JP2019128288A - Method for observing scratch - Google Patents

Method for observing scratch Download PDF

Info

Publication number
JP2019128288A
JP2019128288A JP2018010831A JP2018010831A JP2019128288A JP 2019128288 A JP2019128288 A JP 2019128288A JP 2018010831 A JP2018010831 A JP 2018010831A JP 2018010831 A JP2018010831 A JP 2018010831A JP 2019128288 A JP2019128288 A JP 2019128288A
Authority
JP
Japan
Prior art keywords
metal nanoparticles
flaw
crack
test piece
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018010831A
Other languages
Japanese (ja)
Inventor
健太郎 中山
Kentaro Nakayama
健太郎 中山
一樹 三田
Kazuki Mita
一樹 三田
真理子 木田
Mariko Kida
真理子 木田
航 牧口
Wataru Makiguchi
航 牧口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2018010831A priority Critical patent/JP2019128288A/en
Publication of JP2019128288A publication Critical patent/JP2019128288A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for observing a scratch of a product easily.SOLUTION: The present invention includes a method for observing a scratch of an observation target object. The method includes the steps of: introducing metal nanoparticles into the scratch of the observation target object on a surface; irradiating the scratch, to which the metal nanoparticles have been introduced, with an X-ray; and measuring a transmission factor of the X-ray having passed through the scratch.SELECTED DRAWING: Figure 1

Description

本発明は、きずの観察方法に関する。   The present invention relates to a flaw observation method.

樹脂組成物や無機物などから形成された成形体では、温度変化に伴う伸縮や、照射された紫外線のエネルギーなどにより、表面にクラックなどの「きず」(以下、単に「クラック等」ともいう。)が生じることがある。クラック等は、成形体の特性や美感に影響を及ぼすことから、クラック等の有無、深さ、三次元形状および大きさなどを試験することが要求されている。また、製品検査時にクラック等の有無などを判断するためには、クラック等を非破壊で観察することが要求されている。   In a molded body formed of a resin composition or an inorganic material, the surface is “flawed” such as cracks (hereinafter also simply referred to as “cracks”) due to expansion / contraction accompanying temperature change, energy of irradiated ultraviolet rays, and the like. May occur. Since cracks and the like affect the characteristics and aesthetics of the molded body, it is required to test the presence / absence, depth, three-dimensional shape and size of cracks and the like. Further, in order to determine the presence or absence of a crack or the like during product inspection, it is required to observe the crack or the like in a non-destructive manner.

たとえば、樹脂組成物が有するクラック等の観察は、特許文献1に記載のように、目視で行われることが多い。しかし、目視での観察では、クラック等の深さ、三次元形状および大きさを把握することが困難であり、クラック等が成形体にどの程度の影響を及ぼし得るかを推測することも困難である。   For example, the observation of cracks and the like possessed by the resin composition is often performed visually as described in Patent Document 1. However, with visual observation, it is difficult to grasp the depth, three-dimensional shape and size of cracks, etc., and it is also difficult to estimate how much the cracks can affect the compact. is there.

一方で、特許文献2には、発電プラントにおけるボイラ配管などの表面をデジタルX線によって撮像し、得られたX線画像に含まれるクラックの輝度と、予め求められたクラックの輝度と深さとの関係と、から当該クラックの深さを推測する方法が記載されている。   On the other hand, in Patent Document 2, the surface of a boiler pipe or the like in a power plant is imaged with digital X-rays, and the luminance of cracks included in the obtained X-ray image and the luminance and depth of cracks obtained in advance are described. The relationship and the method of estimating the depth of the crack from the relationship are described.

特開2017−170837号公報JP 2017-170837 A 特開2008−051659号公報JP 2008-051659 A

特許文献1に記載のように、樹脂組成物が有するクラック等を目視で観察しても、当該クラック等の深さ、三次元形状および大きさなどを正確に把握することは困難である。特許文献2に記載の方法では、クラック等の深さを推測することができるとされているが、ボイラ配管などに用いられる鋼以外の材料から形成された成形体でも、同様にクラック等の深さを推測できるかは不明である。また、仮に同様に推測できるとしても、クラック等の深さを推測するための関係を材料ごとに求める必要がある。   As described in Patent Document 1, it is difficult to accurately grasp the depth, three-dimensional shape, size, and the like of the crack even when the crack or the like of the resin composition is visually observed. In the method described in Patent Document 2, it is said that the depth of cracks and the like can be estimated. However, even in a molded body formed of a material other than steel used for boiler piping or the like, the depth of cracks and the like is also the same. It is unclear whether it can be estimated. Moreover, even if it can be estimated similarly, it is necessary to obtain a relationship for estimating the depth of a crack or the like for each material.

上記の課題に鑑み、本発明は、成形体が有するクラック等を容易に観察できる方法を提供することを、その目的とする。   In view of the above-mentioned subject, the present invention makes it the object to provide a method which can observe easily a crack etc. which a forming object has.

上記課題を解決するための本発明は、表面にきずを有する被観察物が有する前記きずに金属ナノ粒子を導入する工程と、前記金属ナノ粒子が導入された前記きずにX線を照射して、前記きずを透過したX線の透過率を測定する工程と、を有する、被観察物が有するきずの観察方法に関する。   In order to solve the above problems, the present invention includes a step of introducing metal nanoparticles into the flaws of an observation object having flaws on the surface, and irradiating the flaws with the metal nanoparticles introduced with X-rays. And a step of measuring the transmittance of the X-rays transmitted through the flaw.

本発明によれば、成形体が有するクラック等を容易に観察できる方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the method which can observe easily the crack etc. which a molded object has is provided.

