JP2019104651A - Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof - Google Patents

Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof Download PDF

Info

Publication number
JP2019104651A
JP2019104651A JP2017238721A JP2017238721A JP2019104651A JP 2019104651 A JP2019104651 A JP 2019104651A JP 2017238721 A JP2017238721 A JP 2017238721A JP 2017238721 A JP2017238721 A JP 2017238721A JP 2019104651 A JP2019104651 A JP 2019104651A
Authority
JP
Japan
Prior art keywords
zirconium
zirconium nitride
coating
filler
black filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017238721A
Other languages
Japanese (ja)
Inventor
勝也 澤田
Katsuya Sawada
勝也 澤田
伸幸 横山
Nobuyuki Yokoyama
伸幸 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tayca Corp
Original Assignee
Tayca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tayca Corp filed Critical Tayca Corp
Priority to JP2017238721A priority Critical patent/JP2019104651A/en
Publication of JP2019104651A publication Critical patent/JP2019104651A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a zirconium nitride-based black filler having extremely high blackness, and a method of producing the same and the like.SOLUTION: According to the present invention, there are provided: the zirconium nitride-based black filler with extremely high blackness having a peak of lower zirconium oxide and a peak of zirconium nitride in an X-ray diffraction profile, containing zirconium nitride of 70 to 99.9% by weight, and capable of making a coating film develop extremely high blackness such as Lvalue of 15 or less, avalue of -1.0 or more and +1.0 or less, and bvalue of -1.0 or more and +1.0 or less in a Labcolor system when the coating film is formed by being blended into a paint under predetermined condition; and the method of producing the same.SELECTED DRAWING: Figure 1

Description

本発明は、窒化ジルコニウム系黒色フィラー及びその製造方法、そのフィラーを含有する塗料組成物及びその塗料組成物を塗布して得られる塗膜に関し、特に低次酸化ジルコニウムと70〜99.9重量%の窒化ジルコニウムを含有し、所定の条件にて塗料へ配合して塗膜を形成した時、L表色系においてL値が15以下であり、a値が−1.0以上+1.0以下であり、そしてb*値が−1.0以上+1.0以下という極めて高い黒色度を該塗膜に発現させることができる窒化ジルコニウム系黒色フィラーなどに関する。 The present invention relates to a zirconium nitride black filler and a method for producing the same, a coating composition containing the filler and a coating obtained by applying the coating composition, particularly 70 to 99.9% by weight of low-order zirconium oxide The zirconium nitride of the above is incorporated into a paint under predetermined conditions to form a coating film, the L * value is 15 or less in the L * a * b * color system, and the a * value is −1. The present invention relates to a zirconium nitride black filler and the like capable of causing the coating film to exhibit an extremely high degree of blackness of 0 or more and 1.0 or less and ab * value of -1.0 or more and 1.0 or less.

従来より、ブラックマトリックス材料等の黒色フィラーとしては、クロム系材料を用いた金属薄膜、カーボンブラック、低次酸化チタン及び酸窒化チタンが用いられている。しかしながら、クロム系材料は環境汚染の面から使用が控えられている。カーボンブラックは電気伝導性が高く、周囲の導電性デバイスとの間で短絡してしまう可能性がある。また、低次酸化チタン及び酸窒化チタンを配合した塗膜は青みの透過色を有するため、黒色顔料としては使用し難いという問題がある。   Conventionally, as a black filler such as a black matrix material, a metal thin film using a chromium-based material, carbon black, low-order titanium oxide and titanium oxynitride have been used. However, chromium-based materials are not used in terms of environmental pollution. Carbon black has high electrical conductivity, and may cause a short circuit with surrounding conductive devices. Moreover, since the coating film which mix | blended the low order titanium oxide and the titanium oxynitride has a blueish transmission color, there exists a problem of being hard to use as a black pigment.

一方、窒化ジルコニウムは耐食性が高く、高融点, 高硬度, 金属並みの導電性を有する物質として知られており、切削工具やPVDコーティング用ターゲット材などに使用されている。このような特性を有する窒化ジルコニウムは、金属表面に化学蒸着法(CVD)や物理吸着法(PVD)により成膜して使用することが多く、フィラーのような粉体の状態で使用する用途例は少ない。   On the other hand, zirconium nitride is known as a material having high corrosion resistance, high melting point, high hardness, and conductivity similar to metals, and is used as a cutting tool or a target material for PVD coating. Zirconium nitride having such characteristics is often used by forming a film on a metal surface by chemical vapor deposition (CVD) or physical adsorption (PVD), and is an application example of using it in the form of powder such as filler There is little.

窒化ジルコニウムの製法としては、水素還元法(特許文献1)やアンモニアによる還元法(特許文献2)が知られている。また、特開昭60−186407号公報(特許文献3)及び特開2009−91205号公報(特許文献4)などに記載されているように、酸化ジルコニウムと金属マグネシウムとを混合し、該混合物を窒素ガスなどの不活性ガス気流中で焼成することにより、黒色顔料として使用可能な窒化ジルコニウムを得られることが知られている。   As a method for producing zirconium nitride, a hydrogen reduction method (Patent Document 1) and a reduction method using ammonia (Patent Document 2) are known. Further, as described in JP-A-60-186407 (Patent Document 3), JP-A 2009-91205 (Patent Document 4), etc., zirconium oxide and metallic magnesium are mixed, and the mixture is It is known that by firing in an inert gas stream such as nitrogen gas, zirconium nitride usable as a black pigment can be obtained.

しかしながら、上記のような製法により得られた窒化ジルコニウムからなる黒色顔料は、塗料へ配合して塗膜を形成した場合においても、L表色系においてL値が高かったり、或いはa値および/またはb*値の範囲が広過ぎるために、僅かに赤味がかったり又は黄味がかったりして十分な黒色度を得られないといいう問題があった。
However, even when the black pigment comprising zirconium nitride obtained by the above-mentioned production method is incorporated into a paint to form a coating film, the L * value is high in the L * a * b * color system, Alternatively, there has been a problem that the range of the a * value and / or the b * value is too wide, so that it is slightly reddish or yellowish and a sufficient blackness can not be obtained.

特公昭61−56170号公報Japanese Patent Publication No. 61-56170 特公平5−25812号公報Japanese Examined Patent Publication No. 5-25812 特開昭60−186407号公報Japanese Patent Application Laid-Open No. 60-186407 特開2009−91205号公報JP, 2009-91205, A

そこで、本発明は、黒色度が極めて高い窒化ジルコニウム系黒色フィラー及びその製造方法、そのフィラーを含有する塗料組成物及びその塗料組成物を塗布して得られる塗膜を提供することを目的とする。   An object of the present invention is to provide a zirconium nitride black filler having extremely high blackness, a method for producing the same, a coating composition containing the filler, and a coating film obtained by applying the coating composition. .

本発明者らは、テルミット法を利用した窒化ジルコニウムの製造方法などについて鋭意研究を重ねた結果、低次酸化ジルコニウムを含有する窒化ジルコニウムからなるフィラーにおいて、窒化ジルコニウムの含有量を70〜99.9重量%に制御すると、極めて高い黒色度を有する窒化ジルコニウム系黒色フィラーが得られることを見出し、本発明を完成するに至った。   The inventors of the present invention conducted intensive studies on a method of producing zirconium nitride using the thermit method, and the like. As a result, the content of zirconium nitride is 70 to 99.9 in the filler made of zirconium nitride containing low-order zirconium oxide. It has been found that controlling the weight percentage to obtain a zirconium nitride black filler having a very high degree of blackness, and completed the present invention.

すなわち、本発明によれば、二酸化ジルコニウムまたは水酸化ジルコニウムと、金属マグネシウムとを、金属マグネシウムとジルコニウムとのモル比(Mg/Zr)で3〜6の比率で混合し、該混合物を、窒素ガスまたは窒素ガスを含む不活性ガス雰囲気下で600〜900℃で焼成した後、酸による洗浄を行い、乾燥することにより、極めて高い黒色度を有する窒化ジルコニウム系黒色フィラーを得ることができる。   That is, according to the present invention, zirconium dioxide or zirconium hydroxide and metallic magnesium are mixed at a molar ratio of metallic magnesium to zirconium (Mg / Zr) in a ratio of 3 to 6, and the mixture is nitrogen gas Alternatively, after firing at 600 to 900 ° C. in an inert gas atmosphere containing nitrogen gas, washing with an acid is performed and drying is performed, whereby a zirconium nitride black filler having an extremely high degree of blackness can be obtained.

