JP2019106910A - Growth state measuring apparatus of crops being cultivated - Google Patents

Growth state measuring apparatus of crops being cultivated Download PDF

Info

Publication number
JP2019106910A
JP2019106910A JP2017241413A JP2017241413A JP2019106910A JP 2019106910 A JP2019106910 A JP 2019106910A JP 2017241413 A JP2017241413 A JP 2017241413A JP 2017241413 A JP2017241413 A JP 2017241413A JP 2019106910 A JP2019106910 A JP 2019106910A
Authority
JP
Japan
Prior art keywords
light
amount
irradiation
emitting diodes
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017241413A
Other languages
Japanese (ja)
Other versions
JP6677946B2 (en
Inventor
中村 新
Shin Nakamura
新 中村
晋 水原
Susumu Mizuhara
晋 水原
琢哉 長
Takuya Cho
琢哉 長
治彦 鷲田
Haruhiko Washida
治彦 鷲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORGANIC NICO KK
Original Assignee
ORGANIC NICO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORGANIC NICO KK filed Critical ORGANIC NICO KK
Priority to JP2017241413A priority Critical patent/JP6677946B2/en
Priority to CN201811323453.2A priority patent/CN109932366B/en
Publication of JP2019106910A publication Critical patent/JP2019106910A/en
Application granted granted Critical
Publication of JP6677946B2 publication Critical patent/JP6677946B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a growth state measuring apparatus of crops being cultivated for continuously measuring a nutritional state of plants in a non-contact and nondestructive manner at a cultivation site such as an open field or in a house, to crops being cultivated which are in a growth stage before harvest.SOLUTION: A growth state measuring apparatus for crops being cultivated comprises: a light source 11; a light emission control part 12; a light measuring/receiving part 13; a light reception control part 14; and an operation part 15. A plant 1 is a crop being cultivated in a growth state before harvest, measurement portions 1a, 1b, 1c are any of a stem, peduncle and petiole, at the operation part 15, arithmetic processing is performed using a difference between a light reception signal in light emission time by detected light at a radiation timing of the light source 11 and a non-light emission time light reception signal by the detected light immediately before or after the radiation timing.SELECTED DRAWING: Figure 1

Description

本発明は、収穫前の生育段階にある栽培中作物の生育状態測定装置に関する。   The present invention relates to an apparatus for measuring the growth state of a growing crop in a growth stage before harvest.

野菜栽培の自動制御に必要な情報である、温度・湿度・日射量・土中水分量などをリアルタイムで連続測定するセンサ装置には、既に様々な手段が提案され、製品化されてきた。
しかしながら、生育状況をリアルタイムに把握する為に必要な、作物内の栄養状態に関しては、栽培現場で測定する機器・手段が無く、サンプルを採集しての破壊試験ないしは、果実・野菜を収穫した後の結果測定に留まっていた。
そのため、栽培管理時の栄養状態の調整(灌水・追肥など)は、作業者の経験に頼った属人的な作業を余儀なくされてきた。
また、目的は異なるがサンプリングされた試料中の成分分析を、分光計測によって非接触・非破壊で実施する方法が提案されている(例えば特許文献1)。
Various means have already been proposed and commercialized as sensor devices that continuously measure in real time temperature, humidity, solar radiation, soil moisture, etc., which are information necessary for automatic control of vegetable cultivation.
However, regarding the nutritional status in the crop necessary for grasping the growth status in real time, there is no device or means to measure at the cultivation site, and after the destruction test by collecting the sample or after harvesting the fruits and vegetables The results were still measured.
Therefore, adjustment of the nutritional status at the time of cultivation management (such as irrigation and fertilization) has been forced to carry out personal work that relied on the experience of the workers.
In addition, a method has been proposed in which component analysis in a sampled sample, which has a different purpose, is carried out by non-contact and non-destructive by spectroscopic measurement (for example, Patent Document 1).

