JP2019110206A - Water-cooled transformer - Google Patents

Water-cooled transformer Download PDF

Info

Publication number
JP2019110206A
JP2019110206A JP2017242078A JP2017242078A JP2019110206A JP 2019110206 A JP2019110206 A JP 2019110206A JP 2017242078 A JP2017242078 A JP 2017242078A JP 2017242078 A JP2017242078 A JP 2017242078A JP 2019110206 A JP2019110206 A JP 2019110206A
Authority
JP
Japan
Prior art keywords
cold plate
winding
transformer
conductive cold
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017242078A
Other languages
Japanese (ja)
Other versions
JP6527931B1 (en
Inventor
健次 森本
Kenji Morimoto
健次 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP2017242078A priority Critical patent/JP6527931B1/en
Application granted granted Critical
Publication of JP6527931B1 publication Critical patent/JP6527931B1/en
Publication of JP2019110206A publication Critical patent/JP2019110206A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

To provide a water-cooled transformer which has high cooling efficiency, and can be reduced in size.SOLUTION: A water-cooled transformer is structured by: a transformer main body; and a conductive cold plate provided onto a bottom surface of the transformer main body. A median point tap of a secondary winding of the transformer main body is electrically and thermally connected to the conductive cold plate. In the transformer main body, a heating coil wound to a primary winding and the secondary winding through an insulation sheet is provided, and a terminal of the heating coil is thermally connected to the conductive cold plate.SELECTED DRAWING: Figure 2

Description

この発明は、溶接機、メッキ用電源など、二次側定格出力電流が数十〜数百アンペア程度の電源に使用され、小型で冷却効率の高い水冷式変圧器に関する。   The present invention relates to a small-sized water-cooled transformer having a high cooling efficiency, which is used for a power source such as a welding machine, a plating power source, etc., with a secondary side rated output current of about several tens to several hundreds of amperes.

上記のような電源に使用される低損失の小型の変圧器を設計しようとすると、変圧器の巻線に流れる電流による発熱量が無視出来ない程度となるため、一般に冷却を必要とする。冷却には空冷用ファンを使った強制空冷方式や冷却用媒体(水等)を使って熱交換を行う水冷方式があるが、後者の方が冷却効率は高い。そこで、従来は、水冷方式として、例えば、二次側巻線間に冷却用媒体(水等)の通路を配置する構造が提案されていた(特許文献1)。また、内部に冷却用媒体(水等)を循環させるようにした導電性コールドプレートを、変圧器本体とは別に一次側巻線と二次側巻線にそれぞれ対応して配置し、各巻線を、対応する導電性コールドプレートに直接接続する方法が提案されていた(特許文献2)。   When designing a low-loss small-sized transformer used for the above power source, cooling is generally required because the amount of heat generated by the current flowing through the transformer winding can not be ignored. There are two methods of cooling: a forced air cooling method using an air cooling fan and a water cooling method in which heat exchange is performed using a cooling medium (such as water), but the latter has higher cooling efficiency. Therefore, conventionally, as a water cooling system, for example, a structure has been proposed in which a passage for a cooling medium (water or the like) is disposed between secondary side windings (Patent Document 1). In addition, a conductive cold plate in which a cooling medium (water or the like) is circulated inside is disposed separately from the transformer main body in correspondence with the primary side winding and the secondary side winding, and each winding is A method of direct connection to the corresponding conductive cold plate has been proposed (Patent Document 2).

上記いずれも、変圧器の運転時に発熱する巻線を、水などの冷却用媒体を使って直接冷却するため冷却効率が高い。   In any of the above, the cooling efficiency is high because the winding that generates heat during operation of the transformer is directly cooled using a cooling medium such as water.

特開2008−177184号公報JP, 2008-177184, A 特開平10−41145号公報JP 10-41145 A

しかしながら、特許文献1のように、二次側巻線間に冷却用媒体(水等)の通路を配置する構造は、変圧器全体の大型化を避けられず、また、変圧器本体の設計が複雑化するのを避けられない。また、特許文献2のように、一次側巻線と二次側巻線をそれぞれ導電性コールドプレートに電気的熱的に接続する構造では、導電性コールドプレートを2つ設けることが必要であるため、小型化・コスト面で不利になるとともに、各コールドプレート間の絶縁処理が必要となる等、全体の構造が複雑となる。   However, as in Patent Document 1, the structure in which the passage for the cooling medium (water or the like) is disposed between the secondary side windings can not avoid the upsizing of the entire transformer, and the design of the transformer main body It can not avoid becoming complicated. Further, as in Patent Document 2, in the structure in which the primary winding and the secondary winding are electrically and thermally connected to the conductive cold plate, respectively, it is necessary to provide two conductive cold plates. In addition to being disadvantageous in terms of size reduction and cost, the entire structure becomes complicated because insulation between cold plates is required.