具体的には、上述した本発明の製造方法によれば、X線回折プロファイルにおいて、低次酸化ジルコニウムのピークと窒化ジルコニウムのピークを有し、そして窒化ジルコニウムの含有量が70〜99.9重量%である窒化ジルコニウム系黒色フィラーを得ることができる。なお、本願明細書では、「〜」を用いて示された数値(比率)範囲は、「〜」の前後に記載される数値(比率)をそれぞれ最小値(比率)および最大値(比率)として含む範囲を示している。   Specifically, according to the above-mentioned production method of the present invention, in the X-ray diffraction profile, it has a peak of lower zirconium oxide and a peak of zirconium nitride, and the content of zirconium nitride is 70 to 99.9 weight % Zirconium nitride black filler can be obtained. In the specification of the present application, the numerical value (ratio) range indicated by using “to” refers to the numerical values (ratio) described before and after “to” as the minimum value (ratio) and the maximum value (ratio), respectively. The range included is shown.

そして、得られた本発明の窒化ジルコニウム系黒色フィラーは、アルキドメラミン系塗料の固形分100重量部に対して50重量部を配合した塗料を作製し、該塗料を塗装して乾燥膜厚1μmの塗膜を形成すると、L表色系においてL値が15以下であり、a値が−1.0以上+1.0以下であり、そしてb*値が−1.0以上+1.0以下という極めて高い黒色度を該塗膜に発現させることができ、従来の窒化ジルコニウムからなる黒色顔料を使用した場合のように、赤味がかったり或いは黄色味がかったりすることもない。 Then, the obtained zirconium nitride-based black filler of the present invention is prepared by blending 50 parts by weight with respect to 100 parts by weight of solid content of the alkyd melamine-based paint, and coating the paint to obtain a dry film thickness of 1 μm. When a coating film is formed, the L * value is 15 or less, the a * value is -1.0 or more and 1.0 or less, and the b * value is -1.0 in the L * a * b * color system. An extremely high blackness of not less than +1.0 or less can be expressed in the coating film, and neither reddish nor yellowish as in the case of using a conventional black pigment consisting of zirconium nitride .

本発明の窒化ジルコニウム系黒色フィラーは、その製造をするにあたり、ジルコニア源として二酸化ジルコニウム、水酸化ジルコニウム、或いは硫酸ジルコニウム、オキシ塩化ジルコニウム及び硝酸ジルコニウム等のジルコニウム塩を使用することができ、ジルコニウムが含まれる化学物質であれば特に限定されるものではない。二酸化ジルコニウム、水酸化ジルコニウムを原材料とすることが好ましい。また、二酸化ジルコニウムは単斜晶系、立方晶系、イットリウムを含有する安定化ジルコニアも使用することもできる。   The zirconium nitride-based black filler of the present invention can use zirconium dioxide, zirconium hydroxide, or zirconium salts such as zirconium sulfate, zirconium oxychloride and zirconium nitrate as a zirconia source in the preparation thereof, and zirconium is included. It is not particularly limited as long as it is a chemical substance. It is preferable to use zirconium dioxide and zirconium hydroxide as raw materials. In addition, stabilized zirconia containing monoclinic system, cubic system and yttrium can also be used as zirconium dioxide.

混合機は、ジルコニウム源と金属マグネシウムが均一に混合できる機器であれば規定するものではない。一例として、遊星ボールミルの他、V型ブレンダー、ナウターミキサー、ヘンシェルミキサーなどの混合機が考えられる。   The mixer is not limited as long as the zirconium source and the metallic magnesium can be uniformly mixed. As an example, in addition to a planetary ball mill, mixers such as a V-type blender, a Nauta mixer, and a Henschel mixer can be considered.

焼成炉も特に限定されるものではなく、箱形炉や連続炉や回転炉を使用することができる。容器の材質は金属マグネシウムと二酸化ジルコニウムとの反応性を考慮すると黒鉛などの炭素系材質を使用するのが好ましい。   The firing furnace is also not particularly limited, and a box furnace, a continuous furnace or a rotary furnace can be used. As for the material of the container, it is preferable to use a carbon-based material such as graphite in consideration of the reactivity between metallic magnesium and zirconium dioxide.

焼成温度としては600〜900℃が好ましく、650〜800℃がより好ましい。焼成温度が600℃よりも低くなると、酸化ジルコニウムと金属マグネシウムとの反応が進み難くなり、一方、焼成温度が900℃よりも高くなると、単相の窒化ジルコニウムは生成するが黒色度が低下してしまうという不都合を招くことになる。   As a calcination temperature, 600-900 degreeC is preferable and 650-800 degreeC is more preferable. When the calcination temperature is lower than 600 ° C., the reaction between zirconium oxide and metallic magnesium is difficult to proceed, while when the calcination temperature is higher than 900 ° C., single phase zirconium nitride is formed but the blackness is lowered. Inconvenient.

金属マグネシウムとジルコニウムとのモル比(Mg/Zr)は3〜6が好ましい。比率が3よりも小さくなると窒化ジルコニウムの生成量が少なくなり、黒色度が低下するために好ましくない。一方、比率が6よりも大きくなると残存するマグネシウム量が多くなり、酸洗浄回数を増加しなければならなくなる等、製造コストの増大に繋がるために好ましくない。   The molar ratio of magnesium metal to zirconium (Mg / Zr) is preferably 3 to 6. If the ratio is less than 3, the amount of zirconium nitride formed is small, which is not preferable because the degree of blackness decreases. On the other hand, when the ratio is larger than 6, the amount of remaining magnesium increases, and the number of times of acid cleaning has to be increased, which is not preferable because it leads to an increase in manufacturing cost.

洗浄工程に用いる酸の種類としては、マグネシウムの副生成物を溶解させる材料であれば特に限定されないが、一般的には酸性溶液にて洗浄する。その物質としては塩酸、硝酸、硫酸、様々な有機酸を使用することができ、副生成物の酸への溶解性を考えると、強酸である塩酸、硝酸、硫酸を用いることがより好ましい。   The type of acid used in the washing step is not particularly limited as long as it is a material that dissolves magnesium by-products, but in general, washing is performed with an acidic solution. As the substance, hydrochloric acid, nitric acid, sulfuric acid and various organic acids can be used, and in view of the solubility of the by-product in the acid, it is more preferable to use hydrochloric acid, nitric acid and sulfuric acid which are strong acids.

酸による洗浄時の最終pHは2〜8であることが好ましく、pH4〜7であるとより好ましい。pHが8より大きくなると、低次酸化ジルコニウムを複合化した窒化ジルコニウムに水酸化マグネシウムや酸化マグネシウムが残存してしまい、黒色度へ悪影響を及ぼすことになる。一方、pHが2より小さくなると、低次酸化ジルコニウムを複合化した窒化ジルコニウム中のジルコニウムが溶出してしまうので好ましくない。   The final pH at the time of acid washing is preferably 2 to 8, more preferably 4 to 7. When the pH is higher than 8, magnesium hydroxide and magnesium oxide remain in zirconium nitride in which low-order zirconium oxide is complexed, which adversely affects the degree of blackness. On the other hand, if the pH is less than 2, it is not preferable because zirconium in zirconium nitride in which low-order zirconium oxide is complexed is eluted.

また、本発明の窒化ジルコニウム系黒色フィラーは、例えば黒色顔料として塗料組成物に添加することができ、その塗料組成物を用いて塗膜を形成することもできる。本発明の窒化ジルコニウム系黒色フィラーは分散性にも優れているため、塗料組成物中に容易に均一に分散させることができ、得られた塗膜も均質且つ極めて高い黒色度が得られるため、ブラックマトリックス等へ好適に使用することができる。   Moreover, the zirconium nitride black filler of the present invention can be added to a paint composition, for example, as a black pigment, and a paint film can also be formed using the paint composition. Since the zirconium nitride black filler of the present invention is also excellent in dispersibility, it can be easily dispersed uniformly in a paint composition, and the obtained coating film is also homogeneous and has extremely high blackness. It can be suitably used for black matrix and the like.

