JP2019120388A - Slide type constant-velocity universal joint - Google Patents

Slide type constant-velocity universal joint Download PDF

Info

Publication number
JP2019120388A
JP2019120388A JP2018002521A JP2018002521A JP2019120388A JP 2019120388 A JP2019120388 A JP 2019120388A JP 2018002521 A JP2018002521 A JP 2018002521A JP 2018002521 A JP2018002521 A JP 2018002521A JP 2019120388 A JP2019120388 A JP 2019120388A
Authority
JP
Japan
Prior art keywords
ball
joint member
velocity universal
track groove
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002521A
Other languages
Japanese (ja)
Inventor
正純 小林
Masazumi Kobayashi
正純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018002521A priority Critical patent/JP2019120388A/en
Publication of JP2019120388A publication Critical patent/JP2019120388A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bearings For Parts Moving Linearly (AREA)

Abstract

To provide a slide type constant-velocity universal joint (a double offset type constant-velocity universal joint) which can achieve downsizing and weight reduction while securing necessary strength.SOLUTION: The invention relates to a slide type constant-velocity universal joint which is a double offset type. A track groove of an inner joint member has a ball movable range where balls can roll and a ball immovable range where the balls do not roll. A thickness of at least a joint opening portion of a track groove bottom of the ball immovable range is formed thicker than a thickness of the ball movable range.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や各種産業機械に用いられる動力伝達装置である等速自在継手に関し、特に摺動式等速自在継手に関する。   The present invention relates to a constant velocity universal joint which is a power transmission device used for automobiles and various industrial machines, and more particularly to a sliding constant velocity universal joint.

摺動式等速自在継手は角度変位だけでなく軸方向変位(プランジング)も可能で、その例として、ダブルオフセット型等速自在継手が挙げられる。このようなダブルオフセット型等速自在継手は、自動車の前輪用のドライブシャフト、後輪用のドライブシャフト、及びプロペラシャフト等に用いられる。   The sliding constant velocity universal joint is capable of axial displacement (plunging) as well as angular displacement, and an example thereof is a double offset constant velocity universal joint. Such a double offset constant velocity universal joint is used as a drive shaft for a front wheel of a car, a drive shaft for a rear wheel, a propeller shaft, and the like.

ダブルオフセット型等速自在継手は、図7に示すように、内径面1にトラック溝2が形成された外側継手部材3と、外径面4にトラック溝5が形成された内側継手部材6と、外側継手部材3のトラック溝2と内側継手部材6のトラック溝5との間に介在されるトルク伝達ボール7(以下、単にボールともいう)と、このボール7を収容するポケット8を有するとともに外側継手部材3と内側継手部材6との間に介装されるケージ9とを備える。   As shown in FIG. 7, the double offset constant velocity universal joint includes an outer joint member 3 having a track groove 2 formed on an inner diameter surface 1 and an inner joint member 6 having a track groove 5 formed on an outer diameter surface 4. A torque transmitting ball 7 (hereinafter, also simply referred to as a ball) interposed between the track groove 2 of the outer joint member 3 and the track groove 5 of the inner joint member 6, and a pocket 8 for housing the ball 7 A cage 9 interposed between the outer joint member 3 and the inner joint member 6 is provided.

ケージ9の外球面9aの曲率中心O1と内球面9bの曲率中心O2とが、継手中心Oに対し、軸方向反対側に等距離だけオフセットしている。これにより、ボールが常に作動角の二等分面内に保持され、外側継手部材と内側継手部材との間での等速性が確保される。   The center of curvature O1 of the outer spherical surface 9a of the cage 9 and the center of curvature O2 of the inner spherical surface 9b are offset from the joint center O by an equal distance on the opposite side in the axial direction. Thereby, the ball is always held within the bisecting plane of the operating angle, and constant velocity between the outer joint member and the inner joint member is secured.

また、外側継手部材3は、内径面1にトラック溝2が形成されたマウス部10と、マウス部10の底壁10aから突設されるステム部11とからなる。内側継手部材6の軸心孔には、雌スプライン12が形成され、図8に示すように、内側継手部材6の軸心孔にシャフト13の端部が嵌入される。シャフト13の端部には雄スプライン14が形成され、シャフト13の端部が内側継手部材6の軸心孔に嵌入された際に、雌スプライン12と雄スプライン14とが嵌合する。   Further, the outer joint member 3 includes a mouse portion 10 in which the track groove 2 is formed in the inner diameter surface 1 and a stem portion 11 provided to project from the bottom wall 10 a of the mouse portion 10. A female spline 12 is formed in the axial center hole of the inner joint member 6, and as shown in FIG. 8, the end of the shaft 13 is fitted into the axial center hole of the inner joint member 6. A male spline 14 is formed at the end of the shaft 13, and when the end of the shaft 13 is fitted into the axial center hole of the inner joint member 6, the female spline 12 and the male spline 14 are fitted.