図1は、本発明の一実施形態に関する、被観察物が有するクラック等の形状観察方法のフローチャートである。FIG. 1 is a flowchart of a method for observing a shape of an object to be observed, such as a crack, according to an embodiment of the present invention. 図2Aは、試験1で得られた、試験片AのXY断面の断層画像である。FIG. 2A is a tomographic image of the XY cross section of the test piece A obtained in Test 1. FIG. 図2Bは、試験1で得られた、試験片AのYZ断面の断層画像である。FIG. 2B is a tomographic image of the YZ cross section of the test piece A obtained in Test 1. 図2Cは、試験1で得られた、試験片AのXZ断面の断層画像である。2C is a tomographic image of the XZ cross section of the test piece A obtained in Test 1. FIG. 図3Aは、試験1で得られた、試験片BのXY断面の断層画像である。3A is a tomographic image of the XY cross section of the test piece B obtained in Test 1. FIG. 図3Bは、試験1で得られた、試験片BのYZ断面の断層画像である。3B is a tomographic image of the YZ cross section of the test piece B obtained in Test 1. FIG. 図3Cは、試験1で得られた、試験片BのXZ断面の断層画像である。3C is a tomographic image of the XZ cross section of the test piece B obtained in Test 1. FIG. 図4は、試験1で、全方位から試験片BへのX線の照射により得られた、クラックの三次元形状を示す画像である。FIG. 4 is an image showing the three-dimensional shape of a crack obtained by X-ray irradiation from all directions to the test piece B in Test 1. 図5Aは、試験1で試験片Aから得られた断層画像である。5A is a tomographic image obtained from the test piece A in Test 1. FIG. 図5Bは、図5Aに示すA−B間のグレーバリューを示す図である。FIG. 5B is a diagram illustrating a gray value between A and B illustrated in FIG. 5A. 図6Aは、試験1で試験片Bから得られた断層画像である。6A is a tomographic image obtained from the test piece B in Test 1. FIG. 図6Bは、図6Aに示すA’−B’間のグレーバリューを示す図である。FIG. 6B is a diagram illustrating a gray value between A ′ and B ′ illustrated in FIG. 6A. 図7は、試験3で得られた、試験片CのXY断面の断層画像である。FIG. 7 is a tomographic image of the XY cross section of the test piece C obtained in Test 3. 図8は、試験3で得られた、試験片DのXY断面の断層画像である。FIG. 8 is a tomographic image of the XY cross section of the test piece D obtained in Test 3.

図1は、本発明の一実施形態に関する、被観察物が有するクラック等の形状観察方法のフローチャートである。   FIG. 1 is a flowchart of a method for observing a shape of an object to be observed, such as a crack, according to an embodiment of the present invention.

本実施形態でクラック等の形状を観察される被観察物は、特に限定されず、樹脂組成物の成形体および金属などを含む無機物の成形体など、様々な材料に形状を付与してなる成形体とすることができる。ただし、本実施形態では、被観察物に放射線を照射して、透過した放射線の強度を測定するため、被観察物は照射される放射線に対する透過性を有する成形体である。   The object to be observed for the shape of cracks and the like in the present embodiment is not particularly limited, and is formed by imparting shapes to various materials such as a molded body of a resin composition and an inorganic body including a metal. It can be a body. However, in this embodiment, since the intensity of the transmitted radiation is measured by irradiating the object to be observed with radiation, the object to be observed is a molded body having transparency to the irradiated radiation.

被観察物の表面には、クラック等が生じている。クラック等は、被観察物の表面から内部(深さ)方向に延びて形成された亀裂であるクラックや、表面に形成された凹部であるデント、ニックおよびスクラッチなどを含む。クラック等は、温度変化に伴う被観察物の伸縮や、照射された紫外線のエネルギーによる被観察物の損傷などにより、形成される。クラック等の大きさは特に限定されないが、たとえば開口幅が10.0μm以上1.0mm以下であればよい。   Cracks or the like are generated on the surface of the object to be observed. Cracks and the like include cracks that are cracks formed extending from the surface of the observation object in the internal (depth) direction, and dents, nicks, and scratches that are recesses formed on the surface. Cracks and the like are formed due to expansion and contraction of the observation object due to temperature change, damage to the observation object due to the energy of irradiated ultraviolet rays, and the like. The size of the crack or the like is not particularly limited, but for example, the opening width may be 10.0 μm or more and 1.0 mm or less.

[金属ナノ粒子の導入]
まず、クラック等に金属ナノ粒子を導入する(工程S110)。
[Introduction of metal nanoparticles]
First, metal nanoparticles are introduced into a crack or the like (step S110).

金属ナノ粒子を構成する金属は、被観察物よりも放射線の吸収が大きい(たとえば、X線吸収係数またはCT値が大きい)金属であればよい。上記金属は、たとえば、金、銀、銅、ニッケル、パラジウム、白金、アルミニウム、亜鉛、クロム、鉄、コバルト、モリブデン、ジルコニウム、ルテニウム、イリジウム、タンタル、水銀、インジウム、スズ、鉛、およびタングステンなどとすることができ、これらのうち入手の容易さからは金、銀、および銅が好ましい。なお、被観察物が金属の成形体であるときは、金属ナノ粒子を構成する金属は、被観察物とは種類が異なる(たとえば、X線吸収係数またはCT値が異なる)金属とする。   The metal constituting the metal nanoparticles may be a metal that absorbs radiation more than the object to be observed (for example, has a larger X-ray absorption coefficient or CT value). The above metals are, for example, gold, silver, copper, nickel, palladium, platinum, aluminum, zinc, chromium, iron, cobalt, molybdenum, zirconium, ruthenium, iridium, tantalum, mercury, indium, tin, lead, tungsten and the like. Among these, gold, silver, and copper are preferable from the viewpoint of availability. When the object to be observed is a metal compact, the metal constituting the metal nanoparticle is a metal different from the object to be observed (for example, an X-ray absorption coefficient or a CT value is different).

