JP2019113853A - Detection device, imaging device, and camera - Google Patents

Detection device, imaging device, and camera Download PDF

Info

Publication number
JP2019113853A
JP2019113853A JP2019023651A JP2019023651A JP2019113853A JP 2019113853 A JP2019113853 A JP 2019113853A JP 2019023651 A JP2019023651 A JP 2019023651A JP 2019023651 A JP2019023651 A JP 2019023651A JP 2019113853 A JP2019113853 A JP 2019113853A
Authority
JP
Japan
Prior art keywords
light receiving
receiving unit
imaging
photoelectric conversion
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019023651A
Other languages
Japanese (ja)
Other versions
JP6890766B2 (en
Inventor
宏明 高原
Hiroaki Takahara
宏明 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014161634A external-priority patent/JP2016038467A/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2019023651A priority Critical patent/JP6890766B2/en
Publication of JP2019113853A publication Critical patent/JP2019113853A/en
Priority to JP2021085081A priority patent/JP2021140179A/en
Application granted granted Critical
Publication of JP6890766B2 publication Critical patent/JP6890766B2/en
Priority to JP2023205180A priority patent/JP2024022636A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Studio Devices (AREA)
  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

To secure an amount of incident light upon each of a pair of photoelectric conversion parts provided relative to one micro lens.SOLUTION: An image pick-up element includes a plurality of pixels that has: a plurality of micro lenses; and a pair of photoelectric conversion units that is provided relative to the plurality of micro lenses, receives a pair of light fluxes passing through a pair of pupil areas, and is two-dimensionally arrayed. In the plurality of pixels, a sum of area of the pair of photoelectric conversion units is substantially equal, and area of each of the pair of photoelectric conversion units is different in accordance with an array position of the plurality of pixels.SELECTED DRAWING: Figure 3

Description

本発明は、検出装置、撮像装置およびカメラに関する。   The present invention relates to a detection device, an imaging device and a camera.

従来から、一つのマイクロレンズに対して一対の受光素子が設けられ、マイクロレンズの光軸に対して一対の受光素子が対称となるように配列された焦点検出画素と、マイクロレンズの光軸に対して一対の受光素子が非対称となるように配置される焦点検出画素とが配列されたイメージセンサが知られている(たとえば特許文献1)。   Conventionally, a focus detection pixel in which a pair of light receiving elements are provided for one microlens and the pair of light receiving elements are arranged symmetrically with respect to the optical axis of the microlens, and the optical axis of the microlens On the other hand, there is known an image sensor in which a focus detection pixel in which a pair of light receiving elements are arranged to be asymmetrical is arranged (for example, Patent Document 1).

特開2011―221253号公報JP, 2011-221253, A

しかしながら、同一のマイクロレンズに対して配列された一対の受光素子のそれぞれに入射する光量が異なるため、何れか一方の受光素子の出力が飽和して焦点検出演算に用いることができずに焦点検出精度を維持できないという問題がある。   However, since the amount of light incident on each of the pair of light receiving elements arranged for the same microlens is different, the output of one of the light receiving elements is saturated and can not be used for the focus detection calculation. There is a problem that the accuracy can not be maintained.

第1の態様によれば、検出装置は、撮影光学系の瞳の第1の部分を通過した光を受光する複数の第1受光部と、撮影光学系の瞳の第2の部分を通過した光を受光する複数の第2受光部と、を有し、前記第1受光部及び前記第2受光部の大きさが、第1の方向の位置に応じて変化するように配置され、前記第1受光部と前記第2受光部で受光した光に基づいた信号を出力する撮像素子と、前記撮影光学系の情報により、前記第1受光部と前記第2受光部との大きさの差が、前記第1の方向の位置に応じて第1の関係で変化する複数の前記第1受光部および複数の前記第2受光部からの前記信号と、前記第1受光部と前記第2受光部との大きさの差が、前記第1の方向の位置に応じて第2の関係で変化する複数の前記第1受光部および複数の前記第2受光部からの前記信号と、のいずれかを用いて、前記撮影光学系により形成される被写体の像の合焦状態を検出する検出部と、を有する。
第2の態様によれば、検出装置は、撮影光学系を通過した光が入射する第1レンズと、前記第1レンズを通過した光を受光する第1受光部と、前記第1レンズを通過した光を受光する前記第1受光部と大きさの異なる第2受光部とを有し、前記第1受光部と前記第2受光部で受光した光に基づいた信号を出力する複数の第1の画素と、前記撮影光学系を通過した光が入射する第2レンズと、前記第2レンズを通過した光を通過した光を受光する第3受光部と、前記第2レンズを通過した光を受光する前記第3受光部とは大きさの異なる第4受光部とを有し、前記第3受光部と前記第4受光部で受光した光に基づいた信号を出力する複数の第2の画素と、を備える撮像素子と、前記撮影光学系に関する情報に基づいて、複数の前記第1の画素からの前記信号と複数の前記第2の画素からの前記信号とのいずれかを用いて、前記撮影光学系により形成される被写体の像の合焦状態を検出する検出部と、を有し、前記複数の第1の画素の前記第1受光部と前記第2受光部との大きさの差は、前記撮像素子の第1の方向の位置に応じて第1の関係で変化し、前記複数の第2の画素の前記第3受光部と前記第4受光部との大きさの差は、前記撮像素子の前記第1の方向の位置に応じて第2の関係で変化する。
According to the first aspect, the detection device passes through the plurality of first light receiving units that receive light passing through the first portion of the pupil of the imaging optical system, and the second portion of the pupil of the imaging optical system And a plurality of second light receiving units for receiving light, wherein the sizes of the first light receiving unit and the second light receiving unit are arranged to change according to the position in the first direction, and A difference in size between the first light receiving unit and the second light receiving unit is determined by the information of the imaging optical system and an imaging device that outputs a signal based on light received by the first light receiving unit and the second light receiving unit. The signals from the plurality of first light receiving units and the plurality of second light receiving units that change in a first relationship according to the position in the first direction, the first light receiving unit, and the second light receiving unit And the plurality of first light receiving portions and the plurality of first light receiving portions whose difference in magnitude with the first light receiving portion changes in a second relationship according to the position in the first direction. 2 by using the said signal from the light receiving portion, one of, having a detection unit for detecting a focus state of an image of an object formed by the photographing optical system.
According to the second aspect, the detection device transmits the first lens on which the light passing through the imaging optical system is incident, the first light receiving unit for receiving the light passing through the first lens, and the first lens. A plurality of first light receiving units for receiving the first light receiving unit and a second light receiving unit having different sizes, and outputting a plurality of signals based on the light received by the first light receiving unit and the second light receiving unit; A second lens on which the light passing through the imaging optical system is incident, a third light receiving unit for receiving the light passing through the light passing through the second lens, and the light passing through the second lens A plurality of second pixels having a fourth light receiving unit different in size from the third light receiving unit that receives light, and outputting a signal based on the light received by the third light receiving unit and the fourth light receiving unit And a plurality of the first pixels based on information related to the imaging optical system, A detection unit that detects a focusing state of an image of a subject formed by the photographing optical system, using any of the signal from and the signals from the plurality of second pixels; The difference in size between the first light receiving unit and the second light receiving unit of the plurality of first pixels changes in a first relationship according to the position of the imaging device in the first direction, and the plurality of pixels The difference in size between the third light receiving unit and the fourth light receiving unit of the second pixel changes in a second relationship according to the position of the imaging device in the first direction.

本発明によれば、複数の画素のうちの周辺付近に位置する画素においても、一対の光電変換部の一方の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。   According to the present invention, it is possible to prevent saturation of the output of one of the pair of photoelectric conversion units even in the pixels located in the vicinity of the periphery of the plurality of pixels, and to suppress the decrease in focus detection accuracy.

本発明の実施の形態による撮像装置の構成を説明する横断面図A cross-sectional view for describing a configuration of an imaging device according to an embodiment of the present invention 実施の形態による撮像装置の要部構成を説明するブロック図Block diagram for explaining the main configuration of an imaging apparatus according to an embodiment 実施の形態による撮像画素の配列の一例を示す図A diagram showing an example of an array of imaging pixels according to an embodiment 実施の形態における撮像画素の第1光電変換部および第2光電変換部の面積と、撮影レンズ系の射出瞳領域との投影関係を模式的に示す図The figure which shows typically the projection relationship of the area of the 1st photoelectric conversion part of the image pick-up pixel in embodiment, and the 2nd photoelectric conversion part, and the exit pupil area | region of an imaging lens system 変形例における撮像画素の配列の一例を示す図A diagram showing an example of the arrangement of imaging pixels in a modification 変形例における撮像画素の配列の一例を示す図A diagram showing an example of the arrangement of imaging pixels in a modification 変形例における撮像画素の配列の一例を示す図A diagram showing an example of the arrangement of imaging pixels in a modification

図面を参照しながら、本発明の一実施の形態による撮像素子と、当該撮像素子を備える焦点検出装置および撮像装置とについて説明する。
図1は実施の形態による撮像装置であるデジタルカメラ100の構成を説明する横断面図である。なお、説明の都合上、x軸、y軸、z軸からなる座標系を図示の通りに設定する。
An imaging device according to an embodiment of the present invention, and a focus detection device and an imaging device including the imaging device will be described with reference to the drawings.
FIG. 1 is a cross-sectional view for explaining the configuration of a digital camera 100 which is an imaging device according to the embodiment. In addition, for convenience of explanation, a coordinate system including x-axis, y-axis and z-axis is set as illustrated.