特表2012−526289号公報Japanese Patent Application Publication No. 2012-526289

しかしながら、特許文献1の方法は室内の安定した環境での測定を前提としており、外乱(特に光を信号として扱う分光計測においては太陽などの外乱光)が、時々刻々と変化する環境では大きな測定誤差が発生し実使用には耐えなかった。   However, the method of Patent Document 1 is premised on measurement in a stable environment in the room, and a large measurement in an environment where disturbances (in particular, disturbance light such as the sun in spectral measurement that handles light as a signal) change from moment to moment An error occurred and did not withstand actual use.

そこで本発明は、収穫前の生育段階にある栽培中作物に対して、露地・ハウス内等の栽培現場にて、非接触・非破壊で、植物の栄養状態を連続測定できる、栽培中作物の生育状態測定装置を提供することを目的とする。   Therefore, the present invention is a growing crop that can continuously measure the nutritional status of a plant without contact or nondestructively at a growing site such as an open field or in a house, with respect to the growing crop at the growth stage before harvest. It aims at providing a growing condition measuring device.

請求項1記載の本発明の栽培中作物の生育状態測定装置は、植物1の測定部位1a、1b、1cに対する照射光を発生する光源11と、前記光源11の照射タイミングを制御する投光制御部12と、前記測定部位1a、1b、1cからの検出光を受光する受光部13と、前記受光部13の受光タイミングを制御する受光制御部14と、前記受光部13で受光した前記検出光から、前記植物1の栄養状態を示す、硝酸態窒素量、炭水化物量、タンパク質量、ミネラル成分量、抗酸化物質量、及び水分量の少なくともいずれか一つの成分量を算出する演算部15とを備え、前記植物1が、収穫前の生育段階にある栽培中作物であり、前記測定部位1a、1b、1cを、茎、果柄、及び葉柄のいずれかとし、前記演算部15では、前記光源11の前記照射タイミングでの前記検出光による投光時受光信号と、前記照射タイミングの直前又は直後での前記検出光による非投光時受光信号との差分を用いて演算処理することを特徴とする。
請求項2記載の本発明は、請求項1に記載の栽培中作物の生育状態測定装置において、前記光源11として、波長の異なる複数の発光ダイオードを用い、前記受光部13として分光器を用い、前記投光制御部12では、複数の前記発光ダイオードの前記照射タイミングを同じとすることを特徴とする。
請求項3記載の本発明は、請求項1に記載の栽培中作物の生育状態測定装置において、前記光源11として、波長の異なる複数の発光ダイオードを用い、前記受光部13としてフォトダイオードを用い、前記投光制御部12では、それぞれの前記発光ダイオードの前記照射タイミングを異ならせることを特徴とする。
The apparatus for measuring the growth state of a crop under cultivation according to the present invention according to claim 1 comprises a light source 11 for generating irradiation light to the measurement sites 1a, 1b and 1c of the plant 1, and a light projection control for controlling the irradiation timing of the light source 11. The light receiving control unit 14 controls the light receiving timing of the light receiving unit 13; the detection light received by the light receiving unit 13; and the light receiving unit 13 that receives the detection light from the measurement portions 1a, 1b, and 1c. And calculating unit 15 for calculating at least one of the nitrate nitrogen amount, the carbohydrate amount, the protein amount, the mineral component amount, the antioxidant amount, and the water amount, which indicates the nutritional status of the plant 1. The plant 1 is a crop under cultivation in a growing stage before harvest, the measurement sites 1a, 1b and 1c are any one of a stem, a stem and a stem; Before 11 A light projecting time receiving the signal by the detection light on the irradiation timings, characterized by arithmetic processing using the difference between the immediately preceding or non light emitting time of the light receiving signal by said detection light immediately after the irradiation timing.
According to a second aspect of the present invention, in the growing condition measuring apparatus for a crop under cultivation according to the first aspect, a plurality of light emitting diodes having different wavelengths are used as the light source 11, and a spectroscope is used as the light receiving unit 13. The light emission control unit 12 is characterized in that the irradiation timings of the plurality of light emitting diodes are the same.
According to a third aspect of the present invention, in the growing condition measuring apparatus for a crop under cultivation according to the first aspect, a plurality of light emitting diodes having different wavelengths are used as the light source 11, and a photodiode is used as the light receiving unit 13. The light emission control unit 12 is characterized in that the irradiation timings of the respective light emitting diodes are made different.

