaporator defrosting operation” for defrosting the refrigeration evaporator 14b by setting “a” to a drive state or a stop state, the refrigeration fan 9b to a stop state, and the defrost heater 21 to be energized. As appropriate, each storage room in the refrigerator 1 is cooled.

冷凍用蒸発器除霜運転が行われる間隔(除霜間隔)は,最長96時間(最長除霜間隔)と最短12時間(最短除霜間隔)の間で可変される。具体的には,外気温湿度センサ37が検知する外気温湿度,扉3a,4a,5a,6aの開閉回数,冷凍運転及び冷凍野菜運転中の圧縮機回転速度,冷凍用蒸発器温度センサ40bが検知する冷凍用蒸発器温度に基づいて除霜間隔が判定され,外気の温度が高い,外気の湿度が高い,冷凍室扉開閉回数が多い,冷凍運転及び冷凍野菜運転時の圧縮機回転速度が高い,冷凍運転及び冷凍野菜運転時の冷凍用蒸発器温度の最低到達温度が低いほど間隔が短くなる。このように冷凍用蒸発器除霜運転の間隔を可変させることで,冷凍用蒸発器14bに霜が成長した場合に,適切なタイミングで冷凍用蒸発器除霜運転を実施できるので,霜が過度に成長して冷凍用蒸発器の熱交換効率が大きく低下することを抑制し,良好な実用冷却性能を発揮できるようにしている。また,最長除霜間隔を設定することで,定期的に確実な冷凍用蒸発器除霜運転が行われるようにしている。これにより,特に冷凍用蒸発器14b以外の冷凍用蒸発器室8bの壁面等への意図しない霜の成長を抑制でき,信頼性を高めている。また,冷凍用蒸発器除霜運転中は,冷凍室7を冷却できないため冷凍室7の温度が上昇する。本実施例の冷蔵庫では,最短除霜間隔を設けることで,除霜間隔が短くなりすぎることを防ぎ,冷凍室7の温度が除霜運転によって頻繁に上昇しないようにして,冷凍食品が解けるといった不具合が生じ難い冷蔵庫としている。   The interval (defrost interval) at which the refrigeration evaporator defrosting operation is performed is variable between a maximum of 96 hours (maximum defrost interval) and a minimum of 12 hours (shortest defrost interval). Specifically, the outside air temperature and humidity detected by the outside air temperature and humidity sensor 37, the number of times the doors 3a, 4a, 5a and 6a are opened and closed, the rotation speed of the compressor during the freezing operation and the frozen vegetable operation, and the freezing evaporator temperature sensor 40b The defrost interval is determined based on the detected refrigeration evaporator temperature, the outside air temperature is high, the outside air humidity is high, the freezer compartment door is opened and closed frequently, the compressor rotation speed during freezing operation and frozen vegetable operation is The interval becomes shorter as the minimum temperature of the evaporator temperature for freezing operation and frozen vegetable operation is lower. In this way, by changing the interval of the refrigeration evaporator defrosting operation, when the frost grows on the refrigeration evaporator 14b, the refrigeration evaporator defrosting operation can be performed at an appropriate timing. The heat exchange efficiency of the refrigeration evaporator is greatly reduced, and good practical cooling performance can be demonstrated. In addition, by setting the longest defrosting interval, a reliable refrigeration evaporator defrosting operation is performed periodically. Thereby, in particular, unintended frost growth on the wall surface of the refrigeration evaporator chamber 8b other than the refrigeration evaporator 14b can be suppressed, and reliability is improved. Moreover, since the freezer compartment 7 cannot be cooled during the freezing evaporator defrosting operation, the temperature of the freezer compartment 7 rises. In the refrigerator of the present embodiment, by providing the shortest defrosting interval, the defrosting interval is prevented from becoming too short, and the temperature of the freezing room 7 is not frequently increased by the defrosting operation so that the frozen food can be dissolved. The refrigerator is less likely to cause problems.

なお,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する際には,冷蔵用ファン9aを駆動し,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する際には,冷凍用ファン9bを駆動して,冷媒回収運転中も冷蔵室2と冷凍室7の冷却を行う(詳細は後述)。そこで,冷蔵室2の冷却が行われる運転状態となる「冷蔵運転」と冷蔵用蒸発器14a内の冷媒を回収する冷媒回収運転の総称を「冷蔵室冷却運転」,冷凍室7の冷却が行われる運転状態となる「冷凍野菜運転」,「冷凍運転」と冷凍用蒸発器14b内の冷媒を回収する冷媒回収運転の総称を「冷凍室冷却運転」と呼ぶ。   When the refrigerant in the refrigeration evaporator 14a is recovered to the heat radiating means side, the refrigeration fan 9a is driven, and when the refrigerant in the refrigeration evaporator 14b is recovered to the heat radiating means side, The fan 9b is driven to cool the refrigerator compartment 2 and the freezer compartment 7 even during the refrigerant recovery operation (details will be described later). Therefore, the “refrigeration operation” in which the cooling chamber 2 is cooled and the refrigerant recovery operation for recovering the refrigerant in the refrigeration evaporator 14a are collectively referred to as “refrigeration chamber cooling operation”. A general term of the “frozen vegetable operation” and “refrigeration operation” and the refrigerant recovery operation that recovers the refrigerant in the freezing evaporator 14b is called “freezer compartment cooling operation”.

図6は本実施例に係る冷蔵庫の蒸発器を示す図であり,図6(a)は冷蔵用蒸発器14a,図6(b)は冷凍用蒸発器である。図6(a)に示すように,冷蔵用蒸発器14aはアルミニウム製の冷媒パイプ97aに,アルミニウム製のフィン98aが取り付けられたフィンチューブ式の熱交換器である。冷蔵用キャピラリチューブ53a(図5参照)によって減圧され,低温低圧となった冷媒が冷媒パイプ97a内を流れ,冷蔵用蒸発器14aの下部前方から流入する冷蔵室2からの戻り空気(図2または図3参照)とフィン98aや冷媒パイプ97aの表面を介して熱交換する。フィン98aは高さ方向に3段に分割されており,各段には前後2列の冷媒パイプ97aが設けられている。冷媒は,冷蔵用蒸発器14aの上部後方の冷媒パイプ97aから流入し,冷蔵用蒸発器14aの右側方を下に向かい,フィン98aの1段目後方に流入する。その後,2段目後方,3段目後方,3段目前方,2段目前方,1段目前方の順に流れて,1段目右側から流出する。冷蔵用蒸発器14aの右側方には,冷媒パイプ97aに接続された冷蔵用気液分離器54aが備えられており,液冷媒とガス冷媒が分離されるようになっている。また,冷蔵用蒸発器14aの上部後方の冷媒パイプには冷蔵用蒸発器温度センサ40aが図示しないセンサホルダによって取り付けられている。冷蔵用蒸発器14aにおいて主要な熱交換が行われるフィン98aが設置されている部分(フィン設置部)の幅WRevp=300mm,奥行きDRevp=60mm,高さHRevp=88mmであり,フィン設置部の占有容積(冷蔵用蒸発器容積)VRevp=1.486Lである。また,フィンピッチPfRevp=3mmである。フィン設置部のフィン98a及び冷媒パイプ97aの空気と接する表面積(空気側伝熱面積)ARevpは0.993mである。 FIG. 6 is a view showing an evaporator of the refrigerator according to the present embodiment, FIG. 6 (a) is a refrigeration evaporator 14a, and FIG. 6 (b) is a refrigeration evaporator. As shown in FIG. 6A, the refrigeration evaporator 14a is a fin-tube heat exchanger in which aluminum fins 98a are attached to an aluminum refrigerant pipe 97a. The refrigerant, which has been decompressed by the refrigeration capillary tube 53a (see FIG. 5) and has become low temperature and low pressure, flows through the refrigerant pipe 97a and returns from the refrigerating chamber 2 flowing in from the lower front of the refrigeration evaporator 14a (see FIG. 2 or 3) and heat exchange via the fins 98a and the surface of the refrigerant pipe 97a. The fins 98a are divided into three stages in the height direction, and two stages of refrigerant pipes 97a are provided on each stage. The refrigerant flows in from the refrigerant pipe 97a on the upper rear side of the refrigeration evaporator 14a, flows downward on the right side of the refrigeration evaporator 14a, and flows into the rear of the first stage of the fin 98a. Then, it flows in order of 2nd stage back, 3rd stage back, 3rd stage front, 2nd stage front, 1st stage front, and flows out from the 1st stage right side. On the right side of the refrigeration evaporator 14a, a refrigeration gas-liquid separator 54a connected to the refrigerant pipe 97a is provided so that the liquid refrigerant and the gas refrigerant are separated. Further, a refrigeration evaporator temperature sensor 40a is attached to a refrigerant pipe at the upper rear of the refrigeration evaporator 14a by a sensor holder (not shown). The width W Revp = 300 mm, the depth D Revp = 60 mm, and the height H Revp = 88 mm of the part (fin installation part) where the fins 98a where the main heat exchange is performed in the refrigeration evaporator 14a are installed. Occupied volume (refrigerator evaporator volume) V Revp = 1.486L. Further, the fin pitch Pf Revp = 3 mm. The surface area (air-side heat transfer area) A Revp in contact with the air of the fin 98a and the refrigerant pipe 97a of the fin installation portion is 0.993 m 2 .

図6(b)は冷凍用蒸発器14bであり,アルミニウム製の冷媒パイプ97bに,アルミニウム製のフィン98bが取り付けられたフィンチューブ式の熱交換器である。冷凍用キャピラリチューブ53b(図5参照)によって減圧され,低温低圧となった冷媒が冷媒パイプ97b内を流れ,冷凍用蒸発器14bの下部前方から流入する冷凍室7,野菜室6からの戻り空気(図2または図3参照)とフィン98bや冷媒パイプ97bの表面を介して熱交換する。フィン98bは冷凍用蒸発器14bの高さ方向に5段に分割されており,各段には前後2列の冷媒パイプ97bが設けられている。冷媒は,冷蔵用蒸発器14aの上部前方の冷媒パイプ97bから流入し,フィン98aの5段目前方に流入する。その後,4段目前方,3段目前方,2段目前方,1段目前方,1段目後方,2段目後方,3段目後方,4段目後方,5段目後方の順に流れて,5段目後方の左上から流出する。冷凍用蒸発器14bの左上方には,冷媒パイプ97bに接続された冷凍用気液分離器54bが鉛直線に対して所定角度(15度)傾斜して備えられており,液冷媒とガス冷媒が分離されるようになっている。また,冷凍用蒸発器14aの上部前方の冷媒パイプには冷凍用蒸発器温度センサ40bが図示しないセンサホルダによって取り付けられている。冷凍用蒸発器14bにおいて主要な熱交換が行われるフィン98bが設置されている部分(フィン設置部)の幅は,1段目〜4段目はWFevp1=345mm,5段目はWFevp2=300mm,奥行きDFevp=60mm,また,1段目〜4段目の高さHevp1=118mm,5段目の高さHevp1=30mmである。これらから定まるフィン設置部の占有容積(冷凍用蒸発器容積)VFevp=2.983Lであり,冷凍室7の定格内容積180Lの3%以下となる。このように冷凍用蒸発器容積を冷凍室7の定格内容積の3%以下とすることで,冷凍室7の定格内容積を全定格内容積の28%以上に大容量化できる。また,フィンピッチPfFevp=5mmであり,フィン設置部のフィン98b及び冷媒パイプ97bの空気と接する表面積(空気側伝熱面積)AFevp=1.146mである。 FIG. 6B shows a refrigerating evaporator 14b, which is a fin-tube heat exchanger in which aluminum fins 98b are attached to an aluminum refrigerant pipe 97b. The refrigerant, which has been decompressed by the freezing capillary tube 53b (see FIG. 5) and has become low-temperature and low-pressure, flows through the refrigerant pipe 97b and flows back from the freezer compartment 7 and the vegetable compartment 6 from the lower front of the freezing evaporator 14b. (See FIG. 2 or FIG. 3) and heat exchange with the fins 98b and the surface of the refrigerant pipe 97b. The fin 98b is divided into five stages in the height direction of the refrigeration evaporator 14b, and two stages of refrigerant pipes 97b are provided at each stage. The refrigerant flows in from the refrigerant pipe 97b in front of the upper part of the refrigeration evaporator 14a and flows in front of the fifth stage of the fin 98a. After that, the 4th stage forward, 3rd stage forward, 2nd stage forward, 1st stage forward, 1st stage back, 2nd stage back, 3rd stage back, 4th stage back, 5th stage back , It flows out from the upper left behind the fifth stage. On the upper left side of the refrigeration evaporator 14b, a refrigeration gas-liquid separator 54b connected to the refrigerant pipe 97b is provided with a predetermined angle (15 degrees) with respect to the vertical line. Are to be separated. A refrigerating evaporator temperature sensor 40b is attached to a refrigerant pipe in front of the upper portion of the refrigerating evaporator 14a by a sensor holder (not shown). Width of the portion fin 98b of the main heat exchange is performed in the refrigeration evaporator 14b is installed (fin installation portion) is 1 stage to fourth stage W Fevp 1 = 345mm, 5 stage W Fevp 2 = 300 mm, depth D Fevp = 60 mm, height H evp1 = 118 mm of the first to fourth stages, and height H evp1 = 30 mm of the fifth stage. The occupied volume of the fin installation portion determined from these (the volume of the evaporator for freezing) V Fevp = 2.983 L, which is 3% or less of the rated internal volume 180 L of the freezer compartment 7. Thus, by setting the volume of the freezer evaporator to 3% or less of the rated internal volume of the freezer compartment 7, the rated internal volume of the freezer compartment 7 can be increased to 28% or more of the total rated internal volume. Further, the fin pitch Pf Fevp = 5 mm, and the surface area (air side heat transfer area) A Fevp = 1.146 m 2 in contact with the air of the fin 98 b and the refrigerant pipe 97 b of the fin installation portion.

図6に示す冷蔵用蒸発器14a,及び,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積はそれぞれARevp/VRevp=0.673m2/L,AFevp/VFevp=0.384m2/Lであり,0.25m2/L以上,0.96m2/L以下の値となる。一般に,霜は蒸発器の空気側伝熱面に成長するため,蒸発器容積に対して空気側伝熱面積を大きくすると,霜が成長した場合に流路が閉塞されやすくなる。このため,霜の成長が多い場合は熱交換性能の低下が起きやすくなるが,霜の成長が少ない場合は熱交換性能が高い蒸発器となる。一方,蒸発器容積に対して空気側伝熱面積を小さくすると,霜が成長しても流路が霜で閉塞され難く熱交換性能を維持しやすくなるが,空気側伝熱面積が小さくなるので,霜の成長が少ない場合,単位容積あたりの熱交換性能が低くなる。そこで,本実施例の冷蔵庫では,冷蔵用蒸発器14a,及び,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積を,0.25m2/L以上,0.96m2/L以下とすることで,霜の成長が多い場合と,霜の成長が少ない場合の性能が両立されるようにしている。 The air side heat transfer areas per unit volume of the refrigeration evaporator 14a and the refrigeration evaporator 14b shown in FIG. 6 are A Revp / V Revp = 0.673 m 2 / L and A Fevp / V Fevp = 0. 384m a 2 / L, 0.25m 2 / L or more, the following values 0.96 m 2 / L. In general, frost grows on the air-side heat transfer surface of the evaporator. Therefore, if the air-side heat transfer area is increased with respect to the evaporator volume, the flow path is likely to be blocked when frost grows. For this reason, when the growth of frost is large, the heat exchange performance is likely to deteriorate, but when the growth of frost is small, the evaporator has a high heat exchange performance. On the other hand, if the air-side heat transfer area is reduced with respect to the evaporator volume, the flow path is not easily blocked by frost even if frost grows and it is easy to maintain heat exchange performance, but the air-side heat transfer area is reduced. When the frost growth is small, the heat exchange performance per unit volume is low. Therefore, in the refrigerator of this embodiment, the air-side heat transfer area per unit volume of the refrigeration evaporator 14a and the refrigeration evaporator 14b should be 0.25 m2 / L or more and 0.96 m2 / L or less. Therefore, the performance when the growth of frost is large and the performance when the growth of frost is small are made compatible.

以上で,本実施例に係る冷蔵庫の構成を説明したが,次に本実施例に係る冷蔵庫の制御について説明する。図7は,本実施例に係る冷蔵庫の通常運転状態における制御を表すフローチャートである。図8は,本実施例に係る冷蔵庫の高負荷状態における制御を表すフローチャートである。図9は本実施例に係る冷蔵庫の通常運転状態における制御を表すタイムチャートである。図10は本実施例に係る冷蔵庫の高負荷状態における制御を表すタイムチャートである。   The configuration of the refrigerator according to the present embodiment has been described above. Next, control of the refrigerator according to the present embodiment will be described. FIG. 7 is a flowchart showing the control in the normal operation state of the refrigerator according to the present embodiment. FIG. 8 is a flowchart showing the control in the high load state of the refrigerator according to the present embodiment. FIG. 9 is a time chart showing control in the normal operation state of the refrigerator according to the present embodiment. FIG. 10 is a time chart showing the control in the high load state of the refrigerator according to the present embodiment.

図7に示すように,本実施例の冷蔵庫は電源投入により運転が開始され(スタート),冷蔵庫1の各貯蔵室が冷却される。ユーザーが各貯蔵室扉の開閉を行う,或いは冷蔵庫周囲の温度環境の変化等の要因による負荷変動がない通常運転状態(通常運転モード)においては,基本的に一定の運転パターンを繰り返す状態(以下,安定冷却運転と呼ぶ)となる。図5では,電源投入から安定冷却運転に至るまでの制御過程は省略している。   As shown in FIG. 7, the refrigerator of this embodiment is started (started) when the power is turned on, and each storage room of the refrigerator 1 is cooled. In a normal operation state (normal operation mode) in which the user opens / closes each storage room door or there is no load fluctuation due to factors such as changes in the temperature environment around the refrigerator, a state in which a constant operation pattern is repeated (hereinafter, , Called stable cooling operation). In FIG. 5, the control process from power-on to stable cooling operation is omitted.

安定冷却運転では,一定の運転パターン(運転サイクル)を繰り返すが,ここでは冷蔵室2を冷却する運転モードである冷蔵運転が開始される状態からの制御を説明する。冷蔵運転は,三方弁52を状態1(冷蔵モード)とし,圧縮機24を速度1(800min-1)で駆動,冷蔵用ファン9aを速度2(1500min-1)で駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖することで開始する(ステップS101)。続いて,庫内が高負荷になっているかが判定される(ステップS102)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS102が成立する。ステップS102が成立した場合の制御は後述する。
このとき,圧縮機24及び冷蔵用ファン9aは,冷蔵運転時の冷蔵用蒸発器14aの時間平均温度をTRevp_ave,冷蔵室2の維持温度をTF_keep,冷凍室7の維持温度をTF_keep,冷蔵室維持温度TR_keepと冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveの差をΔT(=TR_keep−TRevp_ave),蒸発器温度に対する冷凍サイクル理論成績係数をCOPthとした場合に,TRevp_ave≧0.5×(TR_keep+TF_keep), d(COPth)/dTRevp_ave − d(ΔT−1)/dTRevp_ave ≧0 を満足するように選定している。
In the stable cooling operation, a constant operation pattern (operation cycle) is repeated. Here, the control from the state in which the refrigerating operation, which is the operation mode for cooling the refrigerating chamber 2, is started will be described. In the refrigeration operation, the three-way valve 52 is set to the state 1 (refrigeration mode), the compressor 24 is driven at a speed 1 (800 min −1 ), the refrigeration fan 9 a is driven at a speed 2 (1500 min −1 ), and the refrigeration fan 9 b is operated. It starts by stopping and closing the vegetable compartment damper 19 (step S101). Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S102). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S102 is established when the refrigerator compartment temperature T R detected by is equal to or higher than the high load determination temperature T R — high (= 10 ° C.) (T R ≧ T R — high ). The control when step S102 is established will be described later.
At this time, the compressor 24 and the refrigerating fan 9a, the time average temperature T Revp_ave of refrigerating evaporator 14a during refrigerating operation, maintenance temperature T F_keep refrigerating compartment 2, the maintenance temperature of the freezing compartment 7 T F_keep, When the difference between the refrigeration room maintenance temperature T R_keep and the time average temperature T Revp_ave of the refrigeration evaporator 14a during the refrigeration operation is ΔT (= T R_keep −T Revp_ave ), and the refrigeration cycle theoretical performance coefficient with respect to the evaporator temperature is COP th In addition, T Revp_ave ≧ 0.5 × ( TR_keep + TF_keep ), d 2 (COP th ) / dT Revp_ave 2 −d 2 (ΔT −1 ) / dT Revp_ave 2 ≧ 0 is selected.

ステップS102が成立しない場合(No)は,続いて冷蔵運転終了条件が成立しているかが判定される(ステップS103)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転終了温度TRoff(=2.5℃)以下(T≦TRoff)の場合にステップS103が成立する。ステップS103が成立しない場合(No),再びステップS102の判定に戻る。 When step S102 is not satisfied (No), it is subsequently determined whether the refrigeration operation end condition is satisfied (step S103). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting the step S103 is satisfied when the refrigerating operation end temperature T Roff (= 2.5 ℃) or less (T RT Roff) To do. When step S103 is not established (No), the process returns to the determination of step S102 again.

ステップS103が成立した場合(Yes),次に冷凍野菜運転開始条件が成立しているかが判定される(ステップS104)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=-18℃)以上(TF≧TF_on)の場合にステップS104が成立する。 If step S103 is satisfied (Yes), it is next determined whether or not the frozen vegetable operation start condition is satisfied (step S104). In the refrigerator of the present embodiment, step S104 is established when the freezer temperature TF detected by the freezer temperature sensor 42 is equal to or higher than the frozen vegetable operation start temperature TF_on (= −18 ° C.) ( TFTF_on ). To do.

ステップS104が成立した場合(成立しない場合(No)は後述),次に圧縮機24の駆動回転速度を維持して,三方弁52を状態3(全閉モード)とし,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS105)。このとき,冷蔵用ファン9aは駆動を継続し,冷媒回収運転中も冷蔵室2の冷却を行う。   If step S104 is established (if not established (No) (to be described later)), then the driving rotational speed of the compressor 24 is maintained, the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14a is filled. A refrigerant recovery operation for recovering the refrigerant to the heat dissipating means side is performed (step S105). At this time, the refrigeration fan 9a continues to drive and cools the refrigeration chamber 2 during the refrigerant recovery operation.