デジタルカメラ100は、カメラ本体200と撮影レンズ本体300とにより構成され、撮影レンズ本体300はマウント部(不図示)を介して装着される、いわゆるミラーレスカメラである。カメラ本体200には、マウント部を介して種々の撮影光学系を有する撮影レンズ本体300が装着可能である。上記のマウント部には電気接点201、202が設けられ、カメラ本体200と撮影レンズ本体300とが結合された時には、電気接点201および202を介して電気的な接続が確立される。   The digital camera 100 is a so-called mirrorless camera which is constituted by a camera body 200 and a photographing lens body 300, and the photographing lens body 300 is mounted via a mount portion (not shown). A photographing lens main body 300 having various photographing optical systems can be attached to the camera main body 200 via a mount portion. The mount portion is provided with the electrical contacts 201 and 202, and when the camera body 200 and the photographing lens body 300 are coupled, an electrical connection is established through the electrical contacts 201 and 202.

撮影レンズ本体300は、撮影レンズ系1と、絞り2と、駆動機構3と、レンズデータ部4とを備えている。撮影レンズ系1は、被写体像を所定の予定焦点面に結像させるための光学系であり、焦点調節レンズを含む複数のレンズによって構成されている。絞り2は、撮影レンズ系1を通過する光束、すなわち入射光量を制限するために、光軸Lを中心に開口径が可変な開口を形成する。駆動機構3は、電気接点201を介してカメラ本体200側から入力したデフォーカス量を用いてレンズ駆動量を算出し、レンズ駆動量に応じて撮影レンズ系1を構成する焦点調節レンズを光軸Lの方向(z軸方向)に沿って合焦位置へ駆動する。また、駆動機構3は、カメラ本体200側からの指令に応じて絞り駆動信号を出力して、絞り2の駆動を制御する。   The photographing lens body 300 includes a photographing lens system 1, an aperture 2, a drive mechanism 3, and a lens data unit 4. The photographing lens system 1 is an optical system for forming an image of a subject on a predetermined planned focal plane, and is constituted by a plurality of lenses including a focusing lens. The diaphragm 2 forms an aperture whose aperture diameter is variable around the optical axis L in order to limit the light flux passing through the imaging lens system 1, that is, the amount of incident light. The drive mechanism 3 calculates the lens drive amount using the defocus amount input from the camera body 200 side via the electrical contact 201, and the focusing lens that constitutes the photographing lens system 1 according to the lens drive amount is the optical axis Drive to the in-focus position along the direction of L (z-axis direction). The drive mechanism 3 also controls the drive of the diaphragm 2 by outputting a diaphragm drive signal according to a command from the camera body 200 side.

レンズデータ部4は、たとえば不揮発性の記録媒体により構成され、撮影レンズ本体300に関連する各種のレンズ情報、たとえばレンズの焦点距離や明るさ(開放F値)等が格納されている。レンズデータ部4は電気接点202を介してカメラ本体200との間で上記のレンズ情報等を送信する。   The lens data unit 4 is formed of, for example, a non-volatile recording medium, and stores various types of lens information related to the photographing lens body 300, such as the focal length and brightness (open F value) of the lens. The lens data unit 4 transmits the above-described lens information and the like to and from the camera body 200 via the electrical contact 202.

カメラ本体200内部には、演算処理制御部5と、撮像素子制御回路6と、メカシャッタ7と、撮像素子8と、電子ビューファインダ(EVF)9と、接眼レンズ10とが設けられている。カメラ本体200には操作部11が設けられている。撮像素子8には、CCDやCMOS等の撮像画素がxy平面上において二次元状(行と列)に配置される。撮像素子8の撮像画素には、それぞれR(赤)、G(緑)、B(青)のカラーフィルタが設けられている。撮像素子8は、撮影レンズ系1およびメカシャッタ7を介して入射される光束を受光して被写体像を撮像して、撮像信号を撮像素子制御部6に出力する。撮像信号は、画像データ生成用の信号(画像信号)として、また、焦点検出用の信号(焦点検出用信号)として使用される。撮像素子8がカラーフィルタを通して被写体像を撮像するため、撮像素子8の撮像画素から出力される撮像信号はRGB表色系の色情報を有する。なお、撮像素子8については、詳細を後述する。   In the camera body 200, an arithmetic processing control unit 5, an imaging device control circuit 6, a mechanical shutter 7, an imaging device 8, an electronic viewfinder (EVF) 9, and an eyepiece lens 10 are provided. The camera body 200 is provided with an operation unit 11. In the imaging device 8, imaging pixels such as CCD and CMOS are arranged in a two-dimensional form (row and column) on the xy plane. The imaging pixels of the imaging device 8 are provided with color filters of red (R), green (G), and blue (B), respectively. The imaging device 8 receives a light flux incident through the photographing lens system 1 and the mechanical shutter 7 to capture an object image, and outputs an imaging signal to the imaging device control unit 6. The imaging signal is used as a signal for image data generation (image signal) and as a signal for focus detection (focus detection signal). Since the imaging device 8 captures a subject image through a color filter, an imaging signal output from an imaging pixel of the imaging device 8 has color information of RGB color system. The details of the imaging device 8 will be described later.

メカシャッタ7は撮像素子8の直前に設けられ、複数の遮光羽根より成る先幕と後幕とによって構成される。メカシャッタ7は、駆動モータ(たとえばDCモータやステッピングモータ等の電動モータ)により構成される駆動機構(不図示)の駆動により走行して、撮像素子8を被写体光から遮光する。電子ビューファインダ9は、演算処理制御部5により生成された表示画像データに対応する画像の表示を行う。また、電子ビューファインダ9は、撮影条件に関連する各種情報(シャッタ速度、絞り値、ISO感度など)の表示を行う。電子ビューファインダ9に表示された画像や各種情報は、接眼レンズ10を介してユーザにより観察される。   The mechanical shutter 7 is provided immediately in front of the image pickup device 8 and is constituted by a front curtain and a rear curtain consisting of a plurality of light shielding blades. The mechanical shutter 7 travels by driving of a drive mechanism (not shown) configured by a drive motor (for example, an electric motor such as a DC motor or a stepping motor), and shields the imaging element 8 from object light. The electronic viewfinder 9 displays an image corresponding to the display image data generated by the arithmetic processing control unit 5. Further, the electronic view finder 9 displays various information (shutter speed, aperture value, ISO sensitivity, etc.) related to photographing conditions. The image and various information displayed on the electronic viewfinder 9 are observed by the user via the eyepiece lens 10.

操作部11はユーザによって操作される種々の操作部材に対応して設けられた種々のスイッチを含み、操作部材の操作に応じた操作信号を演算処理制御部5へ出力する。操作部材は、たとえばレリーズボタンや、カメラ本体200の背面に設けられた背面モニタ(不図示)にメニュー画面を表示させるためのメニューボタンや、各種の設定等を選択操作する時に操作される十字キー、十字キーにより選択された設定等を決定するための決定ボタン、撮影モードと再生モードとの間でデジタルカメラ100の動作を切替える動作モード切替ボタン、露出モードを設定する露出モード切替ボタン等を含む。   The operation unit 11 includes various switches provided corresponding to various operation members operated by the user, and outputs an operation signal according to the operation of the operation member to the arithmetic processing control unit 5. The operation member is, for example, a release button, a menu button for displaying a menu screen on a rear monitor (not shown) provided on the rear surface of the camera body 200, and a cross key operated when selecting various settings. , An enter button for determining settings selected with the cross key, an operation mode switching button for switching the operation of the digital camera 100 between the shooting mode and the playback mode, an exposure mode switching button for setting the exposure mode, etc. .

さらに、図2に示すブロック図を用いて、デジタルカメラ100の制御系について説明する。図2に示すようにデジタルカメラ100は、A/D変換部12と、画像処理回路13と、焦点検出演算回路14と、ボディ−レンズ通信部15とを有している。演算処理制御部5は、CPU、ROM、RAMなどを有し、制御プログラムに基づいて、デジタルカメラ100の各構成要素を制御したり、各種のデータ処理を実行したりする演算回路である。制御プログラムは、演算処理制御部5内の不図示の不揮発性メモリに格納されている。撮像素子駆動回路6は、演算処理制御部5によって制御され、撮像素子8およびA/D変換部12の駆動を制御して、撮像素子8に電荷蓄積および撮像信号の読み出し等を行わせる。A/D変換部12は、撮像素子8から出力されたアナログの撮像信号をデジタルに変換する。   Furthermore, the control system of the digital camera 100 will be described using the block diagram shown in FIG. As shown in FIG. 2, the digital camera 100 includes an A / D conversion unit 12, an image processing circuit 13, a focus detection calculation circuit 14, and a body-lens communication unit 15. The arithmetic processing control unit 5 includes a CPU, a ROM, a RAM, and the like, and is an arithmetic circuit that controls each component of the digital camera 100 and executes various data processing based on a control program. The control program is stored in a non-volatile memory (not shown) in the arithmetic processing control unit 5. The image pickup device drive circuit 6 is controlled by the arithmetic processing control unit 5 to control the driving of the image pickup device 8 and the A / D conversion unit 12 to cause the image pickup device 8 to perform charge storage and readout of an image pickup signal. The A / D converter 12 converts an analog imaging signal output from the imaging element 8 into a digital.