窒化ジルコニウム系黒色フィラーを塗料で用いる場合、窒化ジルコニウム系黒色フィラーの配合比率は樹脂の使用目的に応じて任意に変えることができるが、樹脂100重量部あたり1〜500重量部であることが望ましい。窒化ジルコニウム系黒色フィラーに使用できる樹脂は、アクリルメラミン、常乾アクリル、アクリルウレタン、ポリエステルメラミン、アルキドメラミン、ポリウレタン、ニトロセルロース、フッ素樹脂、塩化ビニル/酢酸ビニル共重合樹脂などが挙げられる。   When a zirconium nitride black filler is used in a paint, the blending ratio of the zirconium nitride black filler can be optionally changed according to the purpose of use of the resin, but it is desirable to be 1 to 500 parts by weight per 100 parts by weight of resin . Resins that can be used for the zirconium nitride black filler include acrylic melamine, ordinary-dry acrylic, acrylic urethane, polyester melamine, alkyd melamine, polyurethane, nitrocellulose, fluorocarbon resin, vinyl chloride / vinyl acetate copolymer resin, and the like.

上記樹脂組成物に窒化ジルコニウム系黒色フィラーを配合する際には、まず有機溶剤または水に溶解混合し、分散と塗装に適した粘度に調整する。有機溶剤としては、炭化水素系、アルコール系、エーテルアルコールおよびエーテル系、エステル及びエステルアルコール系、ケトン系の中から任意に分散性、塗装性に適したものを用いればよい。そして、ペイントコンディショナー、ディスパー、サンドグラインドミルなど使用目的に応じて分散・撹拌に適した装置を用いて、本発明の窒化ジルコニウム系黒色フィラーを分散する。   When the zirconium nitride black filler is mixed with the above resin composition, first, it is dissolved and mixed in an organic solvent or water to adjust the viscosity to be suitable for dispersion and coating. As the organic solvent, any one of hydrocarbon type, alcohol type, ether alcohol and ether type, ester and ester alcohol type, and ketone type, which is suitable for dispersibility and paintability may be used. Then, the zirconium nitride black filler of the present invention is dispersed using a device suitable for dispersion and stirring depending on the purpose of use, such as a paint conditioner, a disper, a sand grind mill and the like.

作製した塗料は、金属、ガラスまたはプラスチック製の被塗物にバーコーター、スピンコーター、刷毛、エアスプレーなどにより塗装することができる。膜厚は目的に応じて適宜変更することができる。なお、使用する樹脂によっては、110〜180℃の温度で10〜40分間程度乾燥および焼き付けをする必要がある。   The prepared coating can be applied to a metal, glass or plastic substrate by a bar coater, a spin coater, a brush, an air spray or the like. The film thickness can be suitably changed according to the purpose. In addition, it is necessary to dry and bake about 10 to 40 minutes at the temperature of 110-180 degreeC depending on resin to be used.

また、本発明の窒化ジルコニウム系黒色フィラーは、黒色度が高い点では電子分野で使用されるブラックマトリックスにおいても使用することができる。その場合、窒化ジルコニウム系黒色フィラー/樹脂成分の重量組成比は、75/25〜40/60の範囲であることが、高抵抗かつ高OD値の黒色被膜を得るために好ましい。   In addition, the zirconium nitride black filler of the present invention can also be used in a black matrix used in the electronic field in terms of high blackness. In that case, the weight composition ratio of the zirconium nitride black filler / resin component is preferably in the range of 75/25 to 40/60 in order to obtain a black coating having high resistance and a high OD value.

なお、OD値とは光学濃度(Optical Density)といわれ、透過率が低くなると0が多く並び複雑になるため、それらをわかりやすく表示するため、吸収度合を対数で表示したものである。OD値は下記の式で求められる。
OD(λ)= Log10[T(λ)/I(λ)]= Log10T(λ)− Log10I(λ)
(λ)は波長、T(λ)は波長帯に於ける透過光量、I(λ)は波長帯に於ける入射光量である。
The OD value is referred to as optical density, and as the transmittance decreases, the number of 0s increases and becomes complicated. Therefore, in order to display them in an easy-to-understand manner, the degree of absorption is displayed logarithmically. The OD value is obtained by the following equation.
OD (λ) = Log 10 [T (λ) / I (λ)] = Log 10 T (λ) − Log 10 I (λ)
(Λ) is the wavelength, T (λ) is the transmitted light amount in the wavelength band, and I (λ) is the incident light amount in the wavelength band.

樹脂はエポキシ樹脂、アクリル樹脂、シロキサンポリマー系樹脂、ポリイミド樹脂などが好ましく用いられる。上記樹脂組成物に窒化ジルコニウム系黒色フィラーを配合する溶媒としては特に限定はなく、分散する窒化ジルコニウム系黒色フィラーの分散安定性および添加する樹脂等の溶解性に併せて、水および有機溶剤を用いることができる。   As the resin, epoxy resin, acrylic resin, siloxane polymer based resin, polyimide resin and the like are preferably used. There is no particular limitation on the solvent for blending the zirconium nitride-based black filler into the above resin composition, and water and an organic solvent are used in combination with the dispersion stability of the dispersed zirconium nitride-based black filler and the solubility of the resin etc. be able to.

有機溶剤としては、特に限定はなく、エステル類、あるいは、脂肪族アルコール類、あるいは、(ポリ)アルキレングリコールエーテル系溶剤、ケトン類、アミド系極性溶媒、ラクトン系極性溶媒等を用いることができ、これらの単独、あるいは2種類以上の混合溶媒も好ましく用いることができる。またこれら以外の溶剤との混合も好ましく用いられる。   The organic solvent is not particularly limited, and esters, aliphatic alcohols, (poly) alkylene glycol ether solvents, ketones, amide polar solvents, lactone polar solvents, etc. can be used, These single solvents or mixed solvents of two or more types can also be preferably used. Further, mixing with solvents other than these is also preferably used.

窒化ジルコニウム系黒色顔料を含む樹脂組成物を分散するためには、ボールミル、サンドグラインダー、3本ロールミル、高速度衝撃ミルなどを用いることができるが、分散効率と微分散化の観点からはビーズミルを用いることが好ましい。   A ball mill, sand grinder, triple roll mill, high-speed impact mill, etc. can be used to disperse a resin composition containing a zirconium nitride black pigment, but a bead mill is used from the viewpoint of dispersion efficiency and fine dispersion. It is preferred to use.

窒化ジルコニウム系黒色フィラーを含む樹脂組成物を基板上に塗布する方法としては、ディップ法、ロールコータ法、スピナー法、ダイコーティング法、ワイヤーバーによる方法で基板に塗布する方法、基板を溶液中に浸漬する方法、溶液を基板に噴霧するなど種々の方法を用いることができる。   As a method of applying a resin composition containing a zirconium nitride black filler onto a substrate, a method of applying the substrate by a dip coating method, a roll coater method, a spinner method, a die coating method, a wire bar method, a substrate Various methods such as immersion and spraying a solution on a substrate can be used.

基板としては、特に限定はなく、石英ガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、表面をシリカコートしたソーダライムガラスなどの無機ガラス類、有機プラスチックのフィルムまたはシートなどが好ましく用いられる。   The substrate is not particularly limited, and quartz glass, borosilicate glass, aluminosilicate glass, inorganic glasses such as soda lime glass coated with silica on the surface, films or sheets of organic plastic, and the like are preferably used.