たとえば、X線のエネルギーが低く、X線と物質との間で生じる相互作用が光電効果のみであると近似した場合、X線吸収係数は原子番号のおよそ3乗に比例し、X線エネルギーの3乗に反比例する。
X線吸収係数 ∝ (原子番号)/(X線エネルギー)
For example, if the energy of X-rays is low and the interaction between X-rays and matter is approximated to be only the photoelectric effect, the X-ray absorption coefficient is proportional to the third power of the atomic number, It is inversely proportional to the third power.
X-ray absorption coefficient ∝ (atomic number) 3 / (X-ray energy) 3

被観察物と金属ナノ粒子を構成する金属との間のX線吸収係数の差は、この関係式から推測してもよい。たとえば、被観察物のX線吸収係数と、金属ナノ粒子を構成する金属のX線吸収係数との差は、2以上であることが好ましく、3以上であることがより好ましく、5以上であることがさらに好ましい。   The difference in the X-ray absorption coefficient between the object to be observed and the metal constituting the metal nanoparticle may be inferred from this relationship. For example, the difference between the X-ray absorption coefficient of the object to be observed and the X-ray absorption coefficient of the metal constituting the metal nanoparticles is preferably 2 or more, more preferably 3 or more, and 5 or more. More preferably.

金属ナノ粒子の体積平均粒子径は、5nm以上400nm以下とすることができる。金属ナノ粒子の体積平均粒子径が5nm以上であると、クラック等への金属ナノ粒子の導入が容易である。金属ナノ粒子の体積平均粒子径が400nm以下であると、観察の精度を高めることができる。金属ナノ粒子の体積平均粒子径は、10nm以上400nm以下であることが好ましく、100nm以上400nm以下であることがより好ましく、200nm以上400nm以下であることがさらに好ましい。金属ナノ粒子の体積平均粒子径は、動的光散乱法に基づく粒子径分布測定装置を使用して求めた体積平均粒子径とすることができる。   The volume average particle diameter of the metal nanoparticles can be 5 nm or more and 400 nm or less. When the volume average particle diameter of the metal nanoparticles is 5 nm or more, the metal nanoparticles can be easily introduced into cracks and the like. When the volume average particle diameter of the metal nanoparticles is 400 nm or less, the accuracy of observation can be improved. The volume average particle diameter of the metal nanoparticles is preferably 10 nm or more and 400 nm or less, more preferably 100 nm or more and 400 nm or less, and further preferably 200 nm or more and 400 nm or less. The volume average particle diameter of the metal nanoparticles can be a volume average particle diameter determined using a particle size distribution measuring apparatus based on a dynamic light scattering method.

金属ナノ粒子の粒子径の分散を示す多分散指数(PDI)は、0.5以下であることが好ましく、0.3以下であることがより好ましい。金属ナノ粒子のPDIが0.5以下であると、金属ナノ粒子の粒子径のぶれによる観察精度の低下を抑制できる。金属ナノ粒子のPDIは、動的光散乱法に基づく粒子径分布測定装置を使用して求めたPDIとすることができる。   The polydispersity index (PDI) indicating the dispersion of the particle diameter of the metal nanoparticles is preferably 0.5 or less, and more preferably 0.3 or less. When the PDI of the metal nanoparticles is 0.5 or less, it is possible to suppress the decrease in observation accuracy due to the deviation of the particle diameter of the metal nanoparticles. The PDI of the metal nanoparticles can be PDI determined using a particle size distribution measuring device based on a dynamic light scattering method.

金属ナノ粒子は、分散媒に分散させてクラック等に導入すればよい。分散媒は、被観察物との反応性が低いものであればよく、たとえば水、アルコール、トルエン、酢酸エチル、アセトン、およびテトラヒドロフラン(THF)などの有機分散媒、ならびにクエン酸緩衝液などの緩衝液から選択することができる。分散媒中の金属ナノ粒子の濃度は、金属ナノ粒子を含む分散液の流動性(粘度)が顕著に低下しない程度であれば特に限定されないが、たとえば1.0×10個/ml以上1.0×1011個/ml以下とすることができる。 The metal nanoparticles may be dispersed in a dispersion medium and introduced into a crack or the like. The dispersion medium may be any one as long as it has low reactivity with the object to be observed, for example, organic dispersion media such as water, alcohol, toluene, ethyl acetate, acetone, and tetrahydrofuran (THF), and buffers such as citrate buffer The liquid can be selected. The concentration of the metal nanoparticles in the dispersion medium is not particularly limited as long as the fluidity (viscosity) of the dispersion containing the metal nanoparticles is not significantly reduced, but, for example, 1.0 × 10 6 / ml or more 1 can be .0 × 10 11 cells / ml or less.

金属ナノ粒子は、被観察物への分散液の噴霧、被観察物への分散液の塗布または滴下、被観察物の分散液への浸漬などにより、クラック等に導入することができる。目視でクラック等の位置が確認できるときは、当該クラック等に分散液を滴下すればよい。これらの方法による金属ナノ粒子の導入は、繰り返し行われることが好ましい。   The metal nanoparticles can be introduced into a crack or the like by spraying the dispersion liquid on the observation object, applying or dropping the dispersion liquid on the observation object, or immersing the observation object in the dispersion liquid. When the position of a crack or the like can be confirmed with the naked eye, the dispersion may be dropped onto the crack or the like. The introduction of metal nanoparticles by these methods is preferably performed repeatedly.