画像処理回路13は、撮像素子8から出力された撮像信号を画像信号として用い、画像信号に対して種々の画像処理を施して画像データを生成した後、付加情報等を付与して画像ファイルを生成する。画像処理回路13は、生成した画像ファイルをメモリカード等の記録媒体(不図示)に記録する。画像処理回路13は、生成した画像データや記録媒体に記録されている画像データに基づいて、電子ビューファインダ9や背面モニタ(不図示)に表示するための表示画像データを生成する。   The image processing circuit 13 uses the imaging signal output from the imaging device 8 as an image signal, performs various image processing on the image signal to generate image data, and adds additional information and the like to the image file. Generate The image processing circuit 13 records the generated image file on a recording medium (not shown) such as a memory card. The image processing circuit 13 generates display image data to be displayed on the electronic viewfinder 9 or a rear monitor (not shown) based on the generated image data and the image data recorded on the recording medium.

焦点検出演算回路14は、撮像素子8から出力された撮像信号を焦点検出用信号として使用して、公知の位相差検出方式を用いてデフォーカス量を算出する。ボディ−レンズ通信部15は、演算処理制御部5に制御され、電気接点201、202を介して撮影レンズ本体300内の駆動機構3やレンズデータ部4と通信を行い、カメラ情報(デフォーカス量や絞り値など)の送信やレンズ情報の受信を行う。   The focus detection calculation circuit 14 uses the image pickup signal output from the image pickup device 8 as a focus detection signal to calculate the defocus amount using a known phase difference detection method. The body-lens communication unit 15 is controlled by the arithmetic processing control unit 5 and communicates with the drive mechanism 3 and the lens data unit 4 in the photographing lens main body 300 via the electrical contacts 201 and 202 to obtain camera information (defocus amount And aperture value etc. and reception of lens information.

次に、本実施の形態における撮像素子8について詳細に説明する。
図3(a)は撮像素子8の中心部を含む一部の領域を模式的に示す平面図であり、図3(b)は撮像素子8の中心付近に設けられた1つの撮像画素80の断面を模式的に示す図であり、図3(c)は撮像素子8の周辺部に設けられた1つの撮像画素80の断面を模式的に示す図である。なお、図3においても、x軸、y軸、z軸からなる座標系を、図1に示す例と同様にして設定する。撮像素子8は、複数の撮像画素80が行方向(x方向)と列方向(y方向)とに二次元配列される。撮像画素80の各画素位置には、たとえばベイヤー配列の規則に従って上述したカラーフィルタ(R:赤色フィルタ、G:緑色フィルタ、B:青色フィルタ)が配置される。図3(a)においては、撮像画素80に配置されたカラーフィルタの色を、「R」、「G」または「B」と表記して模式的に表す。
Next, the image sensor 8 in the present embodiment will be described in detail.
FIG. 3A is a plan view schematically showing a partial region including the central portion of the imaging device 8, and FIG. 3B is a plan view of one imaging pixel 80 provided in the vicinity of the center of the imaging device 8. FIG. 3C is a view schematically showing a cross section, and FIG. 3C is a view schematically showing a cross section of one imaging pixel 80 provided in the peripheral portion of the imaging element 8. Also in FIG. 3, a coordinate system including the x-axis, y-axis, and z-axis is set in the same manner as the example shown in FIG. 1. In the imaging element 8, a plurality of imaging pixels 80 are two-dimensionally arranged in the row direction (x direction) and the column direction (y direction). For example, the color filters (R: red filter, G: green filter, B: blue filter) described above are arranged at each pixel position of the imaging pixel 80 according to, for example, the rule of Bayer arrangement. In FIG. 3A, the color of the color filter disposed in the imaging pixel 80 is schematically represented as “R”, “G” or “B”.

撮像画素80は、マイクロレンズ81と、1つのマイクロレンズ81の下に設けられた第1光電変換部82および第2光電変換部83とによって構成される。第1光電変換部82と第2光電変換部83とは、x方向に並んで配列される。図3に示す例では、第1光電変換部82はx方向+側、第2光電変換部83はx方向−側に設けられる。第1光電変換部82および第2光電変換部83には、それぞれ撮影レンズ系1の異なる領域を介して入射された光が入射する。すなわち、焦点検出演算回路14が位相差検出演算に用いる一対の被写体光束が入射する。   The imaging pixel 80 is configured of a microlens 81 and a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83 provided below one microlens 81. The first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 are arranged side by side in the x direction. In the example illustrated in FIG. 3, the first photoelectric conversion unit 82 is provided on the x direction + side, and the second photoelectric conversion unit 83 is provided on the x direction − side. The light incident through the different regions of the imaging lens system 1 is incident on the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83, respectively. That is, a pair of subject light beams used by the focus detection calculation circuit 14 for phase difference detection calculation are incident.

本実施の形態においては、各行において、撮像画素80が配置される位置に応じて、第1光電変換部82と第2光電変換部83との境界部84が、マイクロレンズ81の中心からずれる(図3(c)参照)。全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一である。換言すると、第1光電変換部82のサイズ(面積)と、第2光電変換部83のサイズ(面積)とが異なる。撮像素子8の中心列Cからx方向+側においては、マイクロレンズ81の中心に対して境界部84はx方向−側へずれ、中心列Cからx方向−側においては、マイクロレンズ81の中心に対して境界部84はx方向+側へずれる。換言すると、第1光電変換部82の面積は第2光電変換部83の面積よりも大きく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも大きく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。   In the present embodiment, in each row, the boundary portion 84 between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 is offset from the center of the microlens 81 according to the position where the imaging pixel 80 is disposed ( See FIG. 3 (c)). In all the imaging pixels 80, the sum of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is substantially the same. In other words, the size (area) of the first photoelectric conversion unit 82 and the size (area) of the second photoelectric conversion unit 83 are different. In the x direction + side from the center row C of the imaging element 8, the boundary 84 is shifted to the x direction − side with respect to the center of the microlens 81, and in the x direction − side from the center row C, the center of the microlens 81 Whereas the boundary 84 is shifted to the x direction + side. In other words, the area of the first photoelectric conversion unit 82 is larger than the area of the second photoelectric conversion unit 83, and the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 according to the distance from the center row C. The difference with the area of On the x-direction side, the area of the second photoelectric conversion unit 83 is larger than the area of the first photoelectric conversion unit 82, and the area of the second photoelectric conversion unit 83 and the first photoelectric conversion unit 83 according to the distance from the center row C. The difference with the area of the photoelectric conversion unit 82 becomes large.

マイクロレンズ81に対する境界部84のずれ量、すなわち第2光電変換部83の面積と第1光電変換部82の面積との差分は、中心列Cからの距離に応じて線形的に変化してもよいし、所定個数の撮像画素80ごとに段階的に変化してもよい。各行において、撮像素子8の中心列Cに配列される撮像画素80では、マイクロレンズ81の中心と境界部84とは実質的に一致、すなわち第1光電変換部82の面積と第2光電変換部83の面積とは等しい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は実質的に同一なので、撮像画素80は、撮像素子8の中心列Cからのx方向の距離に応じて、第1光電変換部82と第2光電変換部83との面積比が異なる。   The amount of displacement of the boundary portion 84 with respect to the microlens 81, that is, the difference between the area of the second photoelectric conversion portion 83 and the area of the first photoelectric conversion portion 82 linearly changes according to the distance from the central column C. Alternatively, it may be changed stepwise for each predetermined number of imaging pixels 80. In each row, in the imaging pixels 80 arranged in the central column C of the imaging element 8, the center of the micro lens 81 and the boundary 84 substantially coincide, that is, the area of the first photoelectric conversion portion 82 and the second photoelectric conversion portion The area of 83 is equal. As described above, the value of the sum of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 in all the imaging pixels 80 is substantially the same. Depending on the distance in the x direction from the center row C, the area ratio of the first photoelectric conversion unit 82 to the second photoelectric conversion unit 83 differs.

