JP2019102826A - Tuning-fork type crystal vibration element and piezoelectric device - Google Patents

Tuning-fork type crystal vibration element and piezoelectric device Download PDF

Info

Publication number
JP2019102826A
JP2019102826A JP2017227953A JP2017227953A JP2019102826A JP 2019102826 A JP2019102826 A JP 2019102826A JP 2017227953 A JP2017227953 A JP 2017227953A JP 2017227953 A JP2017227953 A JP 2017227953A JP 2019102826 A JP2019102826 A JP 2019102826A
Authority
JP
Japan
Prior art keywords
weight
width
length
tuning fork
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017227953A
Other languages
Japanese (ja)
Inventor
孝宏 尾賀
Takahiro Oga
孝宏 尾賀
斉師 吉田
Hitoshi Yoshida
斉師 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017227953A priority Critical patent/JP2019102826A/en
Priority to CN201811423024.2A priority patent/CN109842390A/en
Priority to US16/201,474 priority patent/US20190165761A1/en
Publication of JP2019102826A publication Critical patent/JP2019102826A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks
    • H03H9/215Crystal tuning forks consisting of quartz
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02062Details relating to the vibration mode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0504Holders; Supports for bulk acoustic wave devices
    • H03H9/0514Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps
    • H03H9/0519Holders; Supports for bulk acoustic wave devices consisting of mounting pads or bumps for cantilever
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

To provide a technology that can prevent a change in oscillatory frequency before and after mounting, in a tuning-fork element having weight parts at the tips of vibration arm parts.SOLUTION: A tuning-fork element 10 comprises: a base 11; a pair of vibration arm parts 12a, 12b that extend from the base 11 in the same longitudinal direction; and weight parts 16a, 16b that are provided on the tips of the vibration arm parts 12a, 12b. In plan view, when the dimension in the longitudinal direction is length, the dimension in a direction perpendicular to the longitudinal direction is width, the difference between a reference value xand the lengths of the vibration arm parts 12a, 12b and the weight parts 16a, 16b is x, the difference between a reference value yand the width of the weight parts 16a, 16b is y, and the unit is μm, the following formulas (1) are established. (1) -100≤x≤100, -30≤y≤30, and -0.3x-15≤y≤-0.3x+15.SELECTED DRAWING: Figure 1

Description

本発明は、基準信号源やクロック信号源に用いられる音叉型水晶振動素子(以下「音叉素子」と略称する。)、及び、これを実装した圧電デバイスに関する。   The present invention relates to a tuning fork type crystal vibrating element (hereinafter abbreviated as a "tuning fork element") used for a reference signal source or a clock signal source, and a piezoelectric device mounted with the same.

従来の音叉素子として、例えば特許文献1に開示されたものが知られている。この音叉素子は、基部と、基部から同じ長手方向に延びた一対の振動腕部と、振動腕部の先端に設けられた錘部と、を備えている。そして、振動腕部には溝部が設けられ、その溝部の内外に励振電極が設けられている。この音叉素子によれば、振動腕部の先端に錘部を設けたことにより、振動腕部を短くしたまま屈曲振動の周波数を低くできるので、音叉素子を小型化できる。また、溝部の内外の励振電極によって、振動腕部に効率よく電圧を印加できる。   As a conventional tuning fork element, for example, one disclosed in Patent Document 1 is known. The tuning fork element includes a base, a pair of vibrating arms extending in the same longitudinal direction from the base, and a weight provided at the tip of the vibrating arm. A groove is provided in the vibrating arm, and excitation electrodes are provided on the inside and the outside of the groove. According to this tuning fork element, since the weight is provided at the tip of the vibrating arm, the frequency of bending vibration can be lowered while the vibrating arm is shortened, so that the tuning fork element can be miniaturized. Further, voltage can be efficiently applied to the vibrating arm portion by the excitation electrodes inside and outside the groove portion.

特開2017−98765号公報JP, 2017-98765, A

しかしながら、従来の音叉素子では、振動腕部の自由端(先端)に錘部を有するので、励振電極に交番電圧を印加すると、逆相モードの主振動の他に、同相モードの振動や、ねじれモードの振動などの副振動も発生しやすい。特に全長が1200μm以下の小型の音叉素子では、その傾向が強い。そのため、音叉素子を素子搭載部材(パッケージ)に実装したときに、素子搭載部材からの応力変化により基部に歪みが加わり、この歪みにより副振動が大きくなる。その結果、従来の音叉素子では、その実装前後で発振周波数が変化することにより、設計どおりの発振周波数が得にくいという問題があった。   However, since the conventional tuning fork device has a weight at the free end (tip) of the vibrating arm, when an alternating voltage is applied to the excitation electrode, in addition to the main vibration in the reverse phase mode, vibration in the common mode and torsion Secondary vibration such as mode vibration is also likely to occur. This tendency is particularly strong in small-sized tuning fork elements having a total length of 1200 μm or less. Therefore, when the tuning fork element is mounted on the element mounting member (package), distortion is added to the base due to a change in stress from the element mounting member, and the secondary vibration becomes large due to this distortion. As a result, in the conventional tuning fork element, there is a problem that it is difficult to obtain an oscillation frequency as designed because the oscillation frequency changes before and after the mounting.

そこで、本発明の目的は、振動腕部の先端に錘部を有する音叉素子において、実装前後での発振周波数の変化を抑制し得る技術を提供することにある。   Therefore, an object of the present invention is to provide a technique capable of suppressing a change in oscillation frequency before and after mounting in a tuning fork having a weight at the tip of a vibrating arm.

本発明者は、振動腕部の先端に錘部を有する従来の音叉素子において、実装前後での発振周波数の変化を抑制すべく研究及び実験を重ねた結果、次の知見を得た。   The inventors of the present invention obtained the following findings as a result of repeated studies and experiments to suppress changes in oscillation frequency before and after mounting in a conventional tuning fork element having a weight at the tip of a vibrating arm.

音叉素子のシミュレーション実験において、振動腕部及び錘部の長さと錘部の幅とに特別な関係が成り立つときに、実装前後での発振周波数の変化が抑制される、という結果を得た。   In the simulation experiment of the tuning fork element, when a special relationship was established between the length of the vibrating arm and the weight and the width of the weight, the result that the change of the oscillation frequency before and after mounting was suppressed.