なお、外側継手部材3の開口部には、図7に示すように、周方向凹溝17が形成され、この周方向凹溝17に、内側継手部材6とボール7とケージ9等で構成される内部部品の抜け止め用のストッパリング18が嵌合されている。また、図8に示すように、シャフト13の雄スプライン14の端部には周方向溝19が設けられ、この周方向溝19に内側継手部材6の端面6dに係止するストッパとしての止め輪20が装着されている。   Incidentally, as shown in FIG. 7, a circumferential recessed groove 17 is formed in the opening of the outer joint member 3, and the circumferential recessed groove 17 is constituted by the inner joint member 6, the ball 7, the cage 9 and the like. A stopper ring 18 for preventing the removal of internal parts is fitted. Further, as shown in FIG. 8, a circumferential groove 19 is provided at the end of the male spline 14 of the shaft 13, and a retaining ring as a stopper that is engaged with the circumferential groove 19 with the end face 6 d of the inner joint member 6. 20 are worn.

ところで、図10は、図7に示すダブルオフセット型等速自在継手が作動角θをとった状態を示している。この場合、ダブルオフセット型等速自在継手は、継手中心Oに対し内側継手部材6の外径面4の曲率中心O2(ケージ9の内球面9bの曲率中心)が継手開口側にオフセットしているので、このオフセット分、ボール7は内側継手部材6の外径面4の曲率中心O2よりも継手奥側に配置される。このため、作動角θをとる場合、ボール7は内側継手部材6のトラック溝5の奥側部分しか移動しない。   FIG. 10 shows a state in which the double offset constant velocity universal joint shown in FIG. 7 has an operating angle θ. In this case, in the double offset constant velocity universal joint, the curvature center O2 of the outer diameter surface 4 of the inner joint member 6 (the curvature center of the inner spherical surface 9b of the cage 9) is offset to the joint opening side with respect to the joint center O Because of this offset, the ball 7 is disposed on the joint rear side with respect to the curvature center O2 of the outer diameter surface 4 of the inner joint member 6. For this reason, when taking the operating angle θ, the ball 7 moves only to the back side portion of the track groove 5 of the inner joint member 6.

近年、自動車の低燃費化に伴い、等速自在継手(ダブルオフセット型等速自在継手)においても、小型・軽量化が求められている。このため、従来には、小型・軽量化を図ったダブルオフセット型等速自在継手が種々提案されている(特許文献1及び特許文献2)。   In recent years, with the reduction in fuel consumption of automobiles, downsizing and weight reduction are also required for constant velocity universal joints (double offset type constant velocity universal joints). For this reason, conventionally, various double offset type constant velocity universal joints have been proposed which are reduced in size and weight (Patent Document 1 and Patent Document 2).

特許文献1では、トルク伝達ボールの数を8個としてボール直径を小径化し、また、ボールのピッチ円径とボール直径との比を所定範囲に設定したり、外側継手部材の外径と内側継手部材のセレーションのピッチ円径との比を所定範囲に設定し、小型・軽量化したものである。   In Patent Document 1, the number of torque transmitting balls is eight to reduce the ball diameter, and the ratio of the ball pitch diameter to the ball diameter is set in a predetermined range, or the outer diameter of the outer joint member and the inner joint The ratio of the serration to the pitch circle diameter of the member is set in a predetermined range to reduce the size and weight.

また、特許文献2では、ボール径と外側継手部材の外径の比、ボールのピッチ円径と外側継手部材の外径の比、ボール溝の接触角、ボール溝の接触率、及びケージオフセット量とボールのピッチ円径の比等を所定範囲に設定したりするものである。このため、従来と同等の強度と耐久性を備えながら、30°以上の最大作動角が可能でしかも軽量コンパクトな、ダブルオフセット型等速自在継手を実現するものである。   In Patent Document 2, the ratio of the ball diameter to the outer diameter of the outer joint member, the ratio of the pitch diameter of the ball to the outer diameter of the outer joint member, the contact angle of the ball groove, the contact ratio of the ball groove, and the cage offset amount The ratio of the pitch circle diameter of the ball to that of the ball is set in a predetermined range. For this reason, a double offset constant velocity universal joint capable of a maximum operating angle of 30 ° or more and being lightweight and compact while having the same strength and durability as conventional ones is realized.

特開平10−73129号公報JP 10-73129 A 特開2007−85488号公報JP 2007-85488 A

ところで、シャフト13を嵌合させるために、前述したように、内側継手部材6の内径面に雌スプライン12を形成する。この場合、継手開口側の内径面には周方向切欠部15を設ける。この場合、シャフト13の雄スプライン14と内側継手部材6の雌スプライン12とのスプライン嵌合部における入口部に、最大着力点となる嵌合開始部位16(図9参照)が形成される。   By the way, in order to fit the shaft 13, as described above, the female spline 12 is formed on the inner diameter surface of the inner joint member 6. In this case, the circumferential direction cutout portion 15 is provided on the inner diameter surface on the joint opening side. In this case, a fitting start site 16 (see FIG. 9) which is the point of maximum applied force is formed at the inlet of the spline fitting portion between the male spline 14 of the shaft 13 and the female spline 12 of the inner joint member 6.