続いて冷蔵用蒸発器除霜運転を実施するかが判定される(ステップS106)。本実施例の冷蔵庫では,冷蔵室2の下部に備えたチルドルーム35の設定が,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」が選択されている場合にはステップS106が成立(Yes)し,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」が選択されている場合には,ステップS106が否成立(No)となる。ステップS106が成立した場合(Yes),冷蔵用ファン9aを速度1(900min-1)として,冷蔵用蒸発器除霜運転が開始され(ステップS107),ステップS106が否成立(No)の場合,冷蔵用ファン9aが停止される(ステップS108)。 Subsequently, it is determined whether or not the refrigeration evaporator defrosting operation is performed (step S106). In the refrigerator of the present embodiment, when “temperature level 1” for maintaining the chilled room 35 provided at the lower part of the refrigerator room 2 at about 0 to 3 ° C. in the refrigerator temperature zone is selected, step S106 is performed. If established (Yes) and “temperature level 2” is selected to maintain the temperature in the refrigeration temperature range of about −3 to 0 ° C., step S106 is denied (No). When step S106 is established (Yes), the refrigeration fan 9a is set to speed 1 (900 min −1 ), the refrigeration evaporator defrosting operation is started (step S107), and when step S106 is not established (No), The refrigeration fan 9a is stopped (step S108).

次に冷凍野菜運転が開始される(ステップS109)。冷凍野菜運転は,三方弁52を状態2(冷凍モード)とし,圧縮機24を速度2(1400min-1),冷凍用ファン9bを速度1(1200min-1)で駆動し,野菜室ダンパ19を開放した状態で行われる。 Next, the frozen vegetable operation is started (step S109). In frozen vegetable operation, the three-way valve 52 is set to state 2 (freezing mode), the compressor 24 is driven at speed 2 (1400 min −1 ), the freezing fan 9 b is driven at speed 1 (1200 min −1 ), and the vegetable compartment damper 19 is driven. Performed in an open state.

続いて,庫内が高負荷になっているかが判定される(ステップS110)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS110が成立する(ステップS102と同様の判定)。ステップS110が成立した場合の制御は後述する。
ステップS110が成立しない場合(No),次に野菜室冷却終了条件が成立しているかが判定される(ステップS111)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off(=4℃)以下(TV≦TV_off)の場合にステップS111が成立する。ステップS111が成立した場合(Yes),野菜室ダンパ19が閉鎖されて冷凍野菜運転が終了し,冷凍室7を冷却する冷凍運転に移行する。
Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S110). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S110 is established when the refrigeration room temperature T R detected by is equal to or higher than the high load determination temperature T R_high (= 10 ° C.) (T R ≧ T R_high ) (determination similar to Step S102). The control when step S110 is established will be described later.
When step S110 is not satisfied (No), it is next determined whether or not the vegetable room cooling end condition is satisfied (step S111). In the refrigerator of this embodiment, vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, step S111 in the case of vegetable compartment cooling end temperature T V_off (= 4 ℃) or less (T V ≦ T V_off) is satisfied . When Step S111 is established (Yes), the vegetable compartment damper 19 is closed, the frozen vegetable operation is finished, and the operation is shifted to the freezing operation for cooling the freezer compartment 7.

ステップS111が成立しない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS113)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する。ステップS113が成立した場合(Yes),冷蔵用ファン9aが停止されて(ステップS114),「冷蔵用蒸発器除霜運転」が終了する。 When step S111 is not satisfied (No), it is subsequently determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S113). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature TR_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature TRD_off (= 2 ° C.) ( TR_evpTRD_off ). When step S113 is established (Yes), the refrigeration fan 9a is stopped (step S114), and the “refrigeration evaporator defrosting operation” is completed.

ステップS113が成立しない場合(No),続いて冷凍運転終了条件が成立しているかが判定される(ステップS115)。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TF_off(=-22.5℃)以下(T≧TF_off)の場合にステップS115が成立する。ステップS115が成立しない場合(No),ステップS110の判定に戻る。 When step S113 is not satisfied (No), it is subsequently determined whether the freezing operation end condition is satisfied (step S115). In the refrigerator of the present embodiment, when the vegetable compartment damper 19 is closed and the freezer compartment temperature T F is equal to or lower than the freezing operation end temperature T F_off (= −22.5 ° C.) (T F ≧ T F_off ), step S115. Is established. When step S115 is not established (No), the process returns to the determination of step S110.

ステップS115が成立した場合,次に冷蔵運転開始条件が成立しているかが判定される(ステップS116)。本実施例の冷蔵庫では,本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転開始温度TR_on(=5.5℃)以上(TR≧TR_on)の場合にステップS116が成立する。 If step S115 is satisfied, it is next determined whether the refrigeration operation start condition is satisfied (step S116). In the refrigerator of the present embodiment, in the refrigerator of the present embodiment, the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting the refrigeration operation start temperature T R_on (= 5.5 ℃) or (T R ≧ T R_on) In this case, step S116 is established.

ステップS116が成立した場合,(成立しない場合(No)は後述),圧縮機24の駆動回転速度を維持して,三方弁52を状態3(全閉モード)とし,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS117)。このとき,冷凍用ファン9bは駆動を継続し,冷媒回収運転中も冷凍室7の冷却を行う。   If step S116 is satisfied (if not satisfied (No) (to be described later)), the drive rotational speed of the compressor 24 is maintained, the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14b A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S117). At this time, the refrigeration fan 9b continues to drive and cools the freezer compartment 7 even during the refrigerant recovery operation.

ステップS104が成立しない場合(No),続いて冷蔵用蒸発器除霜運転を実施するかが判定される(ステップS201)。本実施例の冷蔵庫では,冷蔵室2の下部に備えたチルドルーム35の設定が,冷蔵温度帯の約0〜3℃に維持する「温度レベル1」が選択されている場合にはステップS106が成立(Yes)し,冷凍温度帯の約−3〜0℃に維持する「温度レベル2」が選択されている場合には,ステップS106が否成立(No)となる(ステップS106と同様の判定)。ステップS201が成立した場合(Yes),冷蔵用ファン9aを速度1(900min-1)として,冷蔵用蒸発器除霜運転が開始され(ステップS202),ステップS106が否成立(No)の場合,冷蔵用ファン9aが停止されて(ステップS203),三方弁52を状態3(全閉モード)として,圧縮機24が停止,冷凍用ファン9bが停止される(ステップS118)。また,ステップS116が成立しない場合(No)も,三方弁52を状態3(全閉モード)として,圧縮機24が停止,冷凍用ファン9bが停止される(ステップS118)。 When step S104 is not established (No), it is subsequently determined whether or not the refrigeration evaporator defrosting operation is performed (step S201). In the refrigerator of the present embodiment, when “temperature level 1” for maintaining the chilled room 35 provided at the lower part of the refrigerator room 2 at about 0 to 3 ° C. in the refrigerator temperature zone is selected, step S106 is performed. If “temperature level 2” that is established (Yes) and is maintained at about −3 to 0 ° C. of the refrigeration temperature zone is selected, step S106 is not established (No) (the same determination as step S106) ). If step S201 is established (Yes), the refrigeration fan 9a is set to speed 1 (900 min −1 ) and the refrigeration evaporator defrosting operation is started (step S202). If step S106 is not established (No), The refrigeration fan 9a is stopped (step S203), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, and the refrigeration fan 9b is stopped (step S118). When step S116 is not established (No), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is stopped, and the refrigeration fan 9b is stopped (step S118).

続いて,庫内が高負荷になっているかが判定される(ステップS119)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high),または,冷蔵室温度センサ41が検知する冷蔵室温度TRが,高負荷判定温度TR_high(=10℃)以上(TR≧TR_high)の場合にステップS119が成立する(ステップS102,110と同様の判定)。ステップS119が成立した場合の制御は後述する。
ステップS119が成立しない場合(No),次に冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS120)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する(ステップS113と同様の判定)。ステップS120が成立した場合(Yes),冷蔵用ファン9aが停止されて(ステップS121),「冷蔵用蒸発器除霜運転終了」が終了する。
Subsequently, it is determined whether or not the inside of the warehouse is heavily loaded (step S119). In the refrigerator of the present embodiment, the freezing compartment temperature T F of the freezing compartment temperature sensor 42 is detected, a high load determination temperature T F_high (= -10 ℃) or (T F ≧ T F_high), or, the refrigerating compartment temperature sensor 41 Step S119 is established when the refrigeration room temperature T R detected by is higher than the high load determination temperature T R_high (= 10 ° C.) (T R ≧ T R_high ) (the same determination as in Steps S102 and 110). The control when step S119 is established will be described later.
When step S119 is not satisfied (No), it is then determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S120). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature T R_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature T RD_off (= 2 ° C.) ( TR_evp ≧ T RD_off ). Determination similar to S113). When step S120 is established (Yes), the refrigeration fan 9a is stopped (step S121), and the “end of refrigeration evaporator defrosting operation” is completed.

ステップS120が成立しない場合(No),続いて冷凍野菜運転開始条件が成立しているかが判定される(ステップS122)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=-18℃)以上(TF≧TF_on)の場合にステップS122が成立する(ステップS104と同様の判定)。ステップS122が成立した場合(Yes),次に冷媒回収運転実施要否が判定される(ステップS123)。本実施例の冷蔵庫では,ステップS118による圧縮機24停止の直前の運転が冷蔵運転の場合にステップS123が成立する。ステップS123が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を実施し(ステップS124),冷凍野菜運転を開始する(ステップS109)。ステップS123が成立しない場合(No),冷媒回収運転を実施せずに冷凍野菜運転を開始する(ステップS109)。 When step S120 is not satisfied (No), it is subsequently determined whether the frozen vegetable operation start condition is satisfied (step S122). In the refrigerator of the present embodiment, step S122 is established when the freezer temperature TF detected by the freezer temperature sensor 42 is equal to or higher than the frozen vegetable operation start temperature TF_on (= −18 ° C.) ( TFTF_on ). (Same determination as in step S104). When step S122 is established (Yes), it is next determined whether or not the refrigerant recovery operation is necessary (step S123). In the refrigerator of the present embodiment, step S123 is established when the operation immediately before the stop of the compressor 24 in step S118 is the refrigeration operation. When step S123 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. A refrigerant recovery operation for recovering to the side is performed (step S124), and a frozen vegetable operation is started (step S109). If step S123 is not established (No), the frozen vegetable operation is started without performing the refrigerant recovery operation (step S109).

ステップS122が成立しない場合(No),続いて冷蔵運転開始条件が成立しているかが判定される(ステップS125)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが,冷蔵運転開始温度TR_on(=5.5℃)以上(TR≧TR_on)の場合にステップS116が成立する(ステップS116と同様の判定)。 When step S122 is not satisfied (No), it is subsequently determined whether the refrigeration operation start condition is satisfied (step S125). In the refrigerator of the present embodiment, the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting the step S116 is satisfied when the refrigerating operation start temperature T R_on (= 5.5 ℃) or (T R ≧ T R_on) (Same determination as in step S116).

ステップS125が成立した場合,次に冷媒回収運転実施要否が判定される(ステップS126)。本実施例の冷蔵庫では,ステップS118による圧縮機24停止の直前の運転が冷凍運転の場合にステップS126が成立する。ステップS126が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷凍運転における回転速度で圧縮機24を駆動して,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS127),冷蔵運転を開始する(ステップS101)。ステップS126が成立しない場合(No)は,冷媒回収運転を実施せずに冷蔵運転を開始する(ステップS101)。   When step S125 is established, it is next determined whether or not the refrigerant recovery operation needs to be performed (step S126). In the refrigerator of the present embodiment, step S126 is established when the operation immediately before the stop of the compressor 24 in step S118 is the refrigeration operation. When step S126 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14b is dissipated. A refrigerant recovery operation for recovering to the side is performed (step S127), and a refrigeration operation is started (step S101). When step S126 is not established (No), the refrigeration operation is started without performing the refrigerant recovery operation (step S101).

なお,以上の説明における冷蔵運転開始温度TR_on(=5.5℃),冷蔵運転終了温度TR_off(=2.5℃)冷凍野菜運転開始温度TF_on(=−18℃),冷凍運転終了温度TF_off(=−22.5℃)は,冷蔵室2の維持温度レベルが「中」,冷凍室7の維持温度レベルが「中」に設定されている場合の例であり,設定された維持温度レベルに応じて可変する。 In the above description, the refrigeration operation start temperature T R_on (= 5.5 ° C.), the refrigeration operation end temperature T R_off (= 2.5 ° C.) , the frozen vegetable operation start temperature T F_on (= −18 ° C.), the freezing operation The end temperature T F_off (= −22.5 ° C.) is an example when the maintenance temperature level of the refrigerator compartment 2 is set to “medium” and the maintenance temperature level of the freezer compartment 7 is set to “medium”. Varies according to the maintenance temperature level.

次に冷蔵庫1の庫内が高負荷になっている場合の制御について図8を参照しながら説明する。図8に示す制御には,図7のステップS102,S110,S119において,冷蔵庫1の庫内が高負荷になっていると判定された場合(各ステップにおける判定がYes)に移行する。庫内が高負荷になっていると判定されると,続いて冷蔵室2が高負荷であるか(ステップS301),冷凍室7が高負荷であるかの判定(ステップS302)が行われる。冷蔵室2が高負荷で,冷凍室7が高負荷になっていない場合は,ステップS301がNoとなり,次に冷媒回収運転の要否が判定される(ステップS501)。   Next, control when the inside of the refrigerator 1 is heavily loaded will be described with reference to FIG. The control shown in FIG. 8 is shifted to the case where it is determined in steps S102, S110, and S119 in FIG. 7 that the inside of the refrigerator 1 has a high load (the determination in each step is Yes). If it is determined that the inside of the refrigerator has a high load, then it is determined whether the refrigerator compartment 2 has a high load (step S301) or whether the freezer compartment 7 has a high load (step S302). If the refrigerator compartment 2 is heavily loaded and the freezer compartment 7 is not heavily loaded, step S301 is No, and it is then determined whether the refrigerant recovery operation is necessary (step S501).

本実施例の冷蔵庫では,図7のステップS102,S110,S119の何れかが成立した時点における運転が冷蔵運転の場合にステップS501が成立する。ステップS501が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS502),続いて「高負荷モード冷凍野菜運転」が選択される(ステップS503)。ステップS501が成立しない場合(No)は,冷媒回収運転を実施せずに「高負荷モード冷凍野菜/冷凍運転」が選択される(ステップS503)。本実施例の冷蔵庫では,「高負荷モード冷凍野菜/冷凍運転」が選択された場合,冷凍野菜運転または冷凍運転が実施される際の回転速度として,圧縮機24は速度4(3600min-1),冷凍用ファン9bは速度2(2000min-1)に設定される。なお,冷蔵運転,冷蔵用蒸発器除霜運転が実施される際の圧縮機24,冷蔵用ファン9aの回転速度は通常運転モードと同じ回転速度が選択される。 In the refrigerator of the present embodiment, step S501 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 7 is established is the refrigeration operation. When step S501 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. Next, a refrigerant recovery operation is performed (step S502), and then “high load mode frozen vegetable operation” is selected (step S503). When step S501 is not established (No), “high load mode frozen vegetable / freezing operation” is selected without performing the refrigerant recovery operation (step S503). In the refrigerator of the present embodiment, when “high load mode frozen vegetable / freezing operation” is selected, the compressor 24 has a speed of 4 (3600 min −1 ) as the rotation speed when the frozen vegetable operation or the freezing operation is performed. The refrigeration fan 9b is set at a speed of 2 (2000 min −1 ). Note that the rotational speeds of the compressor 24 and the refrigeration fan 9a when the refrigeration operation and the refrigeration evaporator defrosting operation are performed are the same as those in the normal operation mode.

冷凍室7が高負荷で(ステップS301がYes),冷蔵室2が高負荷になっていない場合は,ステップS302がNoとなり,次に冷媒回収運転の要否が判定される(ステップS401)。   If the freezer compartment 7 has a high load (Yes at Step S301) and the refrigerator compartment 2 is not at a high load, Step S302 is No, and then it is determined whether or not the refrigerant recovery operation is necessary (Step S401).

本実施例の冷蔵庫では,図7のステップS102,S110,S119の何れかが成立した時点における運転が冷凍野菜運転または冷凍運転の場合にステップS401が成立する。ステップS401が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷凍野菜運転または冷凍運転における回転速度で圧縮機24を駆動して,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS402),続いて「高負荷モード冷蔵運転」が選択される(ステップS403)。ステップS401が成立しない場合(No)は,冷媒回収運転を実施せずに「高負荷モード冷蔵運転」が選択される(ステップS403)。本実施例の冷蔵庫では,「高負荷モード冷蔵運転」が選択された場合,圧縮機24は速度3(2500min-1),冷蔵用ファン9aは速度3(2000min-1)に回転速度が設定される。なお,冷凍野菜運転,冷凍運転,冷蔵用蒸発器除霜運転が実施される際の圧縮機24,冷蔵用ファン9a,冷凍用ファン9bの回転速度は通常運転モードと同じ回転速度が選択される。 In the refrigerator of the present embodiment, step S401 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 7 is established is the frozen vegetable operation or the freezing operation. When step S401 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding frozen vegetable operation or freezing operation, and the inside of the freezing evaporator 14b is set. A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S402), and then “high load mode refrigeration operation” is selected (step S403). When step S401 is not established (No), the “high load mode refrigeration operation” is selected without performing the refrigerant recovery operation (step S403). In the refrigerator of this embodiment, when “high load mode refrigeration operation” is selected, the compressor 24 is set to a rotational speed of 3 (2500 min −1 ) and the refrigeration fan 9 a is set to a speed of 3 (2000 min −1 ). The The rotation speeds of the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b when the frozen vegetable operation, the refrigeration operation, and the refrigeration evaporator defrost operation are performed are selected to be the same as the normal operation mode. .

冷凍室7と冷蔵室2が共に高負荷(ステップS301とステップS302がYes)の場合,次に冷媒回収運転の要否が判定される(ステップS303)。本実施例の冷蔵庫では,図7のステップS102,S110,S119の何れかが成立した時点における運転が冷蔵運転の場合にステップS303が成立する。ステップS303が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,直前の冷蔵運転における回転速度で圧縮機24を駆動して,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行い(ステップS304),続いて「過負荷モード」が選択される(ステップS305)。本実施例の冷蔵庫では,「過負荷モード」が選択された場合,冷蔵運転が実施される際の回転速度として,圧縮機24は速度3(2500min-1),冷蔵用ファン9aは速度3(2000min-1),冷凍野菜運転または冷凍運転が実施される際の回転速度として,圧縮機24は速度4(3600min-1),冷凍用ファン9bは速度2(2000min-1)に設定される。なお,冷蔵用蒸発器除霜運転が実施される際の冷蔵用ファン9aの回転速度は通常運転モードと同じ回転速度が選択される。 When the freezer compartment 7 and the refrigerator compartment 2 are both heavily loaded (Yes in Step S301 and Step S302), it is next determined whether or not the refrigerant recovery operation is necessary (Step S303). In the refrigerator of the present embodiment, step S303 is established when the operation at the time when any of steps S102, S110, and S119 in FIG. 7 is established is the refrigeration operation. When step S303 is established (Yes), the three-way valve 52 is set to state 3 (fully closed mode), the compressor 24 is driven at the rotational speed in the immediately preceding refrigeration operation, and the refrigerant in the refrigeration evaporator 14a is dissipated. The refrigerant recovery operation for recovering to the side is performed (step S304), and then the “overload mode” is selected (step S305). In the refrigerator of the present embodiment, when “overload mode” is selected, the compressor 24 has a speed 3 (2500 min −1 ) and the refrigeration fan 9 a has a speed 3 ( 2000 min -1), as the rotational speed when the frozen vegetables operation or freezing operation is carried out, the compressor 24 speed 4 (3600 min -1), freezing fan 9b is set to speed 2 (2000min -1). The rotation speed of the refrigeration fan 9a when the refrigeration evaporator defrosting operation is performed is selected to be the same as that in the normal operation mode.

ステップS305において「過負荷モード」が選択されると,三方弁52を状態2(冷凍モード)とし,圧縮機24を速度4(3600min-1),冷凍用ファン9bを速度2(2000min-1)で駆動し,野菜室ダンパ19を開放して冷凍野菜運転が開始され(ステップS306),続いて冷蔵用ファン9aを速度1(900min-1)で駆動して,冷蔵用蒸発器除霜運転が実施される。 When “overload mode” is selected in step S305, the three-way valve 52 is set to state 2 (refrigeration mode), the compressor 24 is set to speed 4 (3600 min −1 ), and the refrigeration fan 9b is set to speed 2 (2000 min −1 ). And the vegetable compartment damper 19 is opened to start the frozen vegetable operation (step S306). Subsequently, the refrigeration fan 9a is driven at a speed of 1 (900 min -1 ) to perform the refrigeration evaporator defrosting operation. To be implemented.

次に野菜室冷却終了条件が成立しているかが判定される(ステップS308)。本実施例の冷蔵庫では,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off(=6℃)以下(TV≦TV_off)の場合にステップS307が成立する。ステップS308が成立した場合(Yes),野菜室ダンパ19が閉鎖されて冷凍野菜運転が終了し,冷凍室7を冷却する冷凍運転に移行する(ステップS309)。 Next, it is determined whether or not the vegetable room cooling end condition is satisfied (step S308). In the refrigerator of this embodiment, vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, step S307 in the case of vegetable compartment cooling end temperature T V_off (= 6 ℃) or less (T V ≦ T V_off) is satisfied . When Step S308 is established (Yes), the vegetable compartment damper 19 is closed, the frozen vegetable operation is finished, and the operation proceeds to the freezing operation for cooling the freezer compartment 7 (Step S309).

ステップS308が成立しない場合(No),続いて冷蔵用蒸発器除霜運転終了条件が成立しているかが判定される(ステップS310)。冷蔵用蒸発器除霜運転終了条件は,冷蔵用蒸発器温度TR_evpが冷蔵用蒸発器除霜運転終了温度TRD_off(=2℃)以上(TR_evp≧TRD_off)の場合に成立する。ステップS310が成立した場合(Yes),冷蔵用ファン9aが停止されて,冷蔵用蒸発器除霜運転が終了する(ステップS311)。 When step S308 is not satisfied (No), it is subsequently determined whether the refrigeration evaporator defrosting operation end condition is satisfied (step S310). The refrigeration evaporator defrosting operation end condition is satisfied when the refrigeration evaporator temperature TR_evp is equal to or higher than the refrigeration evaporator defrosting operation end temperature TRD_off (= 2 ° C.) ( TR_evpTRD_off ). When step S310 is established (Yes), the refrigeration fan 9a is stopped and the refrigeration evaporator defrosting operation is ended (step S311).