本発明に係る音叉素子は、この知見に基づきなされたものであり、
基部と、
前記基部から同じ長手方向に延びた一対の振動腕部と、
前記振動腕部の先端に設けられた錘部と、
を備えた音叉型水晶振動素子であって、
平面視して、前記長手方向の寸法を長さ、前記長手方向に垂直な方向の寸法を幅とし、
前記振動腕部及び前記錘部の前記長さの基準値x0との差をx、前記錘部の前記幅の基準値y0との差をy、単位をμmとしたとき、次式(1)が成り立つ、
−100≦x≦100、−30≦y≦30、かつ、
−0.3x−15≦y≦−0.3x+15 ・・・(1)
ことを特徴とする。
The tuning fork element according to the present invention is made based on this finding,
The base,
A pair of vibrating arms extending from the base in the same longitudinal direction;
A weight provided at the tip of the vibrating arm;
A tuning-fork type quartz crystal vibrating element provided with
In plan view, the dimension in the longitudinal direction is a length, and the dimension in the direction perpendicular to the longitudinal direction is a width,
Assuming that the difference between the length of the vibrating arm and the weight with the reference value x 0 of the length is x, the difference between the width of the weight with the reference value y 0 is y, and the unit is μm, 1) holds,
−100 ≦ x ≦ 100, −30 ≦ y ≦ 30, and
−0.3x−15 ≦ y ≦ −0.3x + 15 (1)
It is characterized by

本発明によれば、振動腕部及び錘部の長さと錘部の幅との関係を最適化することにより、音叉素子の実装前後において発振周波数の変化を抑制できる。   According to the present invention, it is possible to suppress a change in oscillation frequency before and after mounting the tuning fork element by optimizing the relationship between the lengths of the vibrating arm and the weight and the width of the weight.

実施形態1の音叉素子を示す平面図である。FIG. 2 is a plan view showing the tuning fork element of the first embodiment. 図2[A]は図1におけるIIa−IIa線断面図であり、図2[B]図1の音叉素子を実装した圧電デバイスを示す概略断面図である。2A is a cross-sectional view taken along line IIa-IIa in FIG. 1, and FIG. 2B is a schematic cross-sectional view showing a piezoelectric device on which the tuning fork element of FIG. 1 is mounted. 図1の音叉素子の主な寸法の一例を示す平面図である。It is a top view which shows an example of the main dimension of the tuning-fork element of FIG. 図1の音叉素子の振動モードを示す概略平面図であり、図4[A]は同相、図4[B]は主振動、図4[C]はドルフィン、図4[D]はバタ足、図4[E]はねじれ(同相)、図4[F]はねじれ(逆相)である。4A is a schematic view showing the vibration mode of the tuning fork element of FIG. 1, FIG. 4 [A] is the same phase, FIG. 4 [B] is the main vibration, FIG. 4 [C] is dolphin, FIG. FIG. 4 [E] shows a twist (in phase), and FIG. 4 [F] shows a twist (reverse phase). 腕長さx及び錘幅yを変化させた場合のfree-fixを示す図表である。It is a chart showing free-fix at the time of changing arm length x and weight width y. 腕長さx及び錘幅yとfree-fixとの関係を示すグラフである。It is a graph which shows the relationship between arm length x and weight width y, and free-fix. 図6[A]は錘幅y=0一定として腕長さxを変化させた場合の各振動モード等の周波数を示す図表であり、図6[B]は腕長さxと各振動モードの周波数との関係を示すグラフであり、図6[C]は腕長さxとfree-fix及び同相差との関係を示すグラフである。FIG. 6A is a chart showing the frequency of each vibration mode etc. when the arm length x is changed with the weight width y = 0 fixed, and FIG. 6B shows the arm length x and each vibration mode FIG. 6 [C] is a graph showing the relationship between the arm length x and the free-fix and the in-phase difference. 図7[A]は腕長さx=0一定として錘幅yを変化させた場合の各振動モード等の周波数を示す図表であり、図6[B]は錘幅yと各振動モードの周波数との関係を示すグラフであり、図6[C]は錘幅yとfree-fix及び同相差との関係を示すグラフである。FIG. 7A is a chart showing the frequency of each vibration mode etc. when the weight width y is changed with the arm length x = 0 fixed, and FIG. 6B shows the weight width y and the frequency of each vibration mode FIG. 6 [C] is a graph showing the relationship between the weight width y and the free-fix and the in-phase difference. 図8[A]は錘幅y=−30一定として腕長さxを変化させた場合の各振動モード等の周波数を示す図表であり、図8[B]は腕長さxと各振動モードの周波数との関係を示すグラフであり、図8[C]は腕長さxとfree-fix及び同相差との関係を示すグラフである。FIG. 8A is a chart showing the frequency of each vibration mode etc. when the arm length x is changed with the weight width y = -30 constant, and FIG. 8B is the arm length x and each vibration mode FIG. 8 [C] is a graph showing the relationship between the arm length x and the free-fix and the in-phase difference. 図9[A]は錘幅y=−15一定として腕長さxを変化させた場合の各振動モード等の周波数を示す図表であり、図9[B]は腕長さxと各振動モードの周波数との関係を示すグラフであり、図9[C]は腕長さxとfree-fix及び同相差との関係を示すグラフである。FIG. 9A is a chart showing the frequency of each vibration mode etc. when the arm length x is changed with the weight width y = -15 constant, and FIG. 9B shows the arm length x and each vibration mode FIG. 9 [C] is a graph showing the relationship between the arm length x and the free-fix and the in-phase difference. 図10[A]は錘幅y=+15一定として腕長さxを変化させた場合の各振動モード等の周波数を示す図表であり、図10[B]は腕長さxと各振動モードの周波数との関係を示すグラフであり、図10[C]は腕長さxとfree-fix及び同相差との関係を示すグラフである。FIG. 10A is a chart showing the frequency of each vibration mode etc. when the arm length x is changed with the weight width y = + 15 constant, and FIG. 10B shows the arm length x and each vibration mode FIG. 10 [C] is a graph showing the relationship between the arm length x and the free-fix and the in-phase difference. 図11[A]は錘幅y=+30一定として腕長さxを変化させた場合の各振動モード等の周波数を示す図表であり、図11[B]は腕長さxと各振動モードの周波数との関係を示すグラフであり、図11[C]は腕長さxとfree-fix及び同相差との関係を示すグラフである。FIG. 11A is a chart showing the frequency of each vibration mode etc. when the arm length x is changed with the weight width y = + 30 constant, and FIG. 11B shows the arm length x and each vibration mode It is a graph which shows the relationship with a frequency, and FIG. 11 [C] is a graph which shows the relationship between arm length x, free-fix, and an in-phase difference.

以下、添付図面を参照しながら、本発明を実施するための形態(以下「実施形態」という。)について説明する。なお、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いる。また、図面に描かれた形状は、当業者が理解しやすいように描かれているため、実際の寸法及び比率とは必ずしも一致していない。   Hereinafter, a mode for carrying out the present invention (hereinafter referred to as "embodiment") will be described with reference to the attached drawings. In the specification and the drawings, substantially the same components are denoted by the same reference numerals. Also, the shapes depicted in the drawings are drawn for the convenience of the person skilled in the art to understand, and therefore do not necessarily match the actual dimensions and proportions.

図1は、実施形態の音叉素子を示す平面図である。図2[A]は、図1におけるIIa−IIa線断面図である。図2[B]は、図1の音叉素子を実装した圧電デバイスを示す概略断面図である。以下、これらの図面に基づき説明する。   FIG. 1 is a plan view showing the tuning fork element of the embodiment. FIG. 2A is a cross-sectional view taken along line IIa-IIa in FIG. FIG. 2B is a schematic cross-sectional view showing a piezoelectric device on which the tuning fork element of FIG. 1 is mounted. Hereinafter, it demonstrates based on these drawings.