このため、小径化及び軽量化を図るために、一般的には、各部材(各部品)を、必要強度分の肉厚に設定することになる。しかしながら、内側継手部材6の肉厚をボール可動域部で設定すると、内側継手部材6の入口部の嵌合開始部位16は、最大応力着力部であるため強度が低くなるおそれがあった。また逆に、内側継手部材6の入口部の嵌合開始部位16で肉厚設定すると、ボール可動域部では厚肉となり、最軽量・小型化を図ることはできないことになる。前記特許文献1及び特許文献2であっても、それは同様である。   For this reason, in order to achieve a reduction in diameter and weight, generally, each member (each part) is set to a thickness corresponding to the necessary strength. However, when the thickness of the inner joint member 6 is set in the ball movable range portion, the fitting start portion 16 at the inlet portion of the inner joint member 6 has a possibility that the strength is lowered because it is the maximum stress application portion. On the other hand, if the thickness is set at the fitting start portion 16 at the inlet of the inner joint member 6, the ball can be thickened in the movable range, and the lightest weight and miniaturization can not be achieved. The same applies to Patent Document 1 and Patent Document 2 described above.

そこで、本発明は、上記課題に鑑みて、必要強度を確保したまま、最小型・最軽量化を図ることが可能な摺動式等速自在継手(ダブルオフセット型等速自在継手)を提供するものである。   Then, in view of the above-mentioned subject, the present invention provides a sliding type constant velocity universal joint (double offset type constant velocity universal joint) which can attain the minimum type and the maximum weight reduction while securing the necessary strength. It is a thing.

本発明の摺動式等速自在継手は、内径面にトラック溝が形成された外側継手部材と、外径面にトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在されるトルク伝達手段としてのボールと、このボールを収容するポケットを有するとともに外側継手部材と内側継手部材との間に介装されるケージとを備え、ケージの外球面の曲率中心と内球面の曲率中心とが、継手中心に対し、軸方向反対側に等距離だけオフセットしているダブルオフセット型である摺動式等速自在継手であって、内側継手部材のトラック溝は、ボールが転動するボール可動域と、ボールが転動しないボール非可動域とを有し、ボール非可動域のトラック溝底の少なくとも継手開口部位の肉厚を、ボール可動域における肉厚よりも厚くしたものである。   The sliding constant velocity universal joint according to the present invention comprises an outer joint member having a track groove formed on an inner diameter surface, an inner joint member having a track groove formed on an outer diameter surface, and a track groove and an inner side of the outer joint member. And a cage as a torque transmission means interposed between the joint member and the track groove, and a cage having a pocket for receiving the ball and being interposed between the outer joint member and the inner joint member. A sliding type constant velocity universal joint which is a double offset type in which the curvature center of the outer spherical surface and the curvature center of the inner spherical surface are equidistantly offset on the opposite side in the axial direction with respect to the joint center. The track groove of the member has a ball movable area in which the ball rolls and a non-ball movable area in which the ball does not roll, and at least the joint opening area of the track groove bottom of the non-ball movable area In the area Kicking one in which was thicker than the wall thickness.

ダブルオフセット型等速自在継手は、ケージの外球面の球面中心とケージの内球面の球面中心とが継手中心に対して軸方向反対側に等距離だけオフセットしているため、作動角をとった時でも、ボールは内側継手部材のトラック溝に対してほぼ半分の領域(奥側領域)しか動かない。このため、入口側(開口側)はボールが来ない領域となるため、この部位のボールトラック溝部の肉厚を大きく設定することができる。   The double offset constant velocity universal joint takes an operating angle because the spherical center of the outer spherical surface of the cage and the spherical center of the inner spherical surface of the cage are offset by an equal distance axially opposite to the joint center. Even at times, the ball moves only about half (the far side) of the track groove of the inner joint member. For this reason, since the entrance side (opening side) is an area where the ball does not come, the thickness of the ball track groove portion in this area can be set large.

そこで、本ダブルオフセット型等速自在継手は、ボール非可動域のトラック溝底の少なくとも継手開口部位の肉厚を、ボール可動域における肉厚よりも厚くして、内側継手部材の入口部(開口部)の強度を確保した。   Therefore, in the double offset constant velocity universal joint, the thickness of at least the joint opening portion of the track groove bottom in the ball non-moving area is thicker than the thickness in the ball movable area, and the inlet portion of the inner joint member (opening The strength of the

ボール可動域のトラック溝底を内側継手部材の軸線方向と平行に延びるストレート溝とするとともに、ボール非可動域のトラック溝底に、ボール可動域側から反ボール可動域側に向かって外径側に傾斜するテーパ状溝底部を設け、ボール非可動域における肉厚を、ボール可動域における肉厚よりも厚くすることができる。   The track groove bottom of the ball movable area is a straight groove extending in parallel with the axial direction of the inner joint member, and the outer surface of the non-ball movable area is from the ball movable area to the opposite ball movable area It is possible to provide a tapered groove bottom that inclines to make the thickness in the ball non-moving area greater than the thickness in the ball moving area.

このように構成することによって、継手開口部位の肉厚を、ボール可動域における肉厚よりも安定して厚くすることができる。しかも、ボール可動域における内側継手部材の肉厚を、ボール非可動域における内側継手部材の肉厚よりも薄くできる。このため、等速自在継手の小型・軽量化を達成できる。   By configuring in this manner, the thickness of the joint opening can be stably made thicker than the thickness in the ball movable range. Moreover, the thickness of the inner joint member in the ball movable range can be thinner than the thickness of the inner joint member in the ball non-movable range. For this reason, size and weight reduction of a constant velocity universal joint can be achieved.