上述のような方法で透明基板に塗布した後、風乾、加熱乾燥、真空乾燥などにより加熱乾燥および硬化を行い、乾燥被膜を形成する。こうして得られた塗布膜は、通常、フォトリソグラフィーなどの方法を用いてパターン加工され、その後、必要に応じて、フォトレジストまたは酸素遮断膜を除去した後、加熱し硬化させることでブラックマトリクスを得ることができる。熱硬化条件は、樹脂により異なるが、ポリイミド前駆体からポリイミド系樹脂を得る場合には、通常200〜350℃で、1〜60分加熱するのが一般的である。   After coating on a transparent substrate by the method as described above, drying by heating and curing are performed by air drying, heating drying, vacuum drying and the like to form a dry film. The coated film thus obtained is usually patterned using a method such as photolithography, and then, if necessary, the photoresist or oxygen blocking film is removed, and then a black matrix is obtained by heating and curing. be able to. Although the heat curing conditions differ depending on the resin, when obtaining a polyimide-based resin from a polyimide precursor, it is generally heated at 200 to 350 ° C. for 1 to 60 minutes.

本発明によれば、二酸化ジルコニウムまたは水酸化ジルコニウムと、金属マグネシウムとを、金属マグネシウムとジルコニウムとのモル比(Mg/Zr)で3〜6の比率で混合し、該混合物を、窒素ガスまたは窒素ガスを含む不活性ガス雰囲気下で600〜900℃で焼成した後、酸による洗浄を行い、乾燥することにより、極めて高い黒色度を有する窒化ジルコニウム系黒色フィラー及びその製造方法が提供される。   According to the present invention, zirconium dioxide or zirconium hydroxide and metallic magnesium are mixed at a molar ratio of metallic magnesium to zirconium (Mg / Zr) in a ratio of 3 to 6, and the mixture is nitrogen gas or nitrogen After baking at 600 to 900 ° C. in an inert gas atmosphere containing a gas, washing with an acid and drying are performed, thereby providing a zirconium nitride black filler having a very high degree of blackness and a method for producing the same.

本発明によれば、X線回折プロファイルにおいて、低次酸化ジルコニウムのピークと窒化ジルコニウムのピークを有し、そして窒化ジルコニウムの含有量が70〜99.9重量%である窒化ジルコニウム系黒色フィラーが提供され、該窒化ジルコニウム系黒色フィラーは、アルキドメラミン系塗料の固形分100重量部に対して50重量部を配合した塗料を作製し、該塗料を塗装して乾燥膜厚1μmの塗膜を形成した時、L表色系においてL値が15以下であり、a値が−1.0以上+1.0以下であり、そしてb*値が−1.0以上+1.0以下という極めて高い黒色度を該塗膜に発現させることができる。 According to the present invention, provided is a zirconium nitride-based black filler having a low-order zirconium oxide peak and a zirconium nitride peak in an X-ray diffraction profile, and having a zirconium nitride content of 70 to 99.9% by weight. The zirconium nitride black filler was used to prepare a paint containing 50 parts by weight of solid content of alkyd melamine paint, and the paint was applied to form a coating having a dry film thickness of 1 μm. When L * value is 15 or less, a * value is -1.0 or more and +1.0 or less, and b * value is -1.0 or more and +1.0 in the L * a * b * color system An extremely high degree of blackness as described below can be developed in the coating film.

本発明によれば、本発明の窒化ジルコニウム系黒色フィラーを黒色顔料として塗料組成物に添加することができ、その塗料組成物を塗布することにより、均質且つ極めて高い黒色度を有する塗膜を形成することができる。   According to the present invention, the zirconium nitride black filler of the present invention can be added to a paint composition as a black pigment, and by applying the paint composition, a coating film having a uniform and extremely high blackness is formed. can do.

本発明の実施例1,2の窒化ジルコニウム系黒色フィラーおよび比較例2〜4のジルコニウム系フィラーのX線回折(XRD)パターン図である。It is a X-ray-diffraction (XRD) pattern figure of the zirconium nitride type black filler of Example 1, 2 of this invention, and the zirconium type filler of Comparative Examples 2-4.

以下、窒化ジルコニウム系黒色フィラー及びその製造方法、そのフィラーを含有する塗料及び塗料組成物について、具体例を交えながら詳細に説明する。なお、本発明は以下に示される実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で各種の変更が可能である。   Hereinafter, a zirconium nitride black filler and a method for producing the same, and a paint and a paint composition containing the filler will be described in detail with reference to specific examples. The present invention is not limited to the embodiments shown below, and various modifications can be made without departing from the technical concept of the present invention.

A.窒化ジルコニウム系黒色フィラーの製造方法:
実施例1
二酸化ジルコニウム(第一稀元素化学工業社製)20gと、金属マグネシウム(高純度化学社製)19.5gをそれぞれ秤量した。この時の金属マグネシウムとジルコニウムのモル比は5であった。秤量した各材料とジルコニアビーズ200gをジルコニア製ポットの中に入れ、そのポットを遊星ボールミル(フリッチュ社製PULVERISETTE6)にセットし、周速200rpmで20分間混合した。混合粉末40gをカーボン製るつぼに投入後、焼成炉(西山製作所製)にセットし、窒素雰囲気下で焼成温度700℃、焼成時間1時間の条件で焼成を行った。焼成物をるつぼから取り出し後、1mol/L硝酸800mLに入れて1hr撹拌した後、ろ過し、水800mLで水洗した。そのろ過固形分を1mol/L硝酸800mL中に入れて酸で洗浄し、アンモニア水でpH6に調整した後、ろ過水洗を行い、設定温度120℃の熱風乾燥機にて乾燥して、実施例1の窒化ジルコニウム系黒色フィラーを得た。
A. Method of producing zirconium nitride black filler:
Example 1
20 g of zirconium dioxide (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) and 19.5 g of metallic magnesium (manufactured by High Purity Chemical Co., Ltd.) were weighed. The molar ratio of metal magnesium to zirconium at this time was 5. Each material weighed and 200 g of zirconia beads were placed in a zirconia pot, and the pot was set in a planetary ball mill (PULVERISETTE 6 manufactured by Fritsch Co., Ltd.), and mixed at a circumferential speed of 200 rpm for 20 minutes. After 40 g of the mixed powder was put into a carbon crucible, it was set in a firing furnace (manufactured by Nishiyama Seisakusho), and firing was performed under a nitrogen atmosphere at a firing temperature of 700 ° C. for a firing time of 1 hour. The fired product was taken out of the crucible, placed in 800 mL of 1 mol / L nitric acid, stirred for 1 hour, filtered, and washed with 800 mL of water. The filtered solid was put in 800 mL of 1 mol / L nitric acid, washed with acid, adjusted to pH 6 with ammonia water, filtered and washed with water, and dried with a hot air drier at a set temperature of 120 ° C., Example 1 Zirconium nitride black filler was obtained.

実施例2
焼成温度を650℃に変更した以外は実施例1と同様の操作を行い、実施例2の窒化ジルコニウム系黒色フィラーを得た。
Example 2
The same operation as in Example 1 was performed except that the firing temperature was changed to 650 ° C., to obtain a zirconium nitride black filler of Example 2.

実施例3
焼成温度を800℃に変更した以外は実施例1と同様の操作を行い、実施例3の窒化ジルコニウム系黒色フィラーを得た。
Example 3
The same operation as in Example 1 was performed except that the firing temperature was changed to 800 ° C., to obtain a zirconium nitride black filler of Example 3.

実施例4
焼成時間を0.5hrに変更した以外は実施例1と同様の操作を行い、実施例4の窒化ジルコニウム系黒色フィラーを得た。
Example 4
The same operation as in Example 1 was performed except that the firing time was changed to 0.5 hr, to obtain a zirconium nitride black filler of Example 4.

実施例5
金属マグネシウムとジルコニウムのモル比を4に変更した以外は実施例1と同様の操作を行い、実施例5の窒化ジルコニウム系黒色フィラーを得た。
Example 5
The same operation as in Example 1 was carried out except that the molar ratio of metallic magnesium to zirconium was changed to 4, to obtain a zirconium nitride black filler of Example 5.

実施例6
金属マグネシウムとジルコニウムのモル比を6に変更した以外は実施例1と同様の操作を行い、実施例6の窒化ジルコニウム系黒色フィラーを得た。
Example 6
The same operation as in Example 1 was carried out except that the molar ratio of metallic magnesium to zirconium was changed to 6, to obtain a zirconium nitride black filler of Example 6.