図1及び図2[A]に示すように、本実施形態の音叉素子10は、基部11と、基部11から同じ長手方向(Y’軸方向)に延びた一対の振動腕部12a,12bと、振動腕部12a,12bの先端に設けられた錘部16a,16bと、を備えている。そして、平面視して、長手方向(Y’軸方向)の寸法を長さ、長手方向(Y’軸方向)に垂直な方向(X軸方向)の寸法を幅とし、振動腕部12a,12b及び錘部16a,16bの長さの基準値x0との差をx、錘部16a,16bの幅の基準値y0との差をy、単位をμmとしたとき、次式(1)が成り立つ。
−100≦x≦100、
−30≦y≦30、かつ、
−0.3x−15≦y≦−0.3x+15 ・・・(1)
As shown in FIGS. 1 and 2A, the tuning fork device 10 of this embodiment includes a base 11 and a pair of vibrating arms 12a and 12b extending from the base 11 in the same longitudinal direction (Y 'axis direction). And weight portions 16a and 16b provided at the tips of the vibrating arms 12a and 12b. Then, in plan view, the dimension in the longitudinal direction (Y 'axis direction) is the length, and the dimension in the direction (X axis direction) perpendicular to the longitudinal direction (Y' axis direction) is the width. And the difference between the lengths of the weights 16a and 16b from the reference value x 0 , the difference between the widths of the weights 16a and 16b from the reference value y 0 is y, and the unit is μm, the following equation (1) Is true.
−100 ≦ x ≦ 100,
−30 ≦ y ≦ 30, and
−0.3x−15 ≦ y ≦ −0.3x + 15 (1)

本実施形態の音叉素子10によれば、振動腕部12a,12b及び錘部16a,16bの長さと錘部16a,16bの幅との関係を最適化することにより、実装前後での発振周波数の変化を抑制できる(詳細は後述する。)。   According to the tuning fork 10 of this embodiment, by optimizing the relationship between the lengths of the vibrating arms 12a and 12b and the weights 16a and 16b and the widths of the weights 16a and 16b, the oscillation frequency before and after mounting can be increased. The change can be suppressed (the details will be described later).

また、式(1)に代えて、次式(2)が成り立つ、としてもよい。
−100≦x≦100、−30≦y≦30、かつ、
y=−0.3x ・・・(2)
この場合は、実装前後での発振周波数の変化をより抑制できる。
Also, instead of equation (1), the following equation (2) may be established.
−100 ≦ x ≦ 100, −30 ≦ y ≦ 30, and
y = -0.3x (2)
In this case, the change in oscillation frequency before and after mounting can be further suppressed.

更に、式(1)又は式(2)において、x,yは次式(3)を満たす、としてもよい。
−50≦x≦50、かつ、−15≦y≦15 ・・・(3)
この場合は、実装前後での発振周波数の変化をより一層抑制できる。
Furthermore, in the formula (1) or the formula (2), x and y may satisfy the following formula (3).
−50 ≦ x ≦ 50 and −15 ≦ y ≦ 15 (3)
In this case, the change of the oscillation frequency before and after mounting can be further suppressed.

更にまた、式(1)乃至式(3)において、基準値x0が780μmかつ基準値y0が102μmである場合に、それらの効果が顕著になる。 Furthermore, in the formula (1) through (3), the reference value x 0 is when 780μm and the reference value y 0 is 102 .mu.m, their effect becomes remarkable.

振動腕部12a,12b及び錘部16a,16bの長さとは、振動腕部12aの長さと錘部16aの長さとの和、又は、振動腕部12bの長さと錘部16bの長さとの和であり、両者はともに等しい。錘部16a,16bの幅とは、錘部16aの幅、又は、錘部16bの幅であり、両者はともに等しい。   The lengths of the vibrating arms 12a and 12b and the weights 16a and 16b are the sum of the length of the vibrating arms 12a and the length of the weights 16a, or the sum of the length of the vibrating arms 12b and the length of the weights 16b. And both are equal. The width of the weight portions 16a and 16b is the width of the weight portion 16a or the width of the weight portion 16b, and both are equal.

上記「長さ」が変数であるとき、「幅」が定数であれば「長さ」は面積(長さ×幅)に比例し、「幅」及び「厚み」が定数であれば「長さ」は体積(長さ×幅×厚み)に比例する。同様に、上記「幅」が変数であるとき、「長さ」が定数であれば「幅」は面積(幅×長さ)に比例し、「長さ」及び「厚み」が定数であれば「幅」は体積(幅×長さ×厚み)に比例する。この場合、式(1)及び式(2)は、x,yを面積又は体積として書き換えることができる。   When the above “length” is a variable, if “width” is a constant, “length” is proportional to the area (length × width), and if “width” and “thickness” are constants, “length” "Is proportional to volume (length x width x thickness). Similarly, when the "width" is a variable, if the "length" is a constant, the "width" is proportional to the area (width x length), and if the "length" and the "thickness" are constants. “Width” is proportional to volume (width × length × thickness). In this case, equation (1) and equation (2) can be rewritten as x or y as an area or volume.

また、振動腕部12a,12bの長手方向(Y’軸方向)の中心線17a,17bと、錘部16a,16bの長手方向(Y’軸方向)の中心線17a,17bとが、一致することが好ましい。すなわち、振動腕部12aの中心線17aと錘部16aの中心線17aとが一致し、振動腕部12bの中心線17bと錘部16bの中心線17bとが一致することが好ましい。なぜなら、振動腕部12a,12bから錘部16a,16bへ主振動が伝わる際に、副振動が生じにくいからである。   Further, center lines 17a and 17b in the longitudinal direction (Y 'axis direction) of the vibrating arms 12a and 12b coincide with center lines 17a and 17b in the longitudinal direction (Y' axis direction) of the weight portions 16a and 16b. Is preferred. That is, it is preferable that the center line 17a of the vibrating arm 12a and the center line 17a of the weight 16a coincide with each other, and the center line 17b of the vibrating arm 12b and the center line 17b of the weight 16b coincide with each other. This is because, when the main vibration is transmitted from the vibrating arms 12a and 12b to the weights 16a and 16b, the secondary vibration is less likely to occur.

図2[B]に示すように、本実施形態の圧電デバイス30は、本実施形態の音叉素子10を実装したものである。圧電デバイス30によれば、音叉素子10を実装したことにより、音叉素子10と同様の効果を奏する。   As shown in FIG. 2B, the piezoelectric device 30 of the present embodiment has the tuning fork element 10 of the present embodiment mounted thereon. According to the piezoelectric device 30, by mounting the tuning fork element 10, the same effect as the tuning fork element 10 is exerted.

次に、音叉素子10の構成について更に詳しく説明する。   Next, the configuration of the tuning fork element 10 will be described in more detail.

音叉素子10は、前述の構成要素以外にも、振動腕部12a,12bの間の基部11から長手方向(Y’軸方向)に突き出た突起部13と、突起部13の基端側から先端側に長手方向(Y’軸方向)に形成されたスリット14と、振動腕部12a,12bに基部11側から錘部16a,16b側まで直線状に設けられた溝部15a,15bと、を備えている。   The tuning fork element 10 has a protrusion 13 protruding in the longitudinal direction (Y 'axis direction) from the base 11 between the vibrating arms 12a and 12b and a tip end from the base end side of the protrusion 13 besides the above-described components It has a slit 14 formed in the longitudinal direction (Y 'axis direction) on the side, and grooves 15a and 15b provided linearly on the vibrating arm 12a and 12b from the base 11 to the weight 16a and 16b. ing.