内側継手部材の軸心孔の内径面に雌スプラインが形成され、この軸心孔に、シャフトの端部の雄スプラインが嵌入されてこの雄スプラインと内側継手部材の雌スプラインとが嵌合する摺動式等速自在継手であって、前記内側継手部材の継手開口側のトラック溝の入口部の嵌合開始部における肉厚をボール可動域の肉厚よりも大とするのが好ましい。このように構成することによって、最大着力点の強度を確保することができ、等速自在継手として必要機能を有効に確保できる。   A female spline is formed on the inner diameter surface of the axial center hole of the inner joint member, and a male spline at the end of the shaft is fitted into the axial center hole, and this slide is fitted with the female spline of the inner joint member. Preferably, in the dynamic constant velocity universal joint, the thickness at the fitting start portion of the entrance of the track groove on the joint opening side of the inner joint member is larger than the thickness of the ball movable range. By configuring in this manner, the strength of the maximum force application point can be secured, and the necessary function as a constant velocity universal joint can be effectively secured.

本発明では、内側継手部材の入口部、つまりスプライン嵌合の嵌合開始部の強度を確保しつつ、小型・軽量化を図ることができ、近年の自動車の低燃費化に最適な摺動式等速自在継手となる。   In the present invention, it is possible to reduce the size and weight while securing the strength of the inlet portion of the inner joint member, that is, the fitting start portion of the spline fitting, and a sliding type suitable for reducing fuel consumption of automobiles in recent years. It becomes a constant velocity universal joint.

本発明の摺動式等速自在継手の断面図である。It is a sectional view of a sliding type constant velocity universal joint of the present invention. 図1に示す摺動式等速自在継手の内側継手部材の拡大断面図である。It is an expanded sectional view of the inner joint member of the sliding type constant velocity universal joint shown in FIG. 内側継手部材のトラック溝の断面形状を示し、(a)はボール可動域の断面図であり、(b)はボール非可動域の断面図である。The cross-sectional shape of the track groove of an inner joint member is shown, (a) is a cross-sectional view of a ball movable range, (b) is a cross-sectional view of a ball non-movable range. 図1に示す摺動式等速自在継手の内側継手部材にシャフトが嵌合している状態の断面図である。It is sectional drawing of the state which the shaft has fitted to the inner joint member of the sliding type constant velocity universal joint shown in FIG. 図4の拡大断面図である。It is an expanded sectional view of FIG. 図1に示す摺動式等速自在継手が作動角をとった状態の断面図である。It is sectional drawing of the state which took the operating angle the sliding type constant velocity universal joint shown in FIG. 従来の摺動式等速自在継手の断面図である。It is sectional drawing of the conventional sliding type constant velocity universal joint. 図7に示す摺動式等速自在継手の内側継手部材にシャフトが嵌合している状態の断面図である。It is sectional drawing of the state which the shaft has fitted to the inner joint member of the sliding type constant velocity universal joint shown in FIG. 図8の拡大断面図である。It is an expanded sectional view of FIG. 図7に示す摺動式等速自在継手が作動角をとった状態の断面図である。FIG. 8 is a cross-sectional view of the sliding constant velocity universal joint shown in FIG. 7 in a state in which an operating angle is taken.

以下本発明の実施の形態を図1〜図6に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 6.

図1は、本発明に係る摺動式等速自在継手であるダブルオフセット型等速自在継手を示し、ダブルオフセット型等速自在継手は、この内径面21にトラック溝22が形成された外側継手部材23と、外径面24にトラック溝25が形成された内側継手部材26と、外側継手部材23のトラック溝22と内側継手部材26のトラック溝25との間に介在されるトルク伝達ボール27(以下、単にボールともいう)と、このボール27を収容するポケット28を有するとともに外側継手部材23と内側継手部材26との間に介装されるケージ29とを備える。   FIG. 1 shows a double offset constant velocity universal joint which is a sliding constant velocity universal joint according to the present invention, and the double offset constant velocity universal joint is an outer joint having a track groove 22 formed on the inner diameter surface 21 thereof. Member 23, an inner joint member 26 having a track groove 25 formed on the outer diameter surface 24, and a torque transmission ball 27 interposed between the track groove 22 of the outer joint member 23 and the track groove 25 of the inner joint member 26. (Hereinafter, also simply referred to as a ball), and a cage 29 having a pocket 28 for receiving the ball 27 and interposed between the outer joint member 23 and the inner joint member 26.

ケージ29の外球面29aの曲率中心O1と内球面29bの曲率中心O2とが、継手中心Oに対し、軸方向反対側に等距離だけオフセットしている。   The center of curvature O1 of the outer spherical surface 29a of the cage 29 and the center of curvature O2 of the inner spherical surface 29b are offset from the joint center O by an equal distance on the opposite side in the axial direction.

