JP2019117827A - Optical member and light emitting device - Google Patents

Optical member and light emitting device Download PDF

Info

Publication number
JP2019117827A
JP2019117827A JP2017249794A JP2017249794A JP2019117827A JP 2019117827 A JP2019117827 A JP 2019117827A JP 2017249794 A JP2017249794 A JP 2017249794A JP 2017249794 A JP2017249794 A JP 2017249794A JP 2019117827 A JP2019117827 A JP 2019117827A
Authority
JP
Japan
Prior art keywords
conductive thin
optical member
light
thin wire
conversion member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017249794A
Other languages
Japanese (ja)
Other versions
JP7185123B2 (en
Inventor
克之 小野塚
Katsuyuki Onozuka
克之 小野塚
善貴 田中
Yoshitaka Tanaka
善貴 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2017249794A priority Critical patent/JP7185123B2/en
Publication of JP2019117827A publication Critical patent/JP2019117827A/en
Priority to JP2022117538A priority patent/JP7393685B2/en
Application granted granted Critical
Publication of JP7185123B2 publication Critical patent/JP7185123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Led Device Packages (AREA)
  • Semiconductor Lasers (AREA)

Abstract

To provide an optical member and a light emitting device capable of detecting an abnormality that leads to laser light leakage with higher accuracy.SOLUTION: An optical member 100A includes a conversion member 2 capable of converting laser light, which is excitation light, to light of a different wavelength, a conductive thin wire 4A disposed so as to intersect, in a plan view, at least any one of a light irradiation surface 2b, a light extraction surface 2a of a conversion member 2, or an area between the light irradiation surface 2b and the light extraction surface 2a, and a pattern connection electrode 5 electrically connected to the conductive thin wire 4A.SELECTED DRAWING: Figure 1

Description

本開示は、光学部材及び発光装置に関するものである。   The present disclosure relates to an optical member and a light emitting device.

従来、レーザ素子を使った発光装置が知られている。このような発光装置では、レーザ光が当たる蛍光体板裏面に導電性細線又は通電経路を形成することで、蛍光体板の損傷等を検知し、レーザ光の漏れの防止を図っている(例えば、特許文献1〜4参照)。   Conventionally, a light emitting device using a laser element is known. In such a light emitting device, damage or the like of the phosphor plate is detected by forming a conductive thin line or a current path on the back surface of the phosphor plate to which the laser light is applied to prevent laser beam leakage (for example, , Patent Documents 1 to 4).

特開2015−60159号公報JP, 2015-60159, A 特開2014−165450号公報JP, 2014-165450, A 特開2016−122715号公報JP, 2016-122715, A 国際公開第2017/012763号公報International Publication No. 2017/012763

前記した従来の発光装置では、蛍光体板の脱落等の損傷に起因した導電性細線の断線又は通電経路の通電遮断によって、蛍光体板の損傷を検出している。しかしながら、このような発光装置では、蛍光体板のひび割れや破損等の軽微な損傷では、導電性細線の断線又は通電回路の通電遮断が生じないため、蛍光体板の損傷を検出できない。このため、レーザ光の漏れ防止が不十分であるという問題があった。   In the above-described conventional light emitting device, the damage of the phosphor plate is detected by the disconnection of the conductive thin line caused by the damage such as the drop of the phosphor plate or the current interruption of the current passage. However, such a light emitting device can not detect damage to the phosphor plate because minor damage such as cracking or breakage of the phosphor plate does not cause breakage of the conductive thin wire or energization interruption of the energization circuit. For this reason, there existed a problem that leak prevention of a laser beam was inadequate.

そこで、本開示に係る実施形態は、レーザ光の漏れに繋がる異常をより精度良く検出可能である光学部材及び光学部材を用いた発光装置を提供することを課題とする。   Therefore, an embodiment according to the present disclosure is to provide an optical member and a light emitting device using the optical member capable of detecting an abnormality that leads to a leak of laser light with higher accuracy.

上記課題を解決するために、本開示の実施形態に係る光学部材は、励起光であるレーザ光を異なる波長の光に変換可能である変換部材と、前記変換部材の光照射面、光取出面、又は、前記光照射面と前記光取出面との間の少なくともいずれかに、平面視において交差するように配置された導電性細線と、前記導電性細線に電気的に接続するパターン接続用電極と、を備える光学部材。   In order to solve the above-mentioned subject, an optical member concerning an embodiment of this indication is a conversion member which can convert laser light which is excitation light into light of a different wavelength, a light irradiation side of the conversion member, a light extraction side. Alternatively, a conductive thin wire disposed so as to intersect in plan view with at least one of the light irradiation surface and the light extraction surface, and a pattern connection electrode electrically connected to the conductive thin wire And an optical member.

また、本開示の実施形態に係る発光装置は、前記光学部材と、前記変換部材の前記光照射面にレーザ光を照射するように配置されるレーザ素子と、を備える。   In addition, a light emitting device according to an embodiment of the present disclosure includes the optical member, and a laser element arranged to emit a laser beam to the light irradiation surface of the conversion member.

本開示の実施形態に係る光学部材及び発光装置によれば、レーザ光の漏れに繋がる異常をより精度良く検出することができる。   According to the optical member and the light emitting device according to the embodiment of the present disclosure, it is possible to more accurately detect the abnormality that leads to the leak of the laser light.

第1実施形態に係る光学部材の構成を示す平面図である。It is a top view which shows the structure of the optical member which concerns on 1st Embodiment. 図1のII-II線における断面図である。FIG. 2 is a cross-sectional view taken along line II-II of FIG. 第1実施形態に係る光学部材を用いた発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device using the optical member which concerns on 1st Embodiment. 図3のIV−IV線における断面図である。It is sectional drawing in the IV-IV line of FIG. 第2実施形態に係る光学部材の構成を示す断面図である。It is sectional drawing which shows the structure of the optical member which concerns on 2nd Embodiment. 第2実施形態に係る光学部材を用いた発光装置の構成を示す平面図である。It is a top view which shows the structure of the light-emitting device using the optical member which concerns on 2nd Embodiment. 図6のVII−VII線における断面図である。It is sectional drawing in the VII-VII line of FIG. 第1実施形態に係る光学部材の導電性細線の形状における変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the shape of the electroconductive thin wire | line of the optical member which concerns on 1st Embodiment. 第1実施形態に係る光学部材の導電性細線の形状における変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the shape of the electroconductive thin wire | line of the optical member which concerns on 1st Embodiment. 第1実施形態に係る光学部材の導電性細線の形状における変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the shape of the electroconductive thin wire | line of the optical member which concerns on 1st Embodiment. 第1実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 1st Embodiment. 第1実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 1st Embodiment. 第1実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 1st Embodiment. 図11AのXIB−XIB線における断面図である。It is sectional drawing in the XIB-XIB line of FIG. 11A. 第1実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す平面図である。It is a top view which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 1st Embodiment. 図12AのXIIB−XIIB線における断面図である。It is sectional drawing in the XIIB-XIIB line | wire of FIG. 12A. 第2実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 2nd Embodiment. 第2実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 2nd Embodiment. 第2実施形態に係る光学部材の導電性細線の配置位置における変形例の構成を示す断面図である。It is sectional drawing which shows the structure of the modification in the arrangement position of the electroconductive thin wire of the optical member which concerns on 2nd Embodiment.

本開示の実施形態を、以下に図面を参照しながら説明する。但し、以下に示す形態は、本実施形態の技術思想を具現化するための光学部材及び発光装置を例示するものであって、以下に限定するものではない。また、実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特定的な記載がない限り、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさ、位置関係等は、説明を明確にするため誇張していることがある。また、以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており詳細説明を適宜省略する。   Embodiments of the present disclosure will be described below with reference to the drawings. However, the form shown below illustrates the optical member and light-emitting device for embodying the technical thought of this embodiment, and is not limited to the following. Further, the dimensions, materials, shapes, relative arrangements and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention to only the specific description unless they are specifically described. It is only In addition, the size of the member which each drawing shows, positional relationship, etc. may be exaggerated in order to clarify description. Further, in the following description, the same names and reference numerals indicate the same or similar members, and the detailed description will be appropriately omitted.

[第1実施形態]
第1実施形態に係る光学部材及び発光装置光学部材について説明する。
図1〜図4に示すように、光学部材100Aは、変換部材2と、変換部材2の光取出面2aに配置された導電性細線4Aと、パターン接続用電極5と、を備える。また、光学部材100Aは、導体部11を備えることが好ましい。また、光学部材100Aは、放熱部材9を備えてもよい。
発光装置200Aは、光学部材100Aと、レーザ素子25と、を備え、パッケージ21を備えることが好ましい。なお、発光装置200Aは、検出回路を備えることができる。
以下、光学部材100A及び発光装置200Aの各構成要素について説明する。
First Embodiment
The optical member and the light emitting device optical member according to the first embodiment will be described.
As shown in FIGS. 1 to 4, the optical member 100 </ b> A includes the conversion member 2, the conductive thin line 4 </ b> A disposed on the light extraction surface 2 a of the conversion member 2, and the pattern connection electrode 5. Further, the optical member 100 </ b> A preferably includes the conductor portion 11. Further, the optical member 100A may include the heat dissipation member 9.
The light emitting device 200 </ b> A preferably includes the optical member 100 </ b> A and the laser element 25 and the package 21. The light emitting device 200A can include a detection circuit.
Hereinafter, each component of the optical member 100A and the light emitting device 200A will be described.

<光学部材>
(変換部材)
変換部材2は、一例として長方体形状に形成され、光取出面2aとなる表面を長方体形状の一面に有している。変換部材2は、励起光であるレーザ光を異なる波長の光に変換可能な部材である。レーザ光はレーザ素子25から出射される。変換部材2は、光取出面2aと反対となる裏面を、レーザ素子25からのレーザ光を入射する光照射面2bとしている。
<Optical member>
(Converting member)
The conversion member 2 is formed in, for example, a rectangular shape, and has a surface to be the light extraction surface 2 a on one side of the rectangular shape. The conversion member 2 is a member capable of converting laser light, which is excitation light, into light of different wavelengths. Laser light is emitted from the laser element 25. The conversion member 2 has a back surface opposite to the light extraction surface 2a as a light irradiation surface 2b on which the laser light from the laser element 25 is incident.

変換部材2は、レーザ光の照射により分解されにくいように、無機材料からなることが好ましい。無機材料からなる変換部材2としては、レーザ光を波長変換可能な蛍光体を含有するセラミックス又はガラス、蛍光体の単結晶が挙げられる。また、変換部材2は、融点の高い材料が好ましく、融点は1300〜2500℃が好ましい。このような耐光性及び耐熱性の良好な材料によって変換部材2が形成されていることにより、レーザ光のような高密度の光が照射されても変質が生じ難く、保持部材3に保持される際の熱によっても変形および変色等が生じ難くなる。よって、変換部材2は、耐光性及び耐熱性の良好な材料で形成されることが好ましい。   The conversion member 2 is preferably made of an inorganic material so as to be difficult to be decomposed by the irradiation of the laser beam. Examples of the conversion member 2 made of an inorganic material include ceramics or glass containing a phosphor capable of wavelength conversion of laser light, and a single crystal of a phosphor. The conversion member 2 is preferably a material having a high melting point, and the melting point is preferably 1300 to 2500 ° C. Since the conversion member 2 is formed of such a material having good light resistance and heat resistance, it is difficult to cause deterioration even when irradiated with high density light such as laser light, and is held by the holding member 3 Deformation and discoloration are less likely to occur due to heat during the process. Therefore, it is preferable that the conversion member 2 be formed of a material having good light resistance and heat resistance.