振動腕部12a,12bは、それぞれ基部11から同じ方向に延設され、その延設方向に沿って溝部15a,15bが設けられている。振動腕部12a,12bの先端には、それぞれ周波数調整用の錘部16a,16bが設けられている。基部11、振動腕部12a,12b、突起部13、スリット14及び錘部16a,16bは、水晶のウェットエッチングによって形成された水晶振動片19からなる。音叉素子10は、水晶振動片19の他に、パッド電極21a,21b(図1)、励振電極22a,22b(図2[A])、及び、図示しない周波数調整用金属膜、配線パターンなども備えている。   The vibrating arms 12a and 12b extend from the base 11 in the same direction, and the grooves 15a and 15b are provided along the extending direction. Weights 16a and 16b for adjusting the frequency are provided at the tips of the vibrating arms 12a and 12b, respectively. The base 11, the vibrating arms 12a and 12b, the protrusion 13, the slit 14, and the weight parts 16a and 16b are made of a quartz vibrating piece 19 formed by wet etching of quartz. In the tuning fork element 10, in addition to the crystal vibrating piece 19, the pad electrodes 21a and 21b (FIG. 1), the excitation electrodes 22a and 22b (FIG. 2A), and not-shown metal films for frequency adjustment and wiring patterns etc. Have.

基部11は、平面視略四角形の平板となっている。水晶振動片19は、基部11、振動腕部12a,12b、突起部13及び錘部16a,16bが一体となって音叉形状をなしており、成膜技術、フォトリソグラフィ技術、ウェットエッチング技術によって製造される。   The base 11 is a flat plate substantially rectangular in plan view. The quartz crystal vibrating piece 19 has a tuning fork shape in which the base 11, the vibrating arms 12a and 12b, the projection 13 and the weights 16a and 16b are integrally formed, and is manufactured by film forming technology, photolithography technology, and wet etching technology. Be done.

溝部15a,15bは、振動腕部12aの表裏面に二本ずつ及び振動腕部12bの表裏面に二本ずつ、基部11との境界部分から振動腕部12a,12bの先端に向って、振動腕部12a,12bの長手方向と平行に所定の長さで設けられる。なお、溝部15a,15bは、本実施形態1では振動腕部12aの表裏面に二本ずつ及び振動腕部12bの表裏面に二本ずつ設けられているが、それらの本数に制限はなく、例えば振動腕部12aの表裏面に一本ずつ及び振動腕部12bの表裏面に一本ずつ設けてもよく、また、表裏のどちらか片面にのみ設けてもよい。溝部15a,15b内には、ウェットエッチング時に貫通しないように、エッチング抑制パターンを設けてもよい。   The grooves 15a and 15b vibrate toward the tip of the vibrating arms 12a and 12b from the boundary portion with the base 11 two at each of the front and back of the vibrating arm 12a and two at each of the front and back of the vibrating arm 12b. It is provided in parallel with the longitudinal direction of arm parts 12a and 12b by predetermined length. Although the grooves 15a and 15b are provided two each on the front and back of the vibrating arm 12a and two each on the front and back of the vibrating arm 12b in the first embodiment, the number of the grooves is not limited. For example, one may be provided on each of the front and back surfaces of the vibrating arm 12a and one on each of the front and back surfaces of the vibrating arm 12b, or only one of the front and back may be provided. In the grooves 15a and 15b, an etching suppression pattern may be provided so as not to penetrate at the time of wet etching.

振動腕部12aには、水晶を挟んで対向する平面同士が同極となるように、両側面に励振電極22aが設けられ、表裏面の溝部15aの内側に励振電極22bが設けられる。同様に、振動腕部12bには、水晶を挟んで対向する平面同士が同極となるように、両側面に励振電極22bが設けられ、表裏面の溝部15bの内側に励振電極22aが設けられる。したがって、振動腕部12aにおいては両側面に設けられた励振電極22aと溝部15a内に設けられた励振電極22bとが異極同士となり、振動腕部12bにおいては両側面に設けられた励振電極22bと溝部15b内に設けられた励振電極22aとが異極同士となる。   In the vibrating arm portion 12a, the excitation electrodes 22a are provided on both side surfaces so that flat surfaces facing each other across the crystal have the same pole, and the excitation electrodes 22b are provided inside the grooves 15a on the front and back surfaces. Similarly, in the vibrating arm portion 12b, the excitation electrodes 22b are provided on both side surfaces so that flat surfaces facing each other across the quartz crystal have the same polarity, and the excitation electrodes 22a are provided inside the grooves 15b on the front and back surfaces. . Therefore, in the vibrating arm 12a, the excitation electrode 22a provided on both sides and the excitation electrode 22b provided in the groove 15a have different poles, and in the vibrating arm 12b, the excitation electrode 22b provided on both sides And the excitation electrode 22a provided in the groove 15b have different polarities.

基部11にはパッド電極21a,21b及び図示しない配線パターンが設けられ、錘部16a,16bには図示しない周波数調整用金属膜が設けられる。配線パターンは、パッド電極21aと励振電極22aとの間、及び、パッド電極21bと励振電極22bとの間を、それぞれ電気的に接続する。すなわち、パッド電極21aと励振電極22aとは電気的に導通しており、パッド電極21bと励振電極22bとは電気的に導通しており、パッド電極21a及び励振電極22aとパッド電極21b及び励振電極22bとは電気的に絶縁されている。   The base 11 is provided with pad electrodes 21a and 21b and a wiring pattern (not shown), and the weight parts 16a and 16b are provided with a metal film for frequency adjustment (not shown). The wiring pattern electrically connects between the pad electrode 21a and the excitation electrode 22a and between the pad electrode 21b and the excitation electrode 22b. That is, the pad electrode 21a and the excitation electrode 22a are electrically conducted, and the pad electrode 21b and the excitation electrode 22b are electrically conducted, and the pad electrode 21a, the excitation electrode 22a, the pad electrode 21b, and the excitation electrode It is electrically isolated from 22b.

図2[B]に示すように、音叉素子10は、パッド電極21a,21b(図1)及び導電性接着剤31を介して、素子搭載部材32側のパッド電極33に片持ち梁状に固定されると同時に電気的に接続される。音叉素子10が実装された素子搭載部材32は、蓋部材34によって封止され、圧電デバイス30となる。その封止方法には、例えば金錫封止や電気溶接や溶融ガラスが用いられる。   As shown in FIG. 2B, the tuning fork element 10 is fixed in a cantilever shape to the pad electrode 33 on the element mounting member 32 side via the pad electrodes 21a and 21b (FIG. 1) and the conductive adhesive 31. It is connected electrically at the same time. The element mounting member 32 on which the tuning fork element 10 is mounted is sealed by the lid member 34 and becomes the piezoelectric device 30. As the sealing method, for example, gold-tin sealing, electric welding, or molten glass is used.