また、外側継手部材23は、内径面21にトラック溝22が形成されたマウス部30と、マウス部30の底壁30aから突設されるステム部31とからなる。内側継手部材26の軸心孔には、雌スプライン32が形成され、図4に示すように、内側継手部材26の軸心孔26aにシャフト33の端部が嵌入される。シャフト33の端部には雄スプライン34が形成され、シャフト33の端部が内側継手部材26の軸心孔26aに嵌入された際に、雌スプライン32と雄スプライン34とが嵌合する。   Further, the outer joint member 23 includes a mouth portion 30 in which the track groove 22 is formed in the inner diameter surface 21 and a stem portion 31 provided to project from the bottom wall 30 a of the mouth portion 30. A female spline 32 is formed in the axial center hole of the inner joint member 26, and as shown in FIG. 4, the end of the shaft 33 is fitted into the axial center hole 26a of the inner joint member 26. A male spline 34 is formed at an end of the shaft 33, and when the end of the shaft 33 is fitted into the axial center hole 26a of the inner joint member 26, the female spline 32 and the male spline 34 are fitted.

なお、外側継手部材23の開口部には、図1に示すように、周方向凹溝37が形成され、この周方向凹溝37に、内側継手部材26とボール27とケージ29等で構成される内部部品の抜け止め用のストッパリング38が嵌合されている。また、図4に示すように、シャフト33の雄スプライン34の端部には周方向溝39が設けられ、この周方向溝39に内側継手部材26の端面26dに係止するストッパとしての止め輪40が装着されている。   Incidentally, as shown in FIG. 1, a circumferential recessed groove 37 is formed in the opening of the outer joint member 23, and the circumferential recessed groove 37 is constituted by the inner joint member 26, the ball 27, the cage 29 and the like. A stopper ring 38 for preventing the removal of internal parts is fitted. Further, as shown in FIG. 4, a circumferential groove 39 is provided at the end of the male spline 34 of the shaft 33, and a retaining ring as a stopper which is engaged with the circumferential groove 39 on the end face 26d of the inner joint member 26. 40 is attached.

ところで、図2に示すように、内側継手部材26の軸心孔26aの入口開口部側には、周方向切欠部35が設けられ、この周方向切欠部35の継手開口端縁部に、継手奥側から開口部側に向かって拡開する面取部(チャンファ)36が設けられている。また、周方向切欠部35の継手奥側には、開口部側から継手奥側に向かって拡開するテーパ面部35aが形成されている。   By the way, as shown in FIG. 2, a circumferential notch 35 is provided on the inlet opening side of the shaft center hole 26 a of the inner joint member 26, and the joint opening end edge of the circumferential notch 35 is a joint A chamfered portion (chamfer) 36 is provided which widens from the back side toward the opening side. Further, on the joint back side of the circumferential direction cutout portion 35, there is formed a tapered surface portion 35a which is expanded from the opening side toward the joint back side.

ダブルオフセット型等速自在継手は、図1に示すように、継手中心Oに対し内側継手部材26の外径面26bの曲率中心O2(ケージ29の内球面29bの曲率中心)が継手開口側にオフセットしている。このため、このオフセット分、ボール27は内側継手部材26の外径面26bの曲率中心O2よりも継手奥側に配置される。このため、図6に示すように、作動角θをとる場合、ボール27は内側継手部材26のトラック溝25の奥側部分しか移動しない。   In the double offset constant velocity universal joint, as shown in FIG. 1, the center of curvature O2 of the outer diameter surface 26b of the inner joint member 26 (the center of curvature of the inner spherical surface 29b of the cage 29) with respect to the joint center O It is offset. Therefore, the ball 27 is disposed on the joint back side with respect to the center of curvature O2 of the outer diameter surface 26b of the inner joint member 26 by this offset. For this reason, as shown in FIG. 6, when the operating angle θ is taken, the ball 27 moves only to the back side portion of the track groove 25 of the inner joint member 26.

ところで、2つの部材において、荷重が0のときに点で接触する状態は点接触と呼ばれ、これらは荷重が加われば面で接触するようになる。また円筒と平面の接触のように荷重が0のときに線で接触する状態を線接触と呼び、これも荷重が加われば面で接触するようになる。これらの面での接触がヘルツ接触と呼ばれる。   By the way, in two members, the state which contacts at a point when load is 0 is called point contact, and if load is added, these will come to contact in a field. In addition, the state of contact with a line when the load is zero, as in the case of a flat surface contact with a cylinder, is called line contact, and this also comes in contact with the surface when a load is applied. Contact on these surfaces is called Hertz contact.

このため、図2に示すように、ボール27が継手開口側に位置した際のヘルツ接触部H1は、ラインL1を挟んで、継手開口側から継手奥側に跨る範囲となる。ここで、ラインL1とは、内側継手部材26の軸線Lと直交するとともに、内側継手部材26の外径面の曲率中心O2を含むラインである。また、ボール27が継手奥側に位置した際にもヘルツ接触部H2が形成される。なお、ヘルツ接触部H2の中間位置L2は、内側継手部材26の継手奥側端面から範囲H5だけ内側に入った位置であって、この範囲H5は図6に示すように作動角θに依存する。   For this reason, as shown in FIG. 2, the Hertz contact portion H1 when the ball 27 is positioned on the joint opening side is a range extending from the joint opening side to the joint back side across the line L1. Here, the line L1 is a line which is orthogonal to the axis L of the inner joint member 26 and includes the center of curvature O2 of the outer diameter surface of the inner joint member 26. Further, the Hertz contact portion H2 is also formed when the ball 27 is positioned on the back side of the joint. The middle position L2 of the Hertz contact portion H2 is a position inside the range from the rear end face of the inner joint member 26 by the range H5, and this range H5 depends on the operating angle θ as shown in FIG. .