図3(a)に示すように、撮像素子8の中心列Cに配列された撮像画素80aに設けられた第1光電変換部82aと第2光電変換部83aとの境界部84aはマイクロレンズ81aの中心と実質的に等しい。すなわち第1光電変換部82aと第2光電変換部83aとは面積が等しい。撮像画素80aよりもx方向+側に配列された撮像画素80bにおいては、境界部84bはマイクロレンズ81bの中心に対してx方向−側にずれている。すなわち、第1光電変換部82bの面積は第2光電変換部83bの面積よりも大きい。上述したように、全ての撮像画素80において、第1光電変換部82の面積と第2光電変換部83の面積とを合計した値は同一に形成されている。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80bの第1光電変換部82bの面積の方が大きく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80bの第2光電変換部83bの面積の方が小さい。   As shown to Fig.3 (a), the boundary part 84a of the 1st photoelectric conversion part 82a and the 2nd photoelectric conversion part 83a provided in the imaging pixel 80a arranged in the center row C of the imaging element 8 is the micro lens 81a. Substantially equal to the center of the That is, the areas of the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a are equal. In the imaging pixel 80b arranged on the x direction + side with respect to the imaging pixel 80a, the boundary portion 84b is shifted in the x direction − side with respect to the center of the microlens 81b. That is, the area of the first photoelectric conversion unit 82b is larger than the area of the second photoelectric conversion unit 83b. As described above, in all the imaging pixels 80, the sum of the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 is the same. Therefore, the area of the first photoelectric conversion unit 82b of the imaging pixel 80b is larger than the area of the first photoelectric conversion unit 82a of the imaging pixel 80a, and the imaging pixel 80b is larger than the area of the second photoelectric conversion unit 83a of the imaging pixel 80a. The area of the second photoelectric conversion unit 83b is smaller.

撮像画素80bよりもx方向+側に配列された撮像画素80cにおいては、境界部84cのマイクロレンズ81cの中心に対するずれ量は、境界部84bのマイクロレンズ81bの中心に対するずれ量と比べて大きい。すなわち、撮像画素80がx方向+側に配置されるほど、境界部84とマイクロレンズ81の中心とのずれ量がx方向−側へ大きくなる。撮像画素80bの第1光電変換部82bの面積よりも撮像画素80cの第1光電変換部82cの面積の方が大きく、撮像画素80bの第2光電変換部83bの面積よりも撮像画素80cの第2光電変換部83cの面積の方が小さい。   The amount of displacement of the boundary 84c with respect to the center of the micro lens 81c is larger than the amount of displacement of the boundary 84b with respect to the center of the micro lens 81b in the imaging pixel 80c arranged on the x direction + side more than the imaging pixel 80b. That is, as the imaging pixel 80 is disposed on the x direction + side, the amount of deviation between the boundary 84 and the center of the micro lens 81 becomes larger in the x direction − side. The area of the first photoelectric conversion unit 82c of the imaging pixel 80c is larger than the area of the first photoelectric conversion unit 82b of the imaging pixel 80b, and the area of the second photoelectric conversion unit 83b of the imaging pixel 80b is larger than the area of the second photoelectric conversion unit 83b. The area of the 2 photoelectric conversion portion 83c is smaller.

撮像画素80aよりもx方向−側に配列された撮像画素80dにおいては、境界部84dはマイクロレンズ81dの中心に対してx方向+側にずれている。すなわち第2光電変換部83dの面積は第1光電変換部82dの面積よりも大きい。したがって、撮像画素80aの第1光電変換部82aの面積よりも撮像画素80dの第1光電変換部82dの面積の方が小さく、撮像画素80aの第2光電変換部83aの面積よりも撮像画素80dの第2光電変換部83dの面積の方が大きい。撮像画素80dよりもx方向−側に配列された撮像画素80eにおいては、境界部84eはマイクロレンズ81eの中心に対するx方向+側へのずれ量は、境界部84dのマイクロレンズ81dの中心に対するx方向+側のずれ量と比べて大きい。すなわち、撮像画素80dの第2光電変換部83dの面積よりも撮像画素80eの第2光電変換部83eの面積の方が大きく、撮像画素80dの第1光電変換部82dの面積よりも撮像画素80eの第1光電変換部82eの面積の方が小さい。
なお、境界部84とマイクロレンズ81の中心との関係および第1光電変換部82の面積と第2光電変換部83の面積との関係については、詳細を後述する。
In the imaging pixel 80d arranged on the x direction − side with respect to the imaging pixel 80a, the boundary portion 84d is shifted in the x direction + side with respect to the center of the microlens 81 d. That is, the area of the second photoelectric conversion unit 83d is larger than the area of the first photoelectric conversion unit 82d. Therefore, the area of the first photoelectric conversion unit 82d of the imaging pixel 80d is smaller than the area of the first photoelectric conversion unit 82a of the imaging pixel 80a, and the imaging pixel 80d is smaller than the area of the second photoelectric conversion unit 83a of the imaging pixel 80a. The area of the second photoelectric conversion unit 83d is larger. In the imaging pixel 80e arranged on the x direction minus side with respect to the imaging pixel 80d, the amount of displacement of the boundary 84e to the x direction + side with respect to the center of the microlens 81e is x with respect to the center of the microlens 81d of the boundary 84d. It is larger than the amount of deviation on the direction + side. That is, the area of the second photoelectric conversion unit 83e of the imaging pixel 80e is larger than the area of the second photoelectric conversion unit 83d of the imaging pixel 80d, and the imaging pixel 80e is larger than the area of the first photoelectric conversion unit 82d of the imaging pixel 80d. The area of the first photoelectric conversion unit 82e is smaller.
The relationship between the boundary 84 and the center of the microlens 81 and the relationship between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 will be described later in detail.

撮像画素80の第1光電変換部82と第2光電変換部83とのそれぞれにおいては、y方向の長さを変化させず、x方向の長さを変化させることによって、第1光電変換部82および第2光電変換部83との面積比を変化させる。すなわち、x方向+側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが増加し、第2光電変換部83のx方向の長さが減少する。x方向−側に配列された撮像画素80では、撮像素子8の中心列Cからの距離が離れる程、第1光電変換部82のx方向の長さが減少し、第2光電変換部83のx方向の長さが増加する。   In each of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80, the first photoelectric conversion unit 82 is obtained by changing the length in the x direction without changing the length in the y direction. And the area ratio to the second photoelectric conversion unit 83 is changed. That is, in the imaging pixels 80 arranged on the x direction + side, the length in the x direction of the first photoelectric conversion unit 82 increases as the distance from the center column C of the imaging device 8 increases, and the second photoelectric conversion unit The length of 83 in the x direction decreases. In the imaging pixels 80 arrayed on the x direction − side, the length of the first photoelectric conversion unit 82 in the x direction decreases as the distance from the center column C of the imaging element 8 increases, and the second photoelectric conversion unit 83 The length in the x direction increases.

撮像素子8のうち、列方向(y方向)に配列された撮像画素80においては、それぞれの第1光電変換部82および第2光電変換部83は同一の面積を有する。すなわち、たとえば撮像画素80cと同一の列に配列された撮像画素80については、第1光電変換部82cと同一の面積の第1光電変換部82と、第2光電変換部83cと同一の面積の第2光電変換部83とが設けられる。   In the imaging pixels 80 arranged in the column direction (y direction) of the imaging element 8, the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 have the same area. That is, for example, with regard to the imaging pixels 80 arranged in the same column as the imaging pixels 80c, the areas of the first photoelectric conversion unit 82 having the same area as the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c are the same. A second photoelectric conversion unit 83 is provided.

本実施の形態においては、撮像画素80の第1光電変換部82および第2光電変換部83を上述した形状にすることにより、撮像素子8の周辺領域におけるケラレの影響を低減する。以下、その原理について説明する。
図4は撮像画素80の第1光電変換部82および第2光電変換部83の面積と、撮影レンズ系1の射出瞳領域との投影関係を模式的に示す。図4(a)は撮影レンズ系1の射出瞳距離PO1と撮像画素80の射出瞳距離PO2とが実質的に等しい場合、すなわち撮影レンズ系1がミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズ等の場合を示す。図4(b)は撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長い場合、すなわち撮影レンズ系1が、たとえば一眼レフカメラ用に設計された交換レンズや、ミラーレスカメラであるデジタルカメラ100に適合するように設計された専用の交換レンズであるが長い射出瞳距離PO1が設定されている場合を示す。なお、図4(b)においては、理解を容易にすることを目的として、射出瞳距離PO1とPO2が等しい場合の撮影レンズ系1を破線により示す。また、本実施の形態においては、撮像画素80の射出瞳距離PO2は、種々の専用の交換レンズごとに異なる射出瞳距離PO1のうちの中心値と比べて短くなるように設定されている。以下の説明では、図3においてx方向+側の周辺領域に配列された撮像画素80cを例に挙げて説明を挙げる。
In the present embodiment, by making the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 into the above-described shape, the influence of vignetting in the peripheral region of the imaging element 8 is reduced. The principle will be described below.
FIG. 4 schematically shows a projection relationship between the area of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 of the imaging pixel 80 and the exit pupil area of the photographing lens system 1. In FIG. 4A, when the exit pupil distance PO1 of the imaging lens system 1 and the exit pupil distance PO2 of the imaging pixel 80 are substantially equal, that is, the imaging lens system 1 is adapted to the digital camera 100 which is a mirrorless camera. Shows the case of a dedicated interchangeable lens etc. In FIG. 4B, when the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80, that is, the interchangeable lens whose photographing lens system 1 is designed for single-lens reflex cameras, or The figure shows the case where a dedicated interchangeable lens designed to fit the digital camera 100, which is a mirrorless camera, but a long exit pupil distance PO1 is set. In FIG. 4B, for the purpose of facilitating understanding, the photographing lens system 1 in the case where the exit pupil distances PO1 and PO2 are equal is indicated by a broken line. Further, in the present embodiment, the exit pupil distance PO2 of the imaging pixel 80 is set to be shorter than the central value of the exit pupil distance PO1 which is different for each of the various dedicated interchangeable lenses. In the following description, the description will be given by taking the imaging pixels 80c arranged in the peripheral region on the x direction + side in FIG. 3 as an example.