本発明によれば、特に栽培環境下で最も強いノイズである太陽光(直流光)の影響をキャンセルでき、環境光とのS/Nを向上させることができるので、収穫前の生育段階にある栽培中作物に対して、露地・ハウス内等の栽培現場にて、非接触・非破壊で、植物の栄養状態を連続測定することができる。   According to the present invention, it is possible to cancel the influence of sunlight (direct current light), which is the strongest noise particularly in the cultivation environment, and to improve the S / N with the environmental light, so it is in the growth stage before harvest. It is possible to continuously measure the nutritional status of the plant in a non-contact and non-destructive manner at the cultivation site such as in the open field or in the house with respect to the crop under cultivation.

(a)本発明の一実施例による栽培中作物の生育状態測定装置を示すブロック図、(b)同生育状態測定装置が測定対象とする植物の測定部位を示す図、(c)同測定部位に装着する生体保持構造体を示す図(A) A block diagram showing a growing condition measuring apparatus of a crop under cultivation according to one embodiment of the present invention, (b) a figure showing a measuring site of a plant to be measured by the same growing condition measuring apparatus, (c) the same measuring site Figure showing the biological holding structure attached to the 同生育状態測定装置における投光制御部での出力信号と、受光部での受光信号を示す図The figure which shows the output signal in the light projection control part in the same growth condition measuring device, and the light reception signal in a light receiving part 受光部にフォトダイオードを用いた場合の同生育状態測定装置における投光制御部での出力信号と、受光部での受光信号を示す図The figure which shows the output signal in the light projection control part in the same growth condition measuring apparatus at the time of using a photodiode for a light reception part, and the light reception signal in a light reception part

本発明の第1の実施の形態による栽培中作物の生育状態測定装置は、植物が、収穫前の生育段階にある栽培中作物であり、測定部位を、茎、果柄、及び葉柄のいずれかとし、演算部では、光源の照射タイミングでの検出光による投光時受光信号と、照射タイミングの直前又は直後での検出光による非投光時受光信号との差分を用いて演算処理するものである。本実施の形態によれば、特に栽培環境下で最も強いノイズである太陽光(直流光)の影響をキャンセルでき、環境光とのS/Nを向上させることができるので、収穫前の生育段階にある栽培中作物に対して、露地・ハウス内等の栽培現場にて、非接触・非破壊で、植物の栄養状態を連続測定できる。   The apparatus for measuring the growth state of a crop under cultivation according to the first embodiment of the present invention is a crop under cultivation where the plant is in a growth stage before harvest, and the measurement site is any of a stem, a stalk, and a stem The arithmetic unit performs arithmetic processing using the difference between the light reception signal at the time of light emission by the detection light at the irradiation timing of the light source and the light reception signal at the time of non-light emission by the detection light immediately before or after the irradiation timing. is there. According to the present embodiment, it is possible to cancel the influence of sunlight (direct current light), which is the strongest noise especially in the cultivation environment, and to improve the S / N with the environmental light. It is possible to continuously measure the nutritional status of plants non-contacting and non-destructively at cultivation sites such as in the open field and in the house with respect to the crops under cultivation.

本発明の第2の実施の形態は、第1の実施の形態による栽培中作物の生育状態測定装置において、光源として、波長の異なる複数の発光ダイオードを用い、受光部として分光器を用い、投光制御部では、複数の発光ダイオードの照射タイミングを同じとするものである。本実施の形態によれば、限られた時間で投光時受光信号を得ることができるため、環境光の変化の影響を受けにくい。   According to a second embodiment of the present invention, in the growing condition measuring apparatus for crops under cultivation according to the first embodiment, a plurality of light emitting diodes having different wavelengths are used as a light source, and a spectroscope is used as a light receiving unit. In the light control unit, the irradiation timings of the plurality of light emitting diodes are the same. According to the present embodiment, since it is possible to obtain the light reception signal at the time of light projection in a limited time, it is not easily affected by the change of the ambient light.