水晶の結晶は三方晶系である。水晶の頂点を通る結晶軸をZ軸、Z軸に垂直な平面内の稜線を結ぶ三つの結晶軸をX軸、X軸及びZ軸に直交する座標軸をY軸とする。ここで、これらのX軸、Y軸及びZ軸からなる座標系をX軸を中心として例えば±5度の範囲で回転させたときの回転後のY軸及びZ軸を、それぞれY’軸及びZ’軸とする。この場合、本実施形態1では、二本の振動腕部12a,12bの長手方向がY’軸の方向であり、二本の振動腕部12a,12bの短手方向がX軸の方向である。   Crystals of quartz are trigonal. A crystal axis passing through the top of the quartz crystal is taken as a Z axis, three crystal axes connecting edges in a plane perpendicular to the Z axis as a X axis, and a coordinate axis orthogonal to the X axis and the Z axis as a Y axis. Here, when the coordinate system consisting of these X, Y, and Z axes is rotated, for example, in a range of ± 5 degrees about the X axis, the Y and Z axes after rotation are Y ′ and Y ′ respectively. Let it be the Z 'axis. In this case, in the first embodiment, the longitudinal direction of the two vibrating arms 12a and 12b is the direction of the Y 'axis, and the lateral direction of the two vibrating arms 12a and 12b is the direction of the X axis. .

次に、音叉素子10の動作を説明する。   Next, the operation of the tuning fork element 10 will be described.

音叉素子10を屈曲振動させる場合、パッド電極21a,21bに交番電圧を印加する。印加後のある電気的状態を瞬間的に捉えると、振動腕部12aの表裏の溝部15aに設けられた励振電極22bはプラス電位となり、振動腕部12aの両側面に設けられた励振電極22aはマイナス電位となり、プラスからマイナスに電界が生じる。このとき、振動腕部12bの表裏の溝部15bに設けられた励振電極22aはマイナス電位となり、振動腕部12bの両側面に設けられた励振電極22bはプラス電位となり、振動腕部12aに生じた極性とは反対の極性となり、プラスからマイナスに電界が生じる。この交番電圧で生じた電界によって、振動腕部12a,12bに伸縮現象が生じ、所定の共振周波数の屈曲振動モードが得られる。   When the tuning fork element 10 is bent and vibrated, an alternating voltage is applied to the pad electrodes 21a and 21b. When an electric state after application is instantaneously captured, the excitation electrode 22b provided in the groove 15a on the front and back of the vibrating arm 12a becomes a positive potential, and the excitation electrode 22a provided on both sides of the vibrating arm 12a is The potential is negative and an electric field is generated from positive to negative. At this time, the excitation electrode 22a provided in the groove 15b on the front and back of the vibrating arm 12b has a negative potential, and the excitation electrode 22b provided on both sides of the vibrating arm 12b has a positive potential, and is generated in the vibrating arm 12a. The polarity is opposite to the polarity, and an electric field is generated from positive to negative. By the electric field generated by this alternating voltage, a stretching phenomenon occurs in the vibrating arms 12a and 12b, and a flexural vibration mode of a predetermined resonance frequency is obtained.

次に、音叉素子10の主な寸法(単位はμm)の一例を、図1及び図3に基づき説明する。   Next, an example of the main dimensions (in μm) of the tuning fork element 10 will be described based on FIGS. 1 and 3.

音叉素子10の全長10L=1052
音叉素子10の全幅10W=362
基部11の長さ11L=272
基部11の幅11W=232
振動腕部12a,12bの長さ(基準値x0)=780
振動腕部12a,12bの幅12W=40
溝部15a,15bの長さ15L=420
錘部16a,16bの長さ16L=239
錘部16a,16bの幅(基準値y0)=102
中心線17a,17b間の幅17W=144.5
パッド電極21a,21bの長さ21L=160
パッド電極21a,21bの幅21W=100
水晶振動片19の厚み19t(図2[A])=100
The total length 10L = 1052 of the tuning fork element 10
The total width 10 W of the tuning fork element 10 = 362
Length 11 L of the base 11 = 272
Width 11 W of the base 11 = 232
Vibration arm 12a, 12b length (reference value x 0 ) = 780
Width 12 W of the vibrating arms 12 a and 12 b = 40
Grooves 15a and 15b have a length 15L of 420
Weight 16L of the weight 16a, 16b = 239
Width of weight 16a, 16b (reference value y 0 ) = 102
Width 17 W = 144.5 between center lines 17 a and 17 b
The length 21 L of the pad electrodes 21 a and 21 b = 160
Width 21 W of the pad electrodes 21 a and 21 b = 100
Thickness 19 t (FIG. 2 [A]) of the crystal vibrating piece 19 = 100

次に、音叉素子10のシミュレーション実験について説明する。   Next, simulation experiments of the tuning fork element 10 will be described.

まず、音叉素子10の振動モードについて説明する。図4の各図において、錘部は図示を略し、実線の矢印は一周期の前半での動きを示し、破線の矢印は一周期の後半での動きを示す。   First, the vibration mode of the tuning fork element 10 will be described. In each drawing of FIG. 4, a weight part abbreviate | omits illustration, the arrow of a continuous line shows the motion in the first half of one period, and the arrow of a broken line shows the motion in the second half of one period.

図4[A]に示す振動モードは、振動腕部12aと振動腕部12bとが互いに同相で±X軸方向に振動するモードであり、「同相」と呼ぶことにする。図4[B]に示す振動モードは、振動腕部12aと振動腕部12bとが互いに逆相で±X軸方向に振動するモードであり、「主振動」と呼ぶことにする。   The vibration mode shown in FIG. 4A is a mode in which the vibrating arm 12a and the vibrating arm 12b vibrate in phase with each other in the ± X-axis direction, and will be referred to as “in phase”. The vibration mode shown in FIG. 4B is a mode in which the vibrating arm 12a and the vibrating arm 12b vibrate in the ± X axis direction in opposite phase to each other, and will be referred to as "main vibration".

図4[C]に示す振動モードは、振動腕部12aと振動腕部12bとが互いに同相で±Z’軸方向に振動するモードであり、水泳に例えるとバタフライのドルフィンキックに似ていることから、「ドルフィン」と呼ぶことにする。図4[D]に示す振動モードは、振動腕部12aと振動腕部12bとが互いに逆相で±Z’軸方向に振動するモードであり、水泳に例えるとクロールのバタ足に似ていることから、「バタ足」と呼ぶことにする。   The vibration mode shown in FIG. 4C is a mode in which the vibrating arm 12a and the vibrating arm 12b vibrate in phase with each other in the ± Z 'axis direction, and resembles a dolphin's dolphin kick when compared to swimming. I will call it "dolphin". The vibration mode shown in FIG. 4D is a mode in which the vibrating arm portion 12a and the vibrating arm portion 12b vibrate in the ± Z 'axis direction in opposite phase to each other, and resembles a battle foot of a crawl when compared to swimming. I will call it "Battle foot" from that.