ステップS310が成立しない場合(No),続いて冷凍野菜運転,または,冷凍運転終了条件が成立しているかが判定される(ステップS312)。本実施例の冷蔵庫では,野菜室ダンパ19が閉鎖状態,且つ,冷凍室温度Tが冷凍運転終了温度TF_off(=−22.5℃)以下(T≧TF_off)の場合,または,冷凍野菜運転,または,冷凍運転の継続時間が所定値(42.5分)に到達した場合にステップS312が成立する。ステップS312が成立しない場合(No),ステップS308の判定に戻る。 When step S310 is not satisfied (No), it is subsequently determined whether the frozen vegetable operation or the freezing operation end condition is satisfied (step S312). In the refrigerator of the present embodiment, when the vegetable compartment damper 19 is closed and the freezer compartment temperature T F is equal to or lower than the freezing operation end temperature T F_off (= −22.5 ° C.) (T F ≧ T F_off ), or Step S312 is established when the duration of the frozen vegetable operation or the freezing operation reaches a predetermined value (42.5 minutes). If step S312 is not satisfied (No), the process returns to the determination of step S308.

ステップS312が成立した場合(Yes),三方弁52を状態3(全閉モード)とし,冷凍用蒸発器14b内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS313)。このとき,冷凍用ファン9bは駆動を継続する。   When step S312 is established (Yes), the three-way valve 52 is set to the state 3 (fully closed mode), and a refrigerant recovery operation for recovering the refrigerant in the refrigeration evaporator 14b to the heat radiating means side is performed (step S313). At this time, the refrigeration fan 9b continues to drive.

続いて通常運転モードに移行するかの判定が行われる(ステップS314)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが冷蔵運転開始温度TR_on(=5.5℃)以下(TR≦T_on),冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=−18℃)以下(TR≦TF_on)が同時に満たされている場合にステップS314が成立し(Yes),通常運転モードに戻る(図7のステップS101)
ステップS314が成立しない場合(No),続いて冷蔵運転が行われる(ステップS315)。冷蔵運転は,三方弁52を状態1(冷蔵モード)とし,圧縮機24を速度3(2500min-1)で駆動,冷蔵用ファン9aを速度3(2000 min-1)で駆動,冷凍用ファン9bを停止,野菜室ダンパ19を閉鎖することで開始する。
Subsequently, a determination is made as to whether to shift to the normal operation mode (step S314). In the refrigerator of the present embodiment, the refrigerating compartment temperature sensor 41 detects the refrigerating compartment temperature T R refrigeration operation start temperature T R_on (= 5.5 ℃) or less (T R ≦ T _on), the freezing compartment temperature sensor 42 is detected If the freezer compartment temperature T F is simultaneously satisfied with the frozen vegetable operation start temperature T F — on (= −18 ° C.) or less (T R ≦ T F — on ), step S314 is established (Yes), and the normal operation mode is set. Return (step S101 in FIG. 7)
When step S314 is not established (No), the refrigeration operation is subsequently performed (step S315). Refrigerating operation, the three-way valve 52 is in the state 1 (refrigerating mode), the compressor 24 speed 3 driven by (2500min -1), drives the refrigerating fan 9a at a speed 3 (2000 min -1), freezing fan 9b Is started and the vegetable compartment damper 19 is closed.

次に,冷凍室7が高負荷であるかが判定される(ステップS316)。本実施例の冷蔵庫では,冷凍室温度センサ42が検知する冷凍室温度TFが,高負荷判定温度TF_high(=-10℃)以上(TF≧TF_high)の場合にステップS316が成立する(Yes)。ステップS316が成立した場合(Yes)は,冷媒回収運転が行われ(ステップS304),過負荷モードに移行する(ステップS305)。なお,冷蔵運転が開始されてから所定時間(5分)が経過するまでは,ステップS316の判定はスキップされる。 Next, it is determined whether the freezer compartment 7 has a high load (step S316). In the refrigerator of the present embodiment, step S316 is established when the freezer compartment temperature T F detected by the freezer compartment temperature sensor 42 is equal to or higher than the high load determination temperature T F_high (= −10 ° C.) ( TFTF_high ). (Yes). When step S316 is established (Yes), the refrigerant recovery operation is performed (step S304), and the process shifts to the overload mode (step S305). Note that the determination in step S316 is skipped until a predetermined time (5 minutes) has elapsed since the start of the refrigeration operation.

ステップS316が成立しない場合(No)は,冷蔵運転終了条件が成立しているかの判定(ステップS317)に移行する。本実施例の冷蔵庫では,冷蔵室温度Tが冷蔵運転終了温度TR_off(=2.5℃)以下(T≦TR_off)の場合,または,過負荷モードにおいて冷蔵運転の継続時間が所定値(20.5分)に到達した場合にステップS317が成立する。ステップS317が成立しない場合(No)は,再びステップS316の判定に戻り,ステップS317が成立した場合(Yes)は,三方弁52を状態3(全閉モード)とし,冷蔵用蒸発器14a内の冷媒を放熱手段側に回収する冷媒回収運転を行う(ステップS318)。このとき,冷蔵用ファン9aは駆動を継続する。 When step S316 is not satisfied (No), the process proceeds to determination (step S317) whether the refrigeration operation end condition is satisfied. In the refrigerator of the present embodiment, the case of the refrigerating compartment temperature T R is refrigerating operation end temperature T R_off (= 2.5 ℃) or less (T R ≦ T R_off), or, the duration of refrigerating operation in overload mode predetermined Step S317 is established when the value (20.5 minutes) is reached. If step S317 is not satisfied (No), the process returns to the determination in step S316 again. If step S317 is satisfied (Yes), the three-way valve 52 is set to state 3 (fully closed mode), and the refrigeration evaporator 14a is set. A refrigerant recovery operation for recovering the refrigerant to the heat radiating means side is performed (step S318). At this time, the refrigeration fan 9a continues to drive.

続いて通常運転モードに移行するかの判定が行われる(ステップS319)。本実施例の冷蔵庫では,冷蔵室温度センサ41が検知する冷蔵室温度Tが冷蔵運転開始温度TR_on(=5.5℃)以下(TR≦TR_on),冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on(=−18℃)以下(TR≦TF_on)が同時に満たされている場合にステップS318が成立し(Yes),通常運転モードに戻る(図7のステップS109)。 Subsequently, a determination is made as to whether to shift to the normal operation mode (step S319). In the refrigerator of the present embodiment, the refrigerating compartment temperature sensor 41 detects the refrigerating compartment temperature T R refrigeration operation start temperature T R_on (= 5.5 ℃) or less (T R ≦ T R_on), the freezing compartment temperature sensor 42 is detected If the freezer compartment temperature T F is simultaneously satisfied with the frozen vegetable operation start temperature T F — on (= −18 ° C.) or less (T R ≦ T F — on ), step S318 is established (Yes), and the normal operation mode is set. Return (step S109 in FIG. 7).

また,ステップS403で「高負荷モード冷蔵運転」が選択された場合は,ステップS315に移行して冷蔵運転が開始され,ステップS503で「高負荷モード冷凍野菜/冷凍運転」が選択された場合は,ステップS306に移行して冷凍野菜運転が開始され,以降は上述の制御フローに従って制御がなされる。   If “high load mode refrigeration operation” is selected in step S403, the process proceeds to step S315 to start refrigeration operation. If “high load mode frozen vegetable / frozen operation” is selected in step S503, , The process proceeds to step S306, and the frozen vegetable operation is started. Thereafter, the control is performed according to the control flow described above.

なお本実施例の冷蔵庫では,ステップS105,ステップS301における冷媒回収運転は,圧縮機24が速度1(800min-1),冷蔵用ファン9aが速度2(1500min-1)で駆動している場合は2分間,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動している場は1.5分間実施する。また,ステップS112,ステップS302における冷媒回収運転は,圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動している場合は2.5分間,圧縮機24が速度4(1400min-1),冷凍用ファン9bが速度2(2000min-1)で駆動している場合は1.5分間実施する。 In the refrigerator of the present embodiment, the refrigerant recovery operation in step S105 and step S301 is performed when the compressor 24 is driven at a speed 1 (800 min −1 ) and the refrigeration fan 9a is driven at a speed 2 (1500 min −1 ). For 2 minutes, the compressor 24 is driven at a speed of 3 (2500 min -1 ) and the refrigeration fan 9a is driven at a speed of 3 (2000 min -1 ) for 1.5 minutes. The refrigerant recovery operation in steps S112 and S302 is performed for 2.5 minutes when the compressor 24 is driven at speed 2 (1400 min -1 ) and the refrigeration fan 9b is driven at speed 1 (1200 min -1 ). When the machine 24 is driven at a speed of 4 (1400 min −1 ) and the refrigeration fan 9 b is driven at a speed of 2 (2000 min −1 ), the operation is performed for 1.5 minutes.

通常運転モードにおける冷蔵運転中の冷蔵用ファン9aの回転速度(速度2=1500min-1)での冷蔵室2の循環風量は0.52m/minである。また,冷蔵用蒸発器除霜運転中の冷蔵用ファン9aの回転速度(速度1=900min-1)での冷蔵室2の循環風量は0.31m/minである。 The circulating air volume in the refrigerating chamber 2 at the rotational speed of the refrigerating fan 9a during the refrigerating operation in the normal operation mode (speed 2 = 1500 min −1 ) is 0.52 m 3 / min. Further, the circulating air volume in the refrigerating chamber 2 at the rotational speed (speed 1 = 900 min −1 ) of the refrigerating fan 9a during the defrosting operation of the refrigerating evaporator is 0.31 m 3 / min.

通常運転モードにおける冷凍用ファン9bの回転速度(速度1=1200min-1)での冷凍室7の循環風量は野菜室ダンパ19が開放された状態(冷凍野菜運転中)では0.55m/min,野菜室ダンパ19が閉鎖された状態(冷凍運転中)では0.6m/minであり,野菜室ダンパ19が開放された状態(冷凍野菜運転中)の野菜室6の循環風量は0.07m/minである。 The amount of circulating air in the freezer compartment 7 at the rotational speed of the freezing fan 9b in the normal operation mode (speed 1 = 1200 min −1 ) is 0.55 m 3 / min when the vegetable compartment damper 19 is open (during frozen vegetable operation). When the vegetable room damper 19 is closed (during freezing operation), the flow rate is 0.6 m 3 / min, and the amount of circulating air in the vegetable room 6 when the vegetable room damper 19 is opened (during frozen vegetable operation) is 0. 07 m 3 / min.

高負荷モード,または,過負荷モードにおける冷蔵運転中の冷蔵用ファン9aの回転速度(速度3=2000min-1)における冷蔵室2の循環風量は0.52m/minである。また,高負荷モードにおける冷凍用ファン9bの回転速度(速度2=2000min-1)での冷凍室7の循環風量は野菜室ダンパ19が開放された状態(冷凍野菜運転中)では0.92m/min,野菜室ダンパ19が閉鎖された状態(冷凍運転中)では1.0m/minであり,野菜室ダンパ19が開放された状態(冷凍野菜運転中)の野菜室6の循環風量は0.12m/minである。 The circulating air volume in the refrigerator compartment 2 at the rotational speed (speed 3 = 2000 min −1 ) of the refrigeration fan 9a during the refrigeration operation in the high load mode or the overload mode is 0.52 m 3 / min. Further, the circulating air volume in the freezer compartment 7 at the rotational speed of the freezing fan 9b in the high load mode (speed 2 = 2000 min −1 ) is 0.92 m 3 when the vegetable compartment damper 19 is open (during frozen vegetable operation). / Min, 1.0 m 3 / min when the vegetable compartment damper 19 is closed (during freezing operation), and the circulating air volume in the vegetable compartment 6 when the vegetable compartment damper 19 is opened (during frozen vegetable operation) is 0.12 m 3 / min.

図9は本実施例に係る冷蔵庫を,32℃,相対湿度70%の環境下に設置し,通常運転モードによる安定冷却運転が行われている状態を表すタイムチャートである。なお冷蔵室2の維持温度レベルは「中」,冷凍室7の維持温度レベルは「中」,チルドルーム35は「温度レベル1」に設定されている。   FIG. 9 is a time chart showing a state where the refrigerator according to the present embodiment is installed in an environment of 32 ° C. and a relative humidity of 70% and a stable cooling operation is performed in the normal operation mode. The maintenance temperature level of the refrigerator compartment 2 is set to “medium”, the maintenance temperature level of the freezer compartment 7 is set to “medium”, and the chilled room 35 is set to “temperature level 1”.

経過時間tは冷蔵室2を冷却する冷蔵運転が開始(図7のステップS101)された経過時間である。通常運転モードにおける冷蔵運転では,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度1(800min-1)で駆動されて冷蔵用蒸発器14aに冷媒が供給されることで,冷蔵用蒸発器14aの温度が低下している。この状態で冷蔵用ファン9aが速度2(1500min-1)で駆動されることで,冷蔵用蒸発器14aを通過して低温になった空気が冷蔵室吐出口11a(図2参照)から冷蔵室2内に吹き出し,冷蔵室2が冷却されて温度が低下している。 Elapsed time t 0 is the start of refrigerating operation for cooling the refrigerating compartment 2 (step S101 in FIG. 7) is the elapsed time. In the refrigeration operation in the normal operation mode, the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is driven at a speed 1 (800 min −1 ), and the refrigerant is supplied to the refrigeration evaporator 14a. The temperature of the refrigeration evaporator 14a is decreasing. In this state, the refrigeration fan 9a is driven at a speed of 2 (1500 min −1 ), so that the low temperature air passing through the refrigeration evaporator 14a is supplied from the refrigeration chamber discharge port 11a (see FIG. 2). The refrigeration chamber 2 is cooled and the temperature is lowered.

ここで,冷蔵運転中の冷蔵用蒸発器14aの時間平均温度は−6℃であり,後述する冷凍運転中の冷凍用蒸発器14bの時間平均温度の-24℃よりも高くしている。一般に蒸発器温度(蒸発温度)が高い方が,冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く,省エネルギー性能が高い。冷凍室7は冷凍温度に維持するために冷凍用蒸発器14bの温度を低温にする必要があるが,冷蔵室2は冷蔵温度に維持すれば良いので,冷蔵用蒸発器14aの温度を高めるように冷蔵用ファン9a及び圧縮機24の回転速度を制御して,省エネルギー性能を向上している。経過時間tで冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転終了温度TR_offまで低下したことで,冷蔵運転から冷媒回収運転に切換わっている(図7のステップS104,S105)。冷媒回収運転では三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度1(800min-1),冷蔵用ファン9aが速度2(1500min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が2分間回収される(ΔTA1=2min)。これにより,次の冷凍野菜運転及び冷凍運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷蔵用ファン9aが駆動されることで,冷蔵用蒸発器14a内の残留冷媒が冷蔵室2の冷却に活用されるとともに,冷蔵室2内の空気による加熱で,冷蔵用蒸発器14a内の圧力低下が緩和される。これにより,圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 Here, the time average temperature of the refrigeration evaporator 14a during the refrigeration operation is −6 ° C., which is higher than the time average temperature -24 ° C. of the refrigeration evaporator 14b during the refrigeration operation described later. Generally, the higher the evaporator temperature (evaporation temperature), the higher the coefficient of performance of the refrigeration cycle (the ratio of the endothermic amount to the input of the compressor 24), and the higher the energy saving performance. In order to maintain the freezing temperature in the freezer compartment 7 at the freezing temperature, the temperature of the freezing evaporator 14b needs to be lowered. However, since the refrigerating room 2 only needs to be maintained at the refrigerating temperature, the temperature of the refrigerating evaporator 14a should be increased. In addition, the rotational speed of the refrigeration fan 9a and the compressor 24 is controlled to improve the energy saving performance. Elapsed time by the refrigerating compartment temperature T R of the refrigerating compartment temperature sensor 41 at t 1 is detected is decreased to refrigerating operation end temperature T R_off, steps S104, S105 (FIG. 7 are switched to the refrigerant recovery run from refrigerating operation ). In the refrigerant recovery operation, the three-way valve 52 is controlled to state 3 (fully closed mode), the compressor 24 is driven at speed 1 (800 min −1 ), and the refrigeration fan 9a is driven at speed 2 (1500 min −1 ). The refrigerant in the evaporator 14a is recovered for 2 minutes (ΔT A1 = 2 min). Thereby, the cooling efficiency fall by the refrigerant | coolant shortage by the following frozen vegetable driving | operation and freezing driving | operation can be suppressed. At this time, when the refrigeration fan 9a is driven, the residual refrigerant in the refrigeration evaporator 14a is utilized for cooling the refrigeration chamber 2, and the refrigeration evaporator is heated by the air in the refrigeration chamber 2. The pressure drop in 14a is alleviated. As a result, an increase in the specific volume of the suction refrigerant of the compressor 24 is suppressed, and a large amount of refrigerant can be recovered in a relatively short time, thereby improving the cooling efficiency.

冷媒回収運転が終わると(経過時間t),冷蔵用蒸発器除霜運転を実施するかが判定され,ここではチルドルーム35の設定が「温度レベル1」となっているため,冷蔵用ファン9aが速度1(900min-1)で駆動されて冷蔵用蒸発器除霜運転が行われている(図7のステップS106,S107)。これにより冷蔵用蒸発器14aの温度が上昇するとともに,霜や冷蔵用蒸発器14aの蓄冷熱による冷却効果によって,冷蔵室2の温度上昇が緩和される。また経過時間tで冷凍室温度センサ42が検知する冷凍室温度Tが,冷凍野菜運転開始温度TF_on以上となっていることから冷凍野菜運転が開始され,野菜室6が冷却され野菜室温度Tが低下している。冷凍野菜運転では,三方弁52が状態2(冷凍モード)に制御され,圧縮機24が速度2(1400min-1)で駆動されて冷凍用蒸発器14bに冷媒が供給されて,冷凍用蒸発器14bが低温になる。この状態で野菜室ダンパ19が開放され,冷凍用ファン9bが速度1(1200min-1)で駆動されることで,冷凍用蒸発器14bを通過して低温になった空気で冷凍室7と野菜室6が冷却される。 When the refrigerant recovery operation ends (elapsed time t 2 ), it is determined whether or not the refrigeration evaporator defrosting operation is performed. Here, since the setting of the chilled room 35 is “temperature level 1”, the refrigeration fan 9a is driven at a speed of 1 (900 min −1 ), and the refrigeration evaporator defrosting operation is performed (steps S106 and S107 in FIG. 7). As a result, the temperature of the refrigeration evaporator 14a rises, and the temperature rise of the refrigeration chamber 2 is mitigated by the cooling effect of frost and the cold storage heat of the refrigeration evaporator 14a. The freezing compartment temperature T F of the freezing compartment temperature sensor 42 detects the elapsed time t 2 is, frozen vegetables driving frozen vegetables operation since the start has a temperature T F_on above is started, the vegetable compartment vegetable compartment 6 is cooled temperature T V is decreased. In the frozen vegetable operation, the three-way valve 52 is controlled to the state 2 (freezing mode), the compressor 24 is driven at the speed 2 (1400 min −1 ), and the refrigerant is supplied to the freezing evaporator 14b. 14b becomes low temperature. In this state, the vegetable compartment damper 19 is opened, and the freezing fan 9b is driven at a speed of 1 (1200 min −1 ), so that the air that has passed through the freezing evaporator 14b and has been cooled to the freezer compartment 7 and the vegetable Chamber 6 is cooled.

経過時間tで野菜室温度センサ43が検知する野菜室温度Tが野菜室冷却終了温度TV_offに到達したことにより,野菜室ダンパ19が閉鎖され,冷凍運転に移行している(図7のステップS111,S112)。 By vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected reaches the vegetable compartment cooling end temperature T V_off by the elapsed time t 3, the vegetable compartment damper 19 is closed, and moves to the freezing operation (Fig. 7 Steps S111 and S112).

続いて経過時間tに冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRD_offに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図7のステップS113,S114)。 Then as the temperature T REVP of refrigerating evaporator 14a for refrigerating evaporator temperature sensor 40a detects the elapsed time t 4 reaches the refrigerating evaporator defrosting operation end temperature T RD_off, the refrigeration fan 9a stop Thus, the refrigeration evaporator defrosting operation is completed (steps S113 and S114 in FIG. 7).

経過時間tで冷凍室温度センサ42が検知する冷凍室温度Tが冷凍運転終了温度TF_offに到達し,且つ,野菜室ダンパ19が閉鎖されていることから,冷凍運転が終了している(図7のステップS115)。このとき冷蔵室温度センサ41が検知する冷蔵室温度TRが冷蔵運転開始温度TR_on以上に達していることから,冷蔵運転開始条件が成立し(図7のステップS116),冷媒回収運転が行われている(図7のステップS117)。冷媒回収運転では,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動されて,冷凍用蒸発器14b内の冷媒が1.5分間回収される(ΔtB1=1.5min)。これにより,次の冷蔵運転での冷媒不足による冷却効率低下を抑制することができる。なお,このとき冷凍用ファン9bを駆動することで,冷凍用蒸発器14b内の残留冷媒を冷凍室7の冷却に活用するとともに,冷凍室7内の空気による加熱で,冷凍用蒸発器14b内の圧力低下が緩和される。これにより圧縮機24の吸込冷媒の比体積増加が抑制され,比較的短い時間で多くの冷媒を回収できるようになり,冷却効率を高めることができる。 Freezing compartment temperature T F of the freezing compartment temperature sensor 42 detects the elapsed time t 5 reaches the freezing operation completion temperature T F_off, and, since the vegetable compartment damper 19 is closed, the freezing operation is completed (Step S115 in FIG. 7). Since this time the refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 detects is reached over the refrigerating operation start temperature T R_on, refrigerating operation start condition is satisfied (step S116 in FIG. 7), the refrigerant recovering operation is row (Step S117 in FIG. 7). In the refrigerant recovery operation, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at speed 2 (1400 min −1 ), and the refrigeration fan 9 b is driven at speed 1 (1200 min −1 ). The refrigerant in the evaporator 14b is recovered for 1.5 minutes (Δt B1 = 1.5 min). Thereby, the cooling efficiency fall by the refrigerant | coolant shortage by the following refrigeration operation can be suppressed. At this time, by driving the refrigeration fan 9b, the refrigerant remaining in the refrigeration evaporator 14b is used for cooling the refrigeration chamber 7, and the inside of the refrigeration evaporator 14b is heated by the air in the refrigeration chamber 7. This reduces the pressure drop. As a result, an increase in the specific volume of the suction refrigerant in the compressor 24 is suppressed, and a large amount of refrigerant can be recovered in a relatively short time, thereby improving the cooling efficiency.