実施例7
ジルコニア源を水酸化ジルコニウム(高純度化学社製)に変更した以外は実施例1と同様の操作を行い、実施例7の窒化ジルコニウム系黒色フィラーを得た。
Example 7
The same operation as in Example 1 was performed except that the zirconia source was changed to zirconium hydroxide (manufactured by Kojundo Kagaku Co., Ltd.), to obtain a zirconium nitride black filler of Example 7.

比較例1
焼成温度を500℃に変更した以外は実施例1と同様の操作を行い、比較例1のジルコニウム系フィラーを得た。
Comparative Example 1
The same operation as in Example 1 was performed except that the firing temperature was changed to 500 ° C., and a zirconium-based filler of Comparative Example 1 was obtained.

比較例2
二酸化ジルコニウム(第一稀元素化学工業社製)18.5gと、金属マグネシウム(高純度化学社製)18.3gをそれぞれ秤量した。秤量した各材料を自動めのう乳鉢で15分間混合した。混合粉末30gをカーボン製るつぼに投入後、焼成炉(西山製作所製)にセットし、窒素雰囲気下で焼成温度1000℃、焼成時間1時間の条件で焼成を行った。焼成物をるつぼから取り出し後、1mol/L硝酸800mLに入れて1hr撹拌した後、ろ過し、水800mLで水洗した。そのろ過固形分を1mol/L硝酸800mL中に入れて酸で洗浄し、アンモニア水でpH6に調整した後、ろ過水洗を行い、設定温度120℃の熱風乾燥機で乾燥し、比較例2のジルコニウム系フィラーを得た。
Comparative example 2
18.5 g of zirconium dioxide (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) and 18.3 g of metallic magnesium (manufactured by High Purity Chemical Co., Ltd.) were weighed. The weighed materials were mixed in an automatic mortar for 15 minutes. After 30 g of the mixed powder was put into a carbon crucible, it was set in a firing furnace (manufactured by Nishiyama Seisakusho), and firing was performed under a nitrogen atmosphere at a firing temperature of 1000 ° C. for a firing time of 1 hour. The fired product was taken out of the crucible, placed in 800 mL of 1 mol / L nitric acid, stirred for 1 hour, filtered, and washed with 800 mL of water. The filtered solid content was put in 800 mL of 1 mol / L nitric acid and washed with acid, adjusted to pH 6 with aqueous ammonia, filtered and washed with water, and dried with a hot air dryer at a set temperature of 120 ° C. I got a system filler.

比較例3
二酸化ジルコニウム(第一稀元素化学工業社製)5.8gと、アセチレンブラック(デンカ社製)10gをそれぞれ秤量した。秤量した各材料とジルコニアビーズ100gをジルコニア製ポットの中に入れ、そのポットを遊星ボールミル(フリッチュ社製PULVERISETTE6)にセットし、周速200rpmで20分間混合した。混合粉末10gをアルミナ製るつぼに投入後、焼成炉(モトヤマ社製)にて焼成し、比較例3のジルコニウム系フィラーを得た。
Comparative example 3
5.8 g of zirconium dioxide (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) and 10 g of acetylene black (manufactured by Denka Co., Ltd.) were weighed. Each material weighed and 100 g of zirconia beads were placed in a zirconia pot, and the pot was set in a planetary ball mill (PULVERISETTE 6 manufactured by Fritsch Co., Ltd.) and mixed at a circumferential speed of 200 rpm for 20 minutes. After 10 g of the mixed powder was introduced into an alumina crucible, the mixture was fired in a firing furnace (manufactured by Motoyama Co., Ltd.) to obtain a zirconium-based filler of Comparative Example 3.

比較例4
二酸化ジルコニウム(第一稀元素化学工業社製)173gと、酸化マグネシウム(協和化学工業社製MF−150)80gをそれぞれ秤量した。各材料を小型V型混合機で30分間混合後、ピンミル(コロプレックス、ホソカワミクロン社製)で粉砕混合を処理し混合粉体Aを得た。この混合粉体A169gに金属マグネシウム(関東金属社製MG45)32g加え、V型混合機の中を窒素で置換した後、30分間混合して混合粉体Bを得た。混合粉体B200gをステンレス鋼製容器に入れ、金属ベルトを備えた連続還元焼成炉にて窒素雰囲気下、焼成温度700℃、焼成時間1時間で焼成を行った。得られた焼成物を1Lの水に分散し、5%希塩酸を徐々に添加して、pH1以上で温度を80℃で保持しながら洗浄後、2%アンモニア水にてpH6に調整し、ろ過した。そのろ過固形分を400g/Lに再分散し、再度、上記と同様の操作を行い、ろ過を行った。ろ過固形物をイオン交換水中に固形分換算で500g/Lで分散させ、60℃での加熱撹拌とpH6への調整した後、ろ過を行い、さらに等量のイオン交換水で洗浄し、設定温度105℃の熱風乾燥機で乾燥して、比較例4のジルコニウム系フィラーを得た。
Comparative example 4
173 g of zirconium dioxide (manufactured by Daiichi Kigenso Kagaku Kogyo Co., Ltd.) and 80 g of magnesium oxide (MF-150 manufactured by Kyowa Chemical Industry Co., Ltd.) were weighed. The materials were mixed in a small V-type mixer for 30 minutes, and then ground and processed in a pin mill (Coloplex, manufactured by Hosokawa Micron Corporation) to obtain a mixed powder A. 32 g of metallic magnesium (MG 45 manufactured by Kanto Metal Co., Ltd.) was added to 169 g of this mixed powder A, and the inside of the V-type mixer was replaced with nitrogen, and then mixed for 30 minutes to obtain a mixed powder B. 200 g of the mixed powder B was placed in a stainless steel container, and firing was performed in a nitrogen atmosphere at a firing temperature of 700 ° C. for a firing time of 1 hour in a continuous reduction firing furnace equipped with a metal belt. The obtained calcined product is dispersed in 1 L of water, 5% dilute hydrochloric acid is gradually added, and while washing while maintaining the temperature at 80 ° C. at pH 1 or more, adjusted to pH 6 with 2% aqueous ammonia and filtered . The filtered solid was re-dispersed to 400 g / L, and the same operation as described above was performed again to perform filtration. The filtered solid is dispersed in ion-exchanged water at 500 g / L in terms of solid content, heated and stirred at 60 ° C. and adjusted to pH 6, then filtered and washed with an equal amount of ion exchanged water, setting temperature The resultant was dried by a hot air dryer at 105 ° C. to obtain a zirconium based filler of Comparative Example 4.

B.フィラーの物性測定:
ジルコニウム系フィラー中の低次酸化ジルコニウムと窒化ジルコニウムの同定と生成比率は、スペクトリス社製のX線回折装置「X‘Pert Pro」(商品名)により、CuKα線を用いて、印加電圧45kV、印加電流40mAの条件で、θ−2θ法で測定した。各ピークの帰属は、X線回折データを解析ソフト「High Score Plus」(ソフト名)を用いて帰属を行った。また、生成比率は同解析ソフトを用いて、リートベルト法による結晶構造解析により算出した。
B. Measurement of physical properties of filler:
The identification and formation ratio of low-order zirconium oxide and zirconium nitride in the zirconium-based filler were applied with an applied voltage of 45 kV using CuKα radiation with an X-ray diffraction apparatus “X'Pert Pro” (trade name) manufactured by Spectris Corporation. It measured by (theta) -2 (theta) method on the conditions of 40 mA of electric currents. The attribution of each peak performed attribution using X-ray diffraction data using analysis software "High Score Plus" (soft name). The generation ratio was calculated by crystal structure analysis by Rietveld method using the same analysis software.

代表的な例として、図1に本発明の実施例1,2の窒化ジルコニウム系黒色フィラーと、比較例2〜4のジルコニウム系フィラーのX線回折パターンを示す。   As representative examples, X-ray diffraction patterns of the zirconium nitride black fillers of Examples 1 and 2 of the present invention and the zirconium fillers of Comparative Examples 2 to 4 are shown in FIG.