変換部材2として蛍光体を用いる場合は、セリウムで賦活されたイットリウム・アルミニウム・ガーネット(YAG)、セリウムで賦活されたルテチウム・アルミニウム・ガーネット(LAG)、ユウロピウム及び/又はクロムで賦活された窒素含有アルミノ珪酸カルシウム(CaO−Al−SiO)、ユウロピウムで賦活されたシリケート((Sr,Ba)SiO)、αサイアロン蛍光体、βサイアロン蛍光体等が挙げられる。蛍光体としては、耐熱性が良好な蛍光体であるYAGを用いることが好ましい。 When a phosphor is used as the conversion member 2, cerium-activated yttrium aluminum garnet (YAG), cerium-activated lutetium aluminum garnet (LAG), europium and / or chromium-activated nitrogen-containing Calcium aluminosilicate (CaO-Al 2 O 3 -SiO 2 ), europium-activated silicate ((Sr, Ba) 2 SiO 4 ), α-sialon phosphor, β-sialon phosphor and the like can be mentioned. As a fluorescent substance, it is preferable to use YAG which is a fluorescent substance having good heat resistance.

変換部材2としてセラミックスを用いる場合は、蛍光体と酸化アルミニウム(Al、融点:約1900℃〜2100℃)等の透光性材料とを焼結させたものが挙げられる。この場合、蛍光体の含有量は、セラミックスの総体積に対して0.05〜50体積%とすることが好ましく、1〜30体積%がより好ましい。また、このような透光性材料を用いずに蛍光体の紛体を焼結させることにより形成する、実質的に蛍光体のみからなるセラミックスを変換部材2として用いてもよい。 In the case of using a ceramic as the conversion member 2, a material obtained by sintering a phosphor and a translucent material such as aluminum oxide (Al 2 O 3 , melting point: about 1900 ° C. to 2100 ° C.) may be mentioned. In this case, the content of the phosphor is preferably 0.05 to 50% by volume, more preferably 1 to 30% by volume, with respect to the total volume of the ceramic. Alternatively, a ceramic substantially consisting of only a phosphor, which is formed by sintering a powder of a phosphor without using such a translucent material, may be used as the conversion member 2.

(導電性細線、パターン接続用電極)
導電性細線4Aは、変換部材2の光取出面2aに当接して、平面視において互いに交差するように配置された線状体である。具体的には、導電性細線4Aは、複数の直線状細線4aが格子状に交差した格子形状に設けられている。また、導電性細線4Aは、その両端部で、通電のためのパターン接続用電極5に接続されている。これにより、導電性細線4Aはパターン接続用電極5に電気的に接続されている。
(Conductive thin line, electrode for pattern connection)
The conductive thin wires 4A are linear bodies disposed in contact with the light extraction surface 2a of the conversion member 2 and intersecting each other in a plan view. Specifically, the conductive thin wires 4A are provided in a lattice shape in which a plurality of linear thin wires 4a intersect in a lattice shape. Further, the conductive thin wire 4A is connected to the pattern connection electrode 5 for energization at both ends. Thus, the conductive thin wire 4A is electrically connected to the pattern connection electrode 5.

平面視で交差した導電性細線4Aが変換部材2の光取出面2aに配置されていることによって、変換部材2の脱落等の全体的な損傷だけでなく、変換部材2の軽微なひび割れ、破損等の部分的な損傷を、導電性細線4Aの破損で検出することが可能となる。ここで、導電性細線4Aの破損とは、導電性細線4Aの断線に限らず、欠け、細線化等も含まれる。つまり、導電性細線4Aは、欠けや細線化等により抵抗値が変化して電圧値が変化することで、通常の状態との差がわかり、変換部材2の破損を検出できる。本実施形態では、変換部材2の部分的な破損が検出可能となるため、レーザ光の漏れに繋がる異常をより精度良く検出することができる。導電性細線4Aは、光取出面2aの周縁に近い部分まで設けられていることが好ましい。これにより、レーザ光の漏れに繋がる異常をさらに精度良く検出することができる。   Not only overall damage such as dropout of the conversion member 2 but also slight cracks and breakage of the conversion member 2 are caused by the conductive thin wires 4A intersecting in a plan view being disposed on the light extraction surface 2a of the conversion member 2 And so on can be detected by the breakage of the conductive thin wire 4A. Here, the breakage of the conductive thin wire 4A is not limited to the breakage of the conductive thin wire 4A, and includes chipping, thinning, and the like. That is, the conductive thin line 4A changes its resistance value due to chipping, thinning, or the like to change the voltage value, so that the difference from the normal state can be known, and damage to the conversion member 2 can be detected. In the present embodiment, since partial damage of the conversion member 2 can be detected, it is possible to more accurately detect an abnormality that leads to a laser beam leak. It is preferable that the conductive thin wire 4A be provided up to a portion close to the peripheral edge of the light extraction surface 2a. As a result, it is possible to more accurately detect an abnormality that leads to a laser beam leak.

格子形状の導電性細線4Aは、レーザ素子25からのレーザ光が照射される位置に配置される。4つの交差点Pで囲まれた四角形状の開口部Sは、レーザ光の照射領域の面積よりも小さい面積とすることが好ましい。開口部Sの面積は、レーザ光の照射領域の面積の5〜90%であることが好ましい。開口部Sが5%以上であると、輝度むらの低減が可能となる。開口部Sが90%以下であると、変換部材2の破損をより精度良く検出可能となる。さらに精度良く検出するためには、開口部Sの面積はレーザ光の照射領域の面積の25%以下であることが好ましい。開口部Sの面積は、例えば、0.02〜0.36mmとすることができる。なお、本明細書において、レーザ光の照射領域とは、変換部材2によって散乱が生じないと仮定した場合にレーザ光の主要部分が照射される領域を指す。また、レーザ光の主要部分とは、レーザ光のピーク強度値から1/e等の任意の強度に落ちたときまでの強度範囲の部分を指す。 The lattice-shaped conductive thin line 4A is disposed at a position where the laser beam from the laser element 25 is irradiated. It is preferable to make the rectangular opening S surrounded by the four intersections P smaller than the area of the laser light irradiation area. The area of the opening S is preferably 5 to 90% of the area of the laser light irradiation area. Uneven luminance can be reduced when the opening S is 5% or more. When the opening S is 90% or less, breakage of the conversion member 2 can be detected more accurately. Furthermore, in order to detect with high precision, it is preferable that the area of the opening S is 25% or less of the area of the irradiation area of the laser beam. The area of the opening S can be, for example, 0.02 to 0.36 mm 2 . In addition, in this specification, the irradiation area | region of a laser beam points out the area | region where the major part of a laser beam is irradiated, assuming that scattering does not arise by the conversion member 2. As shown in FIG. Further, the main part of the laser light refers to a part of the intensity range from the peak intensity value of the laser light to an arbitrary intensity such as 1 / e 2 .

導電性細線4Aは、発光装置200Aの配線材料として一般的に用いられている導電材料からなり、タングステン、モリブデン、銀、アルミニウム等の金属材料からなることが好ましい。導電性細線4Aは、配置される変換部材2の構成材料に応じて適宜選択される。具体的には、変換部材2に高温焼成セラミックスを用いた場合には、導電性細線4Aとして高融点金属であるタングステン、モリブデン等を用いる。変換部材2に低温焼成セラミックス、ガラス又は樹脂を用いた場合には、導電性細線4Aとして低融点金属である銀、アルミニウム等を用いる。また、導電性細線4Aの両端部で電気的に接続されるパターン接続用電極5も、導電性細線4Aと同様な導電材料から選択することができる。   The conductive thin wire 4A is made of a conductive material generally used as a wiring material of the light emitting device 200A, and is preferably made of a metal material such as tungsten, molybdenum, silver, aluminum or the like. The conductive thin wire 4A is appropriately selected in accordance with the constituent material of the conversion member 2 to be disposed. Specifically, when high temperature sintered ceramics are used for the conversion member 2, tungsten, molybdenum or the like which is a high melting point metal is used as the conductive thin wire 4A. When low temperature sintered ceramics, glass or resin is used for the conversion member 2, silver, aluminum or the like which is a low melting point metal is used as the conductive thin wire 4A. The pattern connection electrodes 5 electrically connected at both ends of the conductive thin wire 4A can also be selected from the same conductive material as the conductive thin wire 4A.

導電性細線4Aの幅は、0.2〜5.0μmであることが好ましい。導電性細線4Aの幅が0.2μm以上であると、不用意な外力によって導電性細線4Aに断線等の破損が生じることを防止できる。その結果、変換部材2の破損を誤検出することを防止できる。導電性細線4Aの幅が5.0μm以下であると、変換部材2からの取出光の輝度むらを抑制することができる。
導電性細線4Aは、変換部材2の脱落等の全体的な損傷だけでなく、軽微なひび割れ、破損等の部分的な損傷を検出できるように、変換部材2の光取出面2aの全体にわたって当接していることが好ましい。
The width of the conductive thin wire 4A is preferably 0.2 to 5.0 μm. When the width of the conductive thin wire 4A is 0.2 μm or more, the conductive thin wire 4A can be prevented from being damaged due to careless external force. As a result, it is possible to prevent erroneous detection of damage to the conversion member 2. When the width of the conductive thin wire 4A is 5.0 μm or less, it is possible to suppress the uneven brightness of the light extracted from the conversion member 2.
The conductive thin line 4A is not limited to the overall damage such as the dropout of the conversion member 2 but can be detected over the entire light extraction surface 2a of the conversion member 2 so that the partial damage such as a minor crack or breakage can be detected. It is preferable to contact.

(導体部)
導体部11は、導電性細線4Aに通電するためのもので、変換部材2を貫通して形成され、一方のパターン接続用電極5と対面する位置、及び、他方のパターン接続用電極5と対面する位置に形成されている。導体部11は、一端はバンプ12と接続し、他端は導電性細線4Aの両端部に接続されたパターン接続用電極5に接続している。導体部11は、タングステン、モリブデン、金、銀、錫、アルミニウム等の導電性材料から形成することができる。また、導体部11の形状は、例えば棒状とすることができる。また、バンプ12は、金、銀、銅等の電極材料からなる。バンプ12の形状は、例えば、半球状とすることができる。
(Conductor part)
The conductor portion 11 is for conducting electricity to the conductive thin wire 4A, is formed through the conversion member 2, and a position facing the one pattern connection electrode 5 and the other pattern connection electrode 5 It is formed at the The conductor portion 11 has one end connected to the bump 12 and the other end connected to the pattern connection electrode 5 connected to both ends of the conductive thin wire 4A. The conductor portion 11 can be formed of a conductive material such as tungsten, molybdenum, gold, silver, tin, or aluminum. Moreover, the shape of the conductor part 11 can be made into rod shape, for example. The bumps 12 are made of an electrode material such as gold, silver, copper or the like. The shape of the bumps 12 can be, for example, hemispherical.