この発明の目的は、冷却効率が高く、かつ小型化が可能な水冷式変圧器を提供することにある。   An object of the present invention is to provide a water-cooled transformer which has a high cooling efficiency and can be miniaturized.

この発明の水冷式変圧器は、変圧器本体の二次側巻線が中点タップを備えたものであり、前記変圧器本体の底面には表面が導電性金属板で構成された導電性コールドプレートが配置される。また、前記変圧器本体の一次側巻線と二次側巻線間に絶縁シートを介して巻回された放熱コイルが設けられる。   In the water-cooled transformer according to the present invention, the secondary winding of the transformer body is provided with a center point tap, and the bottom surface of the transformer body is a conductive cold plate whose surface is made of a conductive metal plate. The plate is placed. In addition, a radiation coil wound around the primary winding and the secondary winding of the transformer body via an insulating sheet is provided.

前記中点タップが前記コールドプレートの表面に電気的熱的に接続され、前記放熱コイルの端子は前記導電性コールドプレートに熱的に接続される。電気的熱的に接続されるとは、絶縁シート等を介さずに電気的に導通するように直接接続されることを意味し、熱的に接続されるとは、熱伝導されるように接続されることを意味し、直接接続されるパターンと、絶縁シート等の中間物を介して間接的に接続されるパターンを含む。   The midpoint tap is electrically and thermally connected to the surface of the cold plate, and the terminal of the heat dissipation coil is thermally connected to the conductive cold plate. The term "electrically connected" means connected directly so as to electrically conduct without an insulating sheet or the like, and "connected thermally" means connected so as to conduct heat. It means that the pattern is directly connected and the pattern indirectly connected via an intermediate such as an insulating sheet.

上記構成の水冷式変圧器では、二次側巻線の一方の端子である(基準電位となる端子等)中点タップが導電性コールドプレートの表面に絶縁シート等を介さずに直接接続され、一次側巻線と二次側巻線間に絶縁シートを介して巻回された放熱コイルが導電性コールドプレートの表面に直接(電気的に導通するように)又は間接(絶縁シートなどを介して)に熱的接続される。放熱コイルは、巻線間で絶縁シートにより絶縁されているため、電位的にはニュートラルである。   In the water-cooled transformer of the above configuration, the midpoint tap which is one terminal of the secondary winding (a terminal serving as a reference potential or the like) is directly connected to the surface of the conductive cold plate without an insulating sheet or the like, The radiation coil wound between the primary side winding and the secondary side winding via the insulating sheet is directly (electrically conductive) or indirect (through the insulating sheet etc.) to the surface of the conductive cold plate Thermally connected to). The heat dissipating coil is electrically isolated by the insulating sheet between the windings, and thus, is potentially neutral.

導電性コールドプレートの表面は二次側巻線の一方の端子の電位(グランド電位である基準電位等)となる。変圧器運転中に二次側巻線には大電流が流れ、この巻線自身とコアに発した熱(ジュール熱)は、導電性コールドプレート内の冷却用媒体と熱交換が行われることにより放熱される。また、変圧器本体の一次側巻線と二次側巻線間に絶縁シートを介して巻回された放熱コイルにも、一次側巻線、二次側巻線、コアから伝熱されるため、この熱が熱的接続された導電性コールドプレートにより放熱される。   The surface of the conductive cold plate is a potential (such as a reference potential which is a ground potential) of one terminal of the secondary winding. A large current flows through the secondary winding during transformer operation, and heat (Joule heat) generated in the winding itself and the core is exchanged with the cooling medium in the conductive cold plate. Heat is dissipated. In addition, the heat dissipation coil wound between the primary side winding and the secondary side winding of the transformer body via the insulating sheet is also thermally transferred from the primary side winding, the secondary side winding, and the core, This heat is dissipated by the thermally connected conductive cold plate.