冷凍室7が冷却される運転は,冷凍野菜運転(t2〜t3),冷凍運転(t3〜t5),冷媒回収運転(t5〜t6)であり,これらの運転が行われている間の冷凍用蒸発器14bの時間平均温度は約−24℃となるように,冷凍用ファン9b及び圧縮機24が制御されている。また,冷蔵用ファン9aが駆動状態となっている冷凍運転、冷媒回収運転及び冷蔵用蒸発器除霜運転が行われている間の冷蔵室吐出空気温度の時間平均値は,-1.5℃であり,冷凍室維持温度TF_keep(−20℃)と冷蔵室維持温度TR_keep(4℃)の算術平均値(-8℃)より高い温度となっている。 The operation in which the freezer compartment 7 is cooled includes the frozen vegetable operation (t2 to t3), the freezing operation (t3 to t5), and the refrigerant recovery operation (t5 to t6). The refrigeration fan 9b and the compressor 24 are controlled so that the time average temperature of the evaporator 14b is about -24 ° C. The time average value of the refrigeration chamber discharge air temperature during the refrigeration operation, the refrigerant recovery operation, and the refrigeration evaporator defrosting operation in which the refrigeration fan 9a is in operation is −1.5 ° C. The temperature is higher than the arithmetic average value (−8 ° C.) of the freezer compartment maintenance temperature T F — keep (−20 ° C.) and the refrigerator compartment maintenance temperature T R — keep (4 ° C.).

冷媒回収運転が終了した経過時間tより再び,冷蔵運転が開始され(図7のステップS101),以後周期的に上述の運転が繰り返され,冷蔵室2は約4℃,冷凍室7は約-20℃,野菜室は約7℃に維持される。 Again from the elapsed time t 6 to the refrigerant recovery run is completed, refrigerating operation is started (step S101 in FIG. 7), are repeated periodically in the above operation thereafter, the refrigerating compartment 2 to about 4 ° C., the freezing compartment 7 about -20 ℃, vegetable room is maintained at about 7 ℃.

図10は本実施例に係る冷蔵庫を,32℃の環境下に設置しJISC9801−3:2015に定められた負荷冷却試験を実施した際の運転状態を表すタイムチャートである。冷蔵庫では,扉の開閉等が行われない状態で,安定して冷却運転が行われる状態だけでなく,食品等の実用的な負荷が投入された際に良好に冷却されることが重要となる。一般的な冷蔵庫の使われ方を十分考慮した上で,JISC9801−3:2015には実用的な負荷(以下,実用負荷と呼ぶ)が投入された場合を想定した「負荷冷却試験」が規定されており、実用負荷として,外気温度と等温の水を用い,冷蔵温度帯室(冷蔵室と野菜室)の定格内容積1Lあたり12g,冷凍度帯室(冷凍室)の定格内容積1Lあたり4gの水をそれぞれ冷蔵室と冷凍室に投入することが定められている。   FIG. 10 is a time chart showing an operation state when the refrigerator according to this example is installed in an environment of 32 ° C. and a load cooling test defined in JIS C9801-3: 2015 is performed. In refrigerators, it is important not only to open and close the doors, but also to cool them stably, as well as to cool well when a practical load such as food is applied. . JISC9801-3: 2015 defines a “load cooling test” that assumes a practical load (hereinafter referred to as “practical load”) after fully considering the usage of general refrigerators. As a practical load, water of the same temperature as the outside air is used, 12g per 1L rated internal volume of the refrigerated temperature zone (refrigerated room and vegetable room), 4g per 1L rated internal volume of the refrigeration zone (freezer compartment) It is stipulated that the water is put into the refrigerator compartment and the freezer compartment, respectively.

安定冷却運転における冷凍運転(図9参照)が行われている状態の経過時間t0において,JISC9801−3:2015に定められた手順に従って冷蔵室2の扉2aを1分間開放し,冷蔵温度帯室(冷蔵室2と野菜室6)の実用負荷として32℃の水5064g(冷蔵温度帯室(冷蔵室2及び野菜室6)の定格内容積422L分の負荷)を500mLペットボトルに封入して冷蔵室2内の所定位置に設置している。続いて,冷凍室7(下段冷凍室5)の扉5aを1分間開放し,32℃の水720g(冷凍温度帯室(冷凍室7)の定格内容積180L分の負荷)を冷凍室7(下段冷凍室5)内の所定位置に設置している。   At the elapsed time t0 in the state where the refrigeration operation (see FIG. 9) in the stable cooling operation is performed, the door 2a of the refrigerator compartment 2 is opened for one minute according to the procedure defined in JIS C9801-3: 2015, and the refrigerator compartment is kept. As a practical load of (refrigeration room 2 and vegetable room 6), 5064 g of water at 32 ° C. (a load corresponding to a rated internal volume of 422 L of the refrigeration temperature zone (refrigeration room 2 and vegetable room 6)) is sealed in a 500 mL plastic bottle and refrigerated. It is installed at a predetermined position in the chamber 2. Subsequently, the door 5a of the freezer compartment 7 (lower freezer compartment 5) is opened for 1 minute, and 720 g of water at 32 ° C. (the load corresponding to the rated internal volume of 180 L of the freezer temperature zone (freezer compartment 7)) is supplied to the freezer compartment 7 ( It is installed at a predetermined position in the lower freezer compartment 5).

これにより,まず冷蔵室温度Tが上昇し,冷蔵室高負荷判定温度TR_highを超えたために,冷蔵室2が高負荷であると判定される(図7のステップS110)。この時点では,冷蔵室温度Tは冷蔵室高負荷判定温度TR_highを超えて高負荷と判定されるが,冷凍室温度Tは高負荷判定温度TF_highに達していない。したがって,図8のステップS301は成立するが(Yes),ステップS302は成立しない(No)ため,次に冷媒回収運転の要否が判定される(図8のステップS401)。ステップS110の判定がなされた際の運転モードが冷凍運転となるため,ここでは冷媒回収運転要と判定され(図8のステップ401がYes),圧縮機24が速度2(1400min-1),冷凍用ファン9bが速度1(1200min-1)で駆動された状態で,冷凍用蒸発器14b内の冷媒が2.5分間(ΔtA2=2.5min)回収される冷媒回収運転が行われている(図8のステップS402)。このとき,冷凍用ファン9bが駆動されることで,冷凍用蒸発器14b内の残留冷媒の吸熱作用によって冷凍室7が冷却される(冷凍室冷却運転(F))。 Thus, first, the refrigerating compartment temperature T R is increased, due to exceeding the refrigerating chamber high load determination temperature T R_high, refrigerator compartment 2 is determined to be a high load (step S110 in FIG. 7). At this point, although the refrigerating compartment temperature T R is determined that a high load beyond the refrigerating compartment high load determination temperature T R_high, freezing compartment temperature T F does not reach the high load determination temperature T F_high. Therefore, although step S301 in FIG. 8 is satisfied (Yes), step S302 is not satisfied (No), and it is next determined whether or not the refrigerant recovery operation is necessary (step S401 in FIG. 8). Since the operation mode at the time of the determination in step S110 is the refrigeration operation, it is determined here that the refrigerant recovery operation is necessary (step 401 in FIG. 8 is Yes), the compressor 24 is at speed 2 (1400 min −1 ), and the refrigeration operation is performed. Refrigerant recovery operation is performed in which the refrigerant in the refrigeration evaporator 14b is recovered for 2.5 minutes (Δt A2 = 2.5 min) while the fan 9b is driven at a speed of 1 (1200 min -1 ). (Step S402 in FIG. 8). At this time, by driving the refrigeration fan 9b, the freezer compartment 7 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14b (freezer compartment cooling operation (F)).

経過時間t0’で冷媒回収運転が終了し,続いて,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動され,冷凍用ファン9bは停止状態となる高負荷モード冷蔵運転が行われている(図8のステップS403,S315)。 At the elapsed time t 0 ′, the refrigerant recovery operation ends, and then the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is at speed 3 (2500 min −1 ), and the refrigeration fan 9 a is at speed 3 ( The refrigeration fan 9b is driven at 2000 min −1 ), and the high load mode refrigeration operation in which the refrigeration fan 9b is stopped is performed (steps S403 and S315 in FIG. 8).

冷凍室7(下段冷凍室5)に投入した実用負荷によって,冷凍室温度Tが上昇して高負荷判定温度TF_highを超えるが,冷蔵運転移行後5分経過するまでは,図8に示すステップS316が成立しないため,高負荷モード冷蔵運転が継続される。 Although the freezer temperature TF rises and exceeds the high load judgment temperature TF_high due to the practical load put into the freezer compartment 7 (lower freezer compartment 5), it is shown in FIG. 8 until 5 minutes have passed since the transition to the refrigeration operation. Since step S316 is not established, the high load mode refrigeration operation is continued.

経過時間t1で冷蔵運転移行条件成立後の最低経過時間である5分が経過したことによって,図8に示すステップS316が成立し(Yes),冷媒回収運転(図8のステップS304)を経て,経過時間t1において過負荷モードに移行している(図8のステップS305)。このときの冷媒回収運転では,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が1.5分間回収される(ΔtB2=1.5min)。この冷媒回収運転は経過時間t’で完了する。冷媒回収運転中に,冷蔵用ファン9aが駆動されることで,冷蔵用蒸発器14a内の残留冷媒の吸熱作用によって冷蔵室2が冷却される。 By 5 minutes elapsed time t 1 is the lowest elapsed time after the refrigerating operation shift condition established has elapsed, satisfied step S316 shown in FIG. 8 (Yes), through the refrigerant recovering operation (steps S304 of FIG. 8) , Transition to the overload mode at the elapsed time t1 (step S305 in FIG. 8). In the refrigerant recovery operation at this time, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at the speed 3 (2500 min −1 ), and the refrigeration fan 9 a is driven at the speed 3 (2000 min −1 ). Thus, the refrigerant in the refrigeration evaporator 14a is recovered for 1.5 minutes (Δt B2 = 1.5 min). This refrigerant recovery operation is completed at the elapsed time t 1 ′. By driving the refrigeration fan 9a during the refrigerant recovery operation, the refrigeration chamber 2 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14a.

この経過時間t0’から経過時間t’に至るまでは,冷蔵室が冷却される運転状態(冷蔵室冷却運転(R))となる。 From the elapsed time t 0 ′ to the elapsed time t 1 ′, an operation state (cooling room cooling operation (R)) in which the refrigerator compartment is cooled is entered.

経過時間t1から過負荷モードとなり,冷凍室7を冷却する冷凍野菜運転が開始される(図8のステップS306)。過負荷モードの冷凍野菜運転は,三方弁が状態2(冷凍モード)に制御され,圧縮機24が速度4(3600min-1),冷凍用ファン9bが速度2(2000min-1)で駆動され,野菜室ダンパ19が開放された状態で行われる。この運転により冷凍室7及び野菜室6が冷却される。また,このとき冷蔵用ファン9aが速度1(900min-1)で駆動されることで,冷蔵用蒸発器除霜運転が実施される(図8のステップS307)。経過時間t2において,冷蔵用蒸発器温度センサ40aが検知する冷蔵用蒸発器14aの温度TRevpが冷蔵用蒸発器除霜運転終了温度TRD_offに到達したことにより,冷蔵用ファン9aが停止され,冷蔵用蒸発器除霜運転が終了している(図8のステップS310,S311)。 From the elapsed time t 1 becomes overloaded mode, frozen vegetables operation is started to cool the freezing chamber 7 (step S306 in FIG. 8). Frozen vegetables operation overload mode, three-way valve is controlled to a state 2 (freezing mode), the compressor 24 speed 4 (3600 min -1), freezing fan 9b is driven at a speed 2 (2000 min -1), This is performed with the vegetable room damper 19 opened. By this operation, the freezer compartment 7 and the vegetable compartment 6 are cooled. At this time, the refrigeration fan 9a is driven at a speed of 1 (900 min −1 ), so that the refrigeration evaporator defrosting operation is performed (step S307 in FIG. 8). In the elapsed time t 2, as the temperature T REVP of refrigerating evaporator 14a for refrigerating evaporator temperature sensor 40a detects reaches the refrigerating evaporator defrosting operation end temperature T RD_off, refrigerating fan 9a is stopped The refrigeration evaporator defrosting operation has been completed (steps S310 and S311 in FIG. 8).

経過時間tにおいて,野菜室温度センサ43が検知する野菜室温度Tが,野菜室冷却終了温度TV_off以下(TV≦TV_off)に到達したことによって野菜室ダンパ19が閉鎖され冷凍運転に移行している(図8のステップS308,S309)。 In the elapsed time t 3, the vegetable compartment temperature T V of vegetable compartment temperature sensor 43 is detected, vegetable compartment damper 19 is closed by reaching the following vegetable compartment cooling end temperature T V_off (T V ≦ T V_off ) refrigerating operation (Steps S308 and S309 in FIG. 8).

経過時間tにおいて,過負荷モードの冷凍野菜運転開始からの経過時間が所定値(42.5min)に到達したため,冷凍野菜/冷凍運転終了条件が成立し(図8のステップS312),冷凍運転が終了され,冷媒回収運転に移行している。このときの冷媒回収運転は,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度4(3600min-1),冷凍用ファン9bが速度2(2000min-1)で駆動されて,冷凍用蒸発器14b内の冷媒が1.5分間回収される(ΔtC2=1.5min)。この冷媒回収運転は経過時間t’で完了する。冷媒回収運転中に,冷凍用ファン9bが駆動されることで,冷凍用蒸発器14b内の残留冷媒の吸熱作用によって冷凍室7が冷却される。以上から,以上から,経過時間t’〜t’は冷凍室7が冷却される運転(冷凍室冷却運転(F))となる。 In the elapsed time t 4, since the elapsed time from the frozen vegetables operation start overload mode has reached a predetermined value (42.5Min), frozen vegetables / freezing operation end condition is satisfied (step S312 in FIG. 8), the freezing operation Has been completed and the operation has shifted to the refrigerant recovery operation. Refrigerant recovery operation at this time, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 speed 4 (3600 min -1), freezing fan 9b is driven at a speed 2 (2000 min -1) Thus, the refrigerant in the freezing evaporator 14b is recovered for 1.5 minutes (Δt C2 = 1.5 min). This refrigerant recovery operation is completed at the elapsed time t 4 ′. By driving the refrigeration fan 9b during the refrigerant recovery operation, the freezer compartment 7 is cooled by the endothermic action of the residual refrigerant in the refrigeration evaporator 14b. From the above, the elapsed times t 1 ′ to t 4 ′ are operations in which the freezer compartment 7 is cooled (freezer compartment cooling operation (F)).

続いて,通常運転モードへの移行が判定されるが(図8のステップS312),経過時間t’においては冷蔵室温度T,冷凍室温度Tともに冷蔵運転開始温度TR_on及び冷凍野菜運転開始温度TF_onより高いため成立せず,過負荷モードの冷蔵運転に移行する(図8のステップS315)。これにより,三方弁52が状態1(冷蔵モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動され,冷凍用ファン9bは停止状態となる過負荷モードの冷蔵運転が行われている(図8のステップS315,S315)。 Subsequently, the shift to the normal operation mode is determined (step S312 in FIG. 8), the refrigerating compartment temperature T R in the elapsed time t 4 ', the freezing compartment temperature T F together refrigerating operation start temperature T R_on and frozen vegetables Since it is higher than the operation start temperature TF_on , it is not established, and the operation shifts to the overload mode refrigeration operation (step S315 in FIG. 8). As a result, the three-way valve 52 is controlled to the state 1 (refrigeration mode), the compressor 24 is driven at speed 3 (2500 min −1 ), the refrigeration fan 9 a is driven at speed 3 (2000 min −1 ), and the freezing fan 9 b is The refrigeration operation in the overload mode that is in a stopped state is performed (steps S315 and S315 in FIG. 8).

経過時間tにおいて過負荷モードの冷蔵運転の継続時間が所定値(20.5min)に到達したことにより,冷蔵運転終了条件が成立し(図8のステップS317),冷媒回収運転に移行している(図8のステップS318)。このときの冷媒回収運転は,三方弁52が状態3(全閉モード)に制御され,圧縮機24が速度3(2500min-1),冷蔵用ファン9aが速度3(2000min-1)で駆動されて,冷蔵用蒸発器14a内の冷媒が1.5分間回収される。この冷媒回収運転は経過時間t’で完了する(経過時間t〜t1’で実施される冷媒回収運転と同様の制御)。以上から,経過時間t4’〜t5’は冷蔵室2が冷却される運転(冷蔵室冷却運転(R))となる。 By the elapsed time t duration of refrigerating operation overload mode in 5 has reached the predetermined value (20.5min), (step S317 of FIG. 8) refrigerating operation end condition is satisfied, the process proceeds to the refrigerant recovery run (Step S318 in FIG. 8). In this refrigerant recovery operation, the three-way valve 52 is controlled to the state 3 (fully closed mode), the compressor 24 is driven at speed 3 (2500 min −1 ), and the refrigeration fan 9 a is driven at speed 3 (2000 min −1 ). Thus, the refrigerant in the refrigeration evaporator 14a is recovered for 1.5 minutes. This refrigerant recovery operation is completed at the elapsed time t 5 ′ (control similar to the refrigerant recovery operation performed at the elapsed time t 1 to t 1 ′). From the above, the elapsed time t 4 ′ to t 5 ′ is an operation (cooling room cooling operation (R)) in which the refrigerator compartment 2 is cooled.

以後は経過時間t’〜t’と同様の制御により冷蔵室2,冷凍室7,野菜室6の冷却が行われている。具体的には,経過時間t〜t,t〜t12,t13〜t17が冷凍室冷却運転,経過時間t〜t,t12〜t13,t17〜t19が冷蔵室冷却運転となる。また,t〜t,t〜t10,t13〜t14には冷蔵用蒸発器除霜運転が実施されている。 Thereafter refrigerating compartment 2 by the same control as the elapsed time t 1 '~t 5', the freezing compartment 7, the cooling of the vegetable compartment 6 is performed. Specifically, the elapsed time t 5 ~t 8, t 9 ~t 12, t 13 ~t 17 refrigeration compartment cooling operation, the elapsed time t 8 ~t 9, t 12 ~t 13, t 17 ~t 19 is Refrigerated room cooling operation. Also, t 5 ~t 6, t 9 ~t 10, t 13 refrigerating evaporator defrosting operation to ~t 14 is performed.

実用負荷が十分冷却されたか否かは、冷蔵室温度Tが冷蔵室維持温度TRkeep+1℃以下,冷凍室温度Tが冷凍室維持温度TFkeep+1℃以下にまで冷却されたか否かで判定できる。冷蔵室維持温度TRkeep+1℃以下と冷凍室維持温度TFkeep+1℃以下は同時に満たしていなくてもよい。本明細書では、冷蔵室2に負荷が投入された時点から、冷蔵室2と冷凍室7に投入された実用負荷が十分に冷却されたとみなせる状態に至るまでを負荷冷却区間と呼ぶ。本実施例の冷蔵庫では、図10に示すt16で冷凍室温度Tが冷凍室維持温度TF_keep+1℃に到達し、t18で冷蔵室温度Tが冷蔵室維持温度TR_keep+1℃に到達しているので、実用負荷が冷蔵室2に投入されたtから、冷蔵室2と冷凍室7の実用負荷が十分に冷却されたとみなせるt18までが負荷冷却区間となる。 Whether practical load is sufficiently cooled, the refrigerating compartment temperature T R is the refrigerating compartment maintained temperature T Rkeep + 1 ℃ or less, depending on whether or not the freezing compartment temperature T F is cooled to below freezing compartment maintained temperature T Fkeep + 1 ℃ Can be judged. The refrigerator compartment maintenance temperature T Rkeep + 1 ° C. or less and the freezer compartment maintenance temperature T Fkeep + 1 ° C. or less may not be satisfied simultaneously. In the present specification, a period from when a load is applied to the refrigerator compartment 2 to a state where the practical loads input to the refrigerator compartment 2 and the freezer compartment 7 can be regarded as sufficiently cooled is referred to as a load cooling section. In the refrigerator of this embodiment, the freezer compartment temperature T F reaches the freezer compartment maintenance temperature T F_keep + 1 ° C. at t 16 shown in FIG. 10, and the refrigerating compartment temperature T R reaches the refrigerator compartment maintenance temperature T R_keep + 1 ° C. at t 18. Thus, the load cooling section is from t 0 when the practical load is input to the refrigerator compartment 2 to t 18 where the practical loads of the refrigerator compartment 2 and the freezer compartment 7 can be considered sufficiently cooled.

ここで、本実施例の冷蔵庫では、冷蔵室2と冷凍室7に投入された実用負荷の冷却状態は、冷蔵室温度センサ41が検知する冷蔵室温度Tと、冷凍室温度センサ42が検知する冷凍室温度TFにより判別できるようにしているが、より確実に実用負荷の冷却状態を判別するために、JISC9801−1:2015に定められた方法で冷蔵室2と,冷凍室7を代表する温度を測定し、その温度に基づいて実用負荷の冷却状態を判別してもよい。
経過時間t19においては,通常運転モードに移行するかの判定が行われ(図8のステップS319),冷蔵室温度Tが冷蔵運転開始温度TR_on以下(TR≦TR_on),冷凍室温度Tが冷凍野菜運転開始温度TF_on以下(TR≦TF_on)を同時に満たしているので,過負荷モードが終了し(図8のステップS319がYes),t19以降は通常運転モードによる冷却が行われている。
Here, the refrigerator of the present embodiment, the cooling state of the refrigerator compartment 2 and the freezer compartment has been practically load application 7 includes a refrigerating compartment temperature T R which is refrigerating chamber temperature sensor 41 for detecting, detected freezer compartment temperature sensor 42 The freezer compartment 2 and the freezer compartment 7 are represented by the method defined in JIS C9801-1: 2015 in order to more reliably discriminate the cooling state of the practical load. The temperature may be measured, and the cooling state of the practical load may be determined based on the temperature.
In the elapsed time t 19, (step S319 of FIG. 8) determines whether to shift to the normal operation mode is performed, the refrigerating compartment temperature T R refrigeration operation start temperature T R_on below (T R ≦ T R_on), freezing chamber since the temperature T F meets frozen vegetables operation start temperature T F_on below (T R ≦ T F_on) simultaneously, by the overload mode ends (step S319 of FIG. 8 Yes), t 19 after the normal operation mode Cooling is taking place.

このように,tにおいて冷蔵室2と冷凍室7に実用負荷を投入することによって,冷蔵室2と冷凍室7の何れも負荷が高い状態となるため過負荷モードとなり,冷蔵室2が冷却される運転(冷蔵室冷却運転)と,冷凍室7が冷却される運転(冷凍室冷却運転)が交互に行われ,t18で実用負荷が十分に冷却され,通常モードに戻っている。 In this way, by putting a practical load on the refrigerator compartment 2 and the freezer compartment 7 at t 0 , both the refrigerator compartment 2 and the freezer compartment 7 are in a high load state, so that the overload mode is entered, and the refrigerator compartment 2 is cooled. and it is the driver (the refrigerating compartment cooling operation), the operation of the freezing compartment 7 is cooled (freezer compartment cooling operation) is performed alternately, practical load t 18 is sufficiently cooled, and returned to the normal mode.