図4[E]に示す振動モードは、振動腕部12aの主面と振動腕部12bの主面とが互いに同相で±X軸方向に向くようにねじれて振動するモードであり、「ねじれ(同)」と呼ぶことにする。図4[F]に示す振動モードは、振動腕部12aの主面と振動腕部12bの主面とが互いに逆相で±X軸方向に向くようにねじれて振動するモードであり、「ねじれ(逆)」と呼ぶことにする。   The vibration mode shown in FIG. 4E is a mode in which the main surface of the vibrating arm 12a and the main surface of the vibrating arm 12b twist and vibrate so that they are in phase with each other and in the ± X axis direction. I will call it ". The vibration mode shown in FIG. 4F is a mode in which the main surface of the vibrating arm 12a and the main surface of the vibrating arm 12b twist and vibrate so as to face each other in the opposite phase in the ± X axis direction. We will call it "reverse".

また、基本波に対する高調波を総称して「2nd」と呼ぶことにする。実装前後での発振周波数の変化を、実装前(free)と実装後(fix)との差という意味で、「free-fix」と呼ぶことにする。「主振動」と「同相」との周波数差を「同相差」、すなわち「主振動」−「同相」=「同相差」と定義する。   Also, harmonics to the fundamental wave are collectively referred to as "2nd". The change in oscillation frequency before and after mounting is called "free-fix" in the sense of the difference between before mounting (free) and after mounting (fix). The frequency difference between "main vibration" and "in phase" is defined as "in phase difference", that is, "main vibration"-"in phase" = "in phase difference".

図5乃至図11は、図3における各寸法を採用した音叉素子10でのシミュレーション実験の結果である。以下、振動腕部12a,12b及び錘部16a,16bの長さの基準値x0との差xを「腕長さ」、錘部16a,16bの幅の基準値y0との差yを「錘幅」という。 5 to 11 show the results of simulation experiments with the tuning fork element 10 adopting the dimensions in FIG. Hereinafter, the difference x between the vibrating arms 12a and 12b and the weight 16a and 16b with respect to the reference value x 0 is referred to as "arm length", and the difference y between the widths of the weights 16a and 16b with reference y 0. It is called "weight width".

シミュレーションでは、腕長さxを−100、−50、0、+50、+100に変化させ、かつ、錘幅yを−30、−15、0、+15、+30に変化させ、これらの全ての組み合わせについて「同相」、「主振動」、「ドルフィン」、「バタ足」、「ねじれ(逆)」、「ねじれ(同)」、「2nd」、「free」、「free-fix」及び「同相差」を計算した。なお、「free」は実装前の主振動の周波数である。各振動モードにおける周波数は実装後(fix)の値である。発振周波数は33.5〜34kHzである。この発振周波数は、錘部16a,16bに周波数調整用金属膜を形成する前の値である。実際には、錘部16a,16bに周波数調整用金属膜を形成して、音叉素子10を素子搭載部材32に実装した後に、その周波数調整用金属膜を削って発振周波数を32.768kHzに調整する。なお、「free-fix」の増減とは、その絶対値での増減である。   In the simulation, the arm length x is changed to -100, -50, 0, +50, +100, and the weight width y is changed to -30, -15, 0, +15, +30, for all combinations of these. "In-phase", "main vibration", "dolphin", "flutter", "twist (reverse)", "twist (same)", "2nd", "free", "free-fix" and "common-mode difference" Was calculated. Note that "free" is the frequency of the main vibration before mounting. The frequency in each vibration mode is the value of fix. The oscillation frequency is 33.5 to 34 kHz. The oscillation frequency is a value before forming the frequency adjusting metal film on the weight portions 16a and 16b. In practice, a metal film for frequency adjustment is formed on the weight portions 16a and 16b, the tuning fork element 10 is mounted on the element mounting member 32, and then the metal film for frequency adjustment is scraped to adjust the oscillation frequency to 32.768 kHz. Do. The increase or decrease of "free-fix" is the increase or decrease in the absolute value.

図5Aは腕長さx及び錘幅yを変化させた場合のfree-fixを示す図表であり、図5Bは腕長さx及び錘幅yとfree-fixとの関係を示すグラフである。図5Aにおいて「規格化値」は次式(4)から得られる。
規格化値=(free-fix)×(−1000)−140 ・・・(4)
図5Bに示す円の直径は、図5Aに示す規格化値の大きさに対応する。
FIG. 5A is a chart showing free-fix when the arm length x and the weight width y are changed, and FIG. 5B is a graph showing the relationship between the arm length x and the weight width y and the free-fix. The “normalized value” in FIG. 5A is obtained from the following equation (4).
Standardized value = (free-fix) × (−1000) −140 (4)
The diameter of the circle shown in FIG. 5B corresponds to the magnitude of the normalized value shown in FIG. 5A.

図5Bから明らかなように、腕長さx及び錘幅yが次式(1)を満たすとき、free-fixが減少することがわかる。
−100≦x≦100、
−30≦y≦30、かつ、
−0.3x−15≦y≦−0.3x+15 ・・・(1)
As apparent from FIG. 5B, it can be seen that free-fix decreases when the arm length x and the weight width y satisfy the following equation (1).
−100 ≦ x ≦ 100,
−30 ≦ y ≦ 30, and
−0.3x−15 ≦ y ≦ −0.3x + 15 (1)

また、腕長さx及び錘幅yが次式(2)を満たすとき、free-fixがより減少することがわかる。
−100≦x≦100、
−30≦y≦30、かつ、
y=−0.3x ・・・(2)
In addition, it is understood that free-fix is further reduced when the arm length x and the weight width y satisfy the following expression (2).
−100 ≦ x ≦ 100,
−30 ≦ y ≦ 30, and
y = -0.3x (2)

つまり、図5Bにおいて、実線で示す直線y=−0.3x+15と一点鎖線で示す直線y=−0.3x−15とで挟まれた領域、より好ましくは破線で示す直線y=−0.3x上の領域において、円の直径が小さくなっている。したがって、音叉素子10によれば、振動腕部12a,12b及び錘部16a,16bの長さと錘部16a,16bの幅との関係を最適化することにより、実装前後での発振周波数の変化を抑制できる。   That is, in FIG. 5B, a region between straight line y = -0.3x + 15 shown by a solid line and straight line y = -0.3x-15 shown by an alternate long and short dash line, more preferably straight line y = -0.3x shown by a broken line. In the upper region, the diameter of the circle is smaller. Therefore, according to the tuning fork element 10, by optimizing the relationship between the lengths of the vibrating arms 12a and 12b and the weights 16a and 16b and the widths of the weights 16a and 16b, changes in the oscillation frequency before and after mounting can be obtained. It can be suppressed.

更に、式(1)又は式(2)において、腕長さx及び錘幅yを、
−50≦x≦50、かつ、−15≦y≦15 ・・・(3)
の領域に狭めることにより、free-fixがより一層減少することがわかる。
Furthermore, in the equation (1) or the equation (2), the arm length x and the weight width y are
−50 ≦ x ≦ 50 and −15 ≦ y ≦ 15 (3)
It can be seen that the free-fix is further reduced by narrowing the range to.

