JP2019120640A - Coaxial degree measurement method - Google Patents

Coaxial degree measurement method Download PDF

Info

Publication number
JP2019120640A
JP2019120640A JP2018002012A JP2018002012A JP2019120640A JP 2019120640 A JP2019120640 A JP 2019120640A JP 2018002012 A JP2018002012 A JP 2018002012A JP 2018002012 A JP2018002012 A JP 2018002012A JP 2019120640 A JP2019120640 A JP 2019120640A
Authority
JP
Japan
Prior art keywords
valve seat
coaxiality
central axis
seat surface
guide hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002012A
Other languages
Japanese (ja)
Inventor
龍馬 高瀬
Tatsuma Takase
龍馬 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018002012A priority Critical patent/JP2019120640A/en
Publication of JP2019120640A publication Critical patent/JP2019120640A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

To improve a determination accuracy of a coaxial degree.SOLUTION: A coaxial degree measurement method is a method for measuring the coaxial degree between a valve seat surface and a stem guide hole formed on a cylinder head, and includes steps for obtaining a line segment connecting two points on the valve seat surface sandwiching a plane perpendicular to a central axis including a position of the central axis of the stem guide hole, in which an inner diameter of the value seat surface is a prescribed diameter, in at least three places of the valve seat surface, obtaining the center coordinates of the circle created based on the intersection of the plane and the plurality of the lines, and measuring the coaxial degree based on the intersection of the plane and the central axis and the center coordinates of the circle.SELECTED DRAWING: Figure 2

Description

本発明は、同軸度測定方法に関する。   The present invention relates to a method of measuring coaxiality.

シリンダヘッドに形成されたバルブシート面とステムガイド穴との同軸度を測定するための様々な測定方法が提案されている(例えば、特許文献1)。   Various measurement methods have been proposed for measuring the degree of coaxiality between a valve seat surface formed in a cylinder head and a stem guide hole (e.g., Patent Document 1).

特開2006−317395号公報Unexamined-Japanese-Patent No. 2006-317395

特許文献1では、ステムガイド穴と同軸に設けられたダイヤルゲージをバルブシート面に接触させ一回転させて得た測定結果から、バルブシート面の内面形状(円)を推定し、同軸度を測定する。   In Patent Document 1, the internal shape (circle) of the valve seat surface is estimated from the measurement results obtained by bringing a dial gauge provided coaxially with the stem guide hole into contact with the valve seat surface and making one rotation, and measuring the coaxiality. Do.

しかしながら、特許文献1の方法では、ダイヤルゲージをバルブシート面に接触させ一回転させる際に、ステムガイド穴の中心軸方向における測定位置がばらつくと、同軸度の測定精度が低下してしまう。   However, in the method of Patent Document 1, when the dial gauge is brought into contact with the valve seat surface and made one rotation, if the measurement position in the central axis direction of the stem guide hole varies, the measurement accuracy of the coaxiality is lowered.

そこで、本明細書開示の同軸度測定方法は、同軸度の測定精度を向上することを課題とする。   Therefore, the coaxiality measurement method disclosed in the present specification has an object to improve the measurement accuracy of coaxiality.

かかる課題を解決するために、本明細書に開示された同軸度測定方法は、シリンダヘッドに形成されたバルブシート面とステムガイド穴との同軸度を測定する方法であって、前記バルブシート面の内径が所定の径となる前記ステムガイド穴の中心軸方向の位置を含み前記中心軸と直交する平面を挟む前記バルブシート面上の2点を結ぶ線分を前記バルブシート面の少なくとも3個所で取得し、前記平面と複数の前記線分との交点に基づいて作成した円の中心座標を取得し、前記平面と前記中心軸との交点と、前記円の中心座標とに基づいて、同軸度を測定する、ステップを含む。   In order to solve such problems, the coaxiality measurement method disclosed herein is a method of measuring the coaxiality between a valve seat surface formed in a cylinder head and a stem guide hole, and the valve seat surface And a line segment connecting two points on the valve seat surface sandwiching a plane orthogonal to the central axis including a position in the central axis direction of the stem guide hole whose inner diameter becomes a predetermined diameter at least three of the valve seat surface And the center coordinates of a circle created based on the intersections of the plane and the plurality of line segments, and coaxial based on the intersection of the plane and the center axis and the center coordinates of the circle Measure the degree, including the step.