1718で実用負荷が十分に冷却されるまでに,冷凍室温度Tは,tにおいてTF1(=-7℃),t’においてTF2(=-11℃),tにおいてTF3(=-14℃),t13においてTF4(=-16.5℃)の極大値を取るが,各極大値は漸次低下している(TF1>TF2>TF3>TF4)。 Until the practical load is sufficiently cooled at t 1718 , the freezer compartment temperature T F is T F1 (= −7 ° C.) at t 1 , T F2 (= −11 ° C.) at t 5 ′, and T F at t 9 . The maximum value of T F4 (= −16.5 ° C.) is taken at F3 (= −14 ° C.) and t 13 , but each maximum value gradually decreases (T F1 > T F2 > T F3 > T F4 ). .

また,負荷冷却区間(t〜t18)の運転において,冷蔵室2が冷却される冷蔵室冷却運転(t’〜t’,t’〜t’,t〜t,t12〜t13,t17〜t18)における冷蔵用蒸発器14aの時間平均温度TRevp_aveは-6.0℃,冷凍室7が冷却される冷凍室冷却運転(t0〜t0’,t’〜t’,t’〜t,t〜t12,t13〜t17)における冷凍用蒸発器14bの時間平均温度TFevp_aveは-23.0℃であり,TRevp_ave>TFevp_aveとなっている。 In the operation of the load cooling section (t 0 to t 18 ), the refrigerator compartment cooling operation (t 0 ′ to t 1 ′, t 4 ′ to t 5 ′, t 8 to t 9 , t 12 ~t 13, t 17 ~t 18 time average temperature T Revp_ave the refrigerating evaporator 14a in) is -6.0 ° C., freezing compartment cooling operation the freezing compartment 7 is cooled (t 0 ~t 0 ', t 1 ′ to t 4 ′, t 5 ′ to t 8 , t 9 to t 12 , t 13 to t 17 ), the time average temperature T Fevp_ave of the refrigeration evaporator 14 b is −23.0 ° C., and T Revp_ave > T Fevp_ave .

さらに,負荷を投入した時点から,通常運転モードが再開されるまで(t〜t17)の運転における,冷蔵室冷却運転となる時間比率(t〜t17の運転におけるt’〜t’,t’〜t’,t〜t,t12〜t13,t16〜t17の時間割合)R=34%,冷凍室7が冷却される冷凍室野菜室冷却運転または冷凍室冷却運転となる時間比率(t〜t17の運転におけるt0〜t0’,t’〜t’,t’〜t,t〜t12,t13〜t16の時間割合)R=66%であり両者の比R/R=1.94となる。一方,外気温度Tout (=32℃),冷蔵用蒸発器14aの空気側伝熱面積ARevp (=0.993m),冷蔵用蒸発器14aの冷蔵室冷却運転中の時間平均温度をTRevp_ave (=−6.0℃),冷蔵室維持温度をTR_keep (=4.0℃),冷凍用蒸発器14bの空気側伝熱面積AFevp (=1.146m),冷凍用蒸発器14bの冷凍室冷却運転中の時間平均温度をTFevp_ave (=−23.0℃,冷凍室維持温度をTF_keep (=−20℃),冷蔵温度帯室(冷蔵室及び野菜室)の定格内容積V (=422L ),冷凍室定格内容積VF (=180L),水の比熱をC(=4.186kJ/kg℃ ),氷の比熱をCi(=2.05kJ/kg℃ ),水の凝固潜熱L (=333.6kJ/kg)として, {ARevp×(TR_keep-TRevp_ave)}/{AFevp×(TF_keep-TFevp_ave)}×{4×V×(C×Tout-Ci×TF_keep+L)}/[12×V×{C×(Tout−TR_keep)}]を算出すると1.78となり,R/R(=1.94)の方が高くなっている。このように制御することで,大容量の冷凍室と,実用的な冷却性能の両立を図ることができる(詳細は後述)。 Furthermore, from the point of introducing the load, t 0 in the operation in the normal in operation until the operation mode is resumed (t 0 ~t 17), the time ratio as an refrigerating compartment cooling operation (t 0 ~t 17 '~t 1 ', t 4' ~t 5 ', t 8 ~t 9, t 12 ~t 13, t 16 time rate of ~t 17) R R = 34% , the freezing compartment vegetable compartment cooling the freezing compartment 7 is cooled Time ratio for operation or freezer cooling operation (t 0 to t 0 ′, t 1 ′ to t 4 ′, t 5 ′ to t 8 , t 9 to t 12 , t 13 to t 0 to t 17 t 16 time ratio) R F = 66%, and the ratio R F / R R = 1.94 of the two. On the other hand, the outside air temperature T out (= 32 ° C.), the air side heat transfer area A Revp (= 0.993 m 2 ) of the refrigeration evaporator 14a, and the time average temperature during the refrigeration chamber cooling operation of the refrigeration evaporator 14a are T Revp_ave (= −6.0 ° C.), refrigeration room maintenance temperature is T R_keep (= 4.0 ° C.), air side heat transfer area A Fevp (= 1.146 m 2 ) of refrigeration evaporator 14b, refrigeration evaporator 14b b freezing room cooling operation time average temperature T Fevp_ave (= -23.0 ℃, freezing room maintenance temperature TF_keep (= -20 ℃), refrigeration temperature zone (refrigeration room and vegetable room) rated content Product V R (= 422 L), freezer rated internal volume V F (= 180 L), water specific heat C W (= 4.186 kJ / kg ° C.), ice specific heat C i (= 2.05 kJ / kg ° C.) ), The solidification latent heat of water L W (= 333.6 kJ / kg), {A Revp × ( TR_keep −T Revp_ave )} / {A Fevp × (T F_keep -T Fevp_ave)} × {4 × V F × (C W × T out -C i × T F_keep + L W)} / [12 × V R × {C W × (T out -T R_keep) }] Is 1.78, which is higher in R F / R R (= 1.94) By controlling in this way, a large-capacity freezer room and practical cooling performance can be obtained. Both can be achieved (details will be described later).

以上で,本実施例の冷蔵庫の構成と制御方法を説明したが,次に,本実施形態の冷蔵庫の奏する効果について説明する。   The configuration and control method of the refrigerator of this embodiment have been described above. Next, the effects achieved by the refrigerator of this embodiment will be described.

本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室)と,野菜室6(第二冷蔵温度帯室)と,冷凍室7を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用送風機9a(第一送風機)と,冷凍室7の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9b(第二送風機)を備え,第一送風機の駆動により冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用ファン9bの駆動により冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,第一風路と第二風路の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。これにより,野菜室と冷蔵室とを独立して冷却できるため,例えば野菜室に温度が高い食品を収納した,あるいは,食品等を挟み込むことにより野菜室扉と断熱箱体の間に隙間が生じているといった事由により野菜室の負荷が大きくなった場合においても,野菜室と一緒に冷蔵室を冷却する必要がなく,冷蔵室を過度に冷却することが抑制できるので,冷蔵室の冷却効率低下を防ぐことが可能である。また,特許文献1のように隔壁などを介して冷凍室の冷気で野菜室を間接的に冷却する構成と異なり,冷凍用蒸発器と熱交換した空気を野菜室に送風して冷却できるので,冷凍室を過度に低温に維持することによる冷凍室の冷却効率低下も防ぐことが可能である。すなわち,一部の貯蔵室の負荷を冷却するために,冷蔵庫全体としての冷却効率が低下するという問題が生じ難い冷蔵庫,すなわち,冷蔵庫全体としての冷却効率が高い冷蔵庫となる。   The refrigerator of the present embodiment includes a refrigerator compartment 2 (first refrigerator temperature zone chamber), a vegetable compartment 6 (second refrigerator temperature zone chamber), and a freezer compartment 7, and a refrigerator evaporator 14a at the back of the refrigerator compartment 2 is provided. (First evaporator) and refrigeration blower 9a (first blower), and a freezing evaporator 14b (second evaporator) and a freezing fan 9b (second blower) on the back of the freezer compartment 7, Refrigeration air passage 111 (first air passage) for circulating the cooling air heat-exchanged with refrigeration evaporator 14a by driving the blower into refrigeration chamber 2, and heat exchange with refrigeration evaporator 14b by driving refrigeration fan 9b An air flow blocking means (not shown) that includes a frozen vegetable air passage 112 (second air passage) for circulating cooling air to the freezer compartment 7 and the vegetable compartment 6 and that interrupts the air flow between the first air passage and the second air passage ( A heat insulating partition wall 28) is provided. As a result, the vegetable compartment and the refrigerator compartment can be cooled independently. For example, food with high temperature is stored in the vegetable compartment, or food is sandwiched between the vegetable compartment door and the heat insulation box. Even if the load on the vegetable room increases due to reasons such as the fact that it is not necessary to cool the refrigerator room together with the vegetable room, it is possible to suppress excessive cooling of the refrigerator room, so the cooling efficiency of the refrigerator room decreases. It is possible to prevent. Moreover, unlike the structure which cools a vegetable room indirectly with the cold air of a freezer compartment through a partition etc. like patent document 1, since the air which heat-exchanged with the freezing evaporator can be sent and cooled to a vegetable room, It is possible to prevent the cooling efficiency of the freezer compartment from being lowered by maintaining the freezer compartment at an excessively low temperature. That is, since the load of a part of the storage rooms is cooled, a refrigerator in which the cooling efficiency of the entire refrigerator is unlikely to occur, that is, a refrigerator having a high cooling efficiency as the entire refrigerator is obtained.

本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室),冷凍室7,野菜室6(第二冷蔵温度帯室)のうち,定格内容積が最大の冷蔵室2(第一冷蔵温度帯室)に冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。一般に,定格内容積が大きいほどユーザーはより多くの食品を収納することができるため,定格内容積が大きい貯蔵室は冷却負荷が大きくなる場合が多い。したがって,冷蔵室2(第一冷蔵温度帯室),冷凍室7,野菜室6(第二冷蔵温度帯室)のうち,定格内容積が最大となる冷蔵室2に冷却空気を流す冷蔵風路111と,冷凍野菜風路112の間で空気が流通しないように空気流通遮断手段(断熱仕切壁28)を設けることで,定格内容積が最大の貯蔵室の負荷の影響によって,他の冷凍室や野菜室の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator according to the present embodiment includes the refrigerator compartment 2 (first refrigerator compartment) having the maximum rated internal volume among the refrigerator compartment 2 (first refrigerator compartment), the freezer compartment 7, and the vegetable compartment 6 (second refrigerator compartment). The refrigeration air passage 111 (first air passage) through which the cooling air heat-exchanged with the refrigeration evaporator 14a flows to the refrigeration chamber 2 and the cooling air heat-exchanged with the refrigeration evaporator 14b in the freezing compartment 7 And a frozen vegetable air passage 112 (second air passage) that circulates in the vegetable compartment 6, and air flow blocking means (heat insulating partition wall 28) that blocks air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112. It has. In general, the larger the rated internal volume is, the more the food can be stored by the user. Therefore, a storage room with a large rated internal volume often has a large cooling load. Therefore, among the refrigerator compartment 2 (first refrigerator temperature zone room), the freezer compartment 7, and the vegetable compartment 6 (second refrigerator temperature zone compartment), a refrigerator air passage for flowing cooling air to the refrigerator compartment 2 having the maximum rated internal volume. By providing air flow blocking means (heat insulating partition wall 28) so that air does not flow between 111 and the frozen vegetable air passage 112, other freezer compartments are affected by the load of the storage compartment having the maximum rated internal volume. It is possible to prevent the food in the vegetable room or the like from being warmed, and the refrigerator has a high cooling efficiency.

本実施例の冷蔵庫は,最上段の貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111(第一風路)と,冷蔵室2の下段に位置する冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。一般に,冷蔵庫が設置される環境(例えばキッチン等)では,空調機等により積極的な空気の攪拌が行われていない場合には,上下方向の温度分布(温度成層)が形成され,上方ほど空気温度が高くなる傾向が生じる。したがって,最上部の貯蔵室は,扉の開閉操作時により温度が高い空気が流入しやすく,負荷が大きくなりやすい。そこで,本実施例の冷蔵庫は,最上段の貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111と,その下部の貯蔵室である冷凍室7及び野菜室6に冷却空気を流通させる冷凍野菜風路112の間で空気が流通しないように空気流通遮断手段(断熱仕切壁28)を備えることで,最上部の貯蔵室の負荷の影響によって,他の貯蔵室(冷凍室や野菜室)の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator according to the present embodiment is located in the refrigeration air passage 111 (first air passage) through which cooling air flows to the refrigerating room 2 (first refrigerating temperature zone room) which is the uppermost storage room, and in the lower stage of the refrigerating room 2. A freezing vegetable air passage 112 (second air passage) for allowing cooling air to flow through the freezer compartment 7 and the vegetable compartment 6 and shutting off air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112 Means (heat insulating partition wall 28) are provided. Generally, in an environment where a refrigerator is installed (for example, a kitchen), when air is not actively stirred by an air conditioner or the like, a temperature distribution (temperature stratification) in the vertical direction is formed, and the air is more upward. There is a tendency for the temperature to rise. Therefore, the uppermost storage room is likely to have a higher temperature when the door is opened and closed, and the load is likely to increase. Therefore, the refrigerator of the present embodiment includes a refrigeration air passage 111 through which cooling air flows to the refrigeration room 2 (first refrigeration temperature zone room) that is the uppermost storage room, the freezing room 7 that is the lower storage room, and By providing an air flow blocking means (heat insulating partition wall 28) so that air does not flow between the frozen vegetable air passages 112 through which the cooling air flows to the vegetable compartment 6, other effects can be obtained due to the load of the uppermost storage chamber. It is possible to make it difficult for food in the storage room (freezer room or vegetable room) to be warmed, resulting in a refrigerator with high cooling efficiency.

なお本実施例の冷蔵庫のように,上方から冷蔵室(冷凍温度帯室),冷凍室(冷凍温度帯室),野菜室(冷蔵温度帯室)の順に配置する冷蔵庫においては,最上段の冷蔵室(冷凍温度帯室)と隣接する冷凍室は低温に維持される貯蔵室となるため,冷蔵室に流入した負荷の影響により冷凍室の食品等が温められてしまうといった事態が生じやすい。すなわち,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えることは,上方から冷蔵室(冷凍温度帯室),冷凍室(冷凍温度帯室),野菜室(冷蔵温度帯室)の順に配置する冷蔵庫において特に有効となる。   As in the refrigerator of this embodiment, in the refrigerator arranged in the order of the refrigerator compartment (freezer temperature zone), the freezer compartment (freezer temperature zone), and the vegetable compartment (refrigerator temperature zone chamber) from the top, Since the freezing room adjacent to the room (freezing temperature zone room) is a storage room that is maintained at a low temperature, the food in the freezing room is likely to be warmed due to the influence of the load flowing into the refrigerating room. That is, the provision of the air flow blocking means (the heat insulating partition wall 28) for blocking the flow of air between the refrigerated air path 111 and the frozen vegetable air path 112 means that the refrigeration room (freezing temperature zone room), freezing room ( This is particularly effective in refrigerators that are arranged in the order of a freezing temperature zone) and a vegetable room (refrigeration temperature zone).

本実施例の冷蔵庫は,シール部材(パッキン)の全周長が最大となる貯蔵室である冷蔵室2(第一冷蔵温度帯室)に冷却空気を流通させる冷蔵風路111(第一風路)と,冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112(第二風路)を備え,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えている。扉シール部は,食品や食品包装材の挟み込み等によって微小な隙間が生じ,外気と貯蔵室内空気の流入出が起きて負荷が大きくなることがある。扉と断熱箱体の間のシール長さが長い,すなわち,シール部材の全周長が長いほど,そのような事態が発生しやすくなるため,本実施例の冷蔵庫は,シール部材(パッキン)の全周長が最大となる貯蔵室である冷蔵室2に冷却空気を流通させる冷蔵風路111と,冷蔵室2の下段に位置する冷凍室7と野菜室6に冷却空気を流通させる冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備えることで,シール部材(パッキン)の全周長が最大となる貯蔵室の負荷の影響によって,他の貯蔵室(冷凍室や野菜室)の食品等が温められてしまうといった事態が生じ難くすることができ,冷却効率が高い冷蔵庫となる。   The refrigerator of the present embodiment has a refrigeration air passage 111 (first air passage) for circulating cooling air to the refrigeration chamber 2 (first refrigeration temperature zone chamber) that is a storage chamber in which the entire circumference of the seal member (packing) is maximum. ), And a frozen vegetable air passage 112 (second air passage) for allowing cooling air to flow through the freezer compartment 7 and the vegetable compartment 6, and air that interrupts the air flow between the refrigerated air passage 111 and the frozen vegetable air passage 112. A flow blocking means (heat insulating partition wall 28) is provided. In the door seal portion, a minute gap may be generated due to food or food packaging material being sandwiched, and the load may increase due to the inflow and outflow of outside air and storage room air. Since the longer the seal length between the door and the heat insulating box, that is, the longer the entire circumference of the seal member, such a situation is more likely to occur. Therefore, the refrigerator of this embodiment has a seal member (packing) A refrigerated air passage 111 for circulating cooling air to the refrigerated room 2, which is a storage room having the maximum perimeter, and a frozen vegetable style for circulating cooling air to the freezing room 7 and the vegetable room 6 located in the lower stage of the refrigerated room 2 By providing an air flow blocking means (heat insulating partition wall 28) that blocks the flow of air between the passages 112, other storages are caused by the influence of the load of the storage chamber that maximizes the total circumference of the seal member (packing). It is possible to prevent a situation where food in the room (freezer room or vegetable room) is warmed, and the refrigerator has a high cooling efficiency.

本実施例の冷蔵庫は,安定冷却運転中において,冷蔵室2の維持温度をTR_keep(設定「中」の場合は約4℃),冷凍室7の維持温度をTF_keep(設定「中」の場合は約-20℃),冷蔵運転時の冷蔵用蒸発器14aの時間平均温度をTRevp_aveとすると,以下の(式1)が満足されるように,蒸発器温度調整手段(圧縮機24及び冷蔵用ファン9a)の回転速度を制御している。 In the refrigerator of this embodiment, during the stable cooling operation, the maintenance temperature of the refrigerator compartment 2 is T R_keep (about 4 ° C in the case of setting “medium”), and the maintenance temperature of the freezer compartment 7 is T F_keep (setting “medium”). When the average temperature of the refrigeration evaporator 14a during the refrigeration operation is T Revp_ave , the evaporator temperature adjusting means (the compressor 24 and the compressor 24 and the following equation 1) is satisfied. The rotational speed of the refrigeration fan 9a) is controlled.

Figure 2019132497
Figure 2019132497

一般に,冷凍サイクルでは,冷却運転時の蒸発器の時間平均温度が高くなるように圧縮機と蒸発器に送風する送風機の回転速度を制御すると,冷凍サイクル成績係数が向上して冷却効率が高くなる。従って維持される温度が高い冷蔵室を冷却する際の蒸発器の時間平均温度を上げることが冷却効率向上に有効となる。しかしながら,冷蔵室を冷却する冷却空気が,冷凍室に流通する経路が存在する場合,低温に維持される冷凍室の温度が上昇してしまうため,冷蔵運転時の蒸発器の時間平均温度を十分高くすることができなかった。そこで,本実施例の冷蔵庫では,冷蔵風路111と冷凍野菜風路112の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)を備え,且つ,圧縮機24及び冷蔵用ファン9aの回転速度を制御することで,冷蔵運転時の冷蔵用蒸発器の時間平均温度を十分高め,(式1)に示す関係を満足するようにして,冷却効率が高い冷蔵庫としている。なお,冷凍室が複数存在し,その維持温度が複数にわたる場合は,最も低温となる貯蔵室の温度を(式1)におけるTF_keepとすれば良い。 In general, in the refrigeration cycle, controlling the rotation speed of the blower that blows air to the compressor and evaporator so that the time average temperature of the evaporator during cooling operation is higher, the refrigeration cycle coefficient of performance improves and the cooling efficiency increases. . Therefore, raising the time average temperature of the evaporator when cooling the refrigerator compartment where the temperature maintained is high is effective for improving the cooling efficiency. However, if there is a route through which the cooling air that cools the refrigerator compartment flows to the freezer compartment, the temperature of the freezer compartment that is maintained at a low temperature will rise. Could not be high. Therefore, the refrigerator of the present embodiment is provided with air flow blocking means (heat insulating partition wall 28) that blocks the flow of air between the refrigerated air path 111 and the frozen vegetable air path 112, and includes the compressor 24 and the refrigeration fan. By controlling the rotational speed of 9a, the time average temperature of the refrigeration evaporator during the refrigeration operation is sufficiently increased, and the refrigerator shown in (Equation 1) is satisfied, so that the refrigerator has high cooling efficiency. When there are a plurality of freezer compartments and the maintenance temperature ranges over a plurality of temperatures, the temperature of the storage compartment having the lowest temperature may be set to TF_keep in (Equation 1).

本実施例の冷蔵庫は,安定冷却運転中において,冷蔵室維持温度TR_keepと冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveの差をΔT(=TR_keep−TRevp_ave),蒸発器温度に対する冷凍サイクル理論成績係数をCOPthとした場合に,(式2)を満足するように蒸発器温度調整手段(圧縮機24及び冷蔵用ファン9a)を制御している。これにより,風量向上の有効性が高い範囲で効率よく冷却運転を実施することができる。 In the refrigerator of this embodiment, during the stable cooling operation, the difference between the refrigerating room maintenance temperature T R_keep and the time average temperature T Revp_ave of the refrigerating evaporator 14a during the refrigerating operation is ΔT (= T R_keep− T Revp_ave ). When the refrigeration cycle theoretical coefficient of performance with respect to temperature is COP th , the evaporator temperature adjusting means (the compressor 24 and the refrigeration fan 9a) is controlled so as to satisfy (Equation 2). As a result, the cooling operation can be carried out efficiently within a range in which the effectiveness of air volume improvement is high.

Figure 2019132497
Figure 2019132497

理由を図11及び図12を参照しながら説明する。図11(a)は,理論サイクル成績係数COPth(圧縮機効率100%時の成績係数)と冷蔵用蒸発器温度の関係及び,冷蔵室維持温度TR_keepと,蒸発器の温度Tevpの差の逆数ΔT−1(=1/(TR_keep−Tevp))を示すグラフである。また,図11(b)は,ΔT−1 と COPthの差を蒸発器温度Tevpで微分した関数(=d(COPth)/dTevp − d(ΔT−1)/dTevp)を表すグラフである。 The reason will be described with reference to FIGS. FIG. 11 (a) shows the relationship between the theoretical cycle performance coefficient COP th (coefficient of performance when the compressor efficiency is 100%) and the refrigeration evaporator temperature, and the difference between the refrigeration chamber maintenance temperature TR_keep and the evaporator temperature T evp . Is a graph showing an inverse number ΔT −1 (= 1 / (T R_keep −T evp )). FIG. 11B shows a function (= d (COP th ) / dT evp −d (ΔT −1 ) / dT evp ) obtained by differentiating the difference between ΔT −1 and COP th with the evaporator temperature T evp. It is a graph.