(放熱部材)
放熱部材9は、変換部材2の光照射面2bに対向する側に配置され、レーザ素子25からのレーザ光を透過する透光性の部材である。放熱部材9は、変換部材2の平面視における面積より大きく形成され、サファイアからなることが好ましい。放熱部材9を備えることによって、変換部材2からの熱を効率よく放熱させることができる。放熱部材9の厚みは、例えば、0.2〜1mmが挙げられ、好ましくは0.4〜0.6mmとする。
(Heat dissipation member)
The heat radiating member 9 is a translucent member disposed on the side facing the light irradiation surface 2 b of the conversion member 2 and transmitting the laser light from the laser element 25. The heat dissipation member 9 is formed to be larger than the area of the conversion member 2 in a plan view, and is preferably made of sapphire. By providing the heat dissipation member 9, the heat from the conversion member 2 can be efficiently dissipated. The thickness of the heat dissipation member 9 is, for example, 0.2 to 1 mm, preferably 0.4 to 0.6 mm.

(基板パターン)
光学部材100Aにおいて、放熱部材9と変換部材2との接合には、放熱部材9の表面に形成された基板パターン6が用いられる。基板パターン6は、変換部材2に形成されたバンプ12と接続して放熱部材9と変換部材2との接合する役割と共に、外部の電源と接続してバンプ12及び導体部11を介して導電性細線4Aに通電する役割を有する。基板パターン6は、金、銀、銅等の電極材料からなることが好ましい。基板パターン6の厚みは、例えば、0.1〜5μmとすることができる。
以上説明した構成を備える光学部材100Aは、導電性細線4Aを有することで、レーザ光の漏れに繋がる異常をより精度良く検出することが可能である。
(Board pattern)
In the optical member 100 </ b> A, a substrate pattern 6 formed on the surface of the heat dissipation member 9 is used for bonding the heat dissipation member 9 and the conversion member 2. The substrate pattern 6 is connected to the bumps 12 formed on the conversion member 2 to join the heat dissipation member 9 and the conversion member 2, and connected to an external power supply to be conductive via the bumps 12 and the conductor portion 11. It has a role of energizing the thin wire 4A. The substrate pattern 6 is preferably made of an electrode material such as gold, silver, copper or the like. The thickness of the substrate pattern 6 can be, for example, 0.1 to 5 μm.
The optical member 100A having the configuration described above can detect the abnormality that leads to the leak of the laser beam more accurately by having the conductive thin wire 4A.

<発光装置>
発光装置200Aは、前記した構成を備える光学部材100Aをパッケージ21に設置して、パッケージ21内に設けたレーザ素子25からのレーザ光を変換して光を照射するものである。発光装置200Aは、光学部材100Aにレーザ光を照射するレーザ素子25と、このレーザ素子25を収納する凹部27を有するパッケージ21と、パッケージ21の凹部27の蓋部24を主に備えている。なお、発光装置200Aは、ここでは検出回路を備えることで説明する。
<Light-emitting device>
The light emitting device 200A installs the optical member 100A having the above-described configuration in the package 21, converts the laser light from the laser element 25 provided in the package 21, and emits the light. The light emitting device 200A mainly includes a laser element 25 for irradiating the optical member 100A with laser light, a package 21 having a recess 27 for storing the laser element 25, and a lid 24 of the recess 27 of the package 21. Note that the light emitting device 200A will be described here by including a detection circuit.

(レーザ素子)
レーザ素子25は、変換部材2にレーザ光を照射するように配置された素子である。レーザ素子25は、出射するレーザ光が短波長であるほど高エネルギーとなり、レーザ光の漏れの検出がより要されるため、短波長のレーザ光を出射する素子をレーザ素子25として用いることが好ましい。そのようなレーザ素子としては、窒化物半導体からなる半導体レーザ素子が挙げられる。そして、レーザ素子25は、光路中にレーザ光を変換部材2に照射させるための構成、例えば反射部材26を、併せて備えることができる。
ここで、反射部材26は、三角柱や四角錐台等の形状をしたガラス等からなる本体部の斜面に反射膜が設けられた部材を用いることができる。本体部の底面に対する斜面の角度は、レーザ光を直交する方向に導くため、約45度であることが好ましい。
(Laser element)
The laser element 25 is an element disposed to irradiate the conversion member 2 with laser light. The laser element 25 has higher energy as the emitted laser beam has a shorter wavelength, and detection of a leak of the laser beam is more required. Therefore, it is preferable to use an element that emits a short wavelength laser beam as the laser element 25 . As such a laser element, a semiconductor laser element made of a nitride semiconductor can be mentioned. Then, the laser element 25 can be provided with a configuration for irradiating the conversion member 2 with the laser light, for example, the reflection member 26 in the optical path.
Here, as the reflection member 26, a member in which a reflection film is provided on the slope of the main body made of glass or the like having a shape such as a triangular prism or a quadrangular pyramid can be used. The angle of the slope with respect to the bottom of the main body is preferably about 45 degrees in order to guide the laser light in the orthogonal direction.

(パッケージ)
パッケージ21は、レーザ素子25を包囲している。パッケージ21は、凹部27等の収納部を有し、その収納部にレーザ素子25及び反射部材26を配置して収納する収納体である。パッケージ21は、主として、酸化アルミニウム、窒化アルミニウム、窒化ケイ素、炭化ケイ素等のセラミックス又はCu等の金属からなる収納本体部22と、収納本体部22に溶接等により接合された蓋部24と、を備えている。収納本体部22は、上面側が開口した凹部27を有することができる。その凹部開口周縁に、蓋部24と溶接するための、主成分として鉄を含む枠状の溶接部23を有してもよい。収納本体部22は、凹部27の開口に連続する四方の上面の少なくとも1面が他の面より広くなるように形成され、電極部28が配置されている。電極部28は、アノードとカソードを、平面視で光学部材1Aを挟む位置に配置してもよい。また、収納本体部22が金属からなる場合は、電極部28として、例えばリード端子を用いる。
(package)
The package 21 encloses the laser element 25. The package 21 is a storage body having a storage portion such as the concave portion 27 and the like, in which the laser element 25 and the reflection member 26 are disposed and stored. The package 21 mainly includes a housing main body 22 made of a ceramic such as aluminum oxide, aluminum nitride, silicon nitride, silicon carbide or a metal such as Cu, and a lid 24 joined to the housing main body 22 by welding or the like. Have. The storage body portion 22 can have a recess 27 opened on the upper surface side. At the periphery of the recess opening, a frame-shaped welding portion 23 containing iron as a main component for welding with the lid portion 24 may be provided. The storage body portion 22 is formed such that at least one surface of the upper surface continuous with the opening of the recess 27 is wider than the other surfaces, and the electrode portion 28 is disposed. The electrode part 28 may arrange | position an anode and a cathode in the position which pinches the optical member 1A by planar view. When the storage body 22 is made of metal, for example, a lead terminal is used as the electrode 28.

蓋部24は、収納本体部22に溶接等により接合されることで、レーザ素子25を気密封止している。これにより、レーザ素子25への有機物等の塵埃の付着を抑制することができる。蓋部24は、収納本体部22と溶接される支持部24aと、レーザ光を透過させる透光部24bと、支持部24aと透光部24bとを接合する接合材24cと、を有することができる。支持部24aには鉄を主成分とする材料を用いることができる。透光部24bにはガラス、サファイア等を用いることができる。接合材24cには低融点ガラス、金錫半田等を用いることができる。そして、レーザ素子25から出射したレーザ光は、反射部材26で反射し、透光部24b及び放熱部材9を透過して、変換部材2の光照射面2bに照射される。   The lid portion 24 hermetically seals the laser element 25 by being joined to the housing main portion 22 by welding or the like. Thereby, adhesion of dust such as organic matter to the laser element 25 can be suppressed. The lid portion 24 may have a support portion 24 a welded to the storage body portion 22, a light transmitting portion 24 b for transmitting a laser beam, and a bonding material 24 c for bonding the support portion 24 a and the light transmitting portion 24 b. it can. For the support portion 24a, a material containing iron as a main component can be used. Glass, sapphire, etc. can be used for the light transmission part 24b. Low melting point glass, gold-tin solder or the like can be used as the bonding material 24c. Then, the laser beam emitted from the laser element 25 is reflected by the reflection member 26, passes through the light transmitting portion 24 b and the heat dissipation member 9, and is irradiated to the light irradiation surface 2 b of the conversion member 2.

パッケージ21は、外部と電気的に接続する電極部28を収納本体部22の下面以外の面に設けることにより、パッケージ21の下面の全面をヒートシンク等の他の部材に実装する面とすることができる。そのため、パッケージ21は、発光装置200Aで生じる熱をヒートシンクに発散させやすくなる。   In the package 21, the entire surface of the lower surface of the package 21 may be mounted on another member such as a heat sink by providing the electrode portion 28 electrically connected to the outside on the surface other than the lower surface of the storage main body 22. it can. Therefore, the package 21 easily dissipates the heat generated by the light emitting device 200A to the heat sink.

(検出回路)
検出回路は、導電性細線4Aの破損に起因した抵抗値の変化を検出する回路である。発光装置200Aでは、導電性細線4A及びレーザ素子25の通電回路に接続される回路である。このような検出回路を備えることによって、変換部材2の破損を、導電性細線4Aの破損に起因した抵抗値の変化で検出できる。そして、導電性細線4Aの抵抗値の変化を検出した際に、変換部材2に破損が生じたと判断して、レーザ素子25の駆動を停止することによって、レーザ光の漏れを防止することができる。
(Detection circuit)
The detection circuit is a circuit that detects a change in resistance value caused by the breakage of the conductive thin wire 4A. The light emitting device 200A is a circuit connected to the conductive circuit of the conductive thin wire 4A and the laser element 25. By providing such a detection circuit, breakage of the conversion member 2 can be detected by a change in resistance value caused by breakage of the conductive thin wire 4A. Then, when a change in the resistance value of the conductive thin wire 4A is detected, it is determined that the conversion member 2 is damaged, and the driving of the laser element 25 is stopped, whereby the leakage of the laser light can be prevented. .

発光装置200Aでは、凹部27から透光部24b及び放熱部材9を通過したレーザ光が変換部材2に到達するように、光学部材100Aがパッケージ21に固定されていることが好ましい。そして、平面視において交差するように、具体的には格子状の導電性細線4Aが、変換部材2の光取出面2aに配置される。このような配置であることによって、導電性細線4Aによる変換部材2の破損を精度良く検出できる。
発光装置200Aでは、光学部材100Aのパッケージ21への固定には、例えば、金、錫、銀等の金属材料からなる接合層を用いることができる。
In the light emitting device 200A, the optical member 100A is preferably fixed to the package 21 so that the laser light that has passed through the light transmitting portion 24b and the heat dissipation member 9 from the recess 27 reaches the conversion member 2. Then, specifically, the grid-like conductive thin wires 4A are disposed on the light extraction surface 2a of the conversion member 2 so as to intersect in a plan view. With such an arrangement, breakage of the conversion member 2 due to the conductive thin wire 4A can be detected with high accuracy.
In the light emitting device 200A, for example, a bonding layer made of a metal material such as gold, tin, silver or the like can be used to fix the optical member 100A to the package 21.