この発明では、巻線間に冷却用媒体の通路を設けないため、変圧器が大型化しない。また、二次側巻線を導電性コールドプレートの表面に電気的熱的に接続するため、二次側巻線から導電性コールドプレートまでの放熱抵抗が最小となり、放熱効果が高くなる。また、一次巻線と二次巻線間に絶縁シートを介して巻回された放熱コイルも導電性コールドプレートの表面に熱的に接続するため、一次側巻線や二次側巻線自身で発熱する熱や、コアに発した熱など変圧器内の熱を補助的に放熱出来る。   In the present invention, the transformer is not increased in size because the cooling medium passage is not provided between the windings. Also, since the secondary winding is electrically and thermally connected to the surface of the conductive cold plate, the heat radiation resistance from the secondary winding to the conductive cold plate is minimized, and the heat radiation effect is enhanced. Also, the heat radiation coil wound between the primary winding and the secondary winding via the insulating sheet is also thermally connected to the surface of the conductive cold plate, so the primary winding and the secondary winding itself The heat in the transformer, such as the heat that generates heat and the heat generated in the core, can be dissipated auxiliaryly.

この発明の実施形態の水冷式変圧器が使用される電源の回路図Circuit diagram of a power supply using a water-cooled transformer according to an embodiment of the present invention 変圧器の概略外観図Outline view of transformer 変圧器の正面図Front view of transformer 変圧器本体の概略断面図Schematic cross section of transformer body 変圧器の巻線回路図Transformer winding circuit diagram 変圧器の巻線一部断面図Transformer winding partial sectional view 一次側放熱コイルの展開図Development view of primary side radiation coil 二次側巻線の展開図Development view of secondary side winding

図1は、この発明の実施形態の水冷式変圧器が使用される電源の回路図である。   FIG. 1 is a circuit diagram of a power supply in which the water-cooled transformer of the embodiment of the present invention is used.

この電源は、水冷式変圧器(以下、変圧器)1の一次側にインバータ回路2が接続され、二次側に負荷3が接続されている。変圧器1の二次側巻線は二次側巻線出力端子d、fと二次側巻線中点タップeを備え、二次側巻線中点タップeを基準電位(グランド電位)とし、二次側巻線出力端子d、fの出力を整流する二相半波整流回路4が接続されている。変圧器1の一次側巻線は一次側巻線入力端子a、cと一次側巻線中点タップbを備え、インバータ回路2の出力がこの一次側巻線入力端子a、cに入力する。   In this power supply, an inverter circuit 2 is connected to the primary side of a water-cooled transformer (hereinafter, transformer) 1 and a load 3 is connected to the secondary side. The secondary winding of the transformer 1 includes secondary winding output terminals d and f and a secondary winding midpoint tap e, and the secondary winding midpoint tap e is set as a reference potential (ground potential). A two-phase half-wave rectifier circuit 4 is connected which rectifies the outputs of the secondary side winding output terminals d, f. The primary winding of the transformer 1 includes primary winding input terminals a and c and a primary winding midpoint tap b, and the output of the inverter circuit 2 is input to the primary winding input terminals a and c.

図2は、変圧器1の概略外観図である。   FIG. 2 is a schematic external view of the transformer 1.

変圧器1は、変圧器本体10と、変圧器本体10の底部に設けられた、一般にコールドプレートと称される導電性コールドプレート11とを備えている。導電性コールドプレート11は、全体が平板状であって、外表面が熱伝導率の大きい銅またはアルミ等の導電性金属で構成され、その内面には水等の冷却用媒体が電気的に絶縁されて収納されている。電気的に絶縁する構造としては、例えばコールドプレート内壁面を電気的絶縁シート被膜で覆ったり、コールドプレートの内壁を熱伝導率の大きいアルマイト等の絶縁体で構成することが考えられる。   The transformer 1 includes a transformer body 10 and a conductive cold plate 11 provided at the bottom of the transformer body 10 and generally referred to as a cold plate. The whole of the conductive cold plate 11 is flat and the outer surface is made of a conductive metal such as copper or aluminum having a large thermal conductivity, and a cooling medium such as water is electrically insulated on the inner surface thereof. It has been stored. As an electrically insulating structure, for example, it is conceivable to cover the inner wall surface of the cold plate with an electrically insulating sheet film, or to configure the inner wall of the cold plate with an insulator such as alumite having a large thermal conductivity.