ここで,図11(a)に示す理論成績係数COPthの求め方について図12を参照しながら説明する。図12は一般的な冷蔵庫の冷凍サイクルの動作状態を表すモリエル線図である。配管における圧力損失を無視し,低圧側(蒸発器側)における圧力は,蒸発器温度(蒸発温度)により定まる圧力で一定とすることで,圧縮機の吸い込み冷媒の状態(状態1)を定める。また,高圧側(凝縮器側)は,外気温度を凝縮温度(二相域の温度)として,凝縮温度により定まる圧力で一定とする。また,凝縮器出口(キャピラリチューブ入口)の冷媒状態を飽和液(状態3),蒸発器出口の冷媒状態を飽和蒸気(状態5),キャピラリチューブと蒸発器から圧縮機に至る配管と完全に熱交換(図4における接触部57aの作用)するものとして,圧縮機吸い込み冷媒の温度を凝縮器出口温度(状態1)とする。また,圧縮機の効率を100%(断熱圧縮)とすることで,圧縮機吐出の状態(状態2)が定まり,キャピラリチューブと蒸発器から圧縮機に至る配管と完全に熱交換するという仮定(図4中のΔh1=Δh2)から,蒸発器入口の冷媒状態(状態4)が定まる。これらにより,外気温度と,蒸発器温度を定めることで,冷媒物性に基づいて理論成績係数COPthを理論冷却能力Qthと理論圧縮動力Wthの比(COPth=Qth/Wth)として算出することができる。この理論成績係数COPthは,圧縮機の効率に依らない冷却効率を表す指標となる。なお,図11(a)に示す理論成績係数COPthはと蒸発器温度Tevpの関係は,冷媒をイソブタン,外気温度Tout=32℃として算出したものである。 Here, how to obtain the theoretical coefficient of performance COP th shown in FIG. 11A will be described with reference to FIG. FIG. 12 is a Mollier diagram showing an operation state of a refrigeration cycle of a general refrigerator. The pressure loss in the piping is ignored, and the pressure on the low pressure side (evaporator side) is constant at a pressure determined by the evaporator temperature (evaporation temperature), thereby determining the state of refrigerant sucked by the compressor (state 1). On the high pressure side (condenser side), the outside air temperature is set as the condensation temperature (temperature in the two-phase region), and the pressure determined by the condensation temperature is constant. Also, the refrigerant state at the condenser outlet (capillary tube inlet) is saturated liquid (state 3), the refrigerant state at the evaporator outlet is saturated vapor (state 5), and the capillary tube and the piping from the evaporator to the compressor are completely heated. As the one to be exchanged (operation of the contact portion 57a in FIG. 4), the temperature of the compressor suction refrigerant is set as the condenser outlet temperature (state 1). Also, assuming that the efficiency of the compressor is 100% (adiabatic compression), the compressor discharge state (state 2) is determined, and the heat is completely exchanged between the capillary tube and the piping from the evaporator to the compressor ( From Δh1 = Δh2) in FIG. 4, the refrigerant state (state 4) at the evaporator inlet is determined. Thus, by determining the outside air temperature and the evaporator temperature, the theoretical performance coefficient COP th is set as the ratio of the theoretical cooling capacity Q th to the theoretical compression power W th (COP th = Q th / W th ). Can be calculated. The theoretical coefficient of performance COP th is an index representing the cooling efficiency that does not depend on the efficiency of the compressor. The relationship between the theoretical coefficient of performance COP th and the evaporator temperature T evp shown in FIG. 11A is calculated assuming that the refrigerant is isobutane and the outside air temperature T out = 32 ° C.

また,良好な冷却を行うためには,蒸発器において所定の交換熱量を得る必要がある。温度効率(蒸発器入口空気温度と蒸発器出口空気温度の差を蒸発器流入空気温度と蒸発器温度との差で除した値)の変化を無視すると,所定交換熱量を得るための風量は,空気温度と,蒸発器温度の差の逆数に比例するという関係が導かれる。空気温度として冷蔵室維持温度TR_keepを用いることで,図11(a)に示すΔT−1が算出され,所定交換熱量を得るための風量の大小を表す指標となる。なお,図11(a)に示すΔT−1は冷蔵室維持温度TR_keepを4℃として算出している。 In addition, in order to perform good cooling, it is necessary to obtain a predetermined exchange heat amount in the evaporator. Ignoring changes in temperature efficiency (the difference between the evaporator inlet air temperature and the evaporator outlet air temperature divided by the difference between the evaporator inlet air temperature and the evaporator temperature), A relationship is derived that is proportional to the inverse of the difference between the air temperature and the evaporator temperature. By using the refrigerating room maintenance temperature T R_keep as the air temperature, ΔT −1 shown in FIG. 11A is calculated and becomes an index representing the magnitude of the air volume for obtaining a predetermined exchange heat amount. In addition, ( DELTA ) T- 1 shown to Fig.11 (a) is calculated by making cold room maintenance temperature TR_keep into 4 degreeC .

図11(a)に示すCOPthとΔT−1は,ともに蒸発器温度Tevpの上昇に対して単調に上昇しているが,両者の勾配は異なる。図11(b)は,COPthとΔT−1 の差を蒸発器温度Tevpで微分した関数であり,両者の勾配の差を表している。すなわち図11(b)のグラフにおいて,勾配が正となる範囲(蒸発器温度Tevpが約-1℃より低い範囲)においては,蒸発器温度Tevpの上昇に対するCOPthの増加率の方が,蒸発器温度Tevpの上昇に対するΔT−1の増加率よりも高く,COPthを向上させるように蒸発器温度Tevpを上昇させることが有利といえる。一方,勾配が負となる範囲(蒸発器温度Tevpが約-1℃より高い範囲)では,蒸発器温度Tevpの上昇に対するCOPthの増加率の方が,蒸発器温度Tevpの上昇に対するΔT−1の増加率より低いことを表しており,蒸発器温度Tevpを上げるために必要となる風量向上の有効性が低下しているといえる。すなわち,図11(b)のグラフが正の勾配の範囲となるように,d(COPth)/dTevp − d(ΔT−1)/dTevp ≧0となるように制御することが,風量向上の有効性が高い範囲で冷蔵庫を運転することになる。したがって,本実施例の冷蔵庫では,図11における蒸発器温度Tevpを,冷蔵運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveとして,(式2)を満足するように制御することで,風量向上の有効性が高い範囲で効率よく冷却運転を実施するようにしている。 Both COP th and ΔT −1 shown in FIG. 11A increase monotonously with the increase in the evaporator temperature T evp , but the gradients of both are different. FIG. 11B is a function obtained by differentiating the difference between COP th and ΔT −1 with the evaporator temperature T evp , and represents the difference in gradient between the two. That is, in the graph of FIG. 11B, in the range where the gradient is positive (the range in which the evaporator temperature T evp is lower than about −1 ° C.), the increasing rate of COP th with respect to the increase in the evaporator temperature T evp is greater. , higher than the rate of increase [Delta] T -1 for increase in the evaporator temperature T evp, it can be said that the advantageous to increase the evaporator temperature T evp to enhance COP th. On the other hand, the range where the slope is negative (evaporator temperature T evp higher range than about -1 ° C.), the direction of increase of the COP th relative increase in the evaporator temperature T evp, for increase in the evaporator temperature T evp This indicates that the rate of increase is lower than ΔT −1 , and it can be said that the effectiveness of improving the air flow required to raise the evaporator temperature T evp is reduced. That is, control is performed so that d 2 (COP th ) / dT evp 2 −d 2 (ΔT −1 ) / dT evp 2 ≧ 0 so that the graph of FIG. This means that the refrigerator is operated in a range where the effectiveness of air flow improvement is high. Therefore, in the refrigerator of the present embodiment, the evaporator temperature T evp in FIG. 11 is controlled as the time average temperature T Revp_ave of the refrigeration evaporator 14a during the refrigeration operation so as to satisfy (Equation 2), Cooling operation is carried out efficiently in the range where the effectiveness of air flow improvement is high.

本実施例の冷蔵庫は,安定冷却運転中に,定格内容積が最大となる冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。これにより定格内容積が最大となる冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室とすることができる。一般に送風手段の駆動により積極的な気流が生じている状態を強制対流と呼び,送風手段による送風が行われずに空気の温度差(密度差)によって生じる弱い気流を自然対流と呼ぶ。空間内に送風手段による強制対流を生じさせた場合は,空気が積極的に移動することで空間内の均温化が図られ,送風手段を停止した場合には,自然対流となり,空間内の空気の移動が生じ難いために温度ムラが形成されやすく,特に容積が大きい空間においては顕著になる。温度ムラが大きいと,食品を収納する場所によって食品の保存性が低下するという問題が生じやすくなる。そこで,本実施例の冷蔵庫では,定格内容積が最大となる冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなるように制御する運転モードを備えることで,冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室としている。   The refrigerator of the present embodiment has an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration chamber 2 having the maximum rated internal capacity is longer than the driving time of the refrigeration fan 9b during the stable cooling operation. As a result, the refrigerator compartment 2 having the maximum rated internal volume can be made a storage room with little temperature unevenness and high storage stability. In general, a state where a positive air flow is generated by driving the air blowing means is called forced convection, and a weak air current caused by a temperature difference (density difference) without air blowing by the air blowing means is called natural convection. When forced convection is generated in the space by air blowing means, air is actively moved to achieve temperature equalization in the space. When the air blowing means is stopped, natural convection occurs and Since the movement of air is difficult to occur, temperature unevenness is likely to be formed, particularly in a space with a large volume. If the temperature unevenness is large, a problem that the storage stability of the food decreases depending on the place where the food is stored is likely to occur. Therefore, the refrigerator of this embodiment includes an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration chamber 2 having the maximum rated internal volume is controlled to be longer than the driving time of the refrigeration fan 9b. The refrigerated room 2 is a storage room with little temperature unevenness and high storability.

また,本実施例の冷蔵庫は,高さ寸法が最大となる貯蔵室である冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。一般に温度分布は高さ寸法が大きい空間ほど大きくなりやすいため,本実施例の冷蔵庫では,高さ寸法が最大となる貯蔵室である冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えることで,冷蔵室2を,温度ムラが少なく保存性の高い貯蔵室としている。   In addition, the refrigerator of the present embodiment has an operation mode in which the driving time of the refrigeration fan 9a in the refrigeration room 2 which is the storage room having the maximum height is longer than the driving time of the refrigeration fan 9b. In general, since the temperature distribution tends to increase as the space having a larger height dimension, in the refrigerator of the present embodiment, the driving time of the refrigeration fan 9a in the refrigeration room 2, which is the storage room having the maximum height dimension, is a refrigeration fan. By providing an operation mode that is longer than the drive time of 9b, the refrigerator compartment 2 is a storage room with little temperature unevenness and high storage stability.

本実施例の冷蔵庫は,冷蔵室背面に備えた冷蔵室送風路11の冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出すようにしている。一般に,貯蔵室に収納される食品が冷却空気の流れを阻害すると,貯蔵室内に温度ムラが出来る,あるいは,風路抵抗が増えて風量が減少するといった事態が生じて冷却効率が低下することがある。そこで,冷蔵室送風路11の主たる冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出させることで,冷却空気は図2中に矢印で示すように冷蔵室2の天井面を沿って前方に流れるので,多くの食品を冷蔵室2内に収納しても,食品によって冷却空気の流れが阻害されにくくなり,貯蔵室内に温度ムラが出来る,あるいは,風路抵抗が増えて風量が減少するといった事態が生じ難い冷却効率が高い冷蔵庫となる。なお,本実施例の冷蔵庫では,冷蔵室送風路11に設けられる開口は,上方に向けて開口させた冷蔵室吐出口11aのみとなっているが,他に前方や,側方に向けて吹き出す他の開口を設けても良い。この場合は,上方に向けて開口させた吐出口の開口面積(総面積)が,他の吐出口の開口面積の総和より大きくすることによって,上述の効果を得ることができる。   In the refrigerator of this embodiment, the refrigerator outlet 11a of the refrigerator compartment air passage 11 provided on the back of the refrigerator compartment is opened upward (cold air directing means) to blow out the air directed upward. In general, if food stored in the storage room obstructs the flow of cooling air, the temperature in the storage room may become uneven, or the air flow resistance may increase and the air volume may decrease, resulting in a decrease in cooling efficiency. is there. Therefore, the main refrigerator outlet 11a of the refrigerator compartment air passage 11 is opened upward (cold air directing means), and the upwardly directed air is blown out so that the cooling air is indicated by an arrow in FIG. In addition, since the food flows forward along the ceiling surface of the refrigerator compartment 2, even if a large amount of food is stored in the refrigerator compartment 2, the flow of cooling air is less likely to be obstructed by the food, and the temperature in the storage compartment is uneven. , It becomes a refrigerator with high cooling efficiency that is unlikely to cause a situation in which the air flow resistance increases and the air volume decreases. In the refrigerator of the present embodiment, the opening provided in the refrigerator compartment air passage 11 is only the refrigerator compartment outlet 11a opened upward, but blows out forward or sideward. Other openings may be provided. In this case, the above-described effect can be obtained by making the opening area (total area) of the discharge ports opened upward larger than the sum of the opening areas of the other discharge ports.

本実施例の冷蔵庫は,冷蔵室2の最上段に位置する棚34aよりも開口位置が高い扉ポケット33aを設け,冷蔵室背面に備えた冷蔵室送風路11の冷蔵室吐出口11aを上方に向けて開口させて(冷気指向手段),上方に指向した空気を吹き出させるようにしている。これにより,冷却空気は図2中に矢印で示すように冷蔵室2の天井面を沿って冷蔵室2の最上段に位置する棚34aよりも開口位置が高い扉ポケット33aに向けて流れるので,扉ポケット33aを良好に冷却することができる。   The refrigerator of the present embodiment is provided with a door pocket 33a having an opening position higher than the shelf 34a located at the uppermost stage of the refrigerator compartment 2, and the refrigerator outlet 11a of the refrigerator compartment air passage 11 provided on the back of the refrigerator compartment is directed upward. Opening (cold air directing means), the air directed upward is blown out. As a result, the cooling air flows along the ceiling surface of the refrigerator compartment 2 toward the door pocket 33a having a higher opening position than the shelf 34a located at the uppermost stage of the refrigerator compartment 2, as indicated by an arrow in FIG. The door pocket 33a can be cooled satisfactorily.

本実施例の冷蔵庫では,安定冷却運転中における冷蔵室維持温度(冷蔵室設定温度)TR_keepと,冷蔵室吐出口11aから吐出される冷蔵室吐出空気温度TR_inの差が,冷凍室維持温度TF_keep(冷蔵室設定温度)と冷蔵室維持温度(冷蔵室設定温度)TR_keepの算術平均値より高い温度となるように,蒸発器温度調整手段(圧縮機24,冷蔵用送風機9a)を制御している。一般に,温度が高い空間に低温空気を吹き出すと,密度が高い低温空気は重力の作用で下方に向けた力を受けるため,吹き出し口から離れた上方の領域には低温の空気が到達し難くなる。そこで,本実施例の冷蔵庫では,冷蔵室維持温度(冷蔵室設定温度)TR_keepと,冷蔵室吐出空気温度TR_inの差が,冷凍室維持温度TF_keep(冷蔵室設定温度)と冷蔵室維持温度(冷蔵室設定温度)TR_keepの算術平均値より高くなるように,蒸発器温度調整手段(圧縮機24,冷蔵用送風機9a)を制御することで,冷蔵室吐出口11aから吹き出した冷却空気が受ける重力の作用を軽減し,吐出口から離れた上方のスペース(例えば最上段の扉ポケット33a)を良好に冷却することができる。 In the refrigerator of the present embodiment, the difference between the refrigerator compartment maintenance temperature (refrigerator compartment set temperature) TR_keep and the refrigerator compartment discharge air temperature TR_in discharged from the refrigerator compartment outlet 11a during the stable cooling operation is the freezer compartment maintenance temperature. Control evaporator temperature adjustment means (compressor 24, refrigeration fan 9a) so that the temperature is higher than the arithmetic average value of TF_keep (refrigeration room set temperature) and refrigeration room maintenance temperature (refrigeration room set temperature) TR_keep. doing. In general, when low-temperature air is blown into a high-temperature space, high-density low-temperature air receives a downward force due to the action of gravity, so it is difficult for low-temperature air to reach the upper area away from the air outlet. . Therefore, in the refrigerator of this embodiment, the difference between the refrigerating room maintenance temperature (refrigeration room set temperature) TR_keep and the refrigerating room discharge air temperature TR_in is the freezer room maintenance temperature TF_keep (refrigeration room set temperature) and the refrigerating room maintenance temperature ( By controlling the evaporator temperature adjusting means (compressor 24, refrigeration fan 9a) so as to be higher than the arithmetic average value of the refrigeration chamber set temperature ( TR_Keep ), the cooling air blown out from the refrigeration chamber discharge port 11a is received. The action of gravity can be reduced, and the upper space away from the discharge port (for example, the uppermost door pocket 33a) can be satisfactorily cooled.

本実施例の冷蔵庫は,冷蔵室2(第一冷蔵温度帯室)と,野菜室6(第二冷蔵温度帯室)と,冷凍室7を備え,冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)及び冷蔵用送風機9a(第一送風機)と,冷凍室7の背部に冷凍用蒸発器14b(第二蒸発器)及び冷凍用ファン9b(第二送風機)を備え,第一送風機の駆動により冷蔵用蒸発器14aと熱交換した冷却空気を冷蔵室2に流通させる冷蔵風路111(第一風路)と,冷凍用ファン9bの駆動により冷凍用蒸発器14bと熱交換した冷却空気を冷凍室7及び野菜室6に流通させる冷凍野菜風路112(第二風路)を備え,第一風路と第二風路の間の空気の流通を遮断する空気流通遮断手段(断熱仕切壁28)と,冷蔵風路111を流れる空気と接する脱臭部材91を備えている。これにより,冷蔵室2内に臭気を発する食材等を収納した際に,臭気成分が冷却空気とともに他の貯蔵室(冷凍室7や野菜室6)に循環することを阻止できるので,冷蔵室2以外の貯蔵室(冷凍室7や野菜室6)の食材等への臭い移りを阻止できる。また,臭気成分を含む冷却空気が冷蔵風路111のみを循環し,他の貯蔵室に拡散しないため,より短時間で高い脱臭効果を得ることができる。   The refrigerator of the present embodiment includes a refrigerator compartment 2 (first refrigerator temperature zone chamber), a vegetable compartment 6 (second refrigerator temperature zone chamber), and a freezer compartment 7, and a refrigerator evaporator 14a at the back of the refrigerator compartment 2 is provided. (First evaporator) and refrigeration blower 9a (first blower), and a freezing evaporator 14b (second evaporator) and a freezing fan 9b (second blower) on the back of the freezer compartment 7, Refrigeration air passage 111 (first air passage) for circulating the cooling air heat-exchanged with refrigeration evaporator 14a by driving the blower into refrigeration chamber 2, and heat exchange with refrigeration evaporator 14b by driving refrigeration fan 9b An air flow blocking means (not shown) that includes a frozen vegetable air passage 112 (second air passage) for circulating cooling air to the freezer compartment 7 and the vegetable compartment 6 and that interrupts the air flow between the first air passage and the second air passage ( A heat-insulating partition wall 28) and a deodorizing member 91 in contact with the air flowing through the refrigerated air passage 111 are provided. Thereby, when the foodstuff etc. which generate | occur | produce an odor in the refrigerator compartment 2 are accommodated, since it can prevent that an odor component circulates to other storage rooms (freezer compartment 7 and vegetable compartment 6) with cooling air, refrigerator compartment 2 It is possible to prevent odors from being transferred to foodstuffs in the other storage rooms (freezer room 7 and vegetable room 6). Moreover, since the cooling air containing an odor component circulates only through the refrigerating air passage 111 and does not diffuse to other storage chambers, a high deodorizing effect can be obtained in a shorter time.

本実施例の冷蔵庫は,冷蔵風路111(第一風路)と,冷凍野菜風路112(第二風路)と,冷蔵風路111を流れる空気と接する脱臭部材91を備え,安定冷却運転中に,冷蔵室2の冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えている。冷蔵用ファン9aの駆動時には,脱臭部材91をより多くの空気が通過するため脱臭作用が高くなるため,冷蔵用ファン9aの駆動時間が,冷凍用ファン9bの駆動時間より長くなる運転モードを備えることにより,より脱臭作用が高い冷蔵庫とすることができる。   The refrigerator of this embodiment includes a refrigerated air passage 111 (first air passage), a frozen vegetable air passage 112 (second air passage), and a deodorizing member 91 that comes into contact with the air flowing through the refrigerated air passage 111, and a stable cooling operation. The operation mode is such that the drive time of the refrigeration fan 9a in the refrigerator compartment 2 is longer than the drive time of the refrigeration fan 9b. When the refrigeration fan 9a is driven, since more air passes through the deodorizing member 91, the deodorizing action is increased. Therefore, an operation mode in which the driving time of the refrigeration fan 9a is longer than the driving time of the refrigeration fan 9b is provided. Thus, a refrigerator having a higher deodorizing effect can be obtained.

本実施例の冷蔵庫は,上方から冷蔵室2(第一冷蔵温度帯室),冷凍室7(冷凍温度帯室),野菜室(第二冷蔵温度帯室)の順に貯蔵室を備え,冷凍室7の背部に冷凍用蒸発器14b(第二蒸発器)を備え,冷凍用蒸発器14bの容積を冷凍室7の定格内容積の3%以下とし,冷凍室7の定格内容積を全定格内容積の28%以上とし,冷蔵温度帯室である冷蔵室2の背部に冷蔵用蒸発器14a(第一蒸発器)を備えている。これにより,冷蔵庫中央部に大容量冷凍室を備えるとともに,良好な実用冷却性能を発揮する冷蔵庫を提供することができる。理由を以下で説明する。   The refrigerator of the present embodiment includes a storage room in the order of the refrigerator compartment 2 (first refrigerator temperature zone), the freezer compartment 7 (freezer temperature zone compartment), and the vegetable compartment (second refrigerator temperature zone compartment) from above. 7 is provided with a freezing evaporator 14b (second evaporator), the volume of the freezing evaporator 14b is set to 3% or less of the rated internal volume of the freezing room 7, and the rated internal volume of the freezing room 7 is fully rated. The refrigeration evaporator 14a (first evaporator) is provided at the back of the refrigeration chamber 2 which is a refrigeration temperature zone. Thereby, while providing a large-capacity freezer compartment in the refrigerator center part, the refrigerator which exhibits favorable practical cooling performance can be provided. The reason will be explained below.