金属ナノ粒子をクラック等に導入した後は、加温または室温での静置などにより乾燥させて分散媒を除去すればよい。溶媒が乾燥すると、金属ナノ粒子同士が凝集してクラック等の内表面に付着する。そのため、金属ナノ粒子の凝集体は、クラック等の外形(クラック等を構成する被観察物の内壁面の形状)と同じ形状を形成する。   After the metal nanoparticles are introduced into the cracks, the dispersion medium may be removed by drying by heating or standing at room temperature. When the solvent dries, the metal nanoparticles aggregate and adhere to the inner surface such as cracks. Therefore, the aggregate of metal nanoparticles forms the same shape as the outer shape of the crack or the like (the shape of the inner wall surface of the observation object constituting the crack or the like).

また、乾燥前または乾燥後に、クラック等の外側にあふれた金属微粒子を拭き取りなどによって除去してもよい。   In addition, before or after drying, metal particles overflowing to the outside such as cracks may be removed by wiping or the like.

[放射線の照射および測定]
次に、被観察物の、金属ナノ粒子を導入されたクラック等に放射線を照射して、上記クラック等を透過した放射線の透過率を測定する(工程S120)。
[Radiation irradiation and measurement]
Next, the crack etc. which were introduce | transduced the metal nanoparticle of the to-be-observed object are irradiated with a radiation, and the transmittance | permeability of the radiation which permeate | transmitted the said crack etc. is measured (process S120).

照射する放射線は、X線およびガンマ線などとすることができるが、被観察物への損傷を抑制する観点から、X線が好ましい。   The radiation to be irradiated can be X-rays and gamma rays, but X-rays are preferable from the viewpoint of suppressing damage to the object to be observed.

X線の照射および透過率の測定は、公知のコンピュータ断層撮影(Computed Tomography:CT)法により行うことができる。このとき、被観察物に異なる複数の方向からX線を照射することが好ましい。   The irradiation of X-rays and the measurement of the transmittance can be performed by a known computed tomography (CT) method. At this time, it is preferable to irradiate the object to be observed with X-rays from a plurality of different directions.

測定された放射線の透過率からは、被観察物の断層画像を作成して観察することができる。また、被観察物に異なる複数の方向、好ましくは全方位から放射線を照射してそれぞれの方位からの透過率を求めることで、被観察物の三次元形状を再構成して観察することができる。   From the measured radiation transmittance, a tomographic image of the object to be observed can be created and observed. Further, by irradiating the object to be observed with a plurality of directions, preferably from all directions, and obtaining the transmittance from each direction, the three-dimensional shape of the object to be observed can be reconstructed and observed. .

本実施形態では、放射線の吸収が大きい金属ナノ粒子をクラック等に導入し、金属ナノ粒子がクラック等の外形と同じ形状に凝集しているため、測定された放射線の透過率から得られる断層画像では、放射線透過率がより低い領域としてクラック等の形状が示される。そのため、金属ナノ粒子を導入せずに放射線の透過率を測定するときと比較して、クラック等の形状がより明瞭に観察できる。   In the present embodiment, metal nanoparticles having high radiation absorption are introduced into cracks and the like, and the metal nanoparticles are aggregated in the same shape as the outer shape of cracks and the like, so that a tomographic image obtained from the measured radiation transmittance Then, a shape such as a crack is shown as a region having a lower radiation transmittance. Therefore, compared with the case of measuring the radiation transmittance without introducing metal nanoparticles, the shape of cracks and the like can be observed more clearly.

特に、放射線の吸収が小さい樹脂組成物の成形体などに放射線を照射してその透過率を測定するときには、樹脂組成物とクラック等の内部(空気)との間における放射線の吸収の差が小さいため、クラック等の形状を明瞭に観察しにくいことがある。そのため、金属ナノ粒子をクラック等に導入する本実施形態は、樹脂組成物の成形体が有するクラック等の有無、深さ、三次元形状および大きさなどの観察を顕著に容易とする。なお、放射線の吸収が大きい添加剤が樹脂組成物に含まれているときは、金属ナノ粒子は、当該添加剤よりも放射線の吸収が大きい金属のナノ粒子とすればよい。   In particular, when measuring the transmittance by irradiating a molded body of a resin composition or the like with low radiation absorption, the difference in radiation absorption between the resin composition and the interior (air) such as cracks is small. For this reason, it may be difficult to clearly observe the shape of a crack or the like. Therefore, this embodiment which introduce | transduces a metal nanoparticle into a crack etc. makes remarkably easy observation of the presence or absence, the depth, a three-dimensional shape, a magnitude | size, etc. which the molded object of a resin composition has. In addition, when the resin composition contains an additive that absorbs a large amount of radiation, the metal nanoparticles may be metal nanoparticles that absorb a larger amount of radiation than the additive.

[金属ナノ粒子の排出]
次に、クラック等から、金属ナノ粒子を排出してもよい(工程S130)。
[Discharge of metal nanoparticles]
Next, the metal nanoparticles may be discharged from a crack or the like (step S130).

金属ナノ粒子は、クエン酸緩衝液などの洗浄液をクラック等に導入して、当該洗浄液と共にクラック等から排出することができる。   The metal nanoparticles can be discharged from the crack or the like by introducing a cleaning solution such as a citrate buffer solution into the crack or the like.

排出された金属ナノ粒子は、回収されて再利用されてもよい。   The discharged metal nanoparticles may be collected and reused.

[効果]
本実施形態によれば、金属ナノ粒子を導入して放射線を照射するのみで、成形体が有するクラック等を容易に観察することができる。
[effect]
According to the present embodiment, it is possible to easily observe a crack or the like possessed by a formed body only by introducing metal nanoparticles and irradiating radiation.