本明細書開示の同軸度測定方法によれば、同軸度の測定精度を向上することができる。   According to the coaxiality measurement method disclosed herein, the measurement accuracy of coaxiality can be improved.

図1は、測定対象であるバルブシートが形成されたシリンダヘッドの断面図である。FIG. 1 is a cross-sectional view of a cylinder head on which a valve seat to be measured is formed. 図2は、本実施形態に係る同軸度測定方法を示すフローチャートである。FIG. 2 is a flowchart showing the coaxiality measurement method according to the present embodiment. 図3(A)及び図3(B)は、本実施形態に係る同軸度測定方法を説明するための図(その1)である。FIG. 3A and FIG. 3B are diagrams (part 1) for explaining the coaxiality measurement method according to the present embodiment. 図4(A)及び図4(B)は、本実施形態に係る同軸度測定方法を説明するための図(その2)である。FIG. 4A and FIG. 4B are diagrams (part 2) for explaining the coaxiality measurement method according to the present embodiment. 図5(A)及び図5(B)は、1断面での同軸度測定方法について説明するための図である。FIG. 5A and FIG. 5B are diagrams for explaining a method of measuring coaxiality in one cross section.

以下、本発明の実施形態について、添付図面を参照しつつ説明する。ただし、図面中、各部の寸法、比率等は、実際のものと完全に一致するようには図示されていない場合がある。また、図面によっては細部が省略されて描かれている場合もある。   Hereinafter, embodiments of the present invention will be described with reference to the attached drawings. However, in the drawings, the dimensions, proportions, etc. of each part may not be illustrated so as to completely correspond to the actual ones. Also, some drawings may be drawn with details omitted.

図1には、測定対象であるバルブシート12が形成されたシリンダヘッド14の概略構成が示されている。シリンダヘッド14には、気筒ごとに吸気ポート、排気ポートが設けられている。図1においては、吸気、排気の一方のみが示されており、以降の説明において特に区別する必要がない場合、単にポート16と記す。   FIG. 1 shows a schematic configuration of a cylinder head 14 in which a valve seat 12 to be measured is formed. The cylinder head 14 is provided with an intake port and an exhaust port for each cylinder. In FIG. 1, only one of intake and exhaust is shown, and in the following description, it is simply referred to as port 16 when it is not necessary to distinguish them.

ポート16の出口、すなわち燃焼室に面している部分の縁にはバルブシート12が形成されている。このバルブシート12は、アルミニウム合金のシリンダヘッド14に耐熱合金の粉末を盛り、レーザ光線を照射することにより溶着形成され、さらに機械加工によって所定の形状に成形されている。   A valve seat 12 is formed at the outlet of the port 16, that is, at the edge of the portion facing the combustion chamber. The valve seat 12 is formed by depositing a powder of a heat-resistant alloy on a cylinder head 14 of aluminum alloy, irradiating it with a laser beam, and forming it into a predetermined shape by machining.

シリンダヘッド14のポート部分にはバルブステムガイド18が圧入されている。バルブステムガイド18は円管形状であって、ステムガイド穴19にバルブステムが挿入され、バルブの往復動作の案内を行うものである。バルブの傘部は、バルブ閉じ時においてバルブシート12に密着する。この密着性を確保するために、ステムガイド穴19の中心軸と、バルブシート12の中心軸とは所定の寸法精度内で一致するように、すなわち所定の同軸度で形成されている。   A valve stem guide 18 is pressed into the port portion of the cylinder head 14. The valve stem guide 18 has a circular tube shape, and the valve stem is inserted into the stem guide hole 19 to guide reciprocation of the valve. The valve head of the valve is in close contact with the valve seat 12 when the valve is closed. In order to ensure the adhesion, the central axis of the stem guide hole 19 and the central axis of the valve seat 12 are formed to coincide with each other within a predetermined dimensional accuracy, that is, with a predetermined coaxiality.