一般に冷凍温度帯室を冷却する蒸発器の表面には霜が成長する。蒸発器の表面に霜が成長すると,蒸発器を通過する流路が狭くなることによる通風抵抗増加や,蒸発器表面と空気の間の霜層に起因する熱抵抗増加が起き,蒸発器の熱交換性能が低下し,冷却効率が下がる。そこで,蒸発器の熱交換性能低下による不具合が生じないように除霜運転が行われる。ヒータ等の加熱手段によって蒸発器の温度を上げることで霜を解かす除霜運転中は,冷凍温度帯室の冷却を行うことができない。したがって,霜の成長による蒸発器の熱交換性能の低下が起こり易いと,頻繁に冷凍温度帯室の温度が上昇する除霜運転が行わることになる。すなわち,霜の成長による熱交換性能の低下が起こりにくくすることが冷凍温度帯室の安定した冷却性能を得るための課題となる。例えば,特許文献1に記載の冷蔵庫のように,冷凍室の後方の冷却室(蒸発器室)に,各貯蔵室を冷却する熱交換器である冷却器(蒸発器)を備えた冷蔵庫では,一般に,この課題に対して,蒸発器のサイズ(蒸発器容積)を十分大きくとることで,霜の成長による熱交換性能の低下を抑制するように設計がなされる。一方で,冷凍用蒸発器の容積を冷凍温度帯室の定格内容積の3%以下にすることができず,冷凍温度帯室の定格内容積を全定格内容積の28%以上に拡大できなかった。   In general, frost grows on the surface of the evaporator that cools the freezing temperature zone. When frost grows on the surface of the evaporator, the flow resistance passing through the evaporator becomes narrower and the resistance to ventilation increases and the thermal resistance increases due to the frost layer between the evaporator surface and the air. Replacement performance decreases and cooling efficiency decreases. Therefore, the defrosting operation is performed so as not to cause a problem due to a decrease in the heat exchange performance of the evaporator. During the defrosting operation in which frost is released by raising the temperature of the evaporator by a heating means such as a heater, the freezing temperature zone cannot be cooled. Accordingly, if the heat exchange performance of the evaporator is likely to decrease due to frost growth, defrosting operation in which the temperature of the freezing temperature zone rises frequently is performed. In other words, it is a problem to obtain a stable cooling performance of the freezing temperature zone chamber to make it difficult for the heat exchange performance to decrease due to frost growth. For example, in a refrigerator provided with a cooler (evaporator) that is a heat exchanger for cooling each storage chamber in a cooling chamber (evaporator chamber) behind the freezer compartment, such as a refrigerator described in Patent Document 1. In general, the evaporator is designed so as to suppress a decrease in heat exchange performance due to frost growth by sufficiently increasing the size of the evaporator (evaporator volume). On the other hand, the volume of the freezing evaporator cannot be reduced to 3% or less of the rated internal volume of the freezing temperature zone, and the rated internal volume of the freezing temperature zone cannot be increased to 28% or more of the total rated internal volume. It was.

一般に,空気温度が高い方が,空気が含む水分量が多く(絶対湿度が高く)なるため,冷凍温度帯室と冷蔵温度帯室を共通に冷却する蒸発器を備えた場合,冷凍温度帯室よりも維持温度が高い冷蔵温度帯室から,より多くの水分が蒸発器に到達して霜となる。そこで,本実施例の冷蔵庫では,冷凍室7の背部に冷凍用蒸発器14bを備えるとともに,冷蔵室2の背部に冷蔵用蒸発器14aを備える構成を採用することで,冷蔵庫中央部の冷凍室7の背部に設置される蒸発器を冷凍室7の定格内容積の3%以下に小型化して冷凍温度帯室の定格内容積を全定格内容積の28%以上に拡大しても,空気が含む水分量(絶対湿度)が多い冷蔵室2からの水分による霜の成長が生じないため,熱交換性能の低下が起こりにくい蒸発器となり,安定した冷却性能を発揮できる。   In general, the higher the air temperature, the greater the amount of water contained in the air (the higher the absolute humidity). Therefore, if an evaporator that cools the refrigeration temperature zone and the refrigeration temperature zone is provided, the refrigeration temperature zone More water reaches the evaporator from the refrigerated temperature zone where the maintenance temperature is higher than that and becomes frost. Therefore, in the refrigerator of the present embodiment, by adopting a configuration in which the refrigeration evaporator 14b is provided at the back of the freezer compartment 7 and the refrigeration evaporator 14a is provided at the back of the refrigerator compartment 2, the freezer compartment at the center of the refrigerator is employed. 7 Even if the evaporator installed on the back of 7 is downsized to 3% or less of the rated internal volume of the freezer compartment 7 and the rated internal volume of the freezing temperature zone is expanded to 28% or more of the total rated internal volume, Since frost does not grow due to moisture from the refrigerator compartment 2 containing a large amount of moisture (absolute humidity), the evaporator is less susceptible to a decrease in heat exchange performance and can exhibit stable cooling performance.

また,冷蔵温度帯室となる冷蔵室2と野菜室6のうち,定格内容積が大きい冷蔵温度帯室に第一蒸発器を設けるようにしている。これにより内容積が大きいために負荷が大きくなり易い冷蔵室2を効率よく冷却できるので,大容量冷凍室と,良好な実用冷却性能を両立した冷蔵庫となる。   Moreover, the 1st evaporator is provided in the refrigerator temperature zone room with a large rated internal volume among the refrigerator compartment 2 and the vegetable compartment 6 used as a refrigerator temperature zone room. As a result, the refrigerator compartment 2 where the load tends to be large due to the large internal volume can be efficiently cooled, so that a refrigerator having both a large-capacity freezer compartment and good practical cooling performance can be obtained.

本実施例の冷蔵庫では冷凍用蒸発器14bの空気側伝熱面積AFevpを,冷蔵用蒸発器14aの空気側伝熱面積ARevpより大きくしている。一般に,蒸発器の空気側伝熱面積を大きくすると,空気と冷媒の間の熱交換が促進されて,冷却能力が大きくなる。そこで,冷凍用蒸発器14bの空気側伝熱面積AFevpを,冷蔵用蒸発器14aの空気側伝熱面積ARevpより大きくして,冷凍室7を冷却する際の冷却能力をより高めることで,大容量冷凍室と,良好な実用冷却性能の両立を図っている。 The air-side heat transfer area A Fevp refrigerator freezer evaporator 14b in the present embodiment, is made larger than the air-side heat transfer area A REVP of refrigerating evaporator 14a. In general, when the air-side heat transfer area of the evaporator is increased, heat exchange between the air and the refrigerant is promoted to increase the cooling capacity. Therefore, the air-side heat transfer area A Fevp refrigeration evaporator 14b, and larger than the air-side heat transfer area A REVP of refrigerating evaporator 14a, a freezing chamber 7 is possible to further increase the cooling capacity during cooling , Achieving both a large-capacity freezer and good practical cooling performance.

本実施例の冷蔵庫では,冷蔵用蒸発器14a,及び,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積はそれぞれARevp/VRevp=0.673m2/L,AFevp/VFevp=0.384m2/Lであり,0.25m2/L以上,0.96m2/L以下の値としている。一般に,霜は蒸発器の空気側伝熱面に成長するため,蒸発器容積に対して空気側伝熱面積を大きくすると,霜が成長した場合に流路が閉塞されやすくなる。このため,霜の成長が多い場合は熱交換性能の低下が起きやすくなるが,霜の成長が少ない場合は熱交換性能が高い蒸発器となる。一方,蒸発器容積に対して空気側伝熱面積を小さくすると,霜が成長しても流路が霜で閉塞され難く熱交換性能を維持しやすくなるが,空気側伝熱面積が小さくなるので,霜の成長が少ない場合,単位容積あたりの熱交換性能が低くなる。そこで,本実施例の冷蔵庫では,冷蔵用蒸発器14a,及び,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積を,0.25m2/L以上,0.96m2/L以下とすることで,霜の成長が多い場合と,霜の成長が少ない場合の性能が両立されるようにしている。 In the refrigerator of the present embodiment, the air side heat transfer areas per unit volume of the refrigeration evaporator 14a and the refrigeration evaporator 14b are A Revp / V Revp = 0.673 m 2 / L and A Fevp / V Fevp, respectively. = 0.384M a 2 / L, 0.25m 2 / L or more, and the following value 0.96 m 2 / L. In general, frost grows on the air-side heat transfer surface of the evaporator. Therefore, if the air-side heat transfer area is increased with respect to the evaporator volume, the flow path is likely to be blocked when frost grows. For this reason, when the growth of frost is large, the heat exchange performance is likely to deteriorate, but when the growth of frost is small, the evaporator has a high heat exchange performance. On the other hand, if the air-side heat transfer area is reduced with respect to the evaporator volume, the flow path is not easily blocked by frost even if frost grows and it is easy to maintain heat exchange performance, but the air-side heat transfer area is reduced. When the frost growth is small, the heat exchange performance per unit volume is low. Accordingly, the refrigerator of this embodiment, refrigerating evaporator 14a, and the air-side heat transfer area per unit volume of the freezer evaporator 14b, 0.25 m 2 / L or more, and 0.96 m 2 / L or less By doing so, the performance when the growth of frost is large and the performance when the growth of frost is small are made compatible.

また,冷蔵用蒸発器14aの単位容積あたりの空気側伝熱面積(ARevp/VRevp)を,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積(AFevp/VFevp)よりも大きくしている(ARevp/VRevp > AFevp/VFevp)。冷凍用蒸発器14bに成長した霜は,除霜ヒータ21によって加熱される冷凍用蒸発器除霜運転で解かされ,冷凍用蒸発器除霜運転中は冷凍室7を冷却できない。一方,冷蔵用蒸発器14aに成長した霜は,冷蔵用蒸発器除霜運転により,冷蔵室2を冷却しながら解かすことができる。そこで,冷蔵用蒸発器14aの単位容積あたりの空気側伝熱面積を,冷凍用蒸発器14bの単位容積あたりの空気側伝熱面積よりも大きくすることで,冷凍用蒸発器14bの流路が霜によって閉塞され難くして,除霜運転の頻度が上がることにより冷凍室7の冷えが悪くなるといった不具合が生じないようにしている。 Further, the air-side heat transfer area per unit volume (A Revp / V Revp ) of the refrigeration evaporator 14a is larger than the air-side heat transfer area (A Fevp / V Fevp ) per unit volume of the refrigeration evaporator 14b. It is increased (A Revp / V Revp > A Fevp / V Fevp ). The frost that has grown on the refrigerating evaporator 14b is dissolved by the refrigerating evaporator defrosting operation that is heated by the defrosting heater 21, and the freezer compartment 7 cannot be cooled during the refrigerating evaporator defrosting operation. On the other hand, the frost grown on the refrigeration evaporator 14a can be dissolved while the refrigeration chamber 2 is cooled by the refrigeration evaporator defrosting operation. Therefore, by making the air side heat transfer area per unit volume of the refrigeration evaporator 14a larger than the air side heat transfer area per unit volume of the refrigeration evaporator 14b, the flow path of the refrigeration evaporator 14b is increased. It is made difficult to be blocked by frost, and the problem that the cooling of the freezer compartment 7 is deteriorated by increasing the frequency of the defrosting operation is prevented.

本実施例の冷蔵庫は,冷凍温度帯室と冷蔵温度帯室の双方に実用負荷が投入された際に,負荷を投入した時点から,実用負荷が十分冷却されるまでの間において,冷蔵室冷却運転時の冷蔵用蒸発器14aの時間平均温度TRevp_aveが,冷凍室冷却運転時の冷凍用蒸発器14bの時間平均温度TFevp_aveより高くなるように蒸発器温度調整手段(圧縮機24,冷蔵用ファン9a,冷凍用ファン9b,野菜室ダンパ19)を制御している。一般に蒸発器温度(蒸発温度)が高い方が,冷凍サイクル成績係数(圧縮機24の入力に対する吸熱量の割合)が高く,省エネルギー性能が高くなる。冷凍室7は冷凍温度に維持するために冷凍用蒸発器14bの温度を低温にする必要があるが,冷蔵室2は冷蔵温度に維持すれば良いので,冷蔵用蒸発器の温度TRevpが冷凍用蒸発器の温度TFevpよりも高くなるように蒸発器温度調整手段(圧縮機24,冷蔵用ファン9a,冷凍用ファン9b,野菜室ダンパ19)を制御して,省エネルギー性能を向上している。 In the refrigerator of this embodiment, when a practical load is applied to both the freezing temperature zone and the refrigeration temperature zone, the refrigerator is cooled between the time when the load is applied and the practical load is sufficiently cooled. time average temperature T Revp_ave the refrigerating evaporator 14a during operation, the time-averaged temperature T becomes higher as the evaporator temperature control means than Fevp_ave refrigeration evaporator 14b during freezing compartment cooling operation (the compressor 24, refrigeration The fan 9a, the freezing fan 9b, and the vegetable compartment damper 19) are controlled. Generally, the higher the evaporator temperature (evaporation temperature), the higher the coefficient of performance of the refrigeration cycle (the ratio of the endothermic amount to the input of the compressor 24), and the higher the energy saving performance. In order to maintain the freezing chamber 7 at the freezing temperature, the temperature of the freezing evaporator 14b needs to be lowered. However, since the refrigerating chamber 2 only needs to be maintained at the refrigerating temperature, the temperature T Revp of the refrigerating evaporator is reduced. The evaporator temperature adjusting means (the compressor 24, the refrigeration fan 9a, the freezing fan 9b, and the vegetable compartment damper 19) is controlled so as to be higher than the temperature T Fevp of the evaporator, thereby improving the energy saving performance. .

本実施例の冷蔵庫は,冷凍温度帯室と冷蔵温度帯室の双方に実用負荷が投入された際に,冷凍室温度の最大値(最高到達温度)が0℃未満(図10のTF1<0)となるように,蒸発器温度調整手段(圧縮機24,冷蔵用ファン9a,冷凍用ファン9b,野菜室ダンパ19)を制御している。これにより,実用負荷の投入によって冷凍温度帯室に収納された食品等が解けるといった不具合が発生することを回避しつつ,良好な実用冷却性能を得ることができる。 In the refrigerator of this example, when a practical load was applied to both the freezing temperature zone room and the refrigeration temperature zone room, the maximum value (maximum temperature reached) of the freezing room temperature was less than 0 ° C. ( TF1 <T F1 in FIG. 10). 0), the evaporator temperature adjusting means (the compressor 24, the refrigeration fan 9a, the freezing fan 9b, and the vegetable compartment damper 19) is controlled. As a result, it is possible to obtain good practical cooling performance while avoiding the occurrence of problems such as the dissolution of food stored in the freezing temperature zone chamber due to the input of the practical load.

本実施例の冷蔵庫は,冷凍温度帯室と冷蔵温度帯室の双方に実用負荷が投入された際に,負荷を投入した時点から,実用負荷が十分冷却されるまでの実用負荷冷却区間において,冷凍室温度の複数の極大値が漸次低下するように蒸発器温度調整手段(圧縮機24,冷蔵用ファン9a,冷凍用ファン9b,野菜室ダンパ19)を制御している。これにより,冷凍室の温度が上昇して,冷凍食品が解けるといった問題が発生し難く,実用冷却性能が高い冷蔵庫となる。   When the practical load is applied to both the refrigeration temperature zone chamber and the refrigeration temperature zone chamber, the refrigerator of the present embodiment has a practical load cooling interval from when the load is applied until the practical load is sufficiently cooled. The evaporator temperature adjusting means (the compressor 24, the refrigeration fan 9a, the freezing fan 9b, and the vegetable compartment damper 19) is controlled so that a plurality of maximum values of the freezing room temperature gradually decrease. As a result, the temperature of the freezer rises and the problem of freezing the frozen food hardly occurs, and the refrigerator has high practical cooling performance.

本実施例の冷蔵庫は,冷凍温度帯室と冷蔵温度帯室の双方に実用負荷が投入された際に,負荷を投入した時点から,実用負荷が十分冷却されるまでの実用負荷冷却区間において,冷蔵室冷却運転比率をR,冷凍室冷却運転比率をR,外気温度をTout (℃),冷蔵用蒸発器14aの空気側伝熱面積をARevp (m),冷蔵用蒸発器14aの冷蔵運転中の時間平均温度をTRevp_ave (℃),冷蔵室維持温度をTR_keep (℃),冷凍用蒸発器14bの空気側伝熱面積をAFevp (m),冷凍用蒸発器14bの冷凍室冷却運転中の時間平均温度をTFevp_ave (℃),冷凍室維持温度をTF_keep (℃),冷蔵室定格内容積をV (L),冷凍室定格内容積をVF (L),水の比熱をC (kJ/kg℃),氷の比熱をCi (kJ/kg℃),水の凝固潜熱をL(kJ/kg)として,(式3)を満足するように,蒸発器温度調整手段(圧縮機24,冷蔵用ファン9a,冷凍用ファン9b,野菜室ダンパ19)を制御している。 When the practical load is applied to both the refrigeration temperature zone chamber and the refrigeration temperature zone chamber, the refrigerator of the present embodiment has a practical load cooling interval from when the load is applied until the practical load is sufficiently cooled. The refrigerator operating ratio is R R , the refrigerator operating ratio is R F , the outside air temperature is T out (° C.), the air side heat transfer area of the evaporator 14a is A Revp (m 2 ), and the evaporator is The time average temperature during refrigerating operation of 14a is T Revp_ave (° C), the refrigerating room maintenance temperature is T R_keep (° C), the air side heat transfer area of the refrigerating evaporator 14b is A Fevp (m 2 ), and the refrigerating evaporator. In the freezer cooling operation of 14b, the time average temperature is T Fevp_ave (° C), the freezer maintenance temperature is T F_keep (° C), the refrigerator compartment rated internal volume is V R (L), and the freezer compartment rated internal volume is V F ( L), the specific heat of water C W (kJ / kg ℃) , the specific heat of ice C i (kJ / kg ℃) , the latent heat of solidification of water L W (kJ / As g), and it controls the (so as to satisfy the equation 3), an evaporator temperature control means (compressor 24, the refrigerating fan 9a, freezing fan 9b, vegetable compartment damper 19).

Figure 2019132497
Figure 2019132497

これにより,大容量冷凍室と,良好な実用冷却性能を両立した冷蔵庫となる。理由を以下で説明する。一般に,冷蔵庫では,断熱箱体の壁面を介した熱侵入だけでなく,ユーザーの扉開閉操作や,温度が高い食品等の投入といった非定常な負荷の増加が生じる。特に,冷蔵温度帯の貯蔵室と冷凍温度帯の貯蔵室を備えた冷蔵庫では,両方の貯蔵室に同時に多くの食品を投入するといった事態が発生した場合であっても速やかに所定の維持温度にまで冷却する必要がある。しかしながら,冷蔵温度帯室と冷凍温度帯室では維持する温度帯が異なるため,一方の貯蔵室の冷えが悪い,あるいは,一方の貯蔵室のみ過度に冷えるといった事態が生じ易い。すなわち,冷蔵温度帯室と冷凍温度帯室をバランスよく冷却することが課題となる。特に上方から冷蔵室,冷凍室,野菜室を備えた冷蔵庫において,冷凍室の背部に設置される蒸発器を,冷凍室の定格内容積の3%以下に小型化して,冷凍室定格内容積を全定格内容積の28%以上に大容量化すると,冷蔵室と冷凍室の負荷のバランスと,冷却能力のバランスが崩れ,一方の貯蔵室の冷えが悪い,あるいは,一方の貯蔵室のみ過度に冷えるという問題が顕在化して,良好な冷却性能を発揮できない事態が生じていた。そこで,本実施例の冷蔵庫では,冷蔵室2と冷凍室7に実用負荷が投入された場合には,(式3)を満足するように冷凍運転/冷凍野菜運転と,冷蔵運転を実施することで,大容量の冷凍室と,実用的な冷却性能の両立を図っている。
(式3)のAFevp×(TF_keep-TFevp_ave)は冷凍用蒸発器14bにおける交換熱量の大小の指標,ARevp×(TR_keep-TRevp_ave)は冷蔵用蒸発器14aにおける交換熱量の大小の指標,12×V×{C×(Tout−TR_keep)}は冷蔵室に投入される実用負荷の冷却に要する吸熱量(冷却負荷)の指標であり,4×V×{C×Tout−C×TF_keep+L}は冷蔵室に投入される実用負荷の冷却に必要な吸熱量(冷却負荷)の指標である。すなわち,右辺からは冷蔵用蒸発器と冷凍用蒸発器における交換熱量の比率と,実用負荷の冷却負荷の比率を考慮した最低限必要な冷凍室冷却(冷凍室野室冷却運転または冷凍室冷却運転)の冷蔵室冷却運転に対する比率が算出される。本実施例の冷蔵庫では,その比率より高くなるように冷凍室冷却運転を実施するように制御するので,冷蔵室と冷凍室に同時に多くの負荷が投入された場合であっても大容量の冷凍室と,実用的な冷却性能の両立を図ることができる。なお,(式3)の右辺の12×V,及び,4×Vは,冷蔵温度帯室(冷凍室と野菜室)1Lあたり12g,冷凍温度帯室1Lあたり4gの水(初期温度は外気温度)をそれぞれ冷蔵室と冷凍室に投入することを意味しており,一般的な使われ方を考慮した上でJISC9801−3:2015に定められた負荷量となる。
また,本実施例の冷蔵庫においては,自動製氷機能を備えているため,ユーザーが自動製氷機能を使用することで負荷が変動することも想定される。この場合,製氷水タンクは冷蔵室2に設置されているため,冷蔵室2の負荷が増える。しかしながら,冷蔵温度帯に維持される冷蔵室2内では凍結に至らないため,顕熱のみの負荷となり,冷蔵室2から冷凍温度帯の製氷室3に給水されると,凍結するために顕熱に加えてと潜熱も負荷となる。したがって,冷蔵室2よりも冷凍室7の負荷が増えるため,(式1)に示すように制御することで冷凍温度帯室が優先的に冷却されるので,自動製氷機能を使用した場合においても,実用冷却性能を維持しやすくなる。
As a result, the refrigerator has both a large-capacity freezer and good practical cooling performance. The reason will be explained below. Generally, in a refrigerator, not only heat intrusion through the wall surface of the heat insulation box but also an unsteady load increase such as a door opening / closing operation of a user and insertion of food with high temperature occurs. In particular, in a refrigerator equipped with a refrigerated temperature storage room and a freezing temperature storage room, even if a situation occurs in which a large amount of food is put into both storage rooms at the same time, the predetermined maintenance temperature is quickly reached. Need to cool down. However, since the temperature zone to be maintained is different between the refrigerated temperature zone and the freezing temperature zone, one of the storage chambers is apt to be cooled, or only one of the storage chambers is excessively cooled. That is, it is a problem to cool the refrigeration temperature zone chamber and the freezing temperature zone chamber in a balanced manner. Especially in refrigerators equipped with a refrigerator compartment, freezer compartment, and vegetable compartment from the top, the evaporator installed at the back of the freezer compartment is downsized to 3% or less of the rated internal volume of the freezer compartment, and the freezer compartment rated internal volume is increased. If the capacity is increased to 28% or more of the total rated internal volume, the balance between the load in the refrigerator compartment and the freezer compartment and the balance of the cooling capacity will be lost, one of the storage rooms will be cold, or only one of the storage rooms will be excessive. The problem of cooling became apparent, and there was a situation where good cooling performance could not be demonstrated. Therefore, in the refrigerator of the present embodiment, when a practical load is applied to the refrigerator compartment 2 and the freezer compartment 7, the refrigerator operation / frozen vegetable operation and the refrigerator operation are performed so as to satisfy (Equation 3). Therefore, both a large-capacity freezer room and practical cooling performance are achieved.
In Formula 3, A Fevp × ( TF_keep− T Fevp_ave ) is an index of the amount of exchange heat in the refrigeration evaporator 14b, and A Revp × ( TR_keep− T Revp_ave ) is the amount of exchange heat in the refrigeration evaporator 14a. 12 × V R × {C W × (T out −T R_keep )} is an index of an endothermic amount (cooling load) required for cooling a practical load put into the refrigerator compartment, and 4 × V F × { C W × T out −C i × T F_keep + L W } is an index of an endothermic amount (cooling load) necessary for cooling a practical load put into the refrigerator compartment. In other words, from the right side, the minimum required freezer cooling (freezer room cooling operation or freezer cooling operation) considering the ratio of the exchange heat quantity in the refrigeration evaporator and the freezing evaporator and the ratio of the cooling load of the practical load. ) To the refrigerator compartment cooling operation is calculated. In the refrigerator of this embodiment, since the freezer compartment cooling operation is controlled so as to be higher than the ratio, a large-capacity freezer can be used even when a large load is simultaneously applied to the refrigerator compartment and the freezer compartment. This makes it possible to achieve both a room and practical cooling performance. Incidentally, 12 × V R of the right side of (Equation 3), and, 4 × V F is refrigeration temperature zone compartment (freezer compartment and a vegetable compartment) 1L per 12g, water (initial temperature of the freezing temperature zone compartment 1L per 4g is This means that the outside air temperature) is put into the refrigerator compartment and the freezer compartment, respectively, and the amount of load defined in JIS C9801-3: 2015 is taken into account in consideration of general usage.
Further, since the refrigerator of this embodiment has an automatic ice making function, it is assumed that the load fluctuates when the user uses the automatic ice making function. In this case, since the ice making water tank is installed in the refrigerator compartment 2, the load of the refrigerator compartment 2 increases. However, since freezing does not occur in the refrigerating chamber 2 maintained in the refrigerated temperature zone, only a sensible heat load is applied. When water is supplied from the refrigerated chamber 2 to the ice making chamber 3 in the freezing temperature zone, the sensible heat is frozen. In addition to this, latent heat is also a burden. Therefore, since the load on the freezer compartment 7 is larger than that in the refrigerator compartment 2, the freezing temperature zone is preferentially cooled by controlling as shown in (Equation 1), so even when the automatic ice making function is used. , Practical cooling performance can be easily maintained.