また、本実施形態によれば、樹脂組成物や無機物などから形成された成形体について、クラック等の有無、深さ、三次元形状および大きさなどを非破壊で明瞭に観察することができる。   In addition, according to the present embodiment, the presence or absence of cracks, the depth, the three-dimensional shape, the size, and the like can be clearly observed in a non-destructive manner for a molded body formed from a resin composition or an inorganic material.

[試験1]
ポリエステル樹脂組成物(三井化学株式会社製、プロベスト(「プロベスト」は同社の登録商標))を、以下の射出成形機を用い、以下の成形条件で射出成形して、長さ30mm、幅30mm、厚さ0.5mmの試験片を作製した。
成形機:住友重機械工業(株)社製、SE50DU
シリンダー温度:ポリエステル樹脂(A)の融点(Tm)+10℃
金型温度:150℃
[Test 1]
A polyester resin composition (Provest ("Provest" is a registered trademark of Mitsui Chemicals, Inc.) manufactured by Mitsui Chemicals, Inc.) is injection molded using the following injection molding machine under the following molding conditions, and has a length of 30 mm and a width A test piece of 30 mm in thickness and 0.5 mm in thickness was produced.
Molding machine: Sumitomo Heavy Industries, Ltd. SE50DU
Cylinder temperature: Melting point (Tm) + 10 ° C of polyester resin (A)
Mold temperature: 150 ° C

作製した試験片を、以下の環境試験器に、以下の条件で静置し、2.5WのLEDライトを試験片表面から0.4mmの位置に置いて8日間照射し、クラックを発生させた。
環境試験器:エスペック社製 PWL−3KP
環境試験器の条件:85℃、85%RH
The prepared test piece was allowed to stand in the following environmental tester under the following conditions, and a 2.5 W LED light was placed 0.4 mm from the surface of the test piece and irradiated for 8 days to generate a crack .
Environmental tester: ESPEC PWL-3KP
Environmental test conditions: 85 ° C, 85% RH

試験片のクラックを含んだ箇所を、クラックの発生した表面をX−Y面、試験片の厚さ方向をZ方向として、X方向幅:2.3mm、Y方向幅:3.5mmにカットし、試験片Aとした。   The test specimen was cut into a portion containing cracks in the X-direction width: 2.3 mm and the Y-direction width: 3.5 mm, where the cracked surface is the XY plane and the thickness direction of the test piece is the Z direction. A test piece A was obtained.

3DマイクロX線CT撮像装置(株式会社リガク製、CT lab GX130)の試料台に、LED光を照射した面が上面となるように試験片Aを設置して、以下の条件でX線の照射、透過率の測定および断層画像の形成を行った。クラックには、撮像前に金属ナノ粒子を導入しなかった。
管電圧: 130kV
管電流: 60μA
スキャン時間: 57min
視野(FOV): 3.584mm
解像度: 7.0μm
A test piece A is placed on the sample stand of a 3D micro X-ray CT imaging device (CT lab GX130, manufactured by Rigaku Corporation) so that the surface irradiated with the LED light is on the top, and X-ray irradiation is performed under the following conditions , Measurement of transmittance and formation of tomographic images. The metal nanoparticles were not introduced into the crack before imaging.
Tube voltage: 130kV
Tube current: 60μA
Scan time: 57 min
Field of view (FOV): 3.584 mm
Resolution: 7.0μm

試験片Aの、表面からZ方向への深さ0.01mmにおけるXY断面の断層画像を図2Aに、X方向への幅1.2mmにおけるYZ断面の断層画像を図2Bに、Y方向への幅1.3mmにおけるXZ断面の断層画像を図2Cに、それぞれ示す。   FIG. 2A shows a tomographic image of the XY section at a depth of 0.01 mm in the Z direction from the surface of the test piece A, FIG. 2B shows a tomographic image of the YZ section at a width of 1.2 mm in the X direction in the Y direction. The tomographic images of the XZ cross section at a width of 1.3 mm are shown in FIG. 2C, respectively.

試験片Aのクラックに、体積平均粒子径が300nm、PDIが0.2の金ナノ粒子をクエン酸緩衝液に分散させた分散液をマイクロシリンジで5μl滴下して、クラックの内部に金ナノ粒子を導入した。分散液中の金ナノ粒子の濃度は、4.0×10個/ml〜5.0×10個/ml程度だった。滴下後15分程度大気中で乾燥させて分散液を乾燥させた後、再度金ナノ粒子を導入した。この操作をおよそ20回程度繰り返したものを、試験片Bとした。 5 μl of a dispersion of gold nanoparticles with a volume average particle diameter of 300 nm and PDI of 0.2 dispersed in a citric acid buffer solution is dropped into the crack of test piece A by a microsyringe, and the gold nanoparticle is contained inside the crack Introduced. The concentration of gold nanoparticles in the dispersion was 4.0 × 10 8 /ml~5.0×10 about 8 / ml. After dropping, the dispersion was dried for about 15 minutes in the air, and then gold nanoparticles were introduced again. A test piece B was obtained by repeating this operation about 20 times.

試験片Aと同条件で、試験片BのX線の照射、透過率の測定および断層画像の形成を行った。   Under the same conditions as the test piece A, X-ray irradiation of the test piece B, measurement of transmittance, and formation of a tomographic image were performed.

試験片Bの、表面からZ方向への深さ0.04mmにおけるXY断面の断層画像を図3Aに、X方向への幅1.2mmにおけるYZ断面の断層画像を図3Bに、Y方向への幅1.3mmにおけるXZ断面の断層画像を図3Cに、それぞれ示す。また、全方位から試験片BへのX線の照射により得られたクラックの三次元形状を、図4に示す。   The tomographic image of the XY section at a depth of 0.04 mm in the Z direction from the surface of the test piece B is shown in FIG. 3A, the tomographic image of the YZ section at a width of 1.2 mm in the X direction is shown in FIG. The tomographic images of the XZ cross section at a width of 1.3 mm are shown in FIG. 3C, respectively. Moreover, the three-dimensional shape of the crack obtained by irradiation of the X-ray to the test piece B from all directions is shown in FIG.