図4(a)に示すように、第1光電変換部82cは、被写体からの光束のうち、撮影レンズ系1の一対の射出瞳領域841および842のうち、射出瞳領域841を通過した光束851をマイクロレンズ81cを介して受光し、第2光電変換部83cは射出瞳領域842を通過した光束852をマイクロレンズ81cを介して受光する。上述したように、図4(a)は射出瞳距離PO1およびPO2が実質的に等しい場合を示しているので、光束851および852は撮影レンズ本体300の構造等によるケラレが無い、もしくはケラレが少ない状態にて第1光電変換部82cおよび第2光電変換部83cにそれぞれ入射する。   As shown in FIG. 4A, the first photoelectric conversion unit 82c is a light flux 851 that has passed through the exit pupil area 841 out of the pair of exit pupil areas 841 and 842 of the photographing lens system 1 among the light flux from the subject. Is received through the microlens 81c, and the second photoelectric conversion unit 83c receives the light flux 852 that has passed through the exit pupil region 842 through the microlens 81c. As described above, FIG. 4A shows the case where the exit pupil distances PO1 and PO2 are substantially equal, the light beams 851 and 852 have no or little vignetting due to the structure of the photographing lens body 300 or the like. In the state, the light enters the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c, respectively.

図4(b)に示すように、被写体からの光束852は、撮影レンズ系1の射出瞳領域842を通過し、撮像画素80cのマイクロレンズ81cを介して第2光電変換部83cに入射する。撮影レンズ系1の射出瞳距離PO1が撮像画素80の射出瞳距離PO2と比べて長いため、被写体からの光束851は一部がケラレる。すなわち光束851のうち、光束851aが撮影レンズ系1の射出瞳領域841を通過し、マイクロレンズ81cを介して第1光電変換部82cに入射し、光束851bはケラレて第1光電変換部82cに入射しない。   As shown in FIG. 4B, the light flux 852 from the subject passes through the exit pupil region 842 of the imaging lens system 1, and enters the second photoelectric conversion unit 83c via the microlens 81c of the imaging pixel 80c. Since the exit pupil distance PO1 of the imaging lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80, a part of the light flux 851 from the subject is vignetted. That is, of the light flux 851, the light flux 851a passes through the exit pupil area 841 of the photographing lens system 1, enters the first photoelectric conversion unit 82c via the micro lens 81c, and the light flux 851b vignettes to the first photoelectric conversion unit 82c. It does not enter.

図4(c)の撮像画素80cの平面模式図において、光束852および上記のようにケラレの影響を受けた光束851と、撮像画素80cの第1光電変換部82cおよび第2光電変換部83cとの位置関係を示す。なお、図4(c)においては、光束851bにケラレの発生がなければ第1光電変換部82cに入射したであろう領域を破線で示す。本実施の形態においては、第1光電変換部82cは、光束851aが入射する領域82c1と、光束851bがケラレなければ入射したであろう領域821c2とを有する。撮像画素80cにおいては、第1光電変換部82cの領域82c1と光束852が入射する第2光電変換部83cとが同一の面積を有するように、境界部84cのx方向−側へのずれ量が決定されている。したがって、境界部84cがマイクロレンズ81cの中心に対してx方向−側にずれることにより、入射した光束852および851aは、第1光電変換部82cおよび第2光電変換部83cにおいて、それぞれ実質的に同一面積にて受光される。   In the schematic plan view of the imaging pixel 80c in FIG. 4C, the luminous flux 852 and the luminous flux 851 affected by the vignetting as described above, and the first photoelectric conversion portion 82c and the second photoelectric conversion portion 83c of the imaging pixel 80c Indicates the positional relationship of In FIG. 4C, a broken line indicates a region that would have entered the first photoelectric conversion unit 82c if no vignetting occurs in the light beam 851b. In the present embodiment, the first photoelectric conversion unit 82c includes a region 82c1 on which the light beam 851a is incident and a region 821c2 on which the light beam 851b may be incident if it is not vignetted. In the imaging pixel 80c, the shift amount of the boundary 84c to the x direction − side is such that the area 82c1 of the first photoelectric conversion unit 82c and the second photoelectric conversion unit 83c on which the light beam 852 is incident have the same area. It has been decided. Therefore, the light fluxes 852 and 851a which are incident when the boundary portion 84c is shifted in the x direction minus side with respect to the center of the micro lens 81c are substantially transmitted to the first photoelectric conversion portion 82c and the second photoelectric conversion portion 83c, respectively. Light is received in the same area.

撮像画素80bについても撮像画素80cと同様に、境界部84bのずれ量、すなわち第1光電変換部82bと第2光電変換部83bとの面積が決定される。ただし、上述したように、撮像画素80bは、撮像画素80cよりもx方向−側に配列されるので、境界部84bのずれ量は境界部84cのずれ量と比べて小さい。すなわち、撮像画素80bの第1光電変換部82bの面積は、撮像画素80cの第1光電変換部82cの面積と比べて小さい。また、撮像素子8の中心列Cからx方向−側に配列された撮像画素8については、境界部84がマイクロレンズ81の中心に対してずれる方向、すなわち第1光電変換部82と第2光電変換部83の面積の大小関係が反対になる。   Similarly to the imaging pixel 80c, the displacement amount of the boundary portion 84b, that is, the area of the first photoelectric conversion unit 82b and the second photoelectric conversion unit 83b is determined for the imaging pixel 80b. However, as described above, since the imaging pixels 80b are arranged on the x direction minus side with respect to the imaging pixels 80c, the shift amount of the boundary portion 84b is smaller than the shift amount of the boundary portion 84c. That is, the area of the first photoelectric conversion unit 82b of the imaging pixel 80b is smaller than the area of the first photoelectric conversion unit 82c of the imaging pixel 80c. In addition, with regard to the imaging pixels 8 arranged on the x direction minus side from the central column C of the imaging element 8, the direction in which the boundary portion 84 deviates with respect to the center of the microlens 81, that is, the first The size relation of the areas of the conversion unit 83 is opposite.

図4(d)は撮像画素80cが配列される位置に撮像画素80aが配列されたと仮定した場合、すなわち境界部84がマイクロレンズ81の中心と実質的に一致する場合に、射出瞳距離PO1が射出瞳距離PO2よりも大きいとき、第1光電変換部82aおよび第2光電変換部83aにそれぞれ入射する光束851および852を模式的に示す平面図である。この場合、光束851がケラレることにより、光束851aが第1光電変換部82aは図の斜線を付した領域にて受光される。光束852は第2光電変換部83aの全領域にて受光される。このため、第1光電変換部82aからの撮像信号の出力は、第2光電変換部83aからの撮像信号の出力と比べて低下する。すなわち、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和する。   In FIG. 4D, assuming that the imaging pixel 80a is arranged at the position where the imaging pixel 80c is arranged, that is, when the boundary 84 substantially coincides with the center of the microlens 81, the exit pupil distance PO1 is FIG. 18 is a plan view schematically showing light beams 851 and 852 that are incident on the first photoelectric conversion unit 82a and the second photoelectric conversion unit 83a, respectively, when the exit pupil distance PO2 is larger than the exit pupil distance PO2. In this case, the luminous flux 851 is eclipsed so that the luminous flux 851 a is received by the first photoelectric conversion portion 82 a in the shaded area in the drawing. The light beam 852 is received by the entire area of the second photoelectric conversion unit 83a. For this reason, the output of the imaging signal from the first photoelectric conversion unit 82a is lower than the output of the imaging signal from the second photoelectric conversion unit 83a. That is, before the imaging signal from the first photoelectric conversion unit 82c reaches a sufficient output, the output of the imaging signal from the second photoelectric conversion unit 83c is saturated.

これに対して本実施の形態においては、図4(c)に示す構造を有している。したがって、第1光電変換部82cからの撮像信号の出力が第2光電変換部83cからの撮像信号の出力と比較して低下することを防ぎ、第1光電変換部82cからの撮像信号が十分な出力に達する前に、第2光電変換部83cからの撮像信号の出力が飽和することを防ぐ。   On the other hand, in the present embodiment, the structure shown in FIG. 4 (c) is provided. Therefore, the output of the imaging signal from the first photoelectric conversion unit 82c is prevented from decreasing compared to the output of the imaging signal from the second photoelectric conversion unit 83c, and the imaging signal from the first photoelectric conversion unit 82c is sufficient. Before reaching the output, the output of the imaging signal from the second photoelectric conversion unit 83c is prevented from being saturated.