図2は、本実施形態に係る同軸度測定方法を示すフローチャートである。当該同軸度測定方法は、3次元測定装置が備える演算処理装置、又は、3次元測定装置と接続された情報処理装置(例えば、パーソナルコンピュータ等)が備えるプロセッサ等により実行される。   FIG. 2 is a flowchart showing the coaxiality measurement method according to the present embodiment. The said coaxiality measurement method is performed by the processor etc. which an information processing apparatus (for example, a personal computer etc.) connected with the arithmetic processing unit with which a three-dimensional measurement apparatus was equipped, or a three-dimensional measurement apparatus.

図2に示す方法では、まず、バルブシート12の内径が指定ゲージ径となるステムガイド穴19の中心軸30方向の位置を求める(ステップS10)。ここで、指定ゲージ径とは、同軸度を測定するバルブシート12の水平方向断面の内径である。例えば、図3(A)に示すように、ステムガイド穴19の中心軸30方向をZ軸方向とするXYZ直交座標系において、バルブシート12の水平方向断面の内径が指定ゲージ径となるZ軸方向の位置(Zg)を求める。   In the method shown in FIG. 2, first, the position of the stem guide hole 19 in the direction of the central axis 30 in which the inner diameter of the valve seat 12 is the designated gauge diameter is determined (step S10). Here, the designated gauge diameter is the inner diameter of the horizontal cross section of the valve seat 12 for measuring the coaxiality. For example, as shown in FIG. 3A, in the XYZ orthogonal coordinate system in which the central axis 30 direction of the stem guide hole 19 is the Z axis direction, the Z axis in which the inner diameter of the cross section in the horizontal direction of the valve seat 12 is the designated gauge diameter. Find the position (Zg) of the direction.

次に、3次元測定装置により、指定ゲージ面Pgを挟むバルブシート12面上の2点を計測する(ステップS11)。ここで、指定ゲージ面Pgとは、バルブシート12の内径が指定ゲージ径となる中心軸30方向における位置を含み、中心軸30と直交する平面である。例えば、図3(A)に示すように、指定ゲージ面Pgを挟むバルブシート12面上の2点P11,P12の座標を取得する。ここで、図3(A)に示すように、バルブシート12の内径が小さい方から大きい方に向かう方向を+Z方向とすると、P11の座標が(X11,Y11,Z11)、P12の座標が(X12,Y12,Z12)の場合、Z12<Zg<Z11である。   Next, two points on the surface of the valve seat 12 sandwiching the designated gauge surface Pg are measured by the three-dimensional measurement device (step S11). Here, the designated gauge surface Pg is a plane including the position in the direction of the central axis 30 where the inner diameter of the valve seat 12 is the designated gauge diameter, and orthogonal to the central axis 30. For example, as shown in FIG. 3A, the coordinates of two points P11 and P12 on the surface of the valve seat 12 sandwiching the designated gauge surface Pg are acquired. Here, as shown in FIG. 3A, assuming that the direction from the smaller to the larger of the inner diameter of the valve seat 12 is the + Z direction, the coordinates of P11 are (X11, Y11, Z11) and the coordinates of P12 are ( In the case of X12, Y12, Z12), Z12 <Zg <Z11.

次に、測定した2点を結ぶ線分を作成する(ステップS13)。具体的には、図3(A)に示すように、2点P11,P12を結ぶ線分L1を作成する。   Next, a line connecting the two measured points is created (step S13). Specifically, as shown in FIG. 3A, a line segment L1 connecting two points P11 and P12 is created.