従って、本発明では、ヘルツ接触部H1のラインL1上の中間位置H1cからヘルツ接触部H2のラインL2上の中間位置H2cまでの範囲H3がボール可動域となる。このため、この範囲H3以外であって、ヘルツ接触部H1のラインL1上の中間位置H1cから端面26cまでの範囲H4がボール非可動域となる。   Therefore, in the present invention, the range H3 from the intermediate position H1c on the line L1 of the Hertz contact portion H1 to the intermediate position H2c on the line L2 of the Hertz contact portion H2 is the ball movable range. Therefore, the range H4 from the intermediate position H1c on the line L1 of the Hertz contact portion H1 to the end face 26c is outside the range H3 as the ball non-moving area.

そして、ボール非可動域H4のトラック溝底の少なくとも継手開口部位(嵌合開始部位46)の肉厚を、ボール可動域H3における肉厚よりも厚くしている。この場合、ボール非可動域H4のトラック溝底に、ボール可動域H3側から反ボール可動域側(ボール非可動域H4側)に向かって外径側に傾斜するテーパ状溝底部43を設けている。このテーパ状溝底部43は、ヘルツ接触部H1の継手開口側の端縁H1aから内側継手部材26の開口側の端面26cまでの範囲H6であり、この範囲が厚肉部となり、この範囲外である範囲H7が標準厚さ部(トルク伝達に必要な厚さ部)である。この標準厚さ部は、内側継手部材26の継手奥側の端面26dから、ヘルツ接触部H1の継手開口側の端縁H1aまでの範囲である。これらの範囲の溝底は、内側継手部材26の軸線に沿うストレート溝底42としている。図3(a)は、ボール可動域H3における断面図を示し、図3(b)は、ボール非可動域H4における肉厚部の断面図を示している。このように、ボール非可動域範囲H4における肉厚部の溝深さがボール可動域H3の溝深さよりも浅くなっている。   The thickness of at least the joint opening portion (fitting start portion 46) of the track groove bottom of the ball non-moving range H4 is made thicker than the thickness in the ball moving range H3. In this case, a tapered groove bottom 43 is provided at the bottom of the track groove of the ball non-moving area H4 so as to be inclined toward the outside diameter side from the ball movable area H3 to the opposite ball movable area side (ball non-moving area H4). There is. The tapered groove bottom portion 43 is a range H6 from the edge H1a on the joint opening side of the Hertz contact portion H1 to the end face 26c on the opening side of the inner joint member 26, and this range is a thick portion. A certain range H7 is a standard thickness portion (thickness portion necessary for torque transmission). The standard thickness portion is a range from the end face 26 d on the joint back side of the inner joint member 26 to the edge H 1 a on the joint opening side of the Hertz contact portion H 1. The groove bottom in these ranges is a straight groove bottom 42 along the axis of the inner joint member 26. FIG. 3A shows a cross-sectional view in the ball movable range H3, and FIG. 3B shows a cross-sectional view of a thick portion in the ball non-movable range H4. As described above, the groove depth of the thick portion in the ball non-moving area range H4 is shallower than the groove depth of the ball moving area H3.

ところで、8個ボールのダブルオフセット型等速自在継手では、ケージ強度を確保するため(ポケット柱の断面積確保)に内側継手部材26の肉厚を必要以上に厚くせざるを得ない場合がある。その場合、それに引っ張られてトラック溝25のPCDが大きくなり、外側継手部材23の外径も大きくなる。このため、作動角θを抑えることができれば、それによってポケット長さが短くでき、ケージポケット柱面積も大きく設定できる。これによって、トラック溝25のPCDが小さくでき、外側継手部材23の外径も最適な大きさに設定することが可能となる。   By the way, in the eight ball double offset type constant velocity universal joint, the thickness of the inner joint member 26 may have to be made thicker than necessary to secure the cage strength (secure the cross sectional area of the pocket column). . In that case, the PCD of the track groove 25 becomes larger by pulling it, and the outer diameter of the outer joint member 23 also becomes larger. Therefore, if the operating angle θ can be suppressed, the pocket length can be shortened thereby, and the cage pocket post area can be set large. As a result, the PCD of the track groove 25 can be reduced, and the outer diameter of the outer joint member 23 can be set to an optimum size.

しかしながら、このような場合に、内側継手部材26の強度が問題となる。このため、ダブルオフセット型等速自在継手のように、内側継手部材26の強度の最弱部であるシャフト33との嵌合開始位置46の肉厚部分を厚くすることにより必要内輪強度が確保でき、外側継手部材23の外径としては最小の大きさを成立させることが可能となる。このため、使用態様によって、テーパ状溝底部43のテーパ角度を種々設定できる。   However, in such a case, the strength of the inner joint member 26 becomes a problem. Therefore, as in the double offset constant velocity universal joint, the necessary inner ring strength can be secured by thickening the thick portion of the fitting start position 46 with the shaft 33 which is the weakest portion of the strength of the inner joint member 26. The outer diameter of the outer joint member 23 can be minimized. Therefore, the taper angle of the tapered groove bottom 43 can be set variously depending on the mode of use.