光学部材100A及び発光装置200Aは、例えば、以下のような製造方法で製造することができる。
(1)変換部材の作製工程
変換部材2となる粉末材料を焼結することで変換部材2を製造する。焼結法としては、例えば、放電プラズマ焼結法(SPS法:spark plasma sintering法)又はホットプレス焼結法(HP法:hot pressing法)を用いることができる。
The optical member 100A and the light emitting device 200A can be manufactured, for example, by the following manufacturing method.
(1) Process of producing conversion member The conversion member 2 is manufactured by sintering a powder material to be the conversion member 2. As a sintering method, for example, a discharge plasma sintering method (SPS method: spark plasma sintering method) or a hot press sintering method (HP method: hot pressing method) can be used.

(2)導体部の形成工程
変換部材2を製造後、変換部材2の光取出面2aから光照射面2bに貫通する貫通孔を作製する。次に、貫通孔に導体部11を充填し、充填された導体部11の光照射面側の端部にバンプ12を形成する。
(2) Step of Forming Conductor Portion After manufacturing the conversion member 2, a through hole penetrating from the light extraction surface 2a of the conversion member 2 to the light irradiation surface 2b is manufactured. Next, the through hole is filled with the conductor portion 11, and the bump 12 is formed on the end of the filled conductor portion 11 on the light irradiation surface side.

(3)導電性細線の配置工程
バンプ12の形成後、変換部材2の光取出面2aに、導電性細線4Aと、その両端部に接続するパターン接続用電極5とを形成して、光学部材100Aとする。
ここで、導電性細線4A及びパターン接続用電極5は、パターン接続用電極5と導体部11の端部が電気的に接続する位置に形成する。また、導電性細線4Aとパターン接続用電極5の形成方法としては、スパッタリング法、真空蒸着法、イオンプレーティング法、化学蒸着法、塗工法、印刷法等を用いることができる。導電性細線4Aの形成方法としては、特開2016−004544号公報に記載されている方法等を用いることができる。
(3) Step of arranging conductive thin lines After forming the bumps 12, the conductive thin lines 4A and the pattern connection electrodes 5 connected to the both ends are formed on the light extraction surface 2a of the conversion member 2 to form an optical member. It shall be 100A.
Here, the conductive thin wire 4A and the pattern connection electrode 5 are formed at positions where the pattern connection electrode 5 and the end of the conductor portion 11 are electrically connected. Further, as a method of forming the conductive thin wire 4A and the pattern connection electrode 5, a sputtering method, a vacuum evaporation method, an ion plating method, a chemical vapor deposition method, a coating method, a printing method or the like can be used. As a method of forming the conductive thin wire 4A, the method described in JP-A-2016-004544 can be used.

(4)放熱部材の接合工程
光学部材100Aでは、導電性細線4A及びパターン接続用電極5の形成後、フォトリソグラフィ法及びエッチング法等によって基板パターン6が表面に形成された放熱部材9を準備し、基板パターン6及びバンプ12を介して、変換部材2に放熱部材9を接合する。
(4) Bonding step of heat dissipation member In the optical member 100A, after forming the conductive thin wire 4A and the pattern connection electrode 5, prepare the heat dissipation member 9 having the substrate pattern 6 formed on the surface by photolithography and etching. The heat dissipation member 9 is bonded to the conversion member 2 through the substrate pattern 6 and the bumps 12.

(5)発光装置200Aは、基板パターン6を設けた放熱部材9と、凹部27にレーザ素子25及びレーザ光を所定方向に導く反射部材26が設置され、蓋部24が取り付けられたパッケージ21と、前記した光学部材100Aとが、それぞれ準備され、接合されることで形成される。
発光装置200Aは、パッケージ21に取り付けられた蓋部24の支持部24aに、予め、光学部材100Aが接合された放熱部材9を接合することで形成される。
例えば、パッケージ21は、凹部27内にレーザ素子25及び反射部材26が設置され、その後、蓋部24の支持部24aが凹部27の開口周縁に設けた溶接部23と接合される。そして、光学部材100Aが接合されている放熱部材9を支持部24aと接合することで、発光装置200Aが形成される。
(5) In the light emitting device 200A, the heat dissipating member 9 provided with the substrate pattern 6, and the package 21 having the laser element 25 and the reflecting member 26 for guiding the laser light in the predetermined direction installed in the recess 27 The optical member 100A is formed by being prepared and bonded.
The light emitting device 200A is formed by previously bonding the heat dissipation member 9 to which the optical member 100A is bonded to the support portion 24a of the lid portion 24 attached to the package 21.
For example, in the package 21, the laser element 25 and the reflection member 26 are disposed in the recess 27, and thereafter, the support 24 a of the lid 24 is joined to the weld 23 provided in the opening periphery of the recess 27. The light emitting device 200A is formed by bonding the heat dissipating member 9 to which the optical member 100A is bonded to the support portion 24a.

[第2実施形態]
次に、第2実施形態に係る光学部材及び発光装置について説明する。
図5〜図7に示すように、光学部材150Aは、変換部材2と、保持部材3と、変換部材2の光取出面2aに配置された導電性細線4Aと、を備える。また、光学部材150Aは、パターン接続用電極5、放熱部材を備えることができる。
発光装置200Bは、光学部材150Aと、レーザ素子25と、を備える。発光装置200Bは、さらにパッケージ21を備えることができる。なお、発光装置200Bは、検出回路を備えることが好ましい。
以下、光学部材150A及び発光装置200Bの各構成要素について説明する。なお、保持部材3を介して光学部材150Aを設けること以外は、図1〜図4に示す光学部材100A及び発光装置200Aと同様である。
Second Embodiment
Next, an optical member and a light emitting device according to a second embodiment will be described.
As shown in FIGS. 5 to 7, the optical member 150 </ b> A includes the conversion member 2, the holding member 3, and the conductive thin wire 4 </ b> A disposed on the light extraction surface 2 a of the conversion member 2. Further, the optical member 150A can include the pattern connection electrode 5 and a heat dissipation member.
The light emitting device 200B includes an optical member 150A and a laser element 25. The light emitting device 200B can further include the package 21. Note that the light emitting device 200B preferably includes a detection circuit.
Hereinafter, each component of the optical member 150A and the light emitting device 200B will be described. The configuration is the same as the optical member 100A and the light emitting device 200A shown in FIGS. 1 to 4 except that the optical member 150A is provided via the holding member 3.

<光学部材>
光学部材150Aは、変換部材2を保持する保持部材3を備える。また、光学部材150Aは、保持部材3を備えるため、導電性細線4Aに通電するためのパターン接続用電極5を保持部材3の光取出面側の表面3aに配置することができる。そのため、光学部材150Aでは、変換部材2に通電のための導体部11(図2参照)を備える必要がない。さらに、光学部材150Aでは、通電のために、光取出面側に配置されたパターン接続用電極5に基板パターン6を接続して通電できるため、導電性細線4Aへの通電が容易となる。なお、パターン接続用電極5と基板パターン6との接続は、積層による接続、又は、ボンディングワイヤーによる接続が用いられる。また、導電性細線4Aを基板パターン6に直接接続してもよい。
<Optical member>
The optical member 150 </ b> A includes a holding member 3 that holds the conversion member 2. Further, since the optical member 150A includes the holding member 3, the pattern connection electrode 5 for energizing the conductive thin wire 4A can be disposed on the surface 3a of the holding member 3 on the light extraction surface side. Therefore, in the optical member 150A, it is not necessary to provide the conversion member 2 with the conductor portion 11 (see FIG. 2) for energization. Further, in the optical member 150A, the substrate pattern 6 can be connected to the pattern connection electrode 5 disposed on the light extraction surface side for current conduction, so that current conduction to the conductive thin wire 4A is facilitated. The connection between the pattern connection electrode 5 and the substrate pattern 6 is a connection by lamination or a connection by a bonding wire. Alternatively, the conductive thin wires 4A may be directly connected to the substrate pattern 6.

(保持部材)
保持部材3は、変換部材2を保持し、変換部材2の光取出面2a及び光照射面2bと同一平面上に連続する表面3a及び裏面3cを有する部材である。変換部材2は、その光取出面2a及び光照射面2bが保持部材3から露出するように保持される。保持部材3は、その厚み方向に貫通する貫通孔3bを有し、その貫通孔3bに挿入した状態で変換部材2と共に連結されることで、変換部材2を保持している。貫通孔3bの形状としては、変換部材2の形状に対応させることが好ましく、例えば、柱形状、錐形状、円錐台、角錐台又はこれらを組み合わせた形状とすることができ、平面視で三角形及び四角形等の多角形のほか、円形または楕円形とすることができる。
(Holding member)
The holding member 3 is a member for holding the conversion member 2 and having a front surface 3a and a back surface 3c which are continuous on the same plane as the light extraction surface 2a and the light irradiation surface 2b of the conversion member 2. The conversion member 2 is held so that the light extraction surface 2 a and the light irradiation surface 2 b are exposed from the holding member 3. The holding member 3 has a through hole 3 b penetrating in the thickness direction, and holds the conversion member 2 by being connected with the conversion member 2 in a state of being inserted into the through hole 3 b. The shape of the through hole 3 b is preferably made to correspond to the shape of the conversion member 2, and may be, for example, a pillar shape, a cone shape, a truncated cone, a truncated pyramid or a combination thereof. Besides polygons such as quadrilaterals, they may be circular or oval.

保持部材3の厚みは、強度を考慮すると0.2mm以上であることが好ましい。また、保持部材3の厚みは、変換部材2が保持できる程度の厚みであればよく、コスト増大及び光学部材150Aの高さの増大を抑えるため、2.0mm以下が好ましい。   The thickness of the holding member 3 is preferably 0.2 mm or more in consideration of the strength. Further, the thickness of the holding member 3 may be any thickness that can hold the conversion member 2 and is preferably 2.0 mm or less in order to suppress cost increase and increase in the height of the optical member 150A.

保持部材3は、レーザ光及び蛍光体が発する蛍光を高反射率で反射する材料で、かつ、貫通孔3bに保持された変換部材2の熱を排熱する高熱伝導率の材料からなることが好ましい。高反射率及び高熱伝導率の材料としては、光反射性セラミックス、金属、又は、セラミックスと金属との複合体が挙げられる。高反射率が得られやすい光反射性セラミックスであることが好ましい。光反射性セラミックスとしては、アルミナ(Al)セラミックスを用いることが好ましい。保持部材3に高反射率の材料を用いることによって、変換部材2中の光を主として光取出面2aから取り出すことができるため、高輝度化が可能である。また、変換部材2以外に照射されたレーザ光が外部に漏れることを防止できる。 The holding member 3 is a material that reflects the laser light and the fluorescence emitted by the phosphor with high reflectance, and is made of a material with high thermal conductivity that exhausts the heat of the conversion member 2 held in the through hole 3b. preferable. Materials having high reflectance and high thermal conductivity include light reflective ceramics, metals, or composites of ceramics and metals. It is preferable that it is light-reflective ceramics in which a high reflectance is easy to be obtained. As light reflective ceramics, it is preferable to use alumina (Al 2 O 3 ) ceramics. By using a material with high reflectance for the holding member 3, the light in the conversion member 2 can be mainly extracted from the light extraction surface 2 a, so high luminance can be achieved. Moreover, it can prevent that the laser beam irradiated except the conversion member 2 leaks outside.