次に、所定数の線分を作成したか否かを判定する(ステップS15)。例えば、4つの線分を作成したか否かを判定する。なお、所定数は、作成した線分と指定ゲージ面Pgとの交点に基づいて、指定ゲージ面Pgにおけるバルブシート12の断面形状に対応する近似円を算出するのに十分な数(3以上)であればよい。   Next, it is determined whether a predetermined number of line segments have been created (step S15). For example, it is determined whether four line segments have been created. The predetermined number is a number (3 or more) sufficient to calculate an approximate circle corresponding to the cross-sectional shape of the valve seat 12 in the designated gauge surface Pg based on the intersection of the created line segment and the designated gauge surface Pg. If it is

所定数の線分を作成していない場合(ステップS15/NO)、ステップS11に戻り、ステップS11及びS13の処理を実行する。所定数の線分を作成した場合(ステップS15/YES)、ステップS17に移行する。例えば、所定数が4の場合、図3(B)に示すように、2点P21,P22から線分L2、2点P31,P32から線分L3、2点P41,P42から線分L4を作成した場合に、ステップS15の判断が肯定され、ステップS17に移行する。なお、図3(B)において、Z22<Zg<Z21、Z32<Zg<Z31、Z42<Zg<Z41である。   If a predetermined number of line segments have not been created (NO in step S15), the process returns to step S11, and the processes in steps S11 and S13 are performed. When a predetermined number of line segments are created (step S15 / YES), the process proceeds to step S17. For example, when the predetermined number is 4, as shown in FIG. 3B, a line segment L2 from two points P21 and P22, a line segment L3 from two points P31 and P32, and a line segment L4 from two points P41 and P42 are created. If yes, the determination in step S15 is affirmed, and the process proceeds to step S17. In FIG. 3B, Z22 <Zg <Z21, Z32 <Zg <Z31, and Z42 <Zg <Z41.

ステップS17に移行すると、作成した線分(L1〜L4)と指定ゲージ面Pgとの交点を算出する。例えば、図4(A)に示すように、線分L1〜L4と指定ゲージ面Pgとの交点PI1〜PI4を算出する。   At step S17, the intersection of the created line segment (L1 to L4) and the designated gauge surface Pg is calculated. For example, as shown in FIG. 4A, intersection points PI1 to PI4 of the line segments L1 to L4 and the designated gauge surface Pg are calculated.

次に、ステップS17で算出した交点に基づいて、指定ゲージ面Pgにおけるバルブシート12の内面形状(円)に対応する近似円を求め、その中心座標を算出する(ステップS19)。例えば、図4(A)に示すように、交点PI1〜PI4に基づいて、Z軸方向の位置Zgにおけるバルブシート12の水平断面形状に対応する近似円C1を求め、その中心座標Bを算出する。   Next, based on the intersection point calculated in step S17, an approximate circle corresponding to the inner surface shape (circle) of the valve seat 12 on the designated gauge surface Pg is determined, and the center coordinates thereof are calculated (step S19). For example, as shown in FIG. 4A, based on the intersection points PI1 to PI4, an approximate circle C1 corresponding to the horizontal cross sectional shape of the valve seat 12 at the position Zg in the Z axis direction is determined, and its center coordinates B are calculated. .

次に、ステムガイド穴19の中心軸30と指定ゲージ面Pgとの交点を算出する(ステップS21)。   Next, the intersection of the central axis 30 of the stem guide hole 19 and the designated gauge surface Pg is calculated (step S21).

次に、ステップS19で求めた近似円の中心座標とステップS21で求めた交点とに基づいて、同軸度を測定し(ステップS23)、図2の処理を終了する。例えば、図4(B)に示すように、ステップS19で求めた中心座標BとステップS21で求めた交点Aとの距離D1の2倍(D1×2)を算出し、同軸度を測定する。   Next, the coaxiality is measured based on the center coordinates of the approximate circle obtained in step S19 and the intersection point obtained in step S21 (step S23), and the process of FIG. 2 is ended. For example, as shown in FIG. 4B, twice (D1 × 2) the distance D1 between the central coordinates B determined in step S19 and the intersection point A determined in step S21 is calculated, and the coaxiality is measured.