なお、(式1)及び(式3)における冷蔵室維持温度TRkeep及び冷凍室維持温度TFkeepには,JISC9801−1:2015に規定の方法に基づいて測定される安定冷却運転中の冷蔵室2及び冷凍室7の温度の時間平均値を用いればよい。また,冷蔵用蒸発器14a及び冷凍用蒸発器14bの時間平均温度(TRevp_ave、TFevp_ave)を算出するための冷蔵用蒸発器温度TRevp及び冷凍用蒸発器温度TFevpは,冷蔵用蒸発器14a及び冷凍用蒸発器14bの冷媒パイプ97a及び97bの流入部近傍の温度を測定して用いればよい。 Note that the refrigerator compartment maintenance temperature T Rkeep and the freezer compartment maintenance temperature T Fkeep in (Equation 1) and (Equation 3) include the refrigerator compartment during the stable cooling operation measured based on the method defined in JIS C9801-1: 2015. 2 and the temperature average value of the freezer compartment 7 may be used. The time average temperature (T Revp_ave, T Fevp_ave) of the refrigerating evaporator 14a and the freezer evaporator 14b refrigerating evaporator temperature T REVP and freezing evaporator temperature T Fevp for calculating the refrigerating evaporator What is necessary is just to measure and use the temperature of the inflow part vicinity of the refrigerant | coolant pipes 97a and 97b of 14a and the evaporator 14b for freezing.

以上が,本発明を実施する形態を示す実施例である。なお,本発明は前述した実施例に限定されるものではなく,様々な変形例が含まれる。例えば,本実施例の冷蔵庫では,より確実に空気の流通を遮断するために空気流通遮断手段として断熱仕切壁28を採用しているが,空気の流通を阻止する作用が得られれば,仕切部材の一部にダンパを設けて,ダンパを閉鎖状態とすることで空気流通を遮断した状態を構成しても良い。また,本実施例の冷蔵庫では,蒸発器温度調整手段として圧縮機24,冷蔵用ファン9a,冷凍用ファン9bを用いているが,蒸発器温度の調整が行えれば,他の手段として放熱手段の放熱量を制御するファンや,絞り抵抗を可変させる膨張弁を蒸発器温度調整手段としても良い。すなわち前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり,必ずしも説明した全ての構成を備えるものに限定されるものではない。   The above is an example showing a mode for carrying out the present invention. In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, in the refrigerator of the present embodiment, the heat insulating partition wall 28 is employed as the air flow blocking means in order to more reliably block the air flow. However, if the function of blocking the air flow is obtained, the partition member A state in which the air flow is shut off by providing a damper in a part of and closing the damper may be configured. In the refrigerator of this embodiment, the compressor 24, the refrigeration fan 9a, and the refrigeration fan 9b are used as the evaporator temperature adjusting means. However, if the evaporator temperature can be adjusted, the heat radiating means can be used as other means. A fan for controlling the heat radiation amount and an expansion valve for varying the throttle resistance may be used as the evaporator temperature adjusting means. That is, the above-described embodiments are described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.

1 冷蔵庫
2 冷蔵室(第一冷蔵温度帯室)
2a,2b 冷蔵室扉
3 製氷室
4 上段冷凍室
5 下段冷凍室冷凍室
3a,4a,5a 冷凍室扉
6 野菜室(第二冷蔵温度帯室)
6a 野菜室扉
7 冷凍室(3,4,5の総称)
8a 冷蔵用蒸発器室(第一蒸発器収納室)
8b 冷凍用蒸発器室(第二蒸発器収納室)
9a 冷蔵用ファン(第一送風機)
9b 冷凍用ファン(第二送風機)
10 断熱箱体
10a 外箱
10b 内箱
11 冷蔵室送風路
11a 冷蔵室吐出口
12 冷凍室送風路
12a 冷凍室吐出口
13 野菜室送風路
13a 野菜室吐出口
14a 冷蔵用蒸発器(第一蒸発器)
14b 冷凍用蒸発器(第二蒸発器)
15a,15b 15c 冷蔵室戻り風路
16 ヒンジカバー
17 冷凍室戻り口
18 野菜室戻り風路
18a 野菜室戻り口
19 野菜室ダンパ
21 ラジアントヒータ
22a,22b 排水口
23a,23b 樋
24 圧縮機
26 庫外ファン
27a 冷蔵用排水管
27b 冷凍用排水管
28,29,30 断熱仕切壁
31 制御基板
32 蒸発皿
35 チルドルーム
39 機械室
40a 冷蔵用蒸発器温度センサ
40b 冷凍用蒸発器温度センサ
41 冷蔵室温度センサ(第一負荷検知手段)
42 冷凍室温度センサ(第二負荷検知手段)
43 野菜室温度センサ
50a,50b 庫外放熱器(放熱手段)
50c 結露抑制配管(放熱手段)
51 ドライヤ
52 三方弁(冷媒制御手段)
53a 冷蔵用キャピラリチューブ(減圧手段)
53b 冷凍用キャピラリチューブ(減圧手段)
54a 冷蔵用気液分離器
54b 冷凍用気液分離器
55a,55b 熱交換部
56 逆止弁
91 脱臭部材
95a,95b 冷蔵室パッキン(第一シール部材)
96a,96b,96c 冷凍室パッキン(第二シール部材)
97 野菜室パッキン(第三シール部材)
101 樋部ヒータ
102 排水管上部ヒータ
103 排水管下部ヒータ
1 Refrigerator 2 Refrigerated room (first refrigerated temperature room)
2a, 2b Refrigeration room door 3 Ice making room 4 Upper freezing room 5 Lower freezing room Freezing room 3a, 4a, 5a Freezing room door 6 Vegetable room (second refrigeration temperature zone room)
6a Vegetable room door 7 Freezer room (generic name for 3, 4 and 5)
8a Refrigerator evaporator room (first evaporator storage room)
8b Evaporator chamber for refrigeration (second evaporator storage chamber)
9a Refrigeration fan (first blower)
9b Refrigeration fan (second blower)
DESCRIPTION OF SYMBOLS 10 Heat insulation box 10a Outer box 10b Inner box 11 Refrigeration room air outlet 11a Refrigeration room air outlet 12 Freezer room air outlet 12a Freezer room air outlet 13 Vegetable room air outlet 13a Vegetable room outlet 14a Refrigerator evaporator (first evaporator) )
14b Refrigerating evaporator (second evaporator)
15a, 15b 15c Refrigeration room return air passage 16 Hinge cover 17 Freezer compartment return port 18 Vegetable room return air passage 18a Vegetable room return port 19 Vegetable room damper 21 Radiant heaters 22a, 22b Drainage ports 23a, 23b 樋 24 Compressor 26 Outside the chamber Fan 27a Refrigeration drain pipe 27b Refrigeration drain pipe 28, 29, 30 Insulating partition wall 31 Control board 32 Evaporating dish 35 Chilled room 39 Machine room 40a Refrigeration evaporator temperature sensor 40b Refrigeration evaporator temperature sensor 41 Refrigeration room temperature sensor (First load detection means)
42 Freezer temperature sensor (second load detection means)
43 Vegetable room temperature sensors 50a, 50b External radiator (heat dissipation means)
50c Condensation suppression piping (heat dissipation means)
51 Dryer 52 Three-way valve (refrigerant control means)
53a Capillary tube for refrigeration (pressure reduction means)
53b Capillary tube for freezing (pressure reduction means)
54a Refrigeration gas / liquid separator 54b Refrigeration gas / liquid separator 55a, 55b Heat exchange unit 56 Check valve 91 Deodorizing members 95a, 95b Refrigeration chamber packing (first seal member)
96a, 96b, 96c Freezer compartment packing (second seal member)
97 Vegetable room packing (third seal member)
101 Head heater 102 Drain pipe upper heater 103 Drain pipe lower heater

Claims (6)

第一冷蔵温度帯室,第二冷蔵温度帯室,冷凍温度帯室を備え,前記第一冷蔵温度帯室の背部に第一蒸発器及び第一送風機と,前記冷凍温度帯室または前記第二冷蔵温度帯室の背部に第二蒸発器及び第二送風機を備えた冷蔵庫において,前記第一送風機の駆動により前記第一蒸発器と熱交換した空気を前記第一冷蔵温度帯室に流通させる第一風路と,前記第二送風機の駆動により前記第二蒸発器と熱交換した空気を前記冷凍温度帯室及び第二冷蔵温度帯室に流通させる第二風路とを備え,前記第一風路と前記第二風路の間の空気の流通を遮断する空気流通遮断手段を備えたことを特徴とする冷蔵庫。   A first refrigeration temperature zone chamber, a second refrigeration temperature zone chamber, and a refrigeration temperature zone chamber; a first evaporator and a first blower on the back of the first refrigeration temperature zone chamber; In a refrigerator provided with a second evaporator and a second blower at the back of the refrigerated temperature zone, the first chilled temperature zone chamber is configured to circulate air exchanged with the first evaporator by driving the first blower. A first air passage, and a second air passage through which air exchanged with the second evaporator by driving the second blower is circulated to the refrigeration temperature zone chamber and the second refrigeration temperature zone chamber, A refrigerator comprising air flow blocking means for blocking air flow between a path and the second air path. 断熱箱体内に第一貯蔵室,第二貯蔵室,第三貯蔵室を備え,前記第一貯蔵室の定格内容積が,前記第二貯蔵室及び前記第三貯蔵室の何れの定格内容積よりも大きい冷蔵庫において,前記第一貯蔵室が区画される領域内に第一蒸発器及び第一送風機を備え,前記第二貯蔵室または前記第三貯蔵室が区画される領域内に第二蒸発器及び第二送風機を備え,前記第一送風機の駆動により前記第一蒸発器と熱交換した空気を前記第一貯蔵室に流通させる第一風路と,前記第二送風機の駆動により前記第二蒸発器と熱交換した空気を前記第二貯蔵室及び第三貯蔵室に流通させる第二風路とを備え,前記第一風路と前記第二風路の間の空気の流通を遮断する空気流通遮断手段を備えたことを特徴とする冷蔵庫。   A first storage chamber, a second storage chamber, and a third storage chamber are provided in the heat insulation box, and the rated internal volume of the first storage chamber is greater than any of the rated internal volumes of the second storage chamber and the third storage chamber. In a large refrigerator, a first evaporator and a first blower are provided in a region where the first storage chamber is partitioned, and a second evaporator is disposed in the region where the second storage chamber or the third storage chamber is partitioned. And a second air blower, a first air passage through which air exchanged heat with the first evaporator by driving the first air blower flows to the first storage chamber, and the second evaporation by driving the second air blower A second air passage through which the air heat-exchanged with the vessel is circulated to the second storage chamber and the third storage chamber, and an air flow that blocks air flow between the first air passage and the second air passage A refrigerator comprising a shut-off means. 断熱箱体内に上方から第一貯蔵室,第二貯蔵室,第三貯蔵室を備え,前記断熱箱体の内部において,前記第一貯蔵室が区画される領域内に第一蒸発器及び第一送風機を備え,前記第二貯蔵室または前記第三貯蔵室が区画される領域内に第二蒸発器及び第二送風機を備え,前記第一送風機の駆動により前記第一蒸発器と熱交換した空気を前記第一貯蔵室に流通させる第一風路と,前記第二送風機の駆動により前記第二蒸発器と熱交換した空気を前記第二貯蔵室及び第三貯蔵室に流通させる第二風路とを備え,前記第一風路と前記第二風路の間の空気の流通を遮断する空気流通遮断手段を備えたことを特徴とする冷蔵庫。   A heat insulation box is provided with a first storage chamber, a second storage chamber, and a third storage chamber from above, and the first evaporator and the first evaporator are disposed in a region where the first storage chamber is defined inside the heat insulation box. Air provided with a blower, having a second evaporator and a second blower in a region where the second storage chamber or the third storage chamber is partitioned, and exchanging heat with the first evaporator by driving the first blower And a second air passage through which air exchanged with the second evaporator by driving the second blower is circulated to the second storage chamber and the third storage chamber. And a air flow blocking means for blocking air flow between the first air path and the second air path. 前方に開口した断熱箱体内に第一貯蔵室,第二貯蔵室,第三貯蔵室を備え,前記第一貯蔵室を開閉する第一貯蔵室扉体と,前記第二貯蔵室を開閉する第二貯蔵室扉体と,前記第三貯蔵室を開閉する第三貯蔵室扉体と,前記第一貯蔵室扉体と前記断熱箱体の間のシール性を確保する第一シール部材と,前記第二貯蔵室扉体と前記断熱箱体の間のシール性を確保する第二シール部材と,前記第三貯蔵室扉体と前記断熱箱体の間のシール性を確保する第三シール部材とを備え,前記第一シール部材の全周長が,前記第二シール部材の全周長及び前記第三シール部材の全周長の何れよりも大きい冷蔵庫において,前記第一貯蔵室が区画される領域内に第一蒸発器及び第一送風機を備え,前記第二貯蔵室または前記第三貯蔵室が区画される領域内に第二蒸発器及び第二送風機を備え,前記第一送風機の駆動により前記第一蒸発器と熱交換した空気を前記第一貯蔵室に流通させる第一風路と,前記第二送風機の駆動により前記第二蒸発器と熱交換した空気を前記第二貯蔵室及び第三貯蔵室に流通させる第二風路とを備え,前記第一風路と前記第二風路の間の空気の流通を遮断する空気流通遮断手段を備えたことを特徴とする冷蔵庫。   A first storage chamber, a second storage chamber, and a third storage chamber are provided in a heat insulating box that opens forward, and a first storage chamber door that opens and closes the first storage chamber, and a first storage chamber that opens and closes the second storage chamber. Two storage chamber doors, a third storage chamber door that opens and closes the third storage chamber, a first seal member that secures a sealing property between the first storage chamber door and the heat insulation box, A second seal member that secures a seal between the second storage chamber door and the heat insulation box, and a third seal member that secures a seal between the third storage chamber door and the heat insulation box. The first storage chamber is defined in a refrigerator in which the entire circumference of the first seal member is greater than both the overall circumference of the second seal member and the overall circumference of the third seal member A first evaporator and a first blower are provided in the region, and the second storage chamber or the third storage chamber is partitioned in the second region. A first air passage for supplying air to the first storage chamber through the heat exchange with the first evaporator by driving the first blower; and the first blower by driving the second blower. A second air passage through which air exchanged with the two evaporators flows through the second storage chamber and the third storage chamber, and blocks air flow between the first air passage and the second air passage. A refrigerator comprising air circulation blocking means. 少なくとも圧縮機と前記第一送風機を制御することで,安定冷却運転における,冷蔵運転時の前記第一蒸発器の時間平均温度を,前記冷凍温度帯室の維持温度と前記第一冷蔵温度帯室の維持温度の算術平均値以上とすることを特徴とする請求項1乃至請求項4の何れかに記載の冷蔵庫。   By controlling at least the compressor and the first blower, the time average temperature of the first evaporator during the refrigeration operation in the stable cooling operation, the maintenance temperature of the refrigeration temperature zone chamber and the first refrigeration temperature zone chamber The refrigerator according to any one of claims 1 to 4, wherein the refrigerator is not less than an arithmetic average value of the maintenance temperature. 少なくとも圧縮機と前記第一送風機を制御することで,安定冷却運転における,前記第一冷蔵温度帯室の維持温度TR_keepと冷蔵運転時の前記第一蒸発器の時間平均温度TRevp_aveとの差をΔT(=TR_keep−TRevp_ave)とし,蒸発器温度に対する冷凍サイクル理論成績係数をCOPthとした場合に,以下の式を満足させることを特徴とする請求項1乃至請求項4の何れかに記載の冷蔵庫。
Figure 2019132497
By controlling at least the compressor and the first blower, the difference between the maintenance temperature T R_keep of the first refrigeration temperature zone chamber and the time average temperature T Revp_ave of the first evaporator during the refrigeration operation in the stable cooling operation 5 is set to ΔT (= T R_keep −T Revp_ave ), and the refrigeration cycle theoretical coefficient of performance with respect to the evaporator temperature is set to COP th , the following equation is satisfied: Refrigerator.
Figure 2019132497
JP2018014306A 2018-01-31 2018-01-31 refrigerator Active JP7063641B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018014306A JP7063641B2 (en) 2018-01-31 2018-01-31 refrigerator
CN202011258466.3A CN112378146B (en) 2018-01-31 2018-09-05 Refrigerator with a door
CN201811029402.9A CN110094917A (en) 2018-01-31 2018-09-05 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018014306A JP7063641B2 (en) 2018-01-31 2018-01-31 refrigerator

Publications (2)

Publication Number Publication Date
JP2019132497A true JP2019132497A (en) 2019-08-08
JP7063641B2 JP7063641B2 (en) 2022-05-09

Family

ID=67547328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018014306A Active JP7063641B2 (en) 2018-01-31 2018-01-31 refrigerator

Country Status (1)

Country Link
JP (1) JP7063641B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132854A (en) * 1978-04-07 1979-10-16 Hitachi Ltd Two-door refrigerator
JPS5912278A (en) * 1982-07-14 1984-01-21 株式会社日立製作所 Structure of heat exchanger for refrigerator
JPH102662A (en) * 1996-06-14 1998-01-06 Toshiba Corp Refrigerator
JP2001091130A (en) * 1999-09-21 2001-04-06 Toshiba Corp Refrigerator
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912278B2 (en) 2011-04-06 2016-04-27 Necトーキン株式会社 Electromagnetic interference suppressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132854A (en) * 1978-04-07 1979-10-16 Hitachi Ltd Two-door refrigerator
JPS5912278A (en) * 1982-07-14 1984-01-21 株式会社日立製作所 Structure of heat exchanger for refrigerator
JPH102662A (en) * 1996-06-14 1998-01-06 Toshiba Corp Refrigerator
JP2001091130A (en) * 1999-09-21 2001-04-06 Toshiba Corp Refrigerator
JP2006090686A (en) * 2004-08-26 2006-04-06 Toshiba Corp Refrigerator
JP2015102315A (en) * 2013-11-27 2015-06-04 株式会社東芝 Refrigerator

Also Published As

Publication number Publication date
JP7063641B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP5571044B2 (en) refrigerator
KR101306536B1 (en) Refrigerator
JP5178642B2 (en) refrigerator
JP5622758B2 (en) refrigerator
JP5507511B2 (en) refrigerator
JP3688892B2 (en) Freezer refrigerator
JP5557661B2 (en) refrigerator
JP2012007760A (en) Refrigerator
JP2018071874A (en) refrigerator
US20220235976A1 (en) Refrigerator
CN112378146B (en) Refrigerator with a door
JP2019138481A (en) refrigerator
JP6890502B2 (en) refrigerator
JP6962829B2 (en) refrigerator
JP7063641B2 (en) refrigerator
JP6492291B2 (en) refrigerator
JP2019132503A (en) refrigerator
JP5941838B2 (en) refrigerator
JP2019027649A (en) refrigerator
JP7254227B2 (en) refrigerator
CN109708378B (en) Refrigerator with a door
JP6963044B2 (en) refrigerator
US20220146154A1 (en) Refrigerator control method
JP2019132495A (en) refrigerator
JP6807882B2 (en) refrigerator

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210705

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220304

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220314

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220421

R150 Certificate of patent or registration of utility model

Ref document number: 7063641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150