図2A〜図2Cと、図3A〜図3Cとの比較により、クラックに金属ナノ粒子を導入することで、クラックの形状をより明瞭に観察でき、三次元形状の観察も可能となることがわかる。   Comparison of FIGS. 2A to 2C and FIGS. 3A to 3C shows that by introducing metal nanoparticles into the crack, the shape of the crack can be observed more clearly and a three-dimensional shape can be observed. .

[試験2]
試験1で試験片Aから得られた断層画像と試験片Bから得られた断層画像とのコントラストを比較した。
[Test 2]
The contrast between the tomographic image obtained from the test piece A and the tomographic image obtained from the test piece B in Test 1 was compared.

画像解析ソフトであるImageJを用いて得られた、試験片Aから得られた断層画像図5A(図2Aと同一の画像)に示すA−B間のグレーバリューを図5Bに示す。また、画像解析ソフトであるImageJを用いて得られた、試験片Bから得られた断層画像図6A(図3Aと同一の画像)に示すA’−B’間のグレーバリューを図6Bに示す。   FIG. 5B shows the gray value between A and B shown in the tomographic image FIG. 5A (the same image as FIG. 2A) obtained from the test piece A, obtained using ImageJ, which is image analysis software. Further, FIG. 6B shows the gray value between A ′ and B ′ shown in the tomographic image obtained from the test piece B obtained using ImageJ, which is image analysis software, in FIG. 6A (the same image as FIG. 3A). .

図5Bと図6Bとの比較により、クラック等に金属ナノ粒子を導入することで、クラック等の形状をより明瞭に観察できることがわかる。   Comparison between FIG. 5B and FIG. 6B shows that the shape of cracks and the like can be observed more clearly by introducing metal nanoparticles into the cracks and the like.

[試験3]
ポリエステル樹脂組成物(三井化学株式会社製、プロベスト(「プロベスト」は同社の登録商標))を、以下の射出成形機を用い、以下の成形条件で射出成形して、長さ30mm、幅30mm、厚さ0.5mmの試験片を作製した。
成形機:住友重機械工業(株)社製、SE50DU
シリンダー温度:ポリエステル樹脂(A)の融点(Tm)+10℃
金型温度:150℃
[Test 3]
A polyester resin composition (Provest ("Provest" is a registered trademark of Mitsui Chemicals, Inc.) manufactured by Mitsui Chemicals, Inc.) is injection molded using the following injection molding machine under the following molding conditions, and has a length of 30 mm and a width A test piece of 30 mm in thickness and 0.5 mm in thickness was produced.
Molding machine: Sumitomo Heavy Industries, Ltd. SE50DU
Cylinder temperature: Melting point (Tm) + 10 ° C of polyester resin (A)
Mold temperature: 150 ° C

作製した試験片を、以下の環境試験器に、以下の条件で静置し、2.5WのLEDライトを試験片表面から0.4mmの位置に置いて8日間照射し、クラックを発生させた。
環境試験器:エスペック社製 PWL−3KP
環境試験器の条件:85℃、85%RH
The prepared test piece was allowed to stand in the following environmental tester under the following conditions, and a 2.5 W LED light was placed 0.4 mm from the surface of the test piece and irradiated for 8 days to generate a crack .
Environmental tester: ESPEC PWL-3KP
Environmental test conditions: 85 ° C, 85% RH

試験片のクラックを含んだ箇所を、クラックの発生した表面をX−Y面、試験片の厚さ方向をZ方向として、X方向幅:2.5mm、Y方向幅:2.6mmにカットし試験片Cとした。   The test specimen was cut into a portion containing cracks in the X-direction width: 2.5 mm and the Y-direction width: 2.6 mm, where the cracked surface is the XY plane and the thickness direction of the test piece is the Z direction. Test piece C was obtained.

3DマイクロX線CT撮像装置(株式会社リガク製、nano3DX)の試料台に、LED光を照射した試験片Cを設置して、以下の条件でX線の照射、透過率の測定および断層画像の形成を行った。クラックには、撮像前に金属ナノ粒子を導入しなかった。
ターゲット: Mo
管電圧: 50kV
管電流: 24mA
使用レンズ: 1080
スキャン数(異なる角度の数): 1000
1角度あたりの露光時間: 20sec
視野(FOV): 3.6mmφ×2.8mm
画素サイズ: 1.05μm/voxel
A test piece C irradiated with LED light is placed on a sample stand of a 3D micro X-ray CT imaging apparatus (nano 3 DX, manufactured by Rigaku Corporation), and X-ray irradiation, measurement of transmittance, and tomographic image under the following conditions The formation was done. The metal nanoparticles were not introduced into the crack before imaging.
Target: Mo
Tube voltage: 50kV
Tube current: 24mA
Lens used: 1080
Number of scans (number of different angles): 1000
Exposure time per angle: 20 sec
Field of view (FOV): 3.6 mmφ × 2.8 mm
Pixel size: 1.05 μm / voxel

試験片Cの、表面からZ方向への深さ0.022mmにおけるXY断面の断層画像を図7に示す。   FIG. 7 shows a tomographic image of the XY cross section of the test piece C at a depth of 0.022 mm in the Z direction from the surface.