図6は錘幅y=0一定として腕長さxを変化させた場合、図7は腕長さx=0一定として錘幅yを変化させた場合、図8は錘幅y=−30一定として腕長さxを変化させた場合、図9は錘幅y=−15一定として腕長さxを変化させた場合、図10は錘幅y=+15一定として腕長さxを変化させた場合、図11は錘幅y=+30一定として腕長さxを変化させた場合である。同相については、図6乃至図11の各図[B]では主振動に重なって表示されてしまうため、各図[C]で縦軸を拡大して同相差として表示している。   6 changes the arm length x with the weight width y = 0 constant, FIG. 7 changes the weight with the arm length x = 0 constant, and FIG. 8 shows the weight width y = -30 When the arm length x is changed as shown in FIG. 9, when the arm length x is changed as the weight width y = -15, FIG. 10 changes the arm length x as the weight width y = + 15. In the case shown in FIG. 11, the arm length x is changed with the weight width y = + 30 constant. Since the same phase is displayed overlapping with the main vibration in each of the diagrams [B] in FIGS. 6 to 11, the vertical axis is enlarged and displayed as the in-phase difference in each diagram [C].

以下に説明するように、図6乃至図11において、特定の副振動の周波数が主振動の周波数に接近するほど、free-fixが増加する傾向が認められる。   As described below, in FIGS. 6 to 11, it is observed that the free-fix tends to increase as the frequency of the specific secondary vibration approaches the frequency of the main vibration.

図6は、錘幅y=0一定の場合である。腕長さx=−100のときに主にねじれ(逆)及びねじれ(同)が主振動に接近することにより、腕長さx=+100のときに主にドルフィン及びバタ足が主振動に接近することにより、それぞれfree-fixが増加している。   FIG. 6 shows the case where the weight width y = 0 is constant. When the arm length x = −100, mainly the torsion (inverse) and the torsion (same) approach the main vibration, and when the arm length x = + 100, mainly the dolphin and the butterfly leg approach the main vibration By doing this, free-fix is increased.

図7は、腕長さx=0一定の場合である。錘幅y=+30のときに主にねじれ(逆)及びねじれ(同)が主振動に接近することにより、free-fixが増加している。   FIG. 7 shows the case where the arm length x = 0 is constant. When the weight width y = + 30, the free-fix is increased mainly by the torsion (inverse) and the torsion (same) approaching the main vibration.

図8は、錘幅y=−30一定の場合である。腕長さx=−100,−50のときに、主にねじれ(逆)及びねじれ(同)が主振動に接近することにより、それぞれfree-fixが増加している。   FIG. 8 shows the case where the weight width y = −30 is constant. When the arm length is x = −100, −50, free-fix increases, respectively, as the torsion (inverse) and the torsion (same) approach the main vibration.

図9は、錘幅y=−15一定の場合である。腕長さxに関係なく概ねfree-fixが抑制されている。   FIG. 9 shows the case where the weight width y = -15 is constant. The free-fix is generally suppressed regardless of the arm length x.

図10は、錘幅y=+15一定の場合である。腕長さx=+100,+50のときに、主にドルフィン及びバタ足が主振動に接近することにより、それぞれfree-fixが増加している。   FIG. 10 shows the case where the weight width y = + 15 is constant. When the arm length is x = + 100 and +50, the free-fix is increased mainly due to the approach of the dolphin and the bata foot to the main vibration.

図11は、錘幅y=+30一定の場合である。腕長さx=+100,+50,0のときに、主にドルフィン及びバタ足が主振動に接近することにより、それぞれfree-fixが増加している。   FIG. 11 shows the case where the weight width y = + 30 is constant. When the arm length is x = + 100, +50, 0, the free-fix is increased mainly due to the approach of the dolphin and the bata foot to the main vibration.

以上、上記実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、そのように変更が加えられたものも本発明に含まれる。   As mentioned above, although the present invention was explained with reference to the above-mentioned embodiment, the present invention is not limited to the above-mentioned embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention. Also, such modifications are included in the present invention.

本発明は、基部、振動腕部及び錘部を備える音叉素子であれば、どのようなものにでも利用可能である。   The present invention can be applied to any tuning fork element including a base, a vibrating arm and a weight.

10 音叉素子
10L 全長
10W 全幅
11 基部
11L 長さ
11W 幅
12a,12b 振動腕部
12W 幅
13 突起部
14 スリット
15a,15b 溝部
15L 長さ
16a,16b 錘部
16L 長さ
17a,17b 中心線
17W 幅
19 水晶振動片
19t 厚み
21a,21b パッド電極
21L 長さ
21W 幅
22a,22b 励振電極
30 圧電デバイス
31 導電性接着剤
32 素子搭載部材
33 パッド電極
34 蓋部材
x 腕長さ
0 基準値
y 錘幅
0 基準値
Reference Signs List 10 tuning fork element 10L total length 10W total width 11 base 11L length 11W width 12a, 12b vibrating arm 12W width 13 protrusion 14 slit 15a, 15b groove 15L length 16a, 16b weight 16L length 17a, 17b center line 17W width 19 Quartz crystal vibrating piece 19t Thickness 21a, 21b Pad electrode 21L Length 21W Width 22a, 22b Excitation electrode 30 Piezoelectric device 31 Conductive adhesive 32 Element mounting member 33 Pad electrode 34 Lid member x Arm length x 0 Reference value y Weight width y 0 reference value

Claims (6)