光学部材150Aでは、保持部材3と放熱部材との接合には、例えば、金、錫、銀等の金属材料からなる接合層を用いることができる。
光学部材150Aでは、格子状の導電性細線4Aが変換部材2の光取出面2aに形成されるため、変換部材2の破損を導電性細線4Aの破損よって検出可能となる。その結果、レーザ光の漏れに繋がる異常をより精度良く検出することができる。
In the optical member 150A, for example, a bonding layer made of a metal material such as gold, tin, or silver can be used to bond the holding member 3 and the heat dissipation member.
In the optical member 150A, since the grid-like conductive thin wires 4A are formed on the light extraction surface 2a of the conversion member 2, the damage of the conversion member 2 can be detected by the damage of the conductive thin wires 4A. As a result, it is possible to detect an abnormality that leads to a laser beam leak more accurately.

<発光装置>
図6、図7に示すように、発光装置200Bは、第1実施形態の発光装置200A(図3、図4参照)において、光学部材100Aの代わりに、光学部材150Aを用いること以外は、発光装置200Aと同様である。このような構成を備える発光装置200Bは、光学部材150Aを用いることにより、導電性細線4Aを外部電極または回路へ容易に接続できる。
<Light-emitting device>
As shown in FIGS. 6 and 7, the light emitting device 200B emits light in the light emitting device 200A of the first embodiment (see FIGS. 3 and 4) except that the optical member 150A is used instead of the optical member 100A. It is similar to the device 200A. The light emitting device 200B having such a configuration can easily connect the conductive thin wire 4A to an external electrode or a circuit by using the optical member 150A.

光学部材150A及び発光装置200Bは、例えば、以下のような製造方法で製造することができる。
(1)変換部材の作製工程
変換部材2となる粉末材料を、SPS法又はHP法を用いて焼結することで変換部材2を製造する。
(2)保持部材の配置工程
変換部材2を製造後、変換部材2の外側に、スリップキャスト法等を用いて保持部材3となる成形体を作製する。
(3)変換部材と保持部材の焼結工程
成形体を作製後、焼結した変換部材2と保持部材3となる成形体との複合体を、SPS法又はHP法を用いて焼結する。
(4)導電性細線の配置工程
複合体の焼結後、変換部材2の光取出面2aに、導電性細線4Aを配置する。同時に、導電性細線4Aの両端部に接続するパターン接続用電極5を、変換部材2と保持部材3との境界部近傍の保持部材側の表面3aに配置して、光学部材150Aとする。
The optical member 150A and the light emitting device 200B can be manufactured, for example, by the following manufacturing method.
(1) Manufacturing process of conversion member The conversion member 2 is manufactured by sintering the powder material used as the conversion member 2 using SPS method or HP method.
(2) Arrangement Step of Holding Member After manufacturing the conversion member 2, a molded body to be the holding member 3 is manufactured on the outside of the conversion member 2 using a slip casting method or the like.
(3) Sintering Step of Converting Member and Holding Member After producing a formed body, a composite of the sintered converted member 2 and the formed body to be the holding member 3 is sintered using the SPS method or the HP method.
(4) Step of Placing Conductive Wires After sintering of the composite, the conductive wires 4A are placed on the light extraction surface 2a of the conversion member 2. At the same time, pattern connection electrodes 5 connected to both ends of the conductive thin wire 4A are disposed on the surface 3a on the holding member side in the vicinity of the boundary between the conversion member 2 and the holding member 3 to form an optical member 150A.

(5)光学部材150Aは、保持部材3を放熱部材に接合して準備すると共に、既に説明した凹部27にレーザ素子25及び反射部材26を設けたパッケージ21に蓋部24が接合され準備される。そして、放熱部材を蓋部24に接合することで発光装置200Bが形成される。また、発光装置200Bは、放熱部材を用いずに、光学部材150Aの保持部材3を蓋部24に接合したものであってもよい。 (5) The optical member 150A is prepared by joining the holding member 3 to the heat dissipation member, and the lid 24 is joined to the package 21 in which the laser element 25 and the reflection member 26 are provided in the recess 27 already described. . Then, the heat dissipating device is joined to the lid 24 to form the light emitting device 200B. In addition, the light emitting device 200B may be one in which the holding member 3 of the optical member 150A is joined to the lid 24 without using the heat dissipation member.

[各実施形態の変形例]
次に、各実施形態に係る構成の変形例について、図8A〜図14Bを参照して説明する。
<第1実施形態に係る光学部材>
(導電性細線の形状の変形例)
図8Aに示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Bは、導電性細線4Aの代わりに導電性細線4Bを配置すること以外は、光学部材100Aと同様である。導電性細線4Bは、平面視において直線状細線4aが格子状に交差した格子形状を有する。そして、導電性細線4Bは、4つの交差点Pで囲まれた開口部Sが菱形形状を有する。開口部Sの面積は、導電性細線4Bに照射されるレーザ光の照射像の面積の5〜90%であることが好ましい。
なお、開口部Sは、4つの交差点Pで囲まれた例を挙げているが、3つ交差点で囲まれた三角形状の開口部、5つ以上の交差点で囲まれた多角形状の開口部であってもよい。その場合であっても、開口部の面積は上述と同様の範囲が好ましい。
[Modification of each embodiment]
Next, modifications of the configuration according to each embodiment will be described with reference to FIGS. 8A to 14B.
<Optical member according to the first embodiment>
(Modified example of shape of conductive thin wire)
As shown in FIG. 8A, an optical member 100B which is a modification of the optical member 100A according to the first embodiment is the same as the optical member 100A except that a conductive thin wire 4B is disposed instead of the conductive thin wire 4A. is there. The conductive thin wires 4B have a lattice shape in which the linear thin wires 4a intersect in a lattice shape in plan view. And as for the electroconductive thin wire 4B, the opening part S enclosed by four intersection P has a rhombus shape. The area of the opening S is preferably 5 to 90% of the area of the irradiation image of the laser beam irradiated to the conductive thin wire 4B.
In addition, although the opening S gives the example surrounded by four intersections P, it is a triangular opening surrounded by three intersections and a polygonal opening surrounded by five or more intersections. It may be. Even in such a case, the area of the opening is preferably in the same range as described above.

光学部材100Bは、導電性細線4Bが、導電性細線4Aと同様に、直線状細線4aが変換部材2の光取出面2aの全体を均一に覆っているため、変換部材2の破損をより精度良く検出可能である。   In the optical member 100B, the conductive thin wires 4B uniformly cover the entire light extraction surface 2a of the conversion member 2 similarly to the conductive thin wires 4A, so the breakage of the conversion member 2 is more accurate. It is well detectable.

次に、図8Bに示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Cは、導電性細線4Aの代わりに導電性細線4Cを配置すること以外は、光学部材100Aと同様である。導電性細線4Cは、大径の第1円周状細線4bと、この第1円周状細線4bよりも小径の第2円周状細線4cと、第1円周状細線4b及び第2円周状細線4cのそれぞれをパターン接続用電極5に電気的に接続する接続用細線4dと、を有している。導電性細線4Cは、平面視において第1円周状細線4bと接続用細線4dとが交差点Pで交差し、同じ円状に配置した第2円周状細線4cと接続用細線4dとが交差点Pで交差している。
導電性細線4Cは、第2円周状細線4cが、平面視においてレーザ素子25(図3参照)からのレーザ光が照射される照射領域に配置されていないことが好ましい。具体的には、第2円周状細線4cの変換部材2における接触位置が、レーザ光の照射領域よりも外側に配置されていることが好ましい。
光学部材100Cは、導電性細線4Cを配置することによって、変換部材2の破損をより精度良く検出可能であると共に、レーザ光の照射領域に導電性細線4Cが配置されないため、変換部材2から取り出される光の出力が向上する。
Next, as shown in FIG. 8B, an optical member 100C, which is a modification of the optical member 100A according to the first embodiment, is an optical member 100A except that the conductive thin wire 4C is disposed instead of the conductive thin wire 4A. Is the same as The conductive thin wire 4C includes a large diameter first circumferential thin wire 4b, a second circumferential thin wire 4c having a diameter smaller than that of the first circumferential thin wire 4b, a first circumferential thin wire 4b and a second circle. And a connection thin wire 4 d electrically connecting each of the circumferential thin wires 4 c to the pattern connection electrode 5. In the conductive thin line 4C, the first circumferential thin line 4b and the connecting thin line 4d cross each other at an intersection point P in plan view, and the second circumferential thin line 4c and the connecting thin line 4d arranged in the same circular shape intersect Cross at P.
It is preferable that the conductive thin wire 4C is not disposed in the irradiation region to which the second circumferential thin wire 4c is irradiated with the laser beam from the laser element 25 (see FIG. 3) in plan view. Specifically, it is preferable that the contact position of the second circumferential thin wire 4c in the conversion member 2 is disposed outside the irradiation area of the laser beam.
The optical member 100C can detect breakage of the conversion member 2 more accurately by disposing the conductive thin wire 4C, and the conductive thin wire 4C is not disposed in the irradiation area of the laser light. Improves the light output.

次に、図8Cに示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Dは、導電性細線4Aの代わりに導電性細線4Dを配置すること以外は、光学部材100Aと同様である。導電性細線4Dは、前記した導電性細線4Cの第1円周状細線4bの代わりに矩形状細線4eを用いたものである。導電性細線4Dは、平面視において矩形状細線4eと接続用細線4dとが交差点Pで交差し、第2円周状細線4cと接続用細線4dとが交差点Pで交差している。
光学部材100Dは、異なる形状の第2円周状細線4cと矩形状細線4eとを有する導電性細線4Dを配置することによって、一方の細線形状では検出し難い変換部材2の破損であっても、他方の細線形状で検出可能となるため、変換部材2の破損をより精度良く検出可能である。また、光学部材100Dは、レーザ光の照射領域に導電性細線4Dが配置されないため、変換部材2から取り出される光の出力が向上する。
光学部材100B、100C、100Dの製造方法は、前記した光学部材100Aの製造方法と同様である。
Next, as shown in FIG. 8C, an optical member 100D which is a modification of the optical member 100A according to the first embodiment is an optical member 100A except that a conductive thin wire 4D is disposed instead of the conductive thin wire 4A. Is the same as The conductive thin wire 4D uses a rectangular thin wire 4e instead of the first circumferential thin wire 4b of the conductive thin wire 4C described above. In the conductive thin line 4D, the rectangular thin line 4e and the connection thin line 4d intersect at an intersection point P in plan view, and the second circumferential thin line 4c and the connection thin line 4d intersect at an intersection point P.
The optical member 100D is a broken member of the conversion member 2 which is difficult to detect in one thin line shape by arranging the conductive thin line 4D having the second circumferential thin lines 4c and the rectangular thin lines 4e of different shapes. Since the other thin line shape can be detected, damage to the conversion member 2 can be detected more accurately. Further, in the optical member 100D, since the conductive thin wire 4D is not disposed in the irradiation area of the laser light, the output of the light extracted from the conversion member 2 is improved.
The method of manufacturing the optical members 100B, 100C, and 100D is the same as the method of manufacturing the above-described optical member 100A.