[測定結果1]
実施例1,2の窒化ジルコニウム系黒色フィラーは、図1に示されるように、低次酸化ジルコニウム本来のピーク位置(2θ=31.8°、36.3°、47.6°)の近傍の2θ=31.8°、36.3°、47.5°に低次酸化ジルコニウム部分のピークを有し、また、窒化ジルコニウム本来のピーク位置(2θ=33.9°、39.3°、56.8°および67.9°)の近傍の2θ=33.9°、39.3°、56.8°および67.8°に窒化ジルコニウムのピークを有していることが確認された。
[Measurement result 1]
The zirconium nitride-based black fillers of Examples 1 and 2 are, as shown in FIG. 1, in the vicinity of the inherent peak position (2θ = 31.8 °, 36.3 °, 47.6 °) of the lower zirconium oxide. 2θ = 31.8 °, 36.3 °, 47.5 °, and has a peak of the lower zirconium oxide portion, and the peak position of zirconium nitride (2θ = 33.9 °, 39.3 °, 56 It is confirmed that the peaks of zirconium nitride are at 2θ = 33.9 °, 39.3 °, 56.8 ° and 67.8 ° in the vicinity of (8 ° and 67.9 °).

一方、比較例1のジルコニウム系フィラーは、500℃では反応せずに酸化ジルコニウムのピークとマグネシウムの混合物であり、窒化ジルコニウムは確認されなかった。比較例2のジルコニウム系フィラーは、窒化ジルコニウム本来のピーク位置の近傍の2θ=33.9°、39.3°、56.8°および67.8°に窒化ジルコニウムのピークを有するものの、低次酸化ジルコニウム本来のピーク位置(すなわち、2θ=31.8°、36.3°、47.6)やその近傍にはピークを有しないことから、低次酸化ジルコニウムが生成されていないことが確認された。比較例3では、実施例1,2のような低次酸化ジルコニウム本来のピーク位置(2θ=31.8°、36.3°、47.6°)にピークは有しておらず、かつ窒化ジルコニウム本来のピーク位置(すなわち、2θ=33.9°、39.3°、56.8°および67.9°)やその近傍にはピークを有しないことから、低次酸化ジルコニウムと窒化ジルコニウムが生成されていないことが確認された。また、比較例4では、窒化ジルコニウム本来のピーク位置(すなわち、2θ=33.9°、39.3°、56.8°および67.9°)にピークがあり窒化ジルコニウムの生成が確認されているが、実施例1,2の様な低次酸化ジルコニウム本来のピーク位置(2θ=31.8°、36.3°、47.6°)とは異なる位置にピークが確認された。   On the other hand, the zirconium based filler of Comparative Example 1 was a mixture of the peak of zirconium oxide and magnesium without reacting at 500 ° C., and zirconium nitride was not confirmed. Although the zirconium-based filler of Comparative Example 2 has a zirconium nitride peak at 2θ = 33.9 °, 39.3 °, 56.8 °, and 67.8 ° in the vicinity of the intrinsic peak position of zirconium nitride, the lower order is lower. The absence of a peak at or near the natural peak position of zirconium oxide (ie, 2θ = 31.8 °, 36.3 °, 47.6) confirms that low-order zirconium oxide is not generated. The In Comparative Example 3, no peak is present at the inherent peak position (2θ = 31.8 °, 36.3 °, 47.6 °) of the lower order zirconium oxide as in Examples 1 and 2, and nitrided Lower order zirconium oxide and zirconium nitride have no peaks at or near the natural peak positions of zirconium (that is, 2θ = 33.9 °, 39.3 °, 56.8 ° and 67.9 °). It was confirmed that it was not generated. Further, in Comparative Example 4, there are peaks at the intrinsic peak positions of zirconium nitride (that is, 2θ = 33.9 °, 39.3 °, 56.8 ° and 67.9 °), and the formation of zirconium nitride is confirmed. However, a peak was observed at a position different from the original peak position (2θ = 31.8 °, 36.3 °, 47.6 °) of the lower zirconium oxide as in Examples 1 and 2.

C.フィラーを配合した塗料、塗膜の物性測定:
実施例および比較例で得られた化合物(フィラー)をバインダーや溶媒を混合して塗料を作製後、該塗料を大型スライド水縁磨に塗膜にし、分光光度計にて測定を行った。
C. Measurement of physical properties of paint containing paint and coating film:
The compounds (fillers) obtained in the Examples and Comparative Examples were mixed with a binder and a solvent to prepare a paint, and the paint was made into a coating on a large slide water rim and was measured with a spectrophotometer.

[塗料作製条件(アルキドメラミン)]
実施例1の塗料
実施例1の窒化ジルコニウム系黒色フィラー60部にベッコゾールJ−524(N.V.60%)(DIC社製)28.8部、キシレン23.3部、n−ブタノール5.8部をタンクに仕込み、ホモディスパー(プライミックス社製)にてフィラーを濡らした。その後、0.5mmジルコニアビーズを充填したビーズミル分散機DYNO−MILL(シンマルエンタープライゼス社製)を用いて、2時間分散し、グラインドメーターにて10μm以上の凝集体がないことを確認した。その分散液にベッコゾールJ−524、111.2部、スーパーベッカミンJ−820(N.V.60%)(DIC社製)60.0部にて希釈した。その後、キシレン/n−ブタノールを8/2の比率で混合溶剤にて粘度調整をし、実施例1の塗料を作製した。
[Paint preparation conditions (alkyd melamine)]
Coating Composition of Example 1 In 60 parts of the zirconium nitride black filler of Example 1, 28.8 parts of Beckcozole J-524 (N.V. 60%) (manufactured by DIC Corporation), 23.3 parts of xylene, n-butanol5. Eight parts were charged into a tank, and the filler was wetted with a homodisper (manufactured by Plymix Co.). Thereafter, dispersion was carried out for 2 hours using a bead mill disperser DYNO-MILL (manufactured by Shinmaru Enterprises Co., Ltd.) filled with 0.5 mm zirconia beads, and it was confirmed by a grind meter that there were no aggregates of 10 μm or more. The dispersion was diluted with 110.2 parts of Beckcozole J-524 and 60.0 parts of Super Beckcamine J-820 (N.V. 60%) (manufactured by DIC Corporation). Thereafter, the viscosity was adjusted with a mixed solvent at a ratio of 8/2 of xylene / n-butanol to prepare a paint of Example 1.

実施例2〜7の塗料
添加する顔料を、それぞれ実施例2〜7の窒化ジルコニウム系黒色フィラーに変更した以外は実施例1の塗料作製と同様の操作を行い、実施例2〜7の塗料を作製した。
The same procedure as in the preparation of the paint of Example 1 is carried out except that the pigment added to the paint of Examples 2 to 7 is changed to the zirconium nitride black filler of Examples 2 to 7, respectively, and the paint of Examples 2 to 7 Made.

比較例1〜4の塗料
添加する顔料を、それぞれ比較例1〜4のジルコニウム系フィラーに変更した以外は実施例1の塗料作製と同様の操作を行い、比較例1〜4の塗料を作製した。
Coatings of Comparative Examples 1 to 4 were prepared in the same manner as the coating preparation of Example 1 except that the pigments added to the coatings of Comparative Examples 1 to 4 were changed to the zirconium based fillers of Comparative Examples 1 to 4, respectively. .

[塗膜の作製条件]
実施例1の塗膜
作製した実施例1の塗料を大型スライド水縁磨t1.3 S9213(松波硝子工業社製)に、スピンコーター 1H−DX2型(ミカサ社製)を用いて、回転数1,000rpm×2秒の条件にてスピンコートした。その後、10分間室温に静置し、140℃×30分間焼き付け処理を行い、膜厚約1μmに調整した実施例1の塗膜を作製した。
[Preparation conditions of coating film]
The paint of Example 1 prepared in Example 1 was used as a large-sized slide water rim t1.3 S9213 (manufactured by Matsunami Glass Industrial Co., Ltd.) using a spin coater 1H-DX2 (manufactured by Mikasa Co., Ltd.) at a rotational speed of 1 It spin-coated on conditions of 1000, 000 rpm x 2 seconds. Thereafter, the film was allowed to stand at room temperature for 10 minutes, baked at 140 ° C. for 30 minutes, and a coating film of Example 1 adjusted to a film thickness of about 1 μm was produced.