導電性コールドプレート11の前面側部には冷却用媒体である水の入力部11aと出力部11bが設けられ、これらの入出力部に金属製の冷却用媒体パイプ12(12a、12b)が接続され、冷却用媒体パイプ12は図外の冷却水循環装置に接続されている。冷却用の水は、冷却用媒体パイプ12aから入力部11aに入力し、変圧器本体10で発熱した熱をコールドプレート11内の水が吸熱することで熱変換される。熱変換により暖められた水は出力部11bから冷却用媒体パイプ12bに出力される。冷却用媒体パイプ12b内の暖められた水は冷却水循環装置内で冷却されて再び冷却用媒体パイプ12aから入力部11aに入力される。   An input portion 11a and an output portion 11b of water as a cooling medium are provided on a front side portion of the conductive cold plate 11, and a metal cooling medium pipe 12 (12a, 12b) is connected to these input / output portions. The cooling medium pipe 12 is connected to a cooling water circulation system (not shown). The water for cooling is input from the cooling medium pipe 12a to the input unit 11a, and the heat generated by the transformer main body 10 is converted into heat by the heat in the water in the cold plate 11. The water warmed by the thermal conversion is output from the output unit 11 b to the cooling medium pipe 12 b. The warmed water in the cooling medium pipe 12b is cooled in the cooling water circulation system and is again input from the cooling medium pipe 12a to the input unit 11a.

本実施形態では、入力部11aと出力部11bは、樹脂等の電気的絶縁性材料で構成され、冷却用媒体パイプ12a、12bと導電性コールドプレート11とを絶縁している。   In the present embodiment, the input portion 11 a and the output portion 11 b are made of an electrically insulating material such as resin, and insulate the cooling medium pipes 12 a and 12 b from the conductive cold plate 11.

導電性コールドプレート11の表面には、銅製のブスバー5の一端5aが接続されている。このブスバー5の他端5bは負荷が接続される端子部6に接続されている。   One end 5 a of a copper bus bar 5 is connected to the surface of the conductive cold plate 11. The other end 5b of the bus bar 5 is connected to a terminal 6 to which a load is connected.

変圧器本体10は、一次側巻線、二次側巻線の他に、後述する放熱コイルが、それらの一次側巻線、二次側巻線と絶縁されて巻回されている。二次側巻線中点タップeと、放熱コイルの端子g1,g2は、導電性コールドプレート11の表面に電気的に導通するようにネジで固定されている。   In the transformer main body 10, in addition to the primary side winding and the secondary side winding, a heat radiation coil described later is insulated from the primary side winding and the secondary side winding and wound. The secondary side winding center point tap e and the terminals g1 and g2 of the heat radiation coil are fixed to the surface of the conductive cold plate 11 by screws so as to be electrically conducted.

図3、図4は、それぞれ変圧器の正面図、変圧器本体の概略断面図を示している。また、図5は変圧器の巻線回路図、図6は巻線の一部断面図を示している。図7、図8は、それぞれ放熱コイル、二次側巻線の展開図(図7(A)、図8(A))と側面図(図7(B)、図8(B))を示している。   3 and 4 show a front view of the transformer and a schematic cross-sectional view of the transformer body, respectively. Further, FIG. 5 shows a winding circuit diagram of the transformer, and FIG. 6 shows a partial sectional view of the winding. 7 and 8 show a developed view (Fig. 7 (A) and Fig. 8 (A)) and a side view (Fig. 7 (B) and Fig. 8 (B)) of the heat radiation coil and the secondary side winding, respectively. ing.

変圧器本体10は、周知のEコア100の2つを対向配置させ、その内側にボビン101を配置し、ボビン101に銅製の一次側巻線NP1、NP2と二次側巻線NS1、NS2とを巻回することで構成される。変圧器本体10のEコア100の外側は金属カバー102で覆われ、この金属カバー102は、シリコン等の絶縁放熱シート103を介して、導電性コールドプレート11の表面にネジ104、105により取付けられている。   The transformer body 10 has two well-known E-cores 100 disposed opposite to each other, and the bobbin 101 is disposed on the inside, and the copper primary side windings NP1 and NP2 and the secondary side windings NS1 and NS2 on the bobbin 101 It consists of winding. The outer side of the E core 100 of the transformer main body 10 is covered with a metal cover 102, and the metal cover 102 is attached to the surface of the conductive cold plate 11 by screws 104 and 105 through an insulating heat dissipating sheet 103 such as silicon. ing.