(導電性細線の配置位置の変形例)
次に、図9に示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Eは、導電性細線4Aが変換部材2の光照射面2bに配置されること以外は、光学部材100Aと同様である。光学部材100Eでは、導電性細線4Aに通電するための導体部11(図2参照)を備える必要はなく、外部電源と接続する基板パターン6(図3参照)と電気的に接続するバンプ12のみを備えていればよい。
(Modification of arrangement position of conductive thin wire)
Next, as shown in FIG. 9, an optical member 100E, which is a modification of the optical member 100A according to the first embodiment, is arranged except that the conductive thin line 4A is disposed on the light irradiation surface 2b of the conversion member 2. The same as the optical member 100A. In the optical member 100E, it is not necessary to provide the conductor portion 11 (see FIG. 2) for energizing the conductive thin wire 4A, and only the bumps 12 electrically connected to the substrate pattern 6 (see FIG. 3) connected to the external power supply. As long as you have

光学部材100Eでは、導電性細線4Aが変換部材2の光照射面2bの全体を覆っており、変換部材2の破損をより精度良く検出することは可能である。   In the optical member 100E, the conductive thin line 4A covers the entire light irradiation surface 2b of the conversion member 2, and it is possible to detect breakage of the conversion member 2 more accurately.

光学部材100Eの製造方法は、導電性細線4Aを光照射面2bに配置すること、導体部11を備えずバンプ12のみ形成すること以外は、前記した光学部材100Aの製造方法と同様である。   The method of manufacturing the optical member 100E is the same as the method of manufacturing the optical member 100A described above except that the conductive thin wire 4A is disposed on the light irradiation surface 2b and only the bump 12 is formed without the conductor portion 11.

次に、図10に示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Fは、導電性細線4Aが変換部材2の光取出面2aと光照射面2bの中間に配置され、導体部11が導電性細線4Aの位置まで形成されること以外は、光学部材100Aと同様である。   Next, as shown in FIG. 10, in the optical member 100F which is a modification of the optical member 100A according to the first embodiment, the conductive thin line 4A is at the middle between the light extraction surface 2a and the light irradiation surface 2b of the conversion member 2. The optical member 100A is the same as the optical member 100A except that the conductor portion 11 is disposed up to the position of the conductive thin wire 4A.

光学部材100Fでは、導電性細線4Aが2つの変換部材2によって挟まれ、変換部材2の中間に配置されている。すなわち、導電性細線4Aが変換部材2の内部に配置されている。このため、変換部材2の内部に生じる破損を検出することができ、変換部材2の破損をより精度良く検出することが可能である。導電性細線4Aは、ワイヤであってもよい。また、変換部材2の光照射面及び/又は光取出面にさらに導電性細線4Aを設けてもよい。   In the optical member 100F, the conductive thin wire 4A is sandwiched between the two conversion members 2 and disposed in the middle of the conversion members 2. That is, the conductive thin wire 4A is disposed inside the conversion member 2. For this reason, it is possible to detect damage occurring inside the conversion member 2 and to detect breakage of the conversion member 2 more accurately. The conductive thin wire 4A may be a wire. Further, the conductive thin line 4A may be further provided on the light irradiation surface and / or the light extraction surface of the conversion member 2.

光学部材100Fの製造方法は、例えば、以下のような製造方法で製造することができる。
(1)変換部材の作製工程
変換部材2となる粉末材料を、SPS法又はHP法等を用いて、焼結することで2つの変換部材2を製造する。
(2)導体部の配置工程
変換部材2を製造後、1つの変換部材2に、厚さ方向に貫通する貫通孔を作製する。次に、貫通孔に導体部11を充填し、充填された導体部11の下端部にバンプ12を形成する。
(3)導電性細線の配置工程
バンプ12の形成後、導体部11及びバンプ12を形成した変換部材2の上面に、導電性細線4Aと、その両端部に接続するパターン接続用電極5とを配置する。配置方法は、前記の光学部材100Aと同様である。
The optical member 100F can be manufactured, for example, by the following manufacturing method.
(1) Manufacturing process of conversion member The two conversion members 2 are manufactured by sintering the powder material used as the conversion member 2 using SPS method or HP method etc.
(2) Arrangement Step of Conductor Portion After manufacturing the conversion member 2, a through hole penetrating in the thickness direction is produced in one conversion member 2. Next, the conductor portion 11 is filled in the through hole, and the bump 12 is formed on the lower end portion of the filled conductor portion 11.
(3) Step of arranging conductive thin wires After forming the bumps 12, conductive thin wires 4A and pattern connection electrodes 5 connected to both ends thereof are formed on the upper surface of the conversion member 2 on which the conductor portion 11 and the bumps 12 are formed. Deploy. The arrangement method is the same as that of the above-mentioned optical member 100A.

(4)焼結工程
導電性細線4Aを配置した変換部材2と、もう1つの変換部材2とを積層、プレス後、焼結して光学部材100Fとする。
(4) Sintering step The conversion member 2 in which the conductive thin wires 4A are disposed and another conversion member 2 are stacked, pressed, and sintered to form an optical member 100F.

次に、図11A、図11Bに示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Gは、光取出面2aに配置された導電性細線4Eと、光取出面2aと光照射面2bとの間に配置された導電性細線4Fとが平面視において交差して、導電性細線4A(図1参照)と同様な四角形状の格子形状をなすこと以外は、光学部材100Aと同様である。このように、平面視において交差するとは、変換部材2など他の部材を透過して視て交差する場合を含む。また、光学部材100Gでは、通電のために、導電性細線4E及び導電性細線4Fのそれぞれに、パターン接続用電極5を介して電気的に接続された導体部11及びバンプ12を備えていることが好ましい。   Next, as shown in FIGS. 11A and 11B, an optical member 100G which is a modification of the optical member 100A according to the first embodiment includes a conductive thin wire 4E disposed on the light extraction surface 2a, and a light extraction surface 2a. And the conductive thin wire 4F disposed between the light emitting surface 2b and the light emitting surface 2b intersect each other in plan view to form a square lattice shape similar to the conductive thin wire 4A (see FIG. 1). It is similar to 100A. As described above, “crossing in a plan view” includes a case in which the other members such as the conversion member 2 are seen through and cross each other. Further, in the optical member 100G, the conductor portions 11 and the bumps 12 electrically connected to the conductive thin wires 4E and the conductive thin wires 4F via the pattern connection electrodes 5 are provided for the purpose of energization. Is preferred.

導電性細線4Eは、通電のための1対のパターン接続用電極5と接続する複数本の直線状細線4aからなり、複数本の直線状細線4aが変換部材2の縦方向に配置されている。また、導電性細線4Fは、通電のための1対のパターン接続用電極5と接続する複数本の直線状細線4aからなり、導電性細線4Eと直交する方向に複数本の直線状細線4aが変換部材2の横方向に配置されている。平面視において導電性細線4Eと導電性細線4Fとが立体的に交差することにより導電性細線4Aと同様な四角形状の格子形状が形成され、交差によって形成される開口部Sの面積も、光学部材100Aと同様であることが好ましい。   The conductive thin wire 4E is composed of a plurality of linear thin wires 4a connected to a pair of pattern connection electrodes 5 for energization, and the plurality of linear thin wires 4a are arranged in the vertical direction of the conversion member 2 . Further, the conductive thin line 4F is composed of a plurality of linear thin lines 4a connected to a pair of pattern connection electrodes 5 for current conduction, and the plurality of linear thin lines 4a are in the direction orthogonal to the conductive thin lines 4E. It is disposed in the lateral direction of the conversion member 2. When the conductive thin wires 4E and the conductive thin wires 4F three-dimensionally intersect in a plan view, a rectangular grid shape similar to that of the conductive thin wires 4A is formed, and the area of the opening S formed by the intersection is also optical It is preferable that it is the same as that of the member 100A.

また、光学部材100Gでは、光取出面2aに導電性細線4E、光照射面2bに導電性細線4Fを配置した形態、光取出面2aと光照射面2bとの間に導電性細線4Fを配置した形態であってもよい。さらに、光学部材100Gは、光取出面2aに導電性細線4E、光取出面2aと光照射面2bとの間に導電性細線4F、光照射面2bに導電性細線4Eを配置した形態であってもよい。
また、光学部材100Gでは、導電性細線4E及び導電性細線4Fにおいて、1本の直線状細線4aに1対のパターン接続用電極5が接続され、複数対のパターン接続用電極5が配置されていてもよい。
In the optical member 100G, the conductive thin wire 4E is disposed on the light extraction surface 2a, and the conductive thin wire 4F is disposed on the light irradiation surface 2b, and the conductive thin wire 4F is disposed between the light extraction surface 2a and the light irradiation surface 2b. It may be in the form of Furthermore, the optical member 100G has a form in which the conductive thin wire 4E is disposed on the light extraction surface 2a, the conductive thin wire 4F is disposed between the light extraction surface 2a and the light irradiation surface 2b, and the conductive thin wire 4E is disposed on the light irradiation surface 2b. May be
Further, in the optical member 100G, in the conductive thin wires 4E and the conductive thin wires 4F, a pair of pattern connection electrodes 5 is connected to one linear thin wire 4a, and a plurality of pairs of pattern connection electrodes 5 are arranged. May be

光学部材100Gでは、導電性細線4E及び導電性細線4Fが直交する方向で変換部材2の上下異なる位置に配置されているため、変換部材2の表面だけでなく内部に生じる破損まで検出でき、変換部材2の破損をより精度良く検出することが可能である。また、光学部材100Gでは、導電性細線4E及び導電性細線4Fが変換部材2の上下異なる位置に配置され、平面視において導電性細線4E及び導電性細線4Fが疑似的に格子状を成している。このため、格子状の導電性細線4Aと同様に、変換部材2に生じる破損を精度良く検出可能という効果が得られる。加えて、導電性細線4E及び導電性細線4Fのそれぞれは格子状ではないため、断線等が生じた場合の抵抗値の上昇率は、導電性細線4E及び導電性細線4Fを重ね合わせた格子状の導電性細線よりも増大する。このように、異なった箇所に配置された導電性細線同士が平面視において交差するように配置することで、変換部材2に生じる破損をより精度良く検出できる。
なお、光学部材100Gは、導電性細線4Eと導電性細線4Fとの交差形状が、導電性細線4Aの四角形状の格子形状だけでなく、導電性細線4B(図8A参照)の菱形形状の格子形状であってもよい。
In the optical member 100G, since the conductive thin wires 4E and the conductive thin wires 4F are disposed at different positions above and below the conversion member 2 in the orthogonal direction, damage occurring not only on the surface but also inside of the conversion member 2 can be detected. It is possible to detect breakage of the member 2 more accurately. Further, in the optical member 100G, the conductive thin wires 4E and the conductive thin wires 4F are disposed at different positions above and below the conversion member 2, and the conductive thin wires 4E and the conductive thin wires 4F form a lattice shape in a pseudo view in plan view. There is. For this reason, similarly to the grid-like conductive thin wire 4A, an effect of being able to detect the damage generated in the conversion member 2 with high accuracy can be obtained. In addition, since each of the conductive thin wires 4E and the conductive thin wires 4F is not in the form of a grid, the rate of increase in resistance value when a break or the like occurs is the grid shape in which the conductive thin wires 4E and the conductive thin wires 4F are superimposed. More than the conductive thin wire. As described above, by arranging the conductive thin wires arranged in different places to intersect each other in plan view, it is possible to more accurately detect the breakage occurring in the conversion member 2.
In the optical member 100G, the crossing shape of the conductive thin wire 4E and the conductive thin wire 4F is not only the rectangular grid shape of the conductive thin wire 4A, but also the rhombus grid of the conductive thin wire 4B (see FIG. 8A) It may be shaped.