試験片Cのクラックに、体積平均粒子径が300nm、PDIが0.2の金ナノ粒子をクエン酸緩衝液に分散させた分散液をマイクロシリンジで5μl滴下して、クラックの内部に金ナノ粒子を導入した。分散液中の金ナノ粒子の濃度は、4.0×10個/ml〜5.0×10個/ml程度だった。滴下後15分程度大気中で乾燥させて分散液を乾燥させた後、再度金ナノ粒子を導入した。この操作をおよそ20回程度繰り返したものを、試験片Dとした。 5 μl of a dispersion of gold nanoparticles with a volume average particle diameter of 300 nm and PDI of 0.2 dispersed in a citrate buffer is dropped into the crack of test piece C by a microsyringe, and the gold nanoparticle is contained inside the crack Introduced. The concentration of gold nanoparticles in the dispersion was 4.0 × 10 8 /ml~5.0×10 about 8 / ml. After dropping, the dispersion was dried for about 15 minutes in the air, and then gold nanoparticles were introduced again. The test piece D was obtained by repeating this operation about 20 times.

試験片Cと同条件で、試験片DのX線の照射、透過率の測定および断層画像の形成を行った。   Under the same conditions as the test piece C, X-ray irradiation of the test piece D, measurement of transmittance, and formation of a tomographic image were performed.

試験片Dの、表面からZ方向への深さ0.043mmにおけるXY断面の断層画像を図8に示す。   FIG. 8 shows a tomographic image of the XY cross section of the test piece D at a depth of 0.043 mm in the Z direction from the surface.

図7と図8との比較により、クラック等に金属ナノ粒子を導入することで、クラック等の形状をより明瞭に観察できることがわかる。   Comparison between FIG. 7 and FIG. 8 shows that the shape of a crack or the like can be observed more clearly by introducing metal nanoparticles into the crack or the like.

本発明によれば、成形体が有するきずを容易にかつ明瞭に非破壊で観察することができる。そのため、本発明は、成形体の評価や、出荷前の検査などに有効に活用することができる。   According to the present invention, it is possible to easily and clearly observe a flaw that a molded body has in a non-destructive manner. Therefore, the present invention can be effectively used for evaluation of a molded body, inspection before shipment, and the like.

Claims (8)

表面にきずを有する被観察物が有する前記きずに金属ナノ粒子を導入する工程と、
前記金属ナノ粒子が導入された前記きずにX線を照射して、前記きずを透過したX線の透過率を測定する工程と、
を有する、被観察物が有するきずの観察方法。
A step of introducing metal nanoparticles into the scratches of the observation object having scratches on the surface;
Irradiating the flaw into which the metal nanoparticles have been introduced with X-rays to measure the transmittance of the X-rays transmitted through the flaw;
A method for observing flaws in an object to be observed.
前記金属ナノ粒子は、体積平均粒子径が5nm以上400nm以下のナノ粒子である、請求項1に記載のきずの観察方法。   The flaw observation method according to claim 1, wherein the metal nanoparticles are nanoparticles having a volume average particle diameter of 5 nm or more and 400 nm or less. 前記金属ナノ粒子の導入は、前記金属ナノ粒子が分散した分散液の前記被観察物への噴霧、前記金属ナノ粒子が分散した分散液の前記被観察物への塗布または滴下、前記金属ナノ粒子が分散した分散液への前記被観察物の浸漬、および前記金属ナノ粒子が分散した分散液の前記きずへの滴下からなる群れから選択される方法により行われ、
前記方法は繰り返し行われる、
請求項1または2に記載のきずの観察方法。
The metal nanoparticles are introduced by spraying the dispersion in which the metal nanoparticles are dispersed onto the object, applying or dropping the dispersion in which the metal nanoparticles are dispersed into the object, the metal nanoparticles A method selected from the group consisting of immersing the object in the dispersed dispersion, and dropping the dispersed dispersion of the metal nanoparticles into the flaw;
The method is repeated,
A method of observing a flaw according to claim 1 or 2.
前記X線の透過率を測定する工程の後に、前記導入した金属ナノ粒子を排出する工程を含む、請求項1〜3のいずれか1項に記載のきずの観察方法。   The flaw observation method according to claim 1, further comprising a step of discharging the introduced metal nanoparticles after the step of measuring the X-ray transmittance. 前記金属ナノ粒子は、金ナノ粒子である、請求項1〜4のいずれか1項に記載のきずの観察方法。   The flaw observing method according to claim 1, wherein the metal nanoparticles are gold nanoparticles. 前記被観察物は、樹脂組成物の成形体である、請求項1〜5のいずれか1項に記載のきずの観察方法。   The flaw observation method according to any one of claims 1 to 5, wherein the observation object is a molded body of a resin composition. 前記放射線は、異なる方向から前記きずに複数回照射される、請求項1〜6のいずれか1項に記載のきずの観察方法。   The flaw observation method according to any one of claims 1 to 6, wherein the radiation is irradiated to the flaw a plurality of times from different directions. 前記複数回照射された放射線のそれぞれの透過率をもとに、前記きずの三次元形状を再構築する工程を含む、請求項7に記載のきずの観察方法。   The flaw observation method according to claim 7, further comprising a step of reconstructing a three-dimensional shape of the flaw based on the transmittance of each of the radiation irradiated a plurality of times.
JP2018010831A 2018-01-25 2018-01-25 Method for observing scratch Pending JP2019128288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018010831A JP2019128288A (en) 2018-01-25 2018-01-25 Method for observing scratch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018010831A JP2019128288A (en) 2018-01-25 2018-01-25 Method for observing scratch

Publications (1)

Publication Number Publication Date
JP2019128288A true JP2019128288A (en) 2019-08-01

Family

ID=67473026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018010831A Pending JP2019128288A (en) 2018-01-25 2018-01-25 Method for observing scratch

Country Status (1)