ボール可動域H3のトラック溝底を内側継手部材26の軸線方向と平行に延びるストレート溝42とするとともに、ボール非可動域H4のトラック溝底に、ボール可動域H3側から反ボール可動域H4側に向かって外径側に傾斜するテーパ状溝底部43を設け、ボール非可動域H4における内側継手部材26の肉厚を、ボール可動域H3における内側継手部材26の肉厚よりも厚くすることができる。   The track groove bottom of the ball movable range H3 is a straight groove 42 extending in parallel with the axial direction of the inner joint member 26, and the track groove bottom of the ball non-movable range H4 is opposite to the ball movable range H3 Forming a tapered groove bottom 43 inclined toward the outside diameter toward the end, and making the thickness of the inner joint member 26 in the ball non-moving area H4 thicker than the thickness of the inner joint member 26 in the ball moving area H3. it can.

このように構成することによって、継手開口部位(嵌合開始部位46)の肉厚を、ボール可動域H3における肉厚よりも安定して厚くすることができる。しかも、ボール可動域H3における内側継手部材26の肉厚を、ボール非可動域H4における内側継手部材26の肉厚よりも薄くできる。このため、等速自在継手の小型・軽量化を達成できる。   By configuring in this manner, the thickness of the joint opening portion (fitting start portion 46) can be stably made thicker than the thickness in the ball movable range H3. Moreover, the thickness of the inner joint member 26 in the ball movable range H3 can be thinner than the thickness of the inner joint member 26 in the ball non-movable range H4. For this reason, size and weight reduction of a constant velocity universal joint can be achieved.

内側継手部材26の軸心孔26aの内径面に雌スプライン32が形成され、この軸心孔26aに、シャフト33の端部の雄スプライン34が嵌入されてこの雄スプライン34と内側継手部材26の雌スプライン32とが嵌合する摺動式等速自在継手であって、内側継手部材26の継手開口側のトラック溝25の入口部の嵌合開始部46における肉厚をボール可動域H3の肉厚よりも大とするのが好ましい。このように構成することによって、最大着力点の強度を確保することができ、等速自在継手として必要機能を有効に確保できる。   A female spline 32 is formed on the inner diameter surface of the axial center hole 26a of the inner joint member 26, and a male spline 34 at the end of the shaft 33 is fitted into the axial center hole 26a. A sliding type constant velocity universal joint in which the female spline 32 is fitted, the thickness at the fitting start portion 46 of the entrance of the track groove 25 on the joint opening side of the inner joint member 26 being the thickness of the ball movable range H3 It is preferable to be larger than the thickness. By configuring in this manner, the strength of the maximum force application point can be secured, and the necessary function as a constant velocity universal joint can be effectively secured.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、6個ボールの等速自在継手であっても、8個ボールの等速自在継手であってもよく、ボール27の個数は任意である。なお、ダブルオフセット型等速自在継手の内側継手部材26のトラック溝25としては、ボール27の移動領域分しか必要ないことになる。しかしながら、内側継手部材26の外径面24はケージ29の内球面29bとの接触において球面力を支える部分として必要となる。このため、内側継手部材の外径面長さが短い場合、ケージとの接触面積が不足し、球面力を支えることができなくなる。特に高作動角時にスムーズな作動ができなくなったり、極端な場合はケージ破損に至ったりする場合も生じる。   As mentioned above, although the embodiment of the present invention has been described, the present invention is not limited to the above embodiment, and various modifications are possible. Even if it is a six-ball constant velocity universal joint, eight balls It may be a constant velocity universal joint, and the number of balls 27 is arbitrary. As the track groove 25 of the inner joint member 26 of the double offset constant velocity universal joint, only the movement area of the ball 27 is required. However, the outer diameter surface 24 of the inner joint member 26 is required as a portion supporting the spherical force in contact with the inner spherical surface 29 b of the cage 29. For this reason, when the outer diameter surface length of the inner joint member is short, the contact area with the cage is insufficient, and the spherical force can not be supported. In particular, when the operating angle is high, smooth operation may not be possible, or in extreme cases, the cage may be broken.

21 内径面
22 トラック溝
23 外側継手部材
24 外径面
25 トラック溝
25a ボール可動域
25b ボール非可動域
26 内側継手部材
27 トルク伝達ボール
29 ケージ
29a 外球面
29b 内球面
32 外側継手部材
32 雌スプライン
33 シャフト
34 雄スプライン
42 ストレート溝底
43 テーパ状溝底部
46 嵌合開始部位
O 継手中心
O1 曲率中心
O2 曲率中心
H3 ボール可動域
H4 ボール非可動域
Reference Signs List 21 inner diameter surface 22 track groove 23 outer joint member 24 outer diameter surface 25 track groove 25a ball movable region 25b ball non-movable region 26 inner joint member 27 torque transmission ball 29 cage 29a outer spherical surface 29b inner spherical surface 32 outer joint member 32 female spline 33 Shaft 34 Male spline 42 Straight groove bottom 43 Tapered groove bottom 46 Fitting start site O Joint center O1 Curvature center O2 Curvature center H3 Ball range of motion H4 Ball non-range of motion

Claims (3)