実施例2〜7の塗膜
塗装する塗料を、それぞれ実施例2〜7の塗料に変更した以外は実施例1の塗膜作製と同様の操作を行い、実施例2〜7の塗膜を作製した。
The coating film of Examples 2 to 7 is prepared in the same manner as the coating film of Example 1 except that the coating material of Examples 2 to 7 is changed to the coating of Examples 2 to 7, respectively. did.

比較例1〜4の塗膜
塗装する塗料を、それぞれ比較例1〜4の塗料に変更した以外は実施例1の塗膜作製と同様の操作を行い、比較例1〜4の塗膜を作製した。
The same procedure as in the preparation of the coating film of Example 1 is carried out except that the coating material of Comparative Examples 1 to 4 is changed to the coating material of Comparative Examples 1 to 4, and the coating films of Comparative Examples 1 to 4 are prepared. did.

[塗膜の測色]
実施例1〜7の塗膜および比較例1〜4の塗膜の測色は、塗膜のバックに標準白色板をのせ、測色色差計ZE−200(日本電色工業社製)にてL値、a値、b値を測定することにより行った。なお、L値は明るさを表し、0から100までで数値が大きい程明るくなる。色味はa値、b値で表し、a値、b値が共に0の場合には無彩色となる。a値がプラスの方向になるほど赤味が強くなり、マイナスの方向になるほど緑味が強くなり、一方、b値がプラスの方向になるほど黄味が強くなり、マイナスの方向になるほど青味が強くなる。また、a値、b値の数値が共に大きいほど強い色(高い彩度)となる。
[Color measurement of coating film]
Colorimetry of the coating film of Examples 1 to 7 and the coating film of Comparative Examples 1 to 4 is carried out by placing a standard white plate on the back of the coating film and using a colorimetric color difference meter ZE-200 (manufactured by Nippon Denshoku Kogyo Co., Ltd.) It carried out by measuring L * value, a * value, and b * value. The L * value represents brightness, and the larger the value is from 0 to 100, the brighter it becomes. Color represents a * value, in the b * value, the achromatic color when the a * value, b * values are both 0. The reddishness becomes stronger as the a * value becomes positive, the greenness becomes stronger as it becomes negative, while the yellowing becomes stronger as the b * value becomes positive, the bluish as it becomes negative. Becomes stronger. Also, the larger the numerical values of the a * value and the b * value, the stronger the color (higher saturation).

[塗膜の分光光度特性]
実施例1〜7の塗膜および比較例1〜4の塗膜の分光光度特性は、分光光度計U−4100型(日立ハイテクサイエンス社製)にて、波長400〜800nmの塗膜の透過率を測定することにより行った。波長750nmの透過率から波長450nmの透過率を引いた透過率の差分ΔT(750−450)を確認した。ΔT(750−450)が小さいほど上記波長の光の透過が少なく、黒色度が高いことを意味する。
[Spectrophotometric Properties of Coating]
The spectrophotometric characteristics of the coatings of Examples 1 to 7 and the coatings of Comparative Examples 1 to 4 are the transmittance of a coating of 400 to 800 nm in wavelength with a spectrophotometer U-4100 (manufactured by Hitachi High-Tech Science Co., Ltd.) By measuring. A difference ΔT (750-450) of transmittances obtained by subtracting the transmittance at a wavelength of 450 nm from the transmittance at a wavelength of 750 nm was confirmed. The smaller the ΔT (750-450), the less the transmission of light of the above wavelength, and the higher the degree of blackness.

[測定結果2]
実施例1〜7の塗膜および比較例1〜4の塗膜のL表色系におけるL値、a値、b値の測定結果、およびΔT(750−450)透過率の測定結果を表1に示す。

Figure 2019104651
[Measurement result 2]
Measurement results of L * value, a * value, b * value in the L * a * b * color system of the coating films of Examples 1 to 7 and the coating films of Comparative Examples 1 to 4, and ΔT (750-450) The measurement results of the transmittance are shown in Table 1.
Figure 2019104651

表1より、実施例1〜7の窒化ジルコニウム系黒色フィラーを配合した塗料を用いて形成した塗膜は、L表色系におけるL値が15以下であり、a値が−1.0以上+1.0以下であり、そしてb*値が−1.0以上+1.0以下であった。また、実施例1〜7のLと比較すると、比較例2はL値とb値が高く、比較例3はa値とb値が高く、比較例4はL値、a値、b値が高くなっていた。この結果より、実施例1〜7の方が比較例2〜4の塗膜よりも極めて高い黒色度を有していることが判った。なお、比較例1のジルコニウム系フィラーにおいては窒化ジルコニウムが生成されず、L表色系におけるL値、a値、b値の測定およびΔT(750−450)透過率の測定を行わなかった。 From Table 1, the coating film formed by using the paint containing the zirconium nitride black filler of Examples 1 to 7 has an L * value of 15 or less in the L * a * b * color system, and an a * value Was -1.0 or more and 1.0 or less, and the b * value was -1.0 or more and 1.0 or less. Further, in comparison with L * a * b * in Examples 1 to 7, Comparative Example 2 has high L * and b * values, Comparative Example 3 has high a * and b * values, and Comparative Example 4 has The L * value, the a * value, and the b * value were high. From this result, it was found that Examples 1 to 7 had extremely higher blackness than the coatings of Comparative Examples 2 to 4. In the zirconium-based filler of Comparative Example 1, no zirconium nitride is produced, and measurement of L * value, a * value, b * value and ΔT (750-450) transmittance in the L * a * b * color system Did not measure.

また、実施例1〜7の塗膜は、ΔT(750−450)においても7.0%以下であることから、この点においても、ΔT(750−450)が14%以上となる比較例2〜4の塗膜よりも極めて高い黒色度を有していることが判った。   Moreover, since the coating films of Examples 1 to 7 are 7.0% or less also in ΔT (750-450), Comparative Example 2 in which ΔT (750-450) is 14% or more also in this point. It was found that the blackness was much higher than the coating of ~ 4.

上記のように、塗料に配合して塗膜を形成させた時、極めて高い黒色度を発現させることができる本発明の窒化ジルコニウム系黒色フィラーは、表1および図1より、X線回折プロファイルにおいて、低次酸化ジルコニウムのピークと窒化ジルコニウムのピークを有し、そして70〜99.9重量%の窒化ジルコニウムを含有していることが判った。   As described above, the zirconium nitride-based black filler of the present invention, which can exhibit extremely high blackness when incorporated in a paint to form a coating film, is shown in Table 1 and FIG. 1 in the X-ray diffraction profile. It has been found that it has a low-order zirconium oxide peak and a zirconium nitride peak, and contains 70 to 99.9% by weight of zirconium nitride.

また、上記のような極めて高い黒色度を有する本発明の窒化ジルコニウム系黒色フィラーは、二酸化ジルコニウムまたは水酸化ジルコニウムと、金属マグネシウムとを、金属マグネシウムとジルコニウムとのモル比(Mg/Zr)で3〜6の比率で混合し、該混合物を、窒素ガスまたは窒素ガスを含む不活性ガス雰囲気下で、好ましくは600〜900℃で、より好ましくは650〜800℃で焼成した後、酸による洗浄を行い、乾燥することにより得られることが判った。焼成温度が600℃よりも低くなると、酸化ジルコニウムと金属マグネシウムとの反応が進み難くなる一方、温度が900℃よりも高くなると、単相の窒化ジルコニウムは生成するが黒色度が低下するという不都合を生じるからである。   In addition, the zirconium nitride black filler of the present invention having the extremely high blackness as described above, the zirconium dioxide or zirconium hydroxide and the metallic magnesium, in the molar ratio of metallic magnesium to zirconium (Mg / Zr) 3 The mixture is mixed in a ratio of ̃6, and the mixture is calcined under nitrogen gas or an inert gas atmosphere containing nitrogen gas, preferably at 600 to 900 ° C., more preferably at 650 to 800 ° C., and then washed with acid It turned out that it is obtained by carrying out and drying. When the firing temperature is lower than 600 ° C., the reaction between zirconium oxide and metallic magnesium is difficult to proceed, while when the temperature is higher than 900 ° C., single phase zirconium nitride is formed but the blackness is lowered. It is because it arises.