本発明の第3の実施の形態は、第1の実施の形態による栽培中作物の生育状態測定装置において、光源として、波長の異なる複数の発光ダイオードを用い、受光部としてフォトダイオードを用い、投光制御部では、それぞれの発光ダイオードの照射タイミングを異ならせるものである。本実施の形態によれば、簡易なフォトダイオードを用いることができる。   In the third embodiment of the present invention, in the growing condition measuring apparatus for a crop under cultivation according to the first embodiment, a plurality of light emitting diodes having different wavelengths are used as a light source, and a photodiode is used as a light receiving unit. In the light control unit, the irradiation timings of the respective light emitting diodes are made different. According to this embodiment, a simple photodiode can be used.

以下に本発明の一実施例による栽培中作物の生育状態測定装置について説明する。
図1(a)は本発明の一実施例による栽培中作物の生育状態測定装置を示すブロック図、図1(b)は同生育状態測定装置が測定対象とする植物の測定部位を示す図、図1(c)は、同測定部位に装着する生体保持構造体を示す図である。
An apparatus for measuring the growth state of a crop under cultivation according to an embodiment of the present invention will be described below.
Fig. 1 (a) is a block diagram showing a growing condition measuring apparatus for a growing crop according to an embodiment of the present invention, and Fig. 1 (b) is a diagram showing measurement sites of plants to be measured by the same growing condition measuring apparatus. FIG. 1C is a view showing a biological holding structure attached to the same measurement site.

本実施例による栽培中作物の生育状態測定装置は、植物1の測定部位1a、1b、1cに対する照射光を発生する光源11と、光源11の照射タイミングを制御する投光制御部12と、測定部位1a、1b、1cからの検出光を受光する受光部13と、受光部13の受光タイミングを制御する受光制御部14と、受光部13で受光した検出光から、植物1の栄養状態を示す成分量を算出する演算部15と、演算部15で算出した成分量を時刻情報とともに記憶する記憶部16とを備えている。
また、本実施例による栽培中作物の生育状態測定装置は、植物1の測定部位1a、1b、1cに装着する生体保持構造体20と、光源11で発生させた照射光を測定部位1a、1b、1cに導く投光ファイバ17と、測定部位1a、1b、1cからの検出光を受光部13に導く受光ファイバ18とを備えている。
The apparatus for measuring the growth state of a crop under cultivation according to the present embodiment includes a light source 11 for generating irradiation light to the measurement sites 1a, 1b and 1c of the plant 1, a light projection control unit 12 for controlling the irradiation timing of the light source 11, and measurement. From the detection light received by the light receiving unit 13 that receives the detection light from the portions 1a, 1b, and 1c, the light reception control unit 14 that controls the light reception timing of the light reception unit 13, and the detection light received by the light receiving unit 13, The calculation unit 15 calculates component amounts, and the storage unit 16 stores the component amounts calculated by the calculation unit 15 together with time information.
In addition, the apparatus for measuring the growth state of the crop under cultivation according to the present embodiment includes the biological support structure 20 attached to the measurement sites 1a, 1b and 1c of the plant 1, and the irradiation light generated by the light source 11 as the measurement sites 1a and 1b. , And 1c, and a light receiving fiber 18 for guiding the detection light from the measurement portions 1a, 1b, and 1c to the light receiving unit 13.