内径面にトラック溝が形成された外側継手部材と、外径面にトラック溝が形成された内側継手部材と、前記外側継手部材のトラック溝と内側継手部材のトラック溝との間に介在されるトルク伝達手段としてのボールと、このボールを収容するポケットを有するとともに外側継手部材と内側継手部材との間に介装されるケージとを備え、ケージの外球面の曲率中心と内球面の曲率中心とが、継手中心に対し、軸方向反対側に等距離だけオフセットしているダブルオフセット型である摺動式等速自在継手であって、
内側継手部材のトラック溝は、ボールが転動するボール可動域と、ボールが転動しないボール非可動域とを有し、ボール非可動域のトラック溝底の少なくとも継手開口部位の肉厚を、ボール可動域における肉厚よりも厚くしたことを特徴とする摺動式等速自在継手。
An outer joint member having a track groove formed on an inner diameter surface, an inner joint member having a track groove formed on an outer diameter surface, and the track groove of the outer joint member and the track groove of the inner joint member A ball as a torque transfer means, and a cage having a pocket for accommodating the ball and interposed between the outer joint member and the inner joint member, wherein the center of curvature of the outer spherical surface of the cage and the center of curvature of the inner spherical surface are provided. A sliding type constant velocity universal joint which is a double offset type which is offset by an equal distance axially opposite to the center of the joint,
The track groove of the inner joint member has a ball movable area in which the ball rolls and a ball non-movable area in which the ball does not roll, and at least the joint opening portion thickness of the track groove bottom of the ball non-movable area A sliding type constant velocity universal joint characterized by being thicker than a thickness in a ball movable range.
ボール可動域のトラック溝底を内側継手部材の軸線方向と平行に延びるストレート溝とするとともに、ボール非可動域のトラック溝底に、ボール可動域側から反ボール可動域側に向かって外径側に傾斜するテーパ状溝底部を設け、ボール非可動域における肉厚を、ボール可動域における肉厚よりも厚くしたことを特徴とする請求項1に記載の摺動式等速自在継手。   The track groove bottom of the ball movable area is a straight groove extending in parallel with the axial direction of the inner joint member, and the outer surface of the non-ball movable area is from the ball movable area to the opposite ball movable area The sliding constant velocity universal joint according to claim 1, characterized in that a tapered groove bottom which inclines to the bottom is provided, and the thickness in the ball non-moving area is thicker than the thickness in the ball moving area. 内側継手部材の軸心孔の内径面に雌スプラインが形成され、この軸心孔に、シャフトの端部の雄スプラインが嵌入されてこの雄スプラインと内側継手部材の雌スプラインとが嵌合する摺動式等速自在継手であって、前記内側継手部材のトラック溝の継手開口部の嵌合開始部における肉厚をボール可動域の肉厚よりも大としたことを特徴とする請求項1又は請求項2に記載の摺動式等速自在継手。   A female spline is formed on the inner diameter surface of the axial center hole of the inner joint member, and a male spline at the end of the shaft is fitted into the axial center hole, and this slide is fitted with the female spline of the inner joint member. The dynamic constant velocity universal joint according to claim 1 or 2, characterized in that the thickness at the fitting start portion of the joint opening of the track groove of the inner joint member is larger than the thickness of the ball movable range. The sliding constant velocity universal joint according to claim 2.
JP2018002521A 2018-01-11 2018-01-11 Slide type constant-velocity universal joint Pending JP2019120388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002521A JP2019120388A (en) 2018-01-11 2018-01-11 Slide type constant-velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002521A JP2019120388A (en) 2018-01-11 2018-01-11 Slide type constant-velocity universal joint

Publications (1)

Publication Number Publication Date
JP2019120388A true JP2019120388A (en) 2019-07-22

Family

ID=67307796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002521A Pending JP2019120388A (en) 2018-01-11 2018-01-11 Slide type constant-velocity universal joint

Country Status (1)

Country Link
JP (1) JP2019120388A (en)

Similar Documents

Publication Publication Date Title
US8808097B2 (en) Fixed type constant velocity universal joint
JP5101430B2 (en) Fixed constant velocity universal joint
JP4223358B2 (en) Fixed constant velocity universal joint
JP2007085488A (en) Sliding constant speed universal joint
JP2007270997A (en) Fixed type constant velocity universal joint
JP2006266329A (en) Fixed type constant velocity universal joint
JP2006258170A (en) Fixed type constant velocity universal joint
JP5355876B2 (en) Constant velocity universal joint
JP5615873B2 (en) Fixed constant velocity universal joint
JP2019120388A (en) Slide type constant-velocity universal joint
JP2007309366A (en) Constant velocity joint
JP2007239924A (en) Fixed constant velocity universal joint
CN101466960A (en) Sliding constant velocity universal joint
JP2009085326A (en) Constant velocity universal joint
JP4745186B2 (en) Fixed constant velocity universal joint
JP2008106881A (en) Fixed constant velocity universal joint
WO2020203221A8 (en) Fixed type constant velocity universal joint
JP2012077857A (en) Double offset type constant velocity joint
JP4896673B2 (en) Fixed constant velocity universal joint and manufacturing method thereof
JP2010031910A (en) Outside joint member of constant velocity universal joint and constant velocity universal joint
JP2009127638A (en) Constant velocity universal joint
JP2007016899A (en) Fixed-type constant-velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP2008101656A (en) Fixed type constant velocity universal joint
JP2007239875A (en) Fixed constant velocity universal joint