光学部材100Gの製造方法は、前記した光学部材100Fの製造方法と同様である。
但し、(3)導電性細線の配置工程において、一方の変換部材2の上面に導電性細線4F及びパターン接続用電極5を配置する。他方の変換部材2の上面に、導電性細線4E及びパターン接続用電極5を配置する。2つの変換部材2のそれぞれに、上面から下面に貫通する貫通孔を作製し、貫通孔に導体部11を充填する。
また、(4)焼結工程において、2つの変換部材2を積層、プレス後、焼結する。そして、充填された導体部11の下端部にバンプ12を形成して光学部材100Gとする。
The method of manufacturing the optical member 100G is the same as the method of manufacturing the optical member 100F described above.
However, in the (3) conductive fine wire disposing step, the conductive thin wire 4 F and the pattern connection electrode 5 are placed on the upper surface of one of the conversion members 2. The conductive thin wire 4E and the pattern connection electrode 5 are disposed on the upper surface of the other conversion member 2. A through hole penetrating from the upper surface to the lower surface is formed in each of the two conversion members 2, and the conductor portion 11 is filled in the through hole.
In the (4) sintering step, the two conversion members 2 are laminated, pressed, and sintered. Then, bumps 12 are formed on the lower end portion of the filled conductor portion 11 to form an optical member 100G.

図12A、図12Bに示すように、第1実施形態に係る光学部材100Aの変形例である光学部材100Hは、光取出面2aに配置された導電性細線4Gと、光取出面2aと光照射面2bとの間に配置された導電性細線4Hとが平面視において交差すること以外は、光学部材100Aと同様である。また、光学部材100Hでは、通電のために、導電性細線4G及び導電性細線4Hのそれぞれに、パターン接続用電極5を介して電気的に接続された導体部11及びバンプ12を備えていることが好ましい。   As shown in FIGS. 12A and 12B, an optical member 100H which is a modification of the optical member 100A according to the first embodiment includes a conductive thin wire 4G disposed on the light extraction surface 2a, a light extraction surface 2a, and light irradiation. The optical member 100A is the same as the optical member 100A except that the conductive thin wires 4H disposed between the surface 2b and the surface 2b intersect in plan view. In addition, in the optical member 100H, the conductor portion 11 and the bumps 12 electrically connected to the conductive thin wires 4G and the conductive thin wires 4H via the pattern connection electrodes 5 are provided for energization. Is preferred.

導電性細線4Gは、大径の第1円周状細線4bと、第1円周状細線4bとパターン接続用電極5とを接続する接続用細線4dとからなる。導電性細線4Hは、第1円周状細線4bよりも小径の第2円周状細線4cと、第2円周状細線4cとパターン接続用電極5とを接続する接続用細線4dとからなる。平面視において導電性細線4Gと導電性細線4Hとが交差点Pで立体的に交差することにより導電性細線4C(図8B参照)と同様な交差形状が形成される。   The conductive thin wire 4G includes a large diameter first circumferential thin wire 4b and a connection thin wire 4d connecting the first circumferential thin wire 4b and the pattern connection electrode 5. The conductive thin wire 4H includes a second circumferential thin wire 4c having a diameter smaller than that of the first circumferential thin wire 4b, and a connection thin wire 4d connecting the second circumferential thin wire 4c and the pattern connection electrode 5 . When the conductive thin wires 4G and the conductive thin wires 4H cross three-dimensionally at the intersection point P in a plan view, the same cross shape as the conductive thin wires 4C (see FIG. 8B) is formed.

また、光学部材100Hでは、導電性細線4G及び導電性細線4Hの配置位置は、図面に記載された配置に限定されず、光取出面2a、光照射面2b、及び、光取出面2aと光照射面2bとの中間の少なくとも2箇所以上に配置されていればよい。
光学部材100Hは、導電性細線4G及び導電性細線4Hが上下異なる変換部材2の位置に配置されているため、変換部材2の表面だけでなく内部に生じる破損まで検出でき、変換部材2の破損をより精度良く検出可能である。光学部材100Hは、光学部材100Gと同様の効果を得ることができる。つまり、平面視において導電性細線4G及び導電性細線4Hの重ね合わせた形状と同程度に、変換部材2に生じる破損を精度良く検出可能であり、かつ、断線等が生じた場合の抵抗値の上昇率は、その重ね合わせた形状の導電性細線よりも増大するので、変換部材2に生じる破損を精度良く検出可能である。また、光学部材100Hは、光学部材100Gのようにレーザ素子25の照射領域に細線が配置されることがないため、変換部材2から取り出される光の出力が向上する。
光学部材100Hの製造方法は、前記した光学部材100Gの製造方法と同様である。
なお、導電性細線の形状の変形例と導電性細線の配置位置の変形例を組み合わせてもよい。
Further, in the optical member 100H, the arrangement positions of the conductive thin wires 4G and the conductive thin wires 4H are not limited to the positions described in the drawings, and the light extraction surface 2a, the light irradiation surface 2b, and the light extraction surface 2a and the light It may be disposed in at least two or more places intermediate to the irradiation surface 2b.
The optical member 100H has the conductive thin wires 4G and the conductive thin wires 4H arranged at different positions above and below the conversion member 2 and therefore can detect not only the surface of the conversion member 2 but also the damage occurring internally. Can be detected more accurately. The optical member 100H can obtain the same effect as the optical member 100G. That is, the damage occurring in the conversion member 2 can be accurately detected in the same manner as the overlapping shape of the conductive thin wires 4G and the conductive thin wires 4H in a plan view, and the resistance value in the case of disconnection or the like. Since the rate of increase is higher than that of the conductive thin wires in the superimposed shape, it is possible to accurately detect breakage occurring in the conversion member 2. Further, in the optical member 100H, since the thin line is not disposed in the irradiation area of the laser element 25 as in the optical member 100G, the output of the light extracted from the conversion member 2 is improved.
The method of manufacturing the optical member 100H is the same as the method of manufacturing the optical member 100G described above.
A modification of the shape of the conductive thin wire may be combined with a modification of the arrangement position of the conductive thin wire.

<第2実施形態に係る光学部材>
(導電性細線の形状の変形例)
次に、第2実施形態に係る光学部材150Aは、導電性細線4Aの代わりに、図8A〜図8Cに示す導電性細線4B〜4Dを用いてもよい。
<Optical Member According to Second Embodiment>
(Modified example of shape of conductive thin wire)
Next, in the optical member 150A according to the second embodiment, conductive thin wires 4B to 4D shown in FIGS. 8A to 8C may be used instead of the conductive thin wires 4A.

(導電性細線の配置位置の変形例)
図13に示すように、第2実施形態に係る光学部材150Aの変形例である光学部材150Bは、導電性細線4Aが変換部材2の光照射面2bに配置されること以外は、光学部材150Aと同様である。光学部材150Bでは、導電性細線4Aに通電するための導体部11を備える。導体部11は、外部電源と接続するため、基板パターン6(図6、図7参照)と電気的に接続する。なお、導体部11、基板パターン6については、光学部材100Aと同様である。
(Modification of arrangement position of conductive thin wire)
As shown in FIG. 13, an optical member 150 B, which is a modified example of the optical member 150 A according to the second embodiment, is an optical member 150 A except that the conductive thin wire 4 A is disposed on the light irradiation surface 2 b of the conversion member 2. Is the same as The optical member 150B includes the conductor portion 11 for energizing the conductive thin wire 4A. The conductor portion 11 is electrically connected to the substrate pattern 6 (see FIGS. 6 and 7) in order to connect to the external power supply. The conductor portion 11 and the substrate pattern 6 are the same as the optical member 100A.

光学部材150Bでは、導電性細線4Aが変換部材2の光照射面2bの全体を覆っており、変換部材2の破損をより精度良く検出することが可能である。   In the optical member 150B, the conductive thin wire 4A covers the entire light irradiation surface 2b of the conversion member 2, and it is possible to detect breakage of the conversion member 2 more accurately.

光学部材150Bの製造方法は、前記した光学部材150Aの製造方法と同様である。但し、(4)導電性細線の配置工程において、変換部材2の光取出面(表面)2aから光照射面(裏面)2bまで貫通する貫通孔を形成し、貫通孔に導体部11を充填する。次に、導体部11に電気的に接続するように、変換部材2の光照射面(裏面)2bに導電性細線4Aを配置すると共に、パターン接続用電極5を導体部11と接合するように保持部材3の裏面3cにわたるように配置する。   The method of manufacturing the optical member 150B is the same as the method of manufacturing the optical member 150A described above. However, (4) in the step of arranging the conductive thin wire, a through hole penetrating from the light extraction surface (front surface) 2 a of the conversion member 2 to the light irradiation surface (back surface) 2 b is formed, and the conductor portion 11 is filled in the through hole. . Next, the conductive thin wire 4A is disposed on the light irradiation surface (rear surface) 2b of the conversion member 2 so as to be electrically connected to the conductor portion 11, and the pattern connection electrode 5 is joined to the conductor portion 11. It arrange | positions so that the back surface 3c of the holding member 3 may be extended.

次に、図14Aに示すように、第2実施形態に係る光学部材150Aの変形例である光学部材150Cは、導電性細線4Aが変換部材2の光取出面2aと光照射面2bとの間に配置されること以外は、光学部材150Bと同様である。   Next, as shown in FIG. 14A, in the optical member 150C, which is a modification of the optical member 150A according to the second embodiment, the conductive thin line 4A is between the light extraction surface 2a of the conversion member 2 and the light irradiation surface 2b. Except that they are disposed at the same position as the optical member 150B.

光学部材150Cでは、導電性細線4Aが変換部材2の中間に挟まれた位置に配置されているため、変換部材2の内部に生じる破損を検出することができ、変換部材2の破損をより精度良く検出することが可能である。   In the optical member 150C, since the conductive thin wire 4A is disposed at a position sandwiched between the conversion members 2, it is possible to detect damage occurring inside the conversion member 2 and the damage of the conversion member 2 is made more accurate. It is possible to detect well.

光学部材150Cの製造方法は、前記した光学部材150Aの製造方法と同様である。図14Bに示すように、2つの光学部材を焼結して作製する。具体的には、1つの光学部材は、変換部材2の表面に導電性細線4Aが配置された光学部材151とする。もう1つの光学部材は、変換部材2に貫通孔を形成し、その貫通孔に導体部11が配置された光学部材152とする。そして、2つの光学部材151、152を積層、プレス、焼結によって一体化して、光学部材150Cとすることとしてもよい。
また、光学部材150Cの別の製造方法としては、第1実施形態の光学部材100F(図10参照)と保持部材3とをガラス接着によって一体化する方法であってもよい。
The method of manufacturing the optical member 150C is the same as the method of manufacturing the optical member 150A described above. As shown to FIG. 14B, two optical members are sintered and produced. Specifically, one optical member is an optical member 151 in which the conductive thin wire 4A is disposed on the surface of the conversion member 2. The other optical member is an optical member 152 in which a through hole is formed in the conversion member 2 and the conductor portion 11 is disposed in the through hole. Then, the two optical members 151 and 152 may be laminated, integrated by pressing, and sintering to form an optical member 150C.
Further, as another method of manufacturing the optical member 150C, the method of integrating the optical member 100F (see FIG. 10) of the first embodiment and the holding member 3 by glass bonding may be used.