基部と、
前記基部から同じ長手方向に延びた一対の振動腕部と、
前記振動腕部の先端に設けられた錘部と、
を備えた音叉型水晶振動素子であって、
平面視して、前記長手方向の寸法を長さ、前記長手方向に垂直な方向の寸法を幅とし、
前記振動腕部及び前記錘部の前記長さの基準値x0との差をx、前記錘部の前記幅の基準値y0との差をy、単位をμmとしたとき、次式(1)が成り立つ、
−100≦x≦100、−30≦y≦30、かつ、
−0.3x−15≦y≦−0.3x+15 ・・・(1)
ことを特徴とする音叉型水晶振動素子。
The base,
A pair of vibrating arms extending from the base in the same longitudinal direction;
A weight provided at the tip of the vibrating arm;
A tuning-fork type quartz crystal vibrating element provided with
In plan view, the dimension in the longitudinal direction is a length, and the dimension in the direction perpendicular to the longitudinal direction is a width,
Assuming that the difference between the length of the vibrating arm and the weight with the reference value x 0 of the length is x, the difference between the width of the weight with the reference value y 0 is y, and the unit is μm, 1) holds,
−100 ≦ x ≦ 100, −30 ≦ y ≦ 30, and
−0.3x−15 ≦ y ≦ −0.3x + 15 (1)
A tuning fork type crystal vibrating element characterized in that.
前記式(1)に代えて、次式(2)が成り立つ、
−100≦x≦100、−30≦y≦30、かつ、
y=−0.3x ・・・(2)
請求項1記載の音叉型水晶振動素子。
Instead of the equation (1), the following equation (2) holds.
−100 ≦ x ≦ 100, −30 ≦ y ≦ 30, and
y = -0.3x (2)
The tuning fork type quartz crystal vibrating element according to claim 1.
前記x,yは次式(3)を満たす、
−50≦x≦50、かつ、−15≦y≦15 ・・・(3)
請求項1又は2記載の音叉型水晶振動素子。
Said x and y satisfy following Formula (3),
−50 ≦ x ≦ 50 and −15 ≦ y ≦ 15 (3)
The tuning fork type crystal vibrating element according to claim 1 or 2.
前記基準値x0が780μmかつ前記基準値y0が102μmである、
請求項1乃至3のいずれか一つに記載の音叉型水晶振動素子。
The reference value x 0 is 780 μm and the reference value y 0 is 102 μm.
The tuning fork type crystal vibrating element according to any one of claims 1 to 3.
前記振動腕部の前記長手方向の中心線と前記錘部の前記長手方向の中心線とが一致する、
請求項1乃至4のいずれか一つに記載の音叉型水晶振動素子。
The longitudinal center line of the vibrating arm portion coincides with the longitudinal center line of the weight portion;
The tuning fork type crystal vibrating element according to any one of claims 1 to 4.
請求項1乃至5のいずれか一つに記載の音叉型水晶振動素子を実装した圧電デバイス。   A piezoelectric device mounted with the tuning fork type crystal vibrating element according to any one of claims 1 to 5.
JP2017227953A 2017-11-28 2017-11-28 Tuning-fork type crystal vibration element and piezoelectric device Pending JP2019102826A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017227953A JP2019102826A (en) 2017-11-28 2017-11-28 Tuning-fork type crystal vibration element and piezoelectric device
CN201811423024.2A CN109842390A (en) 2017-11-28 2018-11-26 Tuning-fork-type crystal vibrating elements and piezoelectric device
US16/201,474 US20190165761A1 (en) 2017-11-28 2018-11-27 Tuning-fork type quartz crystal vibrating element and piezoelectric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017227953A JP2019102826A (en) 2017-11-28 2017-11-28 Tuning-fork type crystal vibration element and piezoelectric device

Publications (1)

Publication Number Publication Date
JP2019102826A true JP2019102826A (en) 2019-06-24

Family

ID=66632795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017227953A Pending JP2019102826A (en) 2017-11-28 2017-11-28 Tuning-fork type crystal vibration element and piezoelectric device

Country Status (3)

Country Link
US (1) US20190165761A1 (en)
JP (1) JP2019102826A (en)
CN (1) CN109842390A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3273210B1 (en) * 2016-07-18 2022-05-18 VEGA Grieshaber KG Vibrating level switch and method for producing a vibrating level switch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229125A (en) * 2010-03-31 2011-11-10 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2012120014A (en) * 2010-12-02 2012-06-21 Seiko Epson Corp Piezoelectric vibration element, method for manufacturing the same, piezoelectric vibrator, and piezoelectric oscillator
JP2016146597A (en) * 2015-02-09 2016-08-12 セイコーエプソン株式会社 Vibration piece manufacturing method, vibration piece, vibrator, oscillator, real time clock, electronic apparatus, and mobile object
JP2017060130A (en) * 2015-09-18 2017-03-23 京セラクリスタルデバイス株式会社 Tuning-fork type crystal vibration element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200633377A (en) * 2005-02-02 2006-09-16 Nihon Dempa Kogyo Co Piezo-electric vibrator
JP4709884B2 (en) * 2008-09-29 2011-06-29 日本電波工業株式会社 Piezoelectric vibrating piece and piezoelectric device
JP5155275B2 (en) * 2008-10-16 2013-03-06 日本電波工業株式会社 Tuning fork type piezoelectric vibrating piece, piezoelectric frame and piezoelectric device
JP5123962B2 (en) * 2009-02-10 2013-01-23 日本電波工業株式会社 Tuning fork type piezoelectric vibrating piece, piezoelectric frame, piezoelectric device, tuning fork type piezoelectric vibrating piece, and method for manufacturing piezoelectric frame
JP6349622B2 (en) * 2013-03-14 2018-07-04 セイコーエプソン株式会社 Vibration element, vibrator, oscillator, electronic device, and moving object
US9548719B2 (en) * 2013-06-26 2017-01-17 Daishinku Corporation Tuning fork type piezoelectric vibration piece and tuning fork type piezoelectric vibrator
TWI634742B (en) * 2013-11-16 2018-09-01 精工愛普生股份有限公司 Resonator blank, resonator, oscillator, electronic apparatus, and mobile object
JP2015097366A (en) * 2013-11-16 2015-05-21 セイコーエプソン株式会社 Vibration element, vibrator, oscillator, electronic device and mobile object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229125A (en) * 2010-03-31 2011-11-10 Nippon Dempa Kogyo Co Ltd Tuning-fork type piezoelectric vibration piece and piezoelectric device
JP2012120014A (en) * 2010-12-02 2012-06-21 Seiko Epson Corp Piezoelectric vibration element, method for manufacturing the same, piezoelectric vibrator, and piezoelectric oscillator
JP2016146597A (en) * 2015-02-09 2016-08-12 セイコーエプソン株式会社 Vibration piece manufacturing method, vibration piece, vibrator, oscillator, real time clock, electronic apparatus, and mobile object
JP2017060130A (en) * 2015-09-18 2017-03-23 京セラクリスタルデバイス株式会社 Tuning-fork type crystal vibration element

Also Published As

Publication number Publication date
CN109842390A (en) 2019-06-04
US20190165761A1 (en) 2019-05-30

Similar Documents

Publication Publication Date Title
US8633638B2 (en) Piezoelectric resonator element, piezoelectric resonator, and acceleration sensor for reducing vibration sensitivity in at least one axis
TW201242246A (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, vibration gyro element, vibration gyro sensor, and electronic apparatus
JP2014200026A5 (en)
JP2011151568A (en) Tuning-fork type bending crystal vibration element
JP2011151780A (en) Bending vibration piece, vibration device, and electronic apparatus
JP4298322B2 (en) Tuning fork crystal unit
JP2019102826A (en) Tuning-fork type crystal vibration element and piezoelectric device
JP2017060130A (en) Tuning-fork type crystal vibration element
JP2008199283A (en) Piezoelectric vibrating piece and manufacturing method thereof
JP5045890B2 (en) Piezoelectric vibrating piece
JP2005123828A (en) Tuning-fork piezo-electric oscillation piece and piezo-electric device
JP6525821B2 (en) Tuning fork type crystal element
JP6263719B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic device
JP6131445B2 (en) Piezoelectric vibrator and piezoelectric unit
JP6084068B2 (en) Crystal oscillator
JP5130502B2 (en) Piezoelectric vibrator and piezoelectric oscillator
JP5756983B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic equipment
JP5526312B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic equipment
JP2006308359A (en) Inertia sensor element, and manufacturing method of inertia sensor element
JP2017228818A (en) Tuning-fork type crystal vibrator
JP2011176701A (en) Tuning fork type bending crystal vibrating element
JP2014200025A5 (en)
JP2019087774A (en) Tuning fork type crystal vibrating element and piezoelectric device
JP6584257B2 (en) Tuning-fork type crystal vibrating element
JP6454894B2 (en) Piezoelectric vibrator, piezoelectric unit, piezoelectric oscillator and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005