焦点検出演算回路14は、上述した構造を有する撮像画素80から出力された撮像信号を焦点検出用信号として用いて、公知の位相差検出方式を用いてデフォーカス量を算出する。焦点検出演算回路14は、第1光電変換部82からの焦点検出信号を順次並べた第1信号列{an}と、第2光電変換部83からの焦点検出信号を順次並べた第2信号列{bn}との相対的なズレ量を検出し、撮影レンズ系1の焦点調節状態、すなわちデフォーカス量を検出する。   The focus detection calculation circuit 14 calculates the defocus amount using a known phase difference detection method, using the imaging signal output from the imaging pixel 80 having the above-described structure as a focus detection signal. The focus detection calculation circuit 14 has a first signal sequence {an} in which focus detection signals from the first photoelectric conversion unit 82 are sequentially arranged and a second signal sequence in which focus detection signals from the second photoelectric conversion unit 83 are sequentially arranged. The relative shift amount with {bn} is detected, and the focusing state of the photographing lens system 1, that is, the defocus amount is detected.

画像処理回路13は、画像データを生成する際に、撮像画素80から出力された撮像信号を画像信号として使用する。画像処理回路13は、各撮像画素80について、第1光電変換部82から出力された撮像信号と、第2光電変換部83から出力された撮像信号とを加算して画像信号として扱う。したがって、第1光電変換部82と第2光電変換部83の面積差による影響はない。撮像画素80には、R色、G色またはB色の何れかのカラーフィルタが設けられているので、加算された画像信号は撮像画素80に設けられたカラーフィルタに応じた色情報を有する。画像処理回路13は、加算により生成した画像信号に対して種々の画像処理を施して画像データを生成し、付加情報等を付与して画像ファイルを生成する。   The image processing circuit 13 uses an imaging signal output from the imaging pixel 80 as an image signal when generating image data. The image processing circuit 13 adds the imaging signal output from the first photoelectric conversion unit 82 and the imaging signal output from the second photoelectric conversion unit 83 for each imaging pixel 80 and handles the result as an image signal. Therefore, the area difference between the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 has no influence. Since the imaging pixel 80 is provided with a color filter of any of R, G or B, the added image signal has color information corresponding to the color filter provided in the imaging pixel 80. The image processing circuit 13 performs various image processing on the image signal generated by the addition to generate image data, adds additional information and the like, and generates an image file.

上述した実施の形態によれば、次の作用効果が得られる。
全ての複数の撮像画素80では、一対の第1光電変換部82と第2光電変換部83との面積の合計が実質的に等しく、複数の撮像画素80の配列位置、すなわち撮像素子8の中心付近からの距離に応じて、一対の第1光電変換部82および第2光電変換部83の面積が異なる。すなわち、撮像素子8の中央付近からの距離が増加するほど、一対の第1光電変換部82と第2光電変換部83との面積差が増加する。したがって、射出瞳距離PO1が撮像素子8の射出瞳距離PO2よりも長い撮影レンズ系1が装着された場合のように、撮像素子8の周辺部にて入射光束がケラレの影響を受けるような場合であっても、第1光電変換部82または第2光電変換部83への入射光量を確保することができる。このため、ケラレの影響を受けた光束851を第1光電変換部82が演算可能となる光量を受光するまでに、第2光電変換部83がケラレの影響を受けていない光束852を受光した第2光電変換部83の出力が飽和することを防ぎ、焦点検出精度の低下を抑制できる。
According to the embodiment described above, the following effects can be obtained.
In all the plurality of imaging pixels 80, the sum of the areas of the pair of first photoelectric conversion units 82 and the second photoelectric conversion units 83 is substantially equal, and the arrangement position of the plurality of imaging pixels 80, that is, the center of the imaging device 8 The areas of the pair of first photoelectric conversion units 82 and second photoelectric conversion units 83 differ depending on the distance from the vicinity. That is, as the distance from the vicinity of the center of the imaging device 8 increases, the area difference between the pair of first photoelectric conversion units 82 and the second photoelectric conversion unit 83 increases. Therefore, as in the case where the taking lens system 1 having the exit pupil distance PO1 longer than the exit pupil distance PO2 of the imaging device 8 is attached, the incident light beam is affected by vignetting at the periphery of the imaging device 8 Even in this case, the amount of light incident on the first photoelectric conversion unit 82 or the second photoelectric conversion unit 83 can be secured. For this reason, the second photoelectric conversion unit 83 receives the light flux 852 which is not affected by the vignetting, until the light flux 851 affected by the vignetting is received by the light quantity that enables the first photoelectric conversion unit 82 to calculate. It is possible to prevent the output of the 2 photoelectric conversion unit 83 from being saturated, and to suppress the decrease in focus detection accuracy.

次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
(1)実施の形態においては、図4に示すように撮像画素80の射出瞳距離PO2よりも撮影レンズ系1の射出瞳距離PO1が長い場合について説明したが、射出瞳距離PO1が短い撮影レンズ系1が装着された場合について説明する。この場合、光束851にはケラレは生じないが光束852にはケラレが生じる。このため、被写体からの光束851は、撮影レンズ系1の射出瞳領域841を通過し、撮像画素80cのマイクロレンズ81cを介して第1光電変換部82cに入射する。また、光束852がケラレることにより、光束852の一部が撮影レンズ系1の射出瞳領域842を通過し、マイクロレンズ81cを介して第2光電変換部83cに入射する。この場合に撮像素子8の周辺領域におけるケラレの影響を低減するためには、撮像素子80cの第1光電変換部82cの面積を第2光電変換部83cの面積と比べて大きくなるように構成すればよい。すなわち、図3(a)に示す撮像画素80cに代えて撮像画素80eを配列すればよい。
The following modifications are also within the scope of the present invention, and one or more of the modifications can be combined with the above-described embodiment.
(1) In the embodiment, as shown in FIG. 4, the case where the exit pupil distance PO1 of the photographing lens system 1 is longer than the exit pupil distance PO2 of the imaging pixel 80 has been described. The case where the system 1 is attached will be described. In this case, vignetting does not occur in the light flux 851, but vignetting occurs in the light flux 852. For this reason, the light flux 851 from the subject passes through the exit pupil area 841 of the imaging lens system 1, and enters the first photoelectric conversion unit 82c via the micro lens 81c of the imaging pixel 80c. In addition, when the light beam 852 is eclipsed, a part of the light beam 852 passes through the exit pupil region 842 of the photographing lens system 1 and enters the second photoelectric conversion unit 83c through the micro lens 81c. In this case, in order to reduce the influence of vignetting in the peripheral region of the imaging device 8, the area of the first photoelectric conversion unit 82c of the imaging device 80c is larger than that of the second photoelectric conversion unit 83c. Just do it. That is, the imaging pixels 80e may be arrayed in place of the imaging pixels 80c shown in FIG.

図5に、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1に対応させる場合の撮像素子8における撮像画素80の配列の例を示す。図5に示すように、撮像素子8の中心列Cからx方向+側においては、第1光電変換部82の面積は第2光電変換部83の面積よりも小さく、かつ、中心列Cからの距離に応じて第1光電変換部82の面積と第2光電変換部83の面積との差分が大きくなる。x方向−側においては、第2光電変換部83の面積は第1光電変換部82の面積よりも小さく、かつ、中心列Cからの距離に応じて第2光電変換部83の面積と第1光電変換部82の面積との差分が大きくなる。この場合も、各行において、撮像素子8の中心列Cに配列される撮像画素80では、第1光電変換部82の面積と第2光電変換部83の面積とは等しい。   FIG. 5 shows an example of the arrangement of imaging pixels 80 in the imaging element 8 in the case where the exit pupil distance PO1 corresponds to the imaging lens system 1 shorter than the exit pupil distance PO2. As shown in FIG. 5, the area of the first photoelectric conversion unit 82 is smaller than the area of the second photoelectric conversion unit 83 on the x direction + side from the central array C of the imaging element 8 and from the central array C. The difference between the area of the first photoelectric conversion unit 82 and the area of the second photoelectric conversion unit 83 increases in accordance with the distance. On the x-direction side, the area of the second photoelectric conversion unit 83 is smaller than the area of the first photoelectric conversion unit 82, and the area of the second photoelectric conversion unit 83 and the first photoelectric conversion unit 83 according to the distance from the center row C. The difference with the area of the photoelectric conversion unit 82 becomes large. Also in this case, in each row, in the imaging pixels 80 arranged in the central column C of the imaging element 8, the area of the first photoelectric conversion unit 82 is equal to the area of the second photoelectric conversion unit 83.