また、変圧器本体10の上部には、一次側巻線入力端子a、c、一次側巻線中点タップbと、二次側巻線出力端子d、fが露出し、変圧器本体10の下部には、二次側巻線中点タップeが露出している。二次側巻線中点タップeは、その露出した部分でL字型に折り曲げられて、ネジ106により導電性コールドプレート11の表面に電気的に導通するように固定されている。電気的に導通するように固定されていることにより、この部分は、電気的熱的に接続されている構造となる。L字型に折り曲げられた部分は少なくとも数センチの長さに設定されて、この部分が導電性コールドプレート11の表面に密着するように固定されている。これにより、二次側巻線中点タップeと導電性コールドプレート11の表面との電気的及び熱的な抵抗は限りなく小さく出来る。   Further, the primary side winding input terminals a and c, the primary side winding middle point tap b, and the secondary side winding output terminals d and f are exposed in the upper part of the transformer body 10, and At the lower part, the secondary side winding center point tap e is exposed. The secondary winding middle point tap e is bent in an L-shape at the exposed portion thereof and fixed so as to be electrically conducted to the surface of the conductive cold plate 11 by means of a screw 106. By being fixed so as to be electrically conductive, this portion becomes a structure that is electrically and thermally connected. The portion bent in an L shape is set to a length of at least several centimeters, and this portion is fixed so as to be in close contact with the surface of the conductive cold plate 11. As a result, the electrical and thermal resistance between the secondary winding center point tap e and the surface of the conductive cold plate 11 can be made as small as possible.

本実施形態では、後述するように一次側巻線と二次側巻線との間に絶縁された状態で放熱コイル111(111a、111b)が巻回されている(図6、図7)。この放熱コイル111の端子g1、g2が変圧器本体10の下部に露出し、その露出した部分でL字型に折り曲げられて、ネジ113により導電性コールドプレート11の表面に熱的に接続されるように固定されている。   In the present embodiment, the radiation coil 111 (111a, 111b) is wound in a state of being insulated between the primary winding and the secondary winding as described later (FIG. 6, FIG. 7). The terminals g1 and g2 of the heat dissipating coil 111 are exposed at the lower part of the transformer main body 10, bent in an L shape at the exposed portion, and thermally connected to the surface of the conductive cold plate 11 by a screw 113. As fixed.

図6に示すように、変圧器本体10には、一次側巻線NP1、NP2と二次側巻線NS1、NS2がそれぞれ絶縁を確保してボビン101に巻回されている。すなわち、ボビン101の内側から、NP1、NS1、NS2、NP2の順に絶縁シートであるプリプレグ107〜110を介してボビン101に巻回されている。本実施形態では、さらに放熱コイル111(111a、111b)がプリプレグによって絶縁された状態でボビン101に巻回されている。   As shown in FIG. 6, in the transformer main body 10, the primary side windings NP1 and NP2 and the secondary side windings NS1 and NS2 are respectively wound around the bobbin 101 with securing insulation. That is, from the inside of the bobbin 101, NP1, NS1, NS2, and NP2 are wound around the bobbin 101 via the prepregs 107 to 110 which are insulating sheets in this order. In the present embodiment, the heat radiation coil 111 (111a, 111b) is further wound around the bobbin 101 in a state of being insulated by the prepreg.

より詳細には、一次側巻線NP1と二次側巻線NS1との間にはプリプレグ107が二重に巻回され、二次側巻線NS1とNS2間にはプリプレグ108が巻回され、二次側巻線NS2と一次側巻線NP2との間にはプリプレグ109が二重に巻回され、一次側巻線NP2の外側にはプリプレグ110が巻回されている。また、放熱コイル111aは二重のプリプレグ107の間に巻回され、放熱コイル111bは二重のプリプレグ109の間に巻回されている。   More specifically, the prepreg 107 is doubly wound between the primary side winding NP1 and the secondary side winding NS1, and the prepreg 108 is wound between the secondary side windings NS1 and NS2, The prepreg 109 is doubly wound between the secondary winding NS2 and the primary winding NP2, and the prepreg 110 is wound outside the primary winding NP2. Further, the heat radiation coil 111 a is wound between the double prepregs 107, and the heat radiation coil 111 b is wound between the double prepregs 109.

さらに、各巻線及び放熱コイル111(111a、111b)と、ボビン101の側壁面101a、101bとの間には、絶縁を図るための空隙112a、112bが形成されている。   Further, air gaps 112 a and 112 b for insulation are formed between the windings and the heat radiation coils 111 (111 a and 111 b) and the side wall surfaces 101 a and 101 b of the bobbin 101.