また、金属マグネシウムとジルコニウムとのモル比(Mg/Zr)は3〜6が好ましい。比率が3よりも低くなると、窒化ジルコニウムが少なくなり黒色度が低下するため好ましくない。一方、比率が6よりも高くなると、残存するマグネシウム量が多くなり、酸洗浄回数を増加しなければならなくなる等、製造コストの増大に繋がるために好ましくない。   Moreover, as for the molar ratio (Mg / Zr) of metal magnesium and a zirconium, 3-6 are preferable. If the ratio is lower than 3, it is not preferable because the amount of zirconium nitride decreases and the degree of blackness decreases. On the other hand, if the ratio is higher than 6, the amount of remaining magnesium increases, and the number of times of acid cleaning must be increased, which is not preferable because it leads to an increase in manufacturing cost.

洗浄工程に用いる酸の種類としては、マグネシウムの副生成物を溶解させる材料であれば特に限定されないが、一般的には酸性溶液にて洗浄する。その物質としては塩酸、硝酸、硫酸、様々な有機酸を使用することができ、副生成物の酸への溶解性を考えると、強酸である塩酸、硝酸、硫酸を用いることがより好ましい。

The type of acid used in the washing step is not particularly limited as long as it is a material that dissolves magnesium by-products, but in general, washing is performed with an acidic solution. As the substance, hydrochloric acid, nitric acid, sulfuric acid and various organic acids can be used, and in view of the solubility of the by-product in the acid, it is more preferable to use hydrochloric acid, nitric acid and sulfuric acid which are strong acids.

Claims (5)

X線回折プロファイルにおいて、低次酸化ジルコニウムのピークと窒化ジルコニウムのピークを有し、そして窒化ジルコニウムの含有量が70〜99.9重量%である窒化ジルコニウム系黒色フィラー。   A zirconium nitride-based black filler having a low-order zirconium oxide peak and a zirconium nitride peak in an X-ray diffraction profile, and having a zirconium nitride content of 70 to 99.9% by weight. アルキドメラミン系塗料の固形分100重量部に対し、窒化ジルコニウム系黒色フィラー50重量部を配合した塗料を塗装して乾燥膜厚1μmの塗膜を形成した時、該塗膜は、L表色系においてL値が15以下であり、a値が−1.0以上+1.0以下であり、そしてb*値が−1.0以上+1.0以下となる請求項1記載の窒化ジルコニウム系黒色フィラー。 When a coating containing 50 parts by weight of a zirconium nitride black filler is applied to 100 parts by weight of the solid content of the alkyd melamine based paint to form a coating having a dry film thickness of 1 μm, the coating is L * a * In the b * color system, L * value is 15 or less, a * value is -1.0 or more and +1.0 or less, and b * value is -1.0 or more and +1.0 or less. Zirconium nitride-based black filler as described. 請求項1又は2に記載の窒化ジルコニウム系黒色フィラーを含む塗料組成物。   A paint composition comprising the zirconium nitride black filler according to claim 1 or 2. 請求項3に記載の塗料組成物を塗布して得られる塗膜。   The coating film obtained by apply | coating the coating composition of Claim 3. 二酸化ジルコニウムまたは水酸化ジルコニウムと、金属マグネシウムとを、金属マグネシウムとジルコニウムとのモル比(Mg/Zr)で3〜6の比率で混合し、該混合物を、窒素ガスまたは窒素ガスを含む不活性ガス雰囲気下で600〜900℃で焼成した後、酸による洗浄工程と乾燥工程を経ることを特徴とする請求項1又は2に記載の窒化ジルコニウム系黒色フィラーの製造方法。


Zirconium dioxide or zirconium hydroxide and metallic magnesium are mixed at a molar ratio of metallic magnesium to zirconium (Mg / Zr) in a ratio of 3 to 6, and the mixture is nitrogen gas or an inert gas containing nitrogen gas The method for producing a zirconium nitride-based black filler according to claim 1 or 2, wherein after firing at 600 to 900 ° C under an atmosphere, the step of washing with an acid and the step of drying are performed.


JP2017238721A 2017-12-13 2017-12-13 Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof Pending JP2019104651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017238721A JP2019104651A (en) 2017-12-13 2017-12-13 Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017238721A JP2019104651A (en) 2017-12-13 2017-12-13 Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof

Publications (1)

Publication Number Publication Date
JP2019104651A true JP2019104651A (en) 2019-06-27

Family

ID=67061115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017238721A Pending JP2019104651A (en) 2017-12-13 2017-12-13 Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof

Country Status (1)

Country Link
JP (1) JP2019104651A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200319373A1 (en) * 2017-12-26 2020-10-08 Mitsubishi Materials Electronic Chemicals Co., Ltd. Powder for forming black light-shielding film and method for manufacturing same
JP2021038119A (en) * 2019-09-04 2021-03-11 三菱マテリアル電子化成株式会社 Zirconium nitride powder and its manufacturing method
US11697156B2 (en) 2020-12-18 2023-07-11 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same
WO2024122578A1 (en) * 2022-12-09 2024-06-13 三菱マテリアル電子化成株式会社 Black dispersion liquid, ultraviolet ray curable black composition, resin composition, material for manufacturing electronic components, and electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200319373A1 (en) * 2017-12-26 2020-10-08 Mitsubishi Materials Electronic Chemicals Co., Ltd. Powder for forming black light-shielding film and method for manufacturing same
US11835679B2 (en) * 2017-12-26 2023-12-05 Mitsubishi Materials Electronic Chemicals Co., Ltd. Powder for forming black light-shielding film and method for manufacturing same
JP2021038119A (en) * 2019-09-04 2021-03-11 三菱マテリアル電子化成株式会社 Zirconium nitride powder and its manufacturing method
JP7339080B2 (en) 2019-09-04 2023-09-05 三菱マテリアル電子化成株式会社 Zirconium nitride powder and method for producing the same
US11697156B2 (en) 2020-12-18 2023-07-11 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same
WO2024122578A1 (en) * 2022-12-09 2024-06-13 三菱マテリアル電子化成株式会社 Black dispersion liquid, ultraviolet ray curable black composition, resin composition, material for manufacturing electronic components, and electronic component

Similar Documents

Publication Publication Date Title
JP2019104651A (en) Zirconium nitride-based black filler and method of producing the same, coating composition containing the filler, and coating film thereof
CN109195914B (en) Oxide particle coated with silicon compound, method for producing same, and oxide composition coated with silicon compound and containing same
WO2018061666A1 (en) Zirconium nitride powder and method for producing same
JP5095939B2 (en) Black titanium oxynitride
WO2012057053A1 (en) Indium tin oxide powder, method for producing same, dispersion, paint, and functional thin film
EP3546426B1 (en) Black-film-forming mixed powder and production method therefor
CN110809561B (en) Method for producing fine particle dispersion of iron-containing rutile titanium oxide, fine particles of iron-containing rutile titanium oxide, and use thereof
JP2004533510A5 (en)
EP2890640B1 (en) Blue inorganic colourants/pigments and process for preparation thereof
EP3597601A1 (en) Near infrared-reflective black pigment and method for producing same
CN115315412A (en) Method for producing zirconia-coated titanium oxide fine particles, and use thereof
KR100465378B1 (en) Conductive pigment powder and transparent conductive film formed by using the same
JP7303481B2 (en) Aniline black and resin composition and dispersion using said aniline black
WO2001056927A1 (en) Hexagonal lamellar compound based on indium-zinc oxide and process for producing the same
JP6949604B2 (en) Method for producing mixed powder for forming a black film
KR101734820B1 (en) Inorganic orange pigment
CN109196073B (en) Coloring ultraviolet ray protection agent
JP4271425B2 (en) Yellow pigment
CA2299181A1 (en) Tantalum(v) nitride pigments
WO2022158390A1 (en) Particles having specific low-order titanium oxide crystal composition, method for producing same, and dispersion
JP6183677B1 (en) Colored UV protection agent
JP2023132124A (en) Zirconium nitride powder, and method of producing the same
JPS63113080A (en) Production of coated pigment
JP2023107263A (en) Zirconium nitride powder containing zinc-based composition and manufacturing method of the same
TW202330394A (en) Aluminum-oxide-based-composition-containing zirconium nitride powder and method for producing same