(2)図6に、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1と、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1とのいずれの撮影レンズ系1に対しても対応させる場合の撮像素子8の撮像画素80の配列の例を示す。この場合、図3(a)に示す構造を有する撮像画素80が配列された行(図6の行D2、D4、D6)と、図5に示す構造を有する撮像画素80が配列された行(図6の行D1、D3、D5)とがy方向に沿って交互に配置される。したがって、射出瞳距離PO1が射出瞳距離PO2よりも長い撮影レンズ系1の場合には、行D2、D4、D6に配列された撮像画素80から出力された撮像信号を使用し、射出瞳距離PO1が射出瞳距離PO2よりも短い撮影レンズ系1の場合には、行D1、D3、D5に配列された撮像画素80から出力された撮像信号を使用することにより、ケラレによる影響を低減した焦点検出を行うことが可能となる。 (2) In FIG. 6, in any of the photographing lens systems 1 of the photographing lens system 1 whose exit pupil distance PO1 is longer than the exit pupil distance PO2 and the photographing lens system 1 whose exit pupil distance PO1 is shorter than the exit pupil distance PO2. An example of arrangement of image pick-up pixel 80 of image sensor 8 in the case of making it correspond also to opposite is shown. In this case, a row in which imaging pixels 80 having the structure shown in FIG. 3A are arranged (rows D2, D4 and D6 in FIG. 6) and a row in which imaging pixels 80 having the structure shown in FIG. Rows D1, D3, D5) of FIG. 6 are alternately arranged along the y direction. Therefore, in the case of the imaging lens system 1 in which the exit pupil distance PO1 is longer than the exit pupil distance PO2, the imaging signals output from the imaging pixels 80 arranged in the rows D2, D4, and D6 are used. In the case of the imaging lens system 1 having a lens length shorter than the exit pupil distance PO2, focus detection with reduced influence of vignetting by using imaging signals output from the imaging pixels 80 arranged in the rows D1, D3, and D5. It is possible to do

(3)撮像画素80が有する第1光電変換部82と第2光電変換部83とがx方向に並んで配列されるものに代えて、第1光電変換部82と第2光電変換部とがy方向に並んで配列されるものについても本発明の一態様に含まれる。また、撮像素子8は、第1光電変換部82と第2光電変換部83とがx方向に並んで配列された撮像画素80と、第1光電変換部82と第2光電変換部83とがy方向に並んで配列された撮像画素80とが配列されたものについても本発明の一態様に含まれる。 (3) Instead of the first photoelectric conversion unit 82 and the second photoelectric conversion unit 83 included in the imaging pixel 80 being arranged side by side in the x direction, the first photoelectric conversion unit 82 and the second photoelectric conversion unit are Those arranged side by side in the y direction are also included in one embodiment of the present invention. The imaging device 8 includes an imaging pixel 80 in which a first photoelectric conversion unit 82 and a second photoelectric conversion unit 83 are arranged in the x direction, a first photoelectric conversion unit 82, and a second photoelectric conversion unit 83. An arrangement in which the imaging pixels 80 arrayed in the y direction are also included in an aspect of the present invention.

(4)図7に示すように、一対の撮像画素80の一方に第1光電変換部82が配置され、他方の撮像画素80に第2光電変換部83が配置される撮像素子8についても本発明の一態様に含まれる。この場合、撮像素子8の中心列Cに配列された一対の撮像画素80a1および80a2においては、撮像画素80a1が有する第2光電変換部83aと、撮像画素80a2が有する第1光電変換部82aとは、実質的に面積が等しい。撮像素子8の周辺部(図7においてはx方向+側)に配置された一対の撮像画素80c1および80c2においては、撮像画素80c1が有する第2光電変換部83cの面積は、撮像画素80c2が有する第1光電変換部82cの面積と比べて大きい。面積の差分は実施の形態の場合と同様に、撮像素子8の中心列Cからの距離に応じて決定される。したがって、撮像素子8が図7に示す構成を有する撮像画素80により構成される場合であっても、撮像素子8の周辺部における光束のケラレの影響を低減して入射光量を維持することができるので、焦点検出精度の低下を抑制できる。 (4) As shown in FIG. 7, the image sensor 8 in which the first photoelectric conversion unit 82 is disposed in one of the pair of imaging pixels 80 and the second photoelectric conversion unit 83 is disposed in the other imaging pixel 80 is also included. Included in one embodiment of the invention. In this case, in the pair of imaging pixels 80a1 and 80a2 arranged in the central column C of the imaging device 8, the second photoelectric conversion unit 83a included in the imaging pixel 80a1 and the first photoelectric conversion unit 82a included in the imaging pixel 80a2 are , Substantially equal in area. In the pair of imaging pixels 80c1 and 80c2 arranged in the peripheral portion (x direction + side in FIG. 7) of the imaging element 8, the area of the second photoelectric conversion unit 83c of the imaging pixel 80c1 is the area of the imaging pixel 80c2 It is larger than the area of the first photoelectric conversion unit 82c. The difference in area is determined in accordance with the distance from the center row C of the imaging element 8 as in the case of the embodiment. Therefore, even when the imaging element 8 is configured by the imaging pixel 80 having the configuration shown in FIG. 7, the influence of the vignetting of the light flux in the peripheral portion of the imaging element 8 can be reduced to maintain the incident light quantity. Therefore, the decrease in focus detection accuracy can be suppressed.

本発明の特徴を損なわない限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。   The present invention is not limited to the above embodiment as long as the features of the present invention are not impaired, and other embodiments considered within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

8…撮像素子、13…画像処理回路、14…焦点検出演算回路、
80…撮像画素、81…マイクロレンズ、82…第1光電変換部、
83…第2光電変換部、100…デジタルカメラ
8: imaging device, 13: image processing circuit, 14: focus detection arithmetic circuit,
80 ... imaging pixel, 81 ... microlens, 82 ... first photoelectric conversion unit,
83: Second photoelectric conversion unit, 100: Digital camera

Claims (14)