放熱コイル111は、一次側巻線NP1、NP2等と同様に銅製で構成されるが、熱伝導特性が良くて、軽量、加工容易なアルミニウム等で構成することも可能である。また、必ずしも電気的な導電性がなくても良く、熱伝導特性の良好なアルマイト等で構成することも可能である。   The heat dissipating coil 111 is made of copper in the same manner as the primary side windings NP1, NP2, etc. However, the heat dissipating coil 111 may be made of aluminum or the like which has good heat conductivity and is lightweight and easy to process. Moreover, it does not necessarily have to have electrical conductivity, and it can be made of alumite or the like having a good thermal conductivity.

なお、図6では、各巻線、放熱コイル、各プリプレグ等の間に隙間が示されているが、実際は密着させてある。   In FIG. 6, gaps are shown between the windings, the heat radiation coils, the prepregs, etc., but in practice they are in close contact.

図3に示すように、放熱コイル111の端子g1、g2は、その露出した部分でL字型に折り曲げられて、ネジ113により導電性コールドプレート11の表面に直接接続されている。端子g1、g2のL字型に折り曲げられた部分は少なくとも数センチの長さに設定されて、この部分が導電性コールドプレート11の表面に密着するように固定されている。これにより、放熱コイル111の端子g1、g2と導電性コールドプレート11の表面との熱的な抵抗は限りなく小さく出来る。端子g1、g2は、ネジ113により導電性コールドプレート11の表面に直接接続されているため、二次側巻線中点タップeと同様に、導電性コールドプレート11との接続では熱的な抵抗も限りなく小さく出来る。なお、端子g1、g2は、シリコン等の絶縁放熱シートを介して間接的に導電性コールドプレート11に固定しても良い。この場合でも、端子g1、g2は導電性コールドプレート11に熱的に接続される。   As shown in FIG. 3, the terminals g1 and g2 of the heat radiation coil 111 are bent in an L-shape at the exposed portions, and are directly connected to the surface of the conductive cold plate 11 by screws 113. The L-shaped portions of the terminals g1 and g2 are set to have a length of at least several centimeters, and the portions are fixed in close contact with the surface of the conductive cold plate 11. As a result, the thermal resistance between the terminals g1 and g2 of the heat radiation coil 111 and the surface of the conductive cold plate 11 can be made as small as possible. The terminals g1 and g2 are directly connected to the surface of the conductive cold plate 11 by the screws 113. Therefore, like the secondary side winding middle point tap e, the thermal resistance in the connection with the conductive cold plate 11 It can be made as small as possible. The terminals g1 and g2 may be fixed to the conductive cold plate 11 indirectly via an insulating heat dissipating sheet such as silicon. Also in this case, the terminals g1 and g2 are thermally connected to the conductive cold plate 11.

本実施形態では、一次側巻線NP1、NP2は、各6ターン、二次側巻線NS1、NS2は、各1ターンで、二次側巻線NS1、NS2は銅板4枚を重ね合わせて構成されている。図8に示すように、二次側巻線NS1、NS2は、二次側巻線出力端子d、fが上部に設けられ、二次側巻線中点タップeが下部中央部に設けられ、長さは1ターン分である。また、図7に示すように、放熱コイル111a、111bそれぞれは、その下部に端子g1、g2が設けられ、それぞれの長さは1ターン分である。   In the present embodiment, the primary side windings NP1 and NP2 have six turns each, the secondary side windings NS1 and NS2 have one turn each, and the secondary side windings NS1 and NS2 have four copper plates superimposed on each other. It is done. As shown in FIG. 8, the secondary side windings NS1 and NS2 are provided with secondary side winding output terminals d and f at the top, and a secondary side winding midpoint tap e is provided at the lower center portion, The length is one turn. Further, as shown in FIG. 7, each of the heat radiation coils 111 a and 111 b is provided with the terminals g 1 and g 2 at the lower part thereof, and each length is one turn.

変圧器本体10は、以上のように構成されているため、大電流の流れる二次側巻線NS1、NS2は、導電性コールドプレート11の表面に直接接続されることによって、放熱効果が極めて良い。また、導電性コールドプレート11の表面は、銅またはアルミ等の導電性金属で構成され、面積も広いため、この部分での電気的抵抗は非常に小さく、ブスバー5の接続位置までの距離が長くても損失は小さい。したがって、ブスバー5の一端5aの接続位置は制限されることがなく設計が容易となる。   Since the transformer body 10 is configured as described above, the secondary side windings NS1 and NS2 through which a large current flows are directly connected to the surface of the conductive cold plate 11, whereby the heat dissipation effect is extremely good. . Further, the surface of conductive cold plate 11 is made of a conductive metal such as copper or aluminum, and the area is wide, so the electrical resistance at this portion is very small and the distance to the connection position of bus bar 5 is long Even the loss is small. Therefore, the connection position of the one end 5a of the bus bar 5 is not limited and the design is easy.