ここで、測定対象となる植物1は、収穫前の生育段階にある栽培中作物であり、測定部位1aは茎、測定部位1bは果柄、測定部位1cは葉柄である。
光源11には、ウォーミングアップ時間が無く、時間応答性の高い発光ダイオードを用いることが好ましく、波長の異なる複数の発光ダイオードを用いる。
Here, the plant 1 to be measured is a crop under cultivation in a growth stage before harvest, the measurement site 1a is a stem, the measurement site 1b is a stem, and the measurement site 1c is a stem.
As the light source 11, it is preferable to use a light-emitting diode that does not have a warm-up time and has a high time response, and uses a plurality of light-emitting diodes having different wavelengths.

受光部13に分光器を用いる場合には、投光制御部12では、複数の発光ダイオードの照射タイミングを同じとする。受光部13に分光器を用い、複数の発光ダイオードの照射タイミングを同じとすることで、限られた時間で投光時受光信号を得ることができるため、環境光の変化の影響を受けにくい。
受光部13にフォトダイオードを用いる場合には、投光制御部12では、それぞれの発光ダイオードの照射タイミングを異ならせる。受光部13に簡易なフォトダイオードを用いることで安価に装置を構成できる。
When a spectroscope is used as the light receiving unit 13, the light emission control unit 12 sets the irradiation timing of the plurality of light emitting diodes to be the same. By using a spectroscope in the light receiving unit 13 and making the irradiation timings of the plurality of light emitting diodes the same, it is possible to obtain a light reception signal at the time of light projection in a limited time, so it is difficult to be affected by changes in ambient light.
When a photodiode is used as the light receiving unit 13, the light emission control unit 12 makes the irradiation timings of the respective light emitting diodes different. By using a simple photodiode for the light receiving unit 13, the apparatus can be configured at low cost.

投光制御部12での光源11の照射時間(パルス幅)は、環境光の変動に対応するために十分に早い時間、例えば1/10秒〜1/1000秒の時間とすることが好ましい。さらに、一回の受光測定時間は、前述の照射時間で瞬時に完結するため、複数回の測定データを積算化、又は平均化することにより測定データの精度を向上できる。
非投光時受光信号の検出は、照射タイミングに限りなく近い時間が好ましいが、照射タイミングの直前は一つ前の照射時間の後、照射タイミングの直後は一つ後の照射時間の前であればよい。
The irradiation time (pulse width) of the light source 11 in the light projection control unit 12 is preferably set to a sufficiently fast time, for example, 1/10 seconds to 1/1000 seconds, in order to cope with fluctuations in ambient light. Furthermore, since one light reception measurement time is instantaneously completed in the above-mentioned irradiation time, the accuracy of measurement data can be improved by integrating or averaging a plurality of measurement data.
The detection of the light reception signal at the time of non-flooding is preferably as close as possible to the irradiation timing, but immediately before the irradiation timing after the previous irradiation time and immediately after the irradiation timing before the next irradiation time Just do it.

植物1の栄養状態を示す成分量には、硝酸態窒素量、炭水化物量、タンパク質量、ミネラル成分量、抗酸化物質量、及び水分量の少なくともいずれか一つを含む。   The component amount indicating the nutritional status of the plant 1 includes at least one of nitrate nitrogen amount, carbohydrate amount, protein amount, amount of mineral component, amount of antioxidant, and amount of water.

演算部15では、光源11の照射タイミングでの検出光による投光時受光信号と、照射タイミングの直前又は直後での検出光による非投光時受光信号との差分を用いて演算処理する。このことで、特に栽培環境下で最も強いノイズである太陽光(直流光)の影響をキャンセルでき、環境光とのS/Nを向上させることができるので、収穫前の生育段階にある栽培中作物に対して、露地・ハウス内等の栽培現場にて、非接触・非破壊で、植物1の栄養状態を連続測定できる。   The arithmetic unit 15 performs arithmetic processing using the difference between the light reception signal at the time of light emission by the detection light at the irradiation timing of the light source 11 and the light reception signal at the time of non-light emission by the detection light immediately before or after the irradiation timing. In this way, the influence of sunlight (direct current light), which is the strongest noise particularly in the cultivation environment, can be canceled, and the S / N with the ambient light can be improved. With respect to the crop, the nutrient status of the plant 1 can be continuously measured in a non-contact and non-destructive manner at the cultivation site such as in an open area or in a house.