撮影光学系の瞳の第1の部分を通過した光を受光する複数の第1受光部と、撮影光学系の瞳の第2の部分を通過した光を受光する複数の第2受光部と、を有し、前記第1受光部及び前記第2受光部の大きさが、第1の方向の位置に応じて変化するように配置され、前記第1受光部と前記第2受光部で受光した光に基づいた信号を出力する撮像素子と、
前記撮影光学系の情報により、前記第1受光部と前記第2受光部の大きさの差が、前記第1の方向の位置に応じて第1の関係で変化する複数の前記第1受光部および複数の前記第2受光部からの前記信号と、前記第1受光部と前記第2受光部の大きさの差が、前記第1の方向の位置に応じて第2の関係で変化する複数の前記第1受光部および複数の前記第2受光部からの前記信号と、のいずれかを用いて、前記撮影光学系により形成される被写体の像の合焦状態を検出する検出部と、
を有する検出装置。
A plurality of first light receiving units that receive light passing through a first portion of the pupil of the imaging optical system; and a plurality of second light receiving units that receive light passing through a second portion of the pupil of the imaging optical system; And the sizes of the first light receiving unit and the second light receiving unit are arranged to change according to the position in the first direction, and the first light receiving unit and the second light receiving unit receive light An imaging element that outputs a signal based on light;
A plurality of the first light receiving units in which the difference in size between the first light receiving unit and the second light receiving unit changes in a first relationship according to the position in the first direction according to the information of the photographing optical system And a plurality of the signals from the plurality of second light receiving units and a difference in size between the first light receiving unit and the second light receiving unit change in a second relationship according to the position in the first direction. A detection unit that detects a focusing state of an image of an object formed by the photographing optical system using any one of the signals from the first light receiving unit and the plurality of second light receiving units;
Detecting device.
撮影光学系を通過した光が入射する第1レンズと、前記第1レンズを通過した光を受光する第1受光部と、前記第1レンズを通過した光を受光する前記第1受光部と大きさの異なる第2受光部とを有し、前記第1受光部と前記第2受光部で受光した光に基づいた信号を出力する複数の第1の画素と、前記撮影光学系を通過した光が入射する第2レンズと、前記第2レンズを通過した光を通過した光を受光する第3受光部と、前記第2レンズを通過した光を受光する前記第3受光部とは大きさの異なる第4受光部とを有し、前記第3受光部と前記第4受光部で受光した光に基づいた信号を出力する複数の第2の画素と、を備える撮像素子と、
前記撮影光学系に関する情報に基づいて、複数の前記第1の画素からの前記信号と複数の前記第2の画素からの前記信号とのいずれかを用いて、前記撮影光学系により形成される被写体の像の合焦状態を検出する検出部と、を有し、
前記複数の第1の画素の前記第1受光部と前記第2受光部との大きさの差は、前記撮像素子の第1の方向の位置に応じて第1の関係で変化し、
前記複数の第2の画素の前記第3受光部と前記第4受光部との大きさの差は、前記撮像素子の前記第1の方向の位置に応じて第2の関係で変化する検出装置。
A first lens on which light passing through a photographing optical system is incident, a first light receiving unit for receiving light passing through the first lens, and a size and a size of the first light receiving unit for receiving light passing through the first lens A plurality of first pixels having different second light receiving units and outputting a signal based on the light received by the first light receiving unit and the second light receiving unit, and the light passing through the photographing optical system A second lens on which light is incident, a third light receiving unit receiving light passing through the second lens, and a third light receiving unit receiving light passing through the second lens An imaging device having different fourth light receiving units, and including a plurality of second pixels outputting signals based on light received by the third light receiving unit and the fourth light receiving unit;
A subject formed by the photographing optical system using any one of the signals from the plurality of first pixels and the signals from the plurality of second pixels based on the information on the photographing optical system A detector for detecting the in-focus state of the
The difference in size between the first light receiving unit and the second light receiving unit of the plurality of first pixels changes in a first relationship according to the position of the imaging device in the first direction,
A detection device in which the difference in size between the third light receiving unit and the fourth light receiving unit of the plurality of second pixels changes in a second relationship according to the position of the imaging device in the first direction. .
請求項1または2に記載の検出装置において、
前記撮影光学系の関する情報は、前記撮影光学系の射出瞳距離に関する情報である検出装置。
In the detection device according to claim 1 or 2,
The detection device, wherein the information related to the photographing optical system is information on an exit pupil distance of the photographing optical system.
請求項2または、請求項2に従属する請求項3のいずれか一項に記載の検出装置において、
複数の前記第1の画素は、前記第1の方向の位置が前記撮像素子の中心から離れるに従い前記第1受光部の大きさが大きくなり、前記第1の方向の位置が前記撮像素子の中心から離れるに従い前記第2受光部の大きさが小さくなるように配置されている検出装置。
In the detection device according to any one of claims 2 or 3 depending on claim 2,
In the plurality of first pixels, the size of the first light receiving unit increases as the position in the first direction moves away from the center of the imaging device, and the position of the first direction is the center of the imaging device The detection device is disposed such that the size of the second light receiving unit decreases as the distance from the distance.
請求項2、請求項2に従属する請求項3、または請求項4のいずれか一項に記載の検出装置において、
複数の前記第2の画素は、前記第1の方向の位置が前記撮像素子の中心から離れるに従い前記第1受光部の大きさが小さくなり、前記第1の方向の位置が前記撮像素子の中心から離れるに従い前記第2受光部の大きさが大きくなるように配置されている検出装置。
The detection device according to any one of claims 3 and 4, which is dependent on claim 2 and claim 2.
In the plurality of second pixels, the size of the first light receiving unit decreases as the position in the first direction moves away from the center of the image sensor, and the position in the first direction is the center of the image sensor The detection device is disposed such that the size of the second light receiving unit increases as the distance from the distance.
請求項2、請求項2に従属する請求項3、請求項4または請求項5のいずれか一項に記載の検出装置において、
前記検出部は、前記撮影光学系の射出瞳距離が、前記撮像素子の前記第1レンズ及び前記第2レンズのパワーに基づく値よりも大きいか小さいかにより、前記第1の画素からの前記信号と前記第2の画素からの前記信号とのいずれの信号を用いるかを決定する検出装置。
In the detection device according to any one of claims 3, 4 or 5, which is subordinate to claim 2, claim 2.
The detection unit determines whether the exit pupil distance of the photographing optical system is larger or smaller than a value based on the power of the first lens and the second lens of the imaging element, the signal from the first pixel. And a detection device for determining which signal of the signal from the second pixel and the signal from the second pixel to use.
請求項6に記載の検出装置において、
前記撮像素子の前記第1レンズ及び前記第2レンズのパワーに基づく値は、前記第1受光部の位置の前記第1レンズ及び前記第2レンズに対して共役な位置に基づく値である検出装置。
In the detection device according to claim 6,
A detection device in which the value based on the power of the first lens and the second lens of the imaging element is a value based on a conjugate position of the position of the first light receiving unit with respect to the first lens and the second lens .
請求項1から7までのいずれか一項に記載の検出装置において、
前記第1受光部と前記第2受光部との大きさの差は、前記撮像素子の中心からの距離に対して線形的に変化する検出装置。
The detection device according to any one of claims 1 to 7.
The detection device in which the difference in size between the first light receiving unit and the second light receiving unit changes linearly with the distance from the center of the imaging device.
請求項1から7までのいずれか一項に記載の検出装置において、
前記第1受光部と前記第2受光部との大きさの差は、前記撮像素子の中心からの距離に対して複数個ごとに変化する検出装置。
The detection device according to any one of claims 1 to 7.
The difference in size between the first light receiving unit and the second light receiving unit varies with the distance from the center of the imaging device.
請求項1から9までのいずれか一項に記載の検出装置において、
前記検出部は、前記撮影光学系による前記被写体の像の位置と前記撮像素子の撮像面とのずれ量を算出する検出装置。
The detection device according to any one of claims 1 to 9.
The detection device calculates a shift amount between a position of an image of the subject by the imaging optical system and an imaging surface of the imaging device.
請求項10に記載の検出装置において、
前記検出部は、前記第1受光部で受光された前記被写体の像の位置と前記第2受光部で受光された前記被写体の像の位置とのずれ量を基に、前記被写体の像の位置と前記撮像素子の撮像面とのずれ量を算出する検出装置。
In the detection device according to claim 10,
The detector detects the position of the image of the subject based on the amount of deviation between the position of the image of the subject received by the first light receiver and the position of the image of the subject received by the second light receiver. And a detection device that calculates a shift amount between the image pickup surface of the image pickup device and the image pickup device.
請求項1から11までのいずれか一項に記載の検出装置と、
前記撮像素子と、を有する撮像装置。
A detection device according to any one of the preceding claims,
An imaging device having the imaging element;
請求項12に記載の撮像装置において、
前記第1受光部による前記信号と前記第2受光部による前記信号とを加算した信号に基づき画像を生成する画像生成部を有する撮像装置。
In the imaging device according to claim 12,
An image pickup apparatus having an image generation unit that generates an image based on a signal obtained by adding the signal from the first light receiving unit and the signal from the second light receiving unit.
請求項13に記載の撮像装置と、
前記撮影光学系と、を有するカメラ。
An imaging device according to claim 13;
A camera having the photographing optical system.
JP2019023651A 2014-08-07 2019-02-13 Detection device Active JP6890766B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019023651A JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device
JP2021085081A JP2021140179A (en) 2019-02-13 2021-05-20 Image pick-up element, and imaging device
JP2023205180A JP2024022636A (en) 2019-02-13 2023-12-05 Image sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014161634A JP2016038467A (en) 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device
JP2019023651A JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014161634A Division JP2016038467A (en) 2014-08-07 2014-08-07 Image pick-up element, focus detection device and imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021085081A Division JP2021140179A (en) 2019-02-13 2021-05-20 Image pick-up element, and imaging device

Publications (2)

Publication Number Publication Date
JP2019113853A true JP2019113853A (en) 2019-07-11
JP6890766B2 JP6890766B2 (en) 2021-06-18

Family

ID=67222616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019023651A Active JP6890766B2 (en) 2014-08-07 2019-02-13 Detection device

Country Status (1)

Country Link
JP (1) JP6890766B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204987A (en) * 2008-02-28 2009-09-10 Sony Corp Imaging apparatus and image pickup device
US20120268634A1 (en) * 2011-04-20 2012-10-25 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
JP2013037296A (en) * 2011-08-10 2013-02-21 Olympus Imaging Corp Image pickup apparatus and image pickup device
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204987A (en) * 2008-02-28 2009-09-10 Sony Corp Imaging apparatus and image pickup device
US20120268634A1 (en) * 2011-04-20 2012-10-25 Canon Kabushiki Kaisha Image sensor and image capturing apparatus
JP2012235444A (en) * 2011-04-20 2012-11-29 Canon Inc Image pickup device and image pickup apparatus
JP2013037296A (en) * 2011-08-10 2013-02-21 Olympus Imaging Corp Image pickup apparatus and image pickup device
JP2014048459A (en) * 2012-08-31 2014-03-17 Canon Inc Distance calculation device
JP2014135451A (en) * 2013-01-11 2014-07-24 Fujifilm Corp Solid state image pickup device

Also Published As

Publication number Publication date
JP6890766B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP4720508B2 (en) Imaging device and imaging apparatus
JP5525107B2 (en) Imaging device
JP7264192B2 (en) Imaging element and imaging device
US11297271B2 (en) Image sensor and image capture apparatus
US20060228098A1 (en) Focus detection apparatus and signal processing method for focus detection
JP5507761B2 (en) Imaging device
EP2757415B1 (en) 3d imaging device
JP5204728B2 (en) Focus detection device
JP2017032646A (en) Image-capturing device and method for controlling the same
JP2013205781A (en) Imaging apparatus
JP2015043026A (en) Image capturing device and control method therefor
JP6561437B2 (en) Focus adjustment device and imaging device
JP2009251523A (en) Correlation calculation method, correlation calculation device, focus detecting device and imaging apparatus
JP6890766B2 (en) Detection device
JP6234094B2 (en) Focus detection apparatus and imaging apparatus
JP2016038467A (en) Image pick-up element, focus detection device and imaging device
JP2009162845A (en) Imaging device, focus detecting device and imaging apparatus
JP5332384B2 (en) Correlation calculation device, focus detection device, and imaging device
JP5157525B2 (en) Imaging device
JP2024022636A (en) Image sensor
JP2019074634A (en) Imaging apparatus
JP6341668B2 (en) Imaging device
JP2009031562A (en) Light receiving element, light receiver, focus detecting device, camera
JP2018005145A (en) Imaging device
JP5464285B2 (en) Focus detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6890766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250