本実施形態では、一次側巻線NP1と二次側巻線NS1間に、及び一次側巻線NP2と二次側巻線NS2間に、絶縁シートであるプリプレグ107及び109を介して放熱コイル111a、111bを巻回し、放熱コイル111a、111bの端子g1、g2を導電性コールドプレート11の表面に熱的に接続している。これにより、放熱コイル111a、111bも変圧器本体内の熱(巻線で生じる熱やコアで生じる熱)を放熱するため、変圧器全体の放熱効果がさらに高まる。さらに、本実施形態では放熱コイル111a、111bを絶縁シートを介さずに導電性コールドプレート11の表面に直接取り付けているため、放熱性がより一層高まる。   In this embodiment, the radiation coil 111a is interposed between the primary side winding NP1 and the secondary side winding NS1 and between the primary side winding NP2 and the secondary side winding NS2 via the prepregs 107 and 109 which are insulating sheets. , 111 b, and thermally connect the terminals g 1 and g 2 of the heat radiation coils 111 a and 111 b to the surface of the conductive cold plate 11. As a result, the heat dissipating coils 111a and 111b also dissipate heat in the transformer main body (heat generated in the windings and heat generated in the core), thereby further enhancing the heat dissipation effect of the entire transformer. Furthermore, in the present embodiment, since the heat radiation coils 111a and 111b are directly attached to the surface of the conductive cold plate 11 without the intervention of the insulating sheet, the heat radiation performance is further enhanced.

また、導電性コールドプレート11は、変圧器本体10の下部に取付けられる、全体として平板状であることから、変圧器1の全体の大型化を避けることが出来、さらに、変圧器本体10内に冷却用媒体の通路を設ける必要がないため変圧器全体の設計が容易である。   Moreover, since the conductive cold plate 11 is attached to the lower part of the transformer main body 10 and is generally flat, the overall enlargement of the transformer 1 can be avoided, and furthermore, in the transformer main body 10 The overall design of the transformer is easy because it is not necessary to provide a cooling medium passage.

1−変圧器
10−変圧器本体
11−導電性コールドプレート
107〜110−プリプレグ(絶縁シート)
111(111a、111b)−放熱コイル
NP1、NP2−一次側巻線
NS1、NS2−二次側巻線
e−二次側巻線の中点タップ
1-Transformer 10-Transformer body 11-Conductive cold plate 107-110-Prepreg (insulation sheet)
111 (111a, 111b)-radiating coil NP1, NP2-primary winding NS1, NS2-secondary winding e-midpoint tap of secondary winding

Claims (4)

一次側巻線と二次側巻線が巻回された変圧器本体と、
表面が導電性金属板で構成され、内部に電気的に絶縁された冷却用媒体が循環する導電性コールドプレートと、を備え、
前記導電性コールドプレートは、前記変圧器本体の底面に設けられ、
前記変圧器本体は、前記一次側巻線と二次側巻線間に絶縁シートを介して巻回された放熱コイルを備え、
前記二次側巻線の一方の端子は前記導電性コールドプレートの表面に電気的熱的に接続され、前記放熱コイルの端子は前記導電性コールドプレートの表面に熱的に接続された水冷式変圧器。
A transformer body on which a primary winding and a secondary winding are wound;
A conductive cold plate whose surface is made of a conductive metal plate and in which an electrically insulated cooling medium is circulated;
The conductive cold plate is provided on the bottom of the transformer body,
The transformer body includes a heat dissipation coil wound between the primary side winding and the secondary side winding via an insulating sheet.
One terminal of the secondary winding is electrically and thermally connected to the surface of the conductive cold plate, and the terminal of the heat dissipation coil is thermally connected to the surface of the conductive cold plate. vessel.
前記二次側巻線の一方の端子は、L形状に折り曲げられ、折り曲げられた平板部が前記導電性コールドプレートの表面に密着するようにして固定されている請求項1記載の水冷式変圧器。   The water-cooled transformer according to claim 1, wherein one of the terminals of the secondary winding is bent into an L shape and fixed so that the bent flat portion is in close contact with the surface of the conductive cold plate. . 前記導電性コールドプレートの冷却用媒体入出力部が冷却用媒体パイプと絶縁されている、請求項1または2記載の水冷式変圧器。   The water cooled transformer according to claim 1 or 2, wherein the cooling medium input / output portion of the conductive cold plate is insulated from the cooling medium pipe. 前記二次側巻線は中点タップを備え、前記二次側巻線の一方の端子が前記中点タップである、請求項1〜3のいずれかに記載の水冷式変圧器。   The water-cooled transformer according to any one of claims 1 to 3, wherein the secondary winding includes a midpoint tap, and one terminal of the secondary winding is the midpoint tap.
JP2017242078A 2017-12-18 2017-12-18 Water-cooled transformer Active JP6527931B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017242078A JP6527931B1 (en) 2017-12-18 2017-12-18 Water-cooled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017242078A JP6527931B1 (en) 2017-12-18 2017-12-18 Water-cooled transformer