例えば、指定された1断面(例えば、Z座標:Z1)でバルブシート12面上をスタイラスSによって測定し円補間する場合、図5(A)に示すように、Z軸方向における測定位置がばらつく。バルブシート12面は斜面のため、Z軸方向における測定位置がばらつくと、測定径がばらつく。これにより、図5(B)に示すように、上面視において、測定点P1〜P8の近似円の中心座標B´を求めると、Z座標:Z1での円C2の中心からずれる。このため、中心座標B´を用いてステムガイド穴19との同軸度を測定すると、同軸度が悪化する。   For example, when the surface of the valve seat 12 is measured by the stylus S and circularly interpolated on one designated cross section (for example, Z coordinate: Z1), as shown in FIG. 5A, the measurement position in the Z axis direction varies . Because the surface of the valve seat 12 is a slope, the measurement diameter will vary if the measurement position in the Z-axis direction varies. Thus, as shown in FIG. 5B, when the center coordinates B 'of the approximate circle of the measurement points P1 to P8 are determined in top view, the center C deviates from the center of the circle C2 at the Z coordinate Z1. For this reason, when the degree of coaxiality with the stem guide hole 19 is measured using the central coordinate B ', the degree of coaxiality deteriorates.

一方、詳細に説明したように、本実施形態に係るバルブシート12面とステムガイド穴19との同軸度を測定する方法は、バルブシート12面の内径が所定の径となるステムガイド穴19の中心軸30方向の位置を含み中心軸30と直交する平面(指定ゲージ面Pg)を挟むバルブシート12面上の2点を結ぶ線分をバルブシート12面の少なくとも3個所で取得し、指定ゲージ面Pgと複数の線分との交点に基づいて作成した円の中心座標を取得し、指定ゲージ面Pgと中心軸30との交点と、取得した円の中心座標とに基づいて、同軸度を測定する。交点PI1〜PI4は、各線分L1〜L4と指定ゲージ面Pgとの交点であるため、交点PI1〜PI4のZ座標は全てZgで同一となる。したがって、バルブシート12面上においてZ軸方向の測定位置がばらついても、Z軸方向における位置を同一にして近似円を作成でき、指定ゲージ面Pgにおけるバルブシート12の中心座標を精度よく算出することができる。これにより、ステムガイド穴19との同軸度をより正確に測定できる。また、本実施形態に係る同軸度測定方法によれば、特許文献1のように専用の測定装置を必要とせず、一般的な3次元測定装置を用いるため同軸度測定を汎用化できる。   On the other hand, as described in detail, in the method of measuring the coaxiality between the valve seat 12 surface and the stem guide hole 19 according to the present embodiment, the inner diameter of the valve seat 12 surface is a predetermined diameter. A line segment connecting two points on the valve seat 12 face sandwiching a plane (designated gauge face Pg) including a position in the direction of the center axis 30 and orthogonal to the center axis 30 is acquired at at least three locations on the valve seat 12 face. The center coordinates of a circle created based on the intersection of the plane Pg and a plurality of line segments are acquired, and the coaxiality is calculated based on the intersection of the designated gauge plane Pg and the central axis 30 and the acquired center coordinates of the circle. taking measurement. Since the intersection points PI1 to PI4 are intersections of the line segments L1 to L4 and the designated gauge surface Pg, all Z coordinates of the intersection points PI1 to PI4 are the same at Zg. Therefore, even if the measurement position in the Z-axis direction varies on the valve seat 12, the approximate circle can be created with the same position in the Z-axis direction, and the center coordinates of the valve seat 12 on the designated gauge surface Pg are accurately calculated. be able to. Thereby, the coaxiality with the stem guide hole 19 can be measured more accurately. Moreover, according to the coaxiality measurement method according to the present embodiment, it is possible to generalize coaxiality measurement because it uses a general three-dimensional measurement device without requiring a dedicated measurement device as in Patent Document 1.

上記実施形態は本発明を実施するための例にすぎず、本発明はこれらに限定されるものではなく、これらの実施例を種々変形することは本発明の範囲内であり、更に本発明の範囲内において、他の様々な実施例が可能であることは上記記載から自明である。   The above embodiments are merely examples for carrying out the present invention, and the present invention is not limited to these, and various modifications of these examples are within the scope of the present invention, and further, the present invention. It is obvious from the above description that within the scope various other embodiments are possible.