図2は、本実施例による生育状態測定装置における投光制御部での出力信号と、受光部での受光信号を示している。
図2(a)は投光制御部での出力信号、図2(b)は外乱光によるノイズが影響する場合の受光部での受光信号、図2(c)は昼間の太陽光が影響する場合の受光部での受光信号、図2(d)は夜間の受光部での受光信号をそれぞれ示している。
演算部15では、投光時受光信号から、照射タイミングの直前又は直後での非投光時受光信号を減算することで、外乱光や太陽光の影響をキャンセルできる。
FIG. 2 shows an output signal from the light emission control unit in the growing condition measuring apparatus according to the present embodiment and a light reception signal from the light receiving unit.
Fig.2 (a) is an output signal in a light projection control part, Fig.2 (b) is a light reception signal in a light receiving part in case the noise by disturbance light influences, FIG.2 (c) is sunlight in the daytime. The light reception signal in the light reception part in the case is shown, and FIG. 2D shows the light reception signal in the light reception part at night.
The operation unit 15 can cancel the influence of disturbance light and sunlight by subtracting the non-light-projected light reception signal immediately before or after the irradiation timing from the light-projected light reception signal.

図3は、受光部にフォトダイオードを用いた場合の本実施例による生育状態測定装置における投光制御部での出力信号と、受光部での受光信号を示している。
投光制御部12では、それぞれの発光ダイオードの照射タイミングを異ならせることで、それぞれの発光ダイオードによる投光時受光信号を得ることができる。この場合にも、演算部15では、発光ダイオードaによるLEDa投光時受光信号から、LEDa投光時受光信号の直前での非投光時受光信号を減算し、発光ダイオードbによるLEDb投光時受光信号から、LEDb投光時受光信号の直前での非投光時受光信号を減算し、発光ダイオードcによるLEDc投光時受光信号から、LEDc投光時受光信号の直前での非投光時受光信号を減算することで、外乱光や太陽光の影響をキャンセルできる。
FIG. 3 shows an output signal from the light projection control unit in the growing condition measuring apparatus according to the present embodiment when a photodiode is used as the light receiving unit, and a light receiving signal from the light receiving unit.
The light emission control unit 12 can obtain light reception signals at the time of light emission by the respective light emitting diodes by making the irradiation timings of the respective light emitting diodes different. Also in this case, the arithmetic operation unit 15 subtracts the light reception signal at the time of non-light emission just before the light reception signal at the time of LEDa light emission from the light reception signal at the time of LEDa light emission by the light emitting diode a From the light reception signal, subtract the light reception signal at non-light emission time just before the light reception signal at LEDb light emission time, and from the light reception signal at LEDc light emission time by the light emitting diode c By subtracting the light reception signal, it is possible to cancel the influence of ambient light and sunlight.

本発明による栽培中作物の生育状態測定装置は、露地栽培やハウス栽培での植物を、昼夜を問わず、栽培期間中継続して生育状態を測定することができる。   The apparatus for measuring the growing condition of crops under cultivation according to the present invention can measure the growing condition of plants in open field cultivation and house cultivation continuously during the cultivation period regardless of day and night.

1 植物
1a、1b、1c 測定部位
11 光源
12 投光制御部
13 受光部
14 受光制御部
15 演算部
16 記憶部
17 投光ファイバ
18 受光ファイバ
20 生体保持構造体
DESCRIPTION OF SYMBOLS 1 plant 1a, 1b, 1c measurement part 11 light source 12 light projection control part 13 light reception part 14 light reception control part 15 calculating part 16 memory part 17 light projection fiber 18 light reception fiber 20 living body holding structure

Claims (3)