Publications (2)

Publication Number Publication Date
JP6527931B1 JP6527931B1 (en) 2019-06-12
JP2019110206A true JP2019110206A (en) 2019-07-04

Family

ID=66821678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017242078A Active JP6527931B1 (en) 2017-12-18 2017-12-18 Water-cooled transformer

Country Status (1)

Country Link
JP (1) JP6527931B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199206A (en) * 2019-06-13 2020-12-17 株式会社三共 Game machine
JP2020199205A (en) * 2019-06-13 2020-12-17 株式会社三共 Game machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216408A (en) * 1982-06-08 1983-12-16 アロ Transformer, particularly voltage dropping unit for electric welding machine
JPH10106849A (en) * 1996-09-25 1998-04-24 Sansha Electric Mfg Co Ltd Water-cooled transformer
JP2008028163A (en) * 2006-07-21 2008-02-07 Mitsubishi Materials Corp Power module device
JP2015230914A (en) * 2014-06-03 2015-12-21 日産自動車株式会社 Transformer
JP2016219612A (en) * 2015-05-21 2016-12-22 三菱電機株式会社 Electromagnetic induction equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58216408A (en) * 1982-06-08 1983-12-16 アロ Transformer, particularly voltage dropping unit for electric welding machine
JPH10106849A (en) * 1996-09-25 1998-04-24 Sansha Electric Mfg Co Ltd Water-cooled transformer
JP2008028163A (en) * 2006-07-21 2008-02-07 Mitsubishi Materials Corp Power module device
JP2015230914A (en) * 2014-06-03 2015-12-21 日産自動車株式会社 Transformer
JP2016219612A (en) * 2015-05-21 2016-12-22 三菱電機株式会社 Electromagnetic induction equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199206A (en) * 2019-06-13 2020-12-17 株式会社三共 Game machine
JP2020199205A (en) * 2019-06-13 2020-12-17 株式会社三共 Game machine

Also Published As

Publication number Publication date
JP6527931B1 (en) 2019-06-12

Similar Documents

Publication Publication Date Title
JP6055306B2 (en) Reactor
US7956714B2 (en) High voltage transformer
JP6227446B2 (en) Transformer and power converter using the same
JP6158051B2 (en) Power converter
JP2015198181A (en) Coil component and heat dissipation structure thereof
JP6527931B1 (en) Water-cooled transformer
JP4775108B2 (en) Power electronics
JP2016219612A (en) Electromagnetic induction equipment
JP2013150414A (en) Transformer and switching power supply device
JP6305637B2 (en) Isolated buck converter
JP2011139602A (en) Base plate structure and power supply device
JP6307449B2 (en) Trance
JP2018148176A (en) Power conversion equipment
JP5896928B2 (en) Coil device
JP5342623B2 (en) Switching power supply
JP2015216209A (en) Electronic apparatus
JP2019106487A (en) Film capacitor module
JP2008186904A (en) Reactor and air conditioner
JP6213356B2 (en) Power supply
KR20140055603A (en) Water cooling type mold transformer
JP2000012340A (en) Water-cooled transformer and high-frequency induction heating device using it
JP2019079838A (en) Transformer device
JP7410416B2 (en) winding equipment
JP6805478B2 (en) Power supply
JP5566418B2 (en) Heating device with cooler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190513

R150 Certificate of patent or registration of utility model

Ref document number: 6527931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250