12 バルブシート
19 ステムガイド穴
30 中心軸
L1〜L4 線分
PI1〜PI4 交点
Pg 指定ゲージ面
12 valve seat 19 stem guide hole 30 central axis L1 to L4 line segment PI1 to PI4 intersection point Pg designated gauge surface

Claims (1)

シリンダヘッドに形成されたバルブシート面とステムガイド穴との同軸度を測定する方法であって、
前記バルブシート面の内径が所定の径となる前記ステムガイド穴の中心軸方向の位置を含み前記中心軸と直交する平面を挟む前記バルブシート面上の2点を結ぶ線分を前記バルブシート面の少なくとも3個所で取得し、
前記平面と複数の前記線分との交点に基づいて作成した円の中心座標を取得し、
前記平面と前記中心軸との交点と、前記円の中心座標とに基づいて、同軸度を測定する、
ステップを含む同軸度測定方法。
A method of measuring the coaxiality between a valve seat surface formed in a cylinder head and a stem guide hole,
A line segment connecting two points on the valve seat surface sandwiching a plane orthogonal to the central axis including a position in the central axis direction of the stem guide hole where the inner diameter of the valve seat surface has a predetermined diameter is the valve seat surface Get in at least three places of
Acquiring center coordinates of a circle created based on the intersection of the plane and the plurality of line segments;
Coaxiality is measured based on the intersection point of the plane and the central axis and the central coordinates of the circle,
A coaxiality measurement method including steps.
JP2018002012A 2018-01-10 2018-01-10 Coaxial degree measurement method Pending JP2019120640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002012A JP2019120640A (en) 2018-01-10 2018-01-10 Coaxial degree measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002012A JP2019120640A (en) 2018-01-10 2018-01-10 Coaxial degree measurement method

Publications (1)

Publication Number Publication Date
JP2019120640A true JP2019120640A (en) 2019-07-22

Family

ID=67307247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002012A Pending JP2019120640A (en) 2018-01-10 2018-01-10 Coaxial degree measurement method

Country Status (1)

Country Link
JP (1) JP2019120640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111895893A (en) * 2020-07-15 2020-11-06 华志微创医疗科技(北京)有限公司 Visual detection system, method and device capable of rapidly judging coaxiality

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111895893A (en) * 2020-07-15 2020-11-06 华志微创医疗科技(北京)有限公司 Visual detection system, method and device capable of rapidly judging coaxiality

Similar Documents

Publication Publication Date Title
US9863766B2 (en) Calibration of a contact probe
CN102622479B (en) Reverse engineering computer-aided design (CAD) modeling method based on three-dimensional sketch
US8800526B2 (en) Instrumented piston for an internal combustion engine
CN105241392B (en) The full surface three dimension measuring apparatus and its measuring method of a kind of complicated columnar workpiece
CN102175991A (en) Target positioning method based on maximum positioning likelihood sensor configuration
CN104089599B (en) Quasi morphological filtering method for extracting two-dimensional contour in contact measuring head measurement
CN110954009A (en) Hub end face deformation detection method and device
KR101809473B1 (en) Geometric error measuring method and computer readable record medium having program recorded for executing same
CN103308021A (en) Method for measuring roundness error of workpiece
Maščeník et al. Determining the exact value of the shape deviations of the experimental measurements
JP2019120640A (en) Coaxial degree measurement method
CN104457522B (en) Method for measuring keyway symmetry degree of shaft part
Zuquete-Guarato et al. Towards a new concept of in-line crankshaft balancing by contact less measurement: process for selecting the best digitizing system
CN108332642B (en) Right-angle head precision detection method
CN107727023A (en) Hybridization four-point method turn error based on line-of-sight course, deviation from circular from computational methods
CN108646669B (en) Approximate evaluation method for surface contour error of curved surface machining part
CN105526900B (en) The method for measuring wheel hub beveled walls thickness size
JP2019152681A (en) Device and method for inspecting cracks
CN109613888A (en) Numerical control device
JP6596221B2 (en) Crack inspection apparatus and crack inspection method
CN104006781B (en) The computational methods of surface normal vector certainty of measurement
RU2685444C1 (en) Method of determining spatial coordinates of inner surface of hollow part and device for its implementation
JP2006214870A (en) Shape measuring system, method, and program
Minetola et al. Contactless inspection of castings: analysis of alignment procedures
Wozniak et al. Discontinuity check of scanning in coordinate metrology