植物の測定部位に対する照射光を発生する光源と、
前記光源の照射タイミングを制御する投光制御部と、
前記測定部位からの検出光を受光する受光部と、
前記受光部の受光タイミングを制御する受光制御部と、
前記受光部で受光した前記検出光から、前記植物の栄養状態を示す、硝酸態窒素量、炭水化物量、タンパク質量、ミネラル成分量、抗酸化物質量、及び水分量の少なくともいずれか一つの成分量を算出する演算部と
を備え、
前記植物が、収穫前の生育段階にある栽培中作物であり、
前記測定部位を、茎、果柄、及び葉柄のいずれかとし、
前記演算部では、前記光源の前記照射タイミングでの前記検出光による投光時受光信号と、前記照射タイミングの直前又は直後での前記検出光による非投光時受光信号との差分を用いて演算処理する
ことを特徴とする栽培中作物の生育状態測定装置。
A light source for generating an irradiation light to a measurement site of a plant;
A light projection control unit that controls an irradiation timing of the light source;
A light receiving unit that receives detection light from the measurement site;
A light reception control unit that controls light reception timing of the light reception unit;
The amount of nitrate nitrogen, the amount of carbohydrates, the amount of protein, the amount of mineral components, the amount of antioxidants, and the amount of water are indicated from the detection light received by the light receiving portion, which indicates the nutritional status of the plant Operation unit for calculating
The plant is a growing crop in a growing stage before harvest,
The measurement site is any one of a stem, a stem and a stem,
The calculation unit performs calculation using a difference between a light reception signal at the time of light emission by the detection light at the irradiation timing of the light source and a light reception signal at the time of non-light emission by the detection light immediately before or after the irradiation timing. The growing condition measuring device of the crop under cultivation characterized by processing.
前記光源として、波長の異なる複数の発光ダイオードを用い、
前記受光部として分光器を用い、
前記投光制御部では、複数の前記発光ダイオードの前記照射タイミングを同じとする
ことを特徴とする請求項1に記載の栽培中作物の生育状態測定装置。
A plurality of light emitting diodes having different wavelengths are used as the light source,
A spectroscope is used as the light receiving unit,
The growing condition measuring apparatus of a currently grown crop according to claim 1, wherein the irradiation control unit sets the irradiation timing of the plurality of light emitting diodes to be the same.
前記光源として、波長の異なる複数の発光ダイオードを用い、
前記受光部としてフォトダイオードを用い、
前記投光制御部では、それぞれの前記発光ダイオードの前記照射タイミングを異ならせる
ことを特徴とする請求項1に記載の栽培中作物の生育状態測定装置。
A plurality of light emitting diodes having different wavelengths are used as the light source,
A photodiode is used as the light receiving unit,
The apparatus according to claim 1, wherein the light emission control unit changes the irradiation timing of the light emitting diodes.
JP2017241413A 2017-12-18 2017-12-18 Growing condition measuring device for growing crops Active JP6677946B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017241413A JP6677946B2 (en) 2017-12-18 2017-12-18 Growing condition measuring device for growing crops
CN201811323453.2A CN109932366B (en) 2017-12-18 2018-11-08 Growth state measuring device for crops in cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241413A JP6677946B2 (en) 2017-12-18 2017-12-18 Growing condition measuring device for growing crops

Publications (2)

Publication Number Publication Date
JP2019106910A true JP2019106910A (en) 2019-07-04
JP6677946B2 JP6677946B2 (en) 2020-04-08

Family

ID=66984580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241413A Active JP6677946B2 (en) 2017-12-18 2017-12-18 Growing condition measuring device for growing crops

Country Status (2)