第2実施形態に係る光学部材150Aは、変換部材2に配置される導電性細線が、光取出面、光照射面、及び、光取出面と光照射面との間の少なくとも2箇所以上に配置され、平面視において異なる位置に配置された導電性細線が立体的に交差するものでもよい。例えば、導電性細線としては、図11A、図11Bに示す導電性細線4E及び導電性細線4F、又は、図12A、図12Bに示す導電性細線4G及び導電性細線4Hを用いることとしてもよい。
なお、導電性細線の形状の変形例と導電性細線の配置位置の変形例を組み合わせてもよい。
In the optical member 150A according to the second embodiment, the conductive thin wires arranged in the conversion member 2 are disposed at the light extraction surface, the light irradiation surface, and at least two or more places between the light extraction surface and the light irradiation surface. Alternatively, conductive thin wires arranged at different positions in plan view may intersect in a three-dimensional manner. For example, as the conductive thin wire, conductive thin wires 4E and 4F shown in FIGS. 11A and 11B or conductive thin wires 4G and 4H shown in FIGS. 12A and 12B may be used.
A modification of the shape of the conductive thin wire may be combined with a modification of the arrangement position of the conductive thin wire.

100A、100B、100C、100D、100E、100F、100G、100H 光学部材
150A、150B、150C 光学部材
200A、200B 発光装置
2 変換部材
2a 光取出面(表面)
2b 光照射面(裏面)
3 保持部材
3a 表面
3c 裏面
4A、4B、4C、4D、4E、4F、4G、4H 導電性細線
5 パターン接続用電極
6 基板パターン
9 放熱部材
11 導体部
21 パッケージ
25 レーザ素子
100A, 100B, 100C, 100D, 100E, 100F, 100G, 100H Optical members 150A, 150B, 150C Optical members 200A, 200B Light emitting device 2 Conversion member 2a Light extraction surface (surface)
2b Light irradiated side (back side)
Reference Signs List 3 holding member 3a front surface 3c back surface 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H conductive thin wire 5 pattern connection electrode 6 substrate pattern 9 heat dissipation member 11 conductor portion 21 package 25 laser element

Claims (13)

励起光であるレーザ光を異なる波長の光に変換可能である変換部材と、
前記変換部材の光照射面、光取出面、又は、前記光照射面と前記光取出面との間の少なくともいずれかに、平面視において交差するように配置された導電性細線と、
前記導電性細線に電気的に接続するパターン接続用電極と、
を備える光学部材。
A conversion member capable of converting laser light, which is excitation light, into light of different wavelengths;
A light emitting surface of the conversion member, a light extraction surface, or a conductive thin wire disposed so as to intersect in plan view at least any one of the light irradiation surface and the light extraction surface;
A pattern connection electrode electrically connected to the conductive thin wire;
Optical member provided with
前記パターン接続用電極は、前記光照射面又は前記光取出面に配置されている請求項1の光学部材。   The optical member according to claim 1, wherein the pattern connection electrode is disposed on the light irradiation surface or the light extraction surface. 前記導電性細線は、前記光照射面、前記光取出面、及び、前記光照射面と前記光取出面との間の少なくとも2箇所に配置され、異なった箇所に配置された前記導電性細線同士が平面視において交差するように配置された請求項1又は請求項2の光学部材。   The conductive thin wires are arranged at at least two places between the light irradiation surface, the light extraction surface, and the light irradiation surface and the light extraction surface, and the conductive thin wires are arranged at different positions. The optical member of Claim 1 or 2 arrange | positioned so that it may cross | intersect in planar view. 前記導電性細線は、金属材料からなる請求項1から請求項3のいずれか1項に記載の光学部材。   The optical member according to any one of claims 1 to 3, wherein the conductive thin wire is made of a metal material. 前記導電性細線は、タングステン、モリブデン、銀及びアルミニウムのいずれか1つからなる請求項4に記載の光学部材。   The optical member according to claim 4, wherein the conductive thin line is made of any one of tungsten, molybdenum, silver and aluminum. 前記導電性細線は、ワイヤである請求項4又は請求項5に記載の光学部材。   The optical member according to claim 4, wherein the conductive thin wire is a wire. 前記導電性細線は、幅が0.2〜5.0μmである請求項1から請求項6のいずれか1項に記載の光学部材。   The optical member according to any one of claims 1 to 6, wherein the conductive thin line has a width of 0.2 to 5.0 μm. 前記導電性細線は、格子形状であって、交差点で囲まれる開口部の面積が、前記導電性細線に照射されるレーザ光の照射像の面積の5〜90%である請求項1から請求項7のいずれか1項に記載の光学部材。   The conductive thin line has a lattice shape, and the area of the opening surrounded by the intersection is 5 to 90% of the area of the irradiation image of the laser beam irradiated to the conductive thin line. The optical member of any one of 7. 前記変換部材を保持する保持部材を有する請求項1から請求項8のいずれか1項に記載の光学部材。   The optical member according to any one of claims 1 to 8, further comprising a holding member for holding the conversion member. 前記保持部材は光反射性セラミックスからなる請求項9に記載の光学部材。   The optical member according to claim 9, wherein the holding member is made of light reflective ceramic. 請求項1から請求項10のいずれか1項に記載に記載の光学部材と、
前記変換部材の前記光照射面にレーザ光を照射するように配置されるレーザ素子と、
を備える発光装置。
An optical member according to any one of claims 1 to 10,
A laser element arranged to emit a laser beam to the light irradiation surface of the conversion member;
A light emitting device comprising:
前記レーザ素子を包囲するパッケージをさらに備え、
前記レーザ光が前記変換部材に到達するように、前記光学部材が前記パッケージに固定されている請求項11に記載の発光装置。
A package surrounding the laser element;
The light emitting device according to claim 11, wherein the optical member is fixed to the package such that the laser light reaches the conversion member.
前記導電性細線の破損を検出する検出回路をさらに備える請求項11又は請求項12に記載の発光装置。   The light emitting device according to claim 11, further comprising a detection circuit that detects breakage of the conductive thin line.
JP2017249794A 2017-12-26 2017-12-26 Optical member and light emitting device Active JP7185123B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017249794A JP7185123B2 (en) 2017-12-26 2017-12-26 Optical member and light emitting device
JP2022117538A JP7393685B2 (en) 2017-12-26 2022-07-22 Optical members and light emitting devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017249794A JP7185123B2 (en) 2017-12-26 2017-12-26 Optical member and light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022117538A Division JP7393685B2 (en) 2017-12-26 2022-07-22 Optical members and light emitting devices

Publications (2)

Publication Number Publication Date
JP2019117827A true JP2019117827A (en) 2019-07-18
JP7185123B2 JP7185123B2 (en) 2022-12-07

Family

ID=67304552

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017249794A Active JP7185123B2 (en) 2017-12-26 2017-12-26 Optical member and light emitting device
JP2022117538A Active JP7393685B2 (en) 2017-12-26 2022-07-22 Optical members and light emitting devices

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022117538A Active JP7393685B2 (en) 2017-12-26 2022-07-22 Optical members and light emitting devices

Country Status (1)

Country Link
JP (2) JP7185123B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080400A (en) * 2018-11-13 2020-05-28 株式会社ダイセル Optical member, laser module and laser device including optical member
DE102021203381A1 (en) 2020-04-06 2021-10-07 Nichia Corporation Light emitting device and optical part

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505309A (en) * 2003-09-09 2007-03-08 キネテイツク・リミテツド Sensors and sensor arrays for structural monitoring
JP2010500729A (en) * 2006-08-16 2010-01-07 サン−ゴバン グラス フランス Transparent electrode
JP2012064484A (en) * 2010-09-17 2012-03-29 Stanley Electric Co Ltd Light source device
JP2015060159A (en) * 2013-09-20 2015-03-30 カシオ計算機株式会社 Fluorescence emission device and projector
JP2015199635A (en) * 2013-12-18 2015-11-12 日本碍子株式会社 Gallium nitride self-supporting substrate, light-emitting element, and manufacturing method of these
JP2016058624A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Light-emitting device
US20160290856A1 (en) * 2015-04-01 2016-10-06 Osram Gmbh Device and method for light conversion device monitoring
WO2017012763A1 (en) * 2015-07-17 2017-01-26 Osram Gmbh Wavelength conversion of primary light by means of a conversion body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092288A (en) 2014-11-07 2016-05-23 スタンレー電気株式会社 Light source device and illumination device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007505309A (en) * 2003-09-09 2007-03-08 キネテイツク・リミテツド Sensors and sensor arrays for structural monitoring
JP2010500729A (en) * 2006-08-16 2010-01-07 サン−ゴバン グラス フランス Transparent electrode
JP2012064484A (en) * 2010-09-17 2012-03-29 Stanley Electric Co Ltd Light source device
JP2015060159A (en) * 2013-09-20 2015-03-30 カシオ計算機株式会社 Fluorescence emission device and projector
JP2015199635A (en) * 2013-12-18 2015-11-12 日本碍子株式会社 Gallium nitride self-supporting substrate, light-emitting element, and manufacturing method of these
JP2016058624A (en) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 Light-emitting device
US20160290856A1 (en) * 2015-04-01 2016-10-06 Osram Gmbh Device and method for light conversion device monitoring
WO2017012763A1 (en) * 2015-07-17 2017-01-26 Osram Gmbh Wavelength conversion of primary light by means of a conversion body
JP2018528576A (en) * 2015-07-17 2018-09-27 オスラム ゲーエムベーハーOSRAM GmbH Wavelength conversion of primary light by converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080400A (en) * 2018-11-13 2020-05-28 株式会社ダイセル Optical member, laser module and laser device including optical member
DE102021203381A1 (en) 2020-04-06 2021-10-07 Nichia Corporation Light emitting device and optical part
US11631965B2 (en) 2020-04-06 2023-04-18 Nichia Corporation Light emitting device and optical part

Also Published As

Publication number Publication date
JP7393685B2 (en) 2023-12-07
JP7185123B2 (en) 2022-12-07
JP2022145718A (en) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6437154B2 (en) Light emitting device package
JP6312899B2 (en) Light emitting device package, light source module, and illumination system including the same
WO2019131439A1 (en) Optical member, optical device, and method for manufacturing optical member
JP7393685B2 (en) Optical members and light emitting devices
JP6702349B2 (en) Light emitting device
JP2016167492A (en) Light emission device
JP2016019000A (en) Light emitting element package
JP2017199849A (en) Method for manufacturing light-emitting device, method for manufacturing laser module, and light-emitting device
JP6638575B2 (en) Light emitting device
JP6784098B2 (en) Manufacturing method of semiconductor laser equipment and semiconductor laser equipment
JP6565895B2 (en) Package for semiconductor device and semiconductor device
JP2017199850A (en) Package and light-emitting device
JP7116333B2 (en) light emitting device
US20230118200A1 (en) Optical member and light-emitting device
JP5459985B2 (en) Package, electronic device using the same, and light emitting device
JP2009267069A (en) Method for mounting chip
JP2023080739A (en) Optical member and light-emitting device
JP2015037130A (en) Light-emitting device
JP6201617B2 (en) Light emitting device
JP2018060835A (en) Semiconductor device package and semiconductor device using the same
JP2017201731A (en) Light-emitting device
JP2015126041A (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220722

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220901

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R151 Written notification of patent or utility model registration

Ref document number: 7185123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151