Country Link
JP (1) JP2019128288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096087A (en) * 2019-12-13 2021-06-24 株式会社島津製作所 Contrast agent for nondestructive inspection and nondestructive inspection method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131752A (en) * 1989-10-18 1991-06-05 Toshiba Corp Detection of defect
JP2002131248A (en) * 2000-10-30 2002-05-09 Koji Otsuka Nondesctructive inspection method using crazing-mending agent for concrete with contrasting performance
JP2007512322A (en) * 2003-11-28 2007-05-17 ジーイー・ヘルスケア・アクスイェ・セルスカプ Contrast agent
DE102008040048A1 (en) * 2008-07-01 2010-01-07 Robert Bosch Gmbh Method for detecting imperfections, leakage paths or pore distribution in units, involves inserting thin resin with contrast unit in imperfection, leakage path or pores in component, where resin is placed in imperfection, leakage path
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same
JP2012154906A (en) * 2011-01-28 2012-08-16 Sumitomo Electric Ind Ltd Coating state measuring method of resin coated metal member
US20160069824A1 (en) * 2014-09-05 2016-03-10 The Boeing Company Nonaqueous Radiopaque Fluid and Associated Imaging System and Method
US20170115200A1 (en) * 2014-07-11 2017-04-27 Halliburton Energy Services, Inc. Imaging a porous rock sample using a nanoparticle suspension
JP2017144482A (en) * 2016-02-16 2017-08-24 ゼネラル・エレクトリック・カンパニイ Methods for radiographic and ct inspection of additively manufactured workpieces

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03131752A (en) * 1989-10-18 1991-06-05 Toshiba Corp Detection of defect
JP2002131248A (en) * 2000-10-30 2002-05-09 Koji Otsuka Nondesctructive inspection method using crazing-mending agent for concrete with contrasting performance
JP2007512322A (en) * 2003-11-28 2007-05-17 ジーイー・ヘルスケア・アクスイェ・セルスカプ Contrast agent
DE102008040048A1 (en) * 2008-07-01 2010-01-07 Robert Bosch Gmbh Method for detecting imperfections, leakage paths or pore distribution in units, involves inserting thin resin with contrast unit in imperfection, leakage path or pores in component, where resin is placed in imperfection, leakage path
JP2010054500A (en) * 2008-07-29 2010-03-11 Nsk Ltd Rolling apparatus and interior observation method of rolling apparatus using the same
JP2012154906A (en) * 2011-01-28 2012-08-16 Sumitomo Electric Ind Ltd Coating state measuring method of resin coated metal member
US20170115200A1 (en) * 2014-07-11 2017-04-27 Halliburton Energy Services, Inc. Imaging a porous rock sample using a nanoparticle suspension
US20160069824A1 (en) * 2014-09-05 2016-03-10 The Boeing Company Nonaqueous Radiopaque Fluid and Associated Imaging System and Method
JP2017144482A (en) * 2016-02-16 2017-08-24 ゼネラル・エレクトリック・カンパニイ Methods for radiographic and ct inspection of additively manufactured workpieces

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021096087A (en) * 2019-12-13 2021-06-24 株式会社島津製作所 Contrast agent for nondestructive inspection and nondestructive inspection method

Similar Documents

Publication Publication Date Title
Ziółkowski et al. Application of X-ray CT method for discontinuity and porosity detection in 316L stainless steel parts produced with SLM technology
du Plessis et al. X-ray computed tomography of a titanium aerospace investment casting
CN109712212B (en) Industrial CT artifact correction method
CN103901003A (en) Method for detecting and monitoring cracks of mechanical parts by utilizing fluorescent quantum dots
Bidola et al. Application of sensitive, high‐resolution imaging at a commercial lab‐based X‐ray micro‐CT system using propagation‐based phase retrieval
Kim et al. Merging experiments and computer simulations in X-ray Computed Tomography probability of detection analysis of additive manufacturing flaws
McDonald et al. Tracking capsule activation and crack healing in a microcapsule-based self-healing polymer
EP3006924A1 (en) Device and method for image reconstruction at different x-ray energies, and device and method for x-ray three-dimensional measurement
Chaurand et al. Multi-scale X-ray computed tomography to detect and localize metal-based nanomaterials in lung tissues of in vivo exposed mice
Liu et al. HAADF‐STEM characterization and simulation of nanoparticle distributions in an inhomogeneous matrix
JP2019128288A (en) Method for observing scratch
Bandara et al. X-ray computed tomography to investigate industrial cast Al-alloys
JP2020071068A (en) Method for evaluating minute defect inside steel pipe
Kato et al. Maximum diameter of the rod-shaped specimen for transmission electron microtomography without the “missing wedge”
US8199878B2 (en) Methods and systems for performing differential radiography
CN107085002B (en) Nondestructive testing method for cobalt removal depth of high-temperature-resistant wire-drawing die
Das et al. Probing nanostructured materials using X‐ray fluorescence analysis
Monserrat Lopez et al. Automated, 3‐D and Sub‐Micron Accurate Ablation‐Volume Determination by Inverse Molding and X‐Ray Computed Tomography
Yusuke et al. Investigation of industrial die-cast Al-alloys using X-ray micro-computed tomography and machine learning approach for CT segmentation
Qi et al. Quantitative detection of minor defects in metal materials based on variation coefficient of CT image
Kiekens Contributions to performance verification and uncertainty determination of industrial computed tomography for dimensional metrology
Soga et al. Micro-computed tomography to analyze industrial die-cast Al-alloys and examine impregnation polymer resin as a casting cavity sealant
KR101371663B1 (en) Method and apparatus for quantitative measuring the particles
Ziółkowski et al. Porosity detection by computed tomography
Ghandourah et al. Evaluation of Welding Imperfections with X-ray Computed Laminography for NDT Inspection of Carbon Steel Plates

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220927