Country Link
JP (1) JP6677946B2 (en)
CN (1) CN109932366B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853080A (en) * 2019-09-30 2020-02-28 广西慧云信息技术有限公司 Method for measuring size of field fruit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065834A1 (en) * 2001-07-24 2004-04-08 The Board Of Regents For Oklahoma State University Optical spectral reflectance sensor and controller
JP5522913B2 (en) * 2008-08-29 2014-06-18 株式会社トプコン Plant sensor device
JP2017131116A (en) * 2016-01-25 2017-08-03 株式会社トプコン Plant sensor apparatus
WO2017208765A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Moisture content observation device, moisture content observation method and cultivation device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731440B (en) * 2012-10-10 2017-10-17 南京理工大学 Near-infrared crop growth information is monitored and its hazard prediction wireless system in real time
CN203011825U (en) * 2012-12-19 2013-06-19 南京农业大学 Portable crop growth information monitor based on active light source
CN104849219B (en) * 2015-03-11 2017-09-26 中国科学院地理科学与资源研究所 A kind of crop nitrogen nutrition diagnostic equipment and method
CN105158171B (en) * 2015-06-08 2018-02-06 南京农业大学 Crop nitrogen sensor spectrum calibration method
CN106596412A (en) * 2016-12-31 2017-04-26 上海复展智能科技股份有限公司 Method for monitoring plant growth by using unmanned aerial vehicle with multispectral light source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040065834A1 (en) * 2001-07-24 2004-04-08 The Board Of Regents For Oklahoma State University Optical spectral reflectance sensor and controller
JP5522913B2 (en) * 2008-08-29 2014-06-18 株式会社トプコン Plant sensor device
JP2017131116A (en) * 2016-01-25 2017-08-03 株式会社トプコン Plant sensor apparatus
WO2017208765A1 (en) * 2016-05-31 2017-12-07 パナソニックIpマネジメント株式会社 Moisture content observation device, moisture content observation method and cultivation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110853080A (en) * 2019-09-30 2020-02-28 广西慧云信息技术有限公司 Method for measuring size of field fruit

Also Published As

Publication number Publication date
JP6677946B2 (en) 2020-04-08
CN109932366A (en) 2019-06-25
CN109932366B (en) 2022-04-15

Similar Documents

Publication Publication Date Title
Kipp et al. The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity
US9377404B2 (en) Plant health diagnostic method and plant health diagnostic device
JP4524473B2 (en) Method and apparatus for measuring water stress on plants
US7660698B1 (en) Phytometric intelligence sensors
JP2015043715A (en) Plant raising apparatus
JP7329834B2 (en) Nondestructive measurement device and nondestructive measurement method for plant metabolites, and plant cultivation system and cultivation method using the same
Gianquinto et al. The use of diagnostic optical tools to assess nitrogen status and to guide fertilization of vegetables
CN1218177C (en) Method and device for evaluating quality of grain
JP6653451B2 (en) Plant water content evaluation device and plant water content evaluation method
Tarannum et al. A brief overview and systematic approach for using agricultural robot in developing countries
Cristofori et al. Non-destructive, analogue model for leaf area estimation in persimmon (Diospyros kaki L. f.) based on leaf length and width measurement
Sun et al. IoT enabled smart fertilization and irrigation aid for agricultural purposes
Yimwadsana et al. An IoT controlled system for plant growth
JP2019106910A (en) Growth state measuring apparatus of crops being cultivated
Dhillon et al. Development of a continuous leaf monitoring system to predict plant water status
JP6562473B2 (en) Living body holding structure used for measuring growth condition of crops under cultivation
Sharabian et al. Evaluation of an active remote sensor for monitoring winter wheat growth status
CN110736710A (en) corn yield evaluation method based on NDVI time sequence
Rojek et al. PLANTSENS: A rail-based multi-sensor imaging system for redundant water stress detection in greenhouses
US20230003856A1 (en) Time-of-flight sensing for horticulture
Giora et al. Preliminary study on the application of a commercial LAI ceptometer for estimation of leaf production on low vigour mulberry trees
JPH11281572A (en) Apparatus and method for behavior of living body
Lubana et al. Snap: chlorophyll concentration calculator using RAW images of leaves
US20240167994A1 (en) Crop Monitoring System And Method
Sarkar et al. Digitalization And Automation Of Analog Soil Sensor Data For Monitoring Soil Characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200309

R150 Certificate of patent or registration of utility model

Ref document number: 6677946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250