JP2019100801A - Method for measuring optimum hole diameter and apparatus for measuring optimum hole diameter - Google Patents

Method for measuring optimum hole diameter and apparatus for measuring optimum hole diameter Download PDF

Info

Publication number
JP2019100801A
JP2019100801A JP2017230378A JP2017230378A JP2019100801A JP 2019100801 A JP2019100801 A JP 2019100801A JP 2017230378 A JP2017230378 A JP 2017230378A JP 2017230378 A JP2017230378 A JP 2017230378A JP 2019100801 A JP2019100801 A JP 2019100801A
Authority
JP
Japan
Prior art keywords
hole
air
reference hole
measurement
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017230378A
Other languages
Japanese (ja)
Other versions
JP7068567B2 (en
Inventor
憲吾 山本
Kengo Yamamoto
憲吾 山本
真二 河合
Shinji Kawai
真二 河合
武田 裕之
Hiroyuki Takeda
裕之 武田
永井 卓也
Takuya Nagai
卓也 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO YOSETSU SERVICE KK
Yamamoto Kinzoku Seisakusho KK
Original Assignee
SHINKO YOSETSU SERVICE KK
Yamamoto Kinzoku Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO YOSETSU SERVICE KK, Yamamoto Kinzoku Seisakusho KK filed Critical SHINKO YOSETSU SERVICE KK
Priority to JP2017230378A priority Critical patent/JP7068567B2/en
Publication of JP2019100801A publication Critical patent/JP2019100801A/en
Application granted granted Critical
Publication of JP7068567B2 publication Critical patent/JP7068567B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling And Boring (AREA)
  • Measuring Arrangements Characterized By The Use Of Fluids (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

To provide a method for measuring an optimal hole diameter capable of accurately and easily measuring the hole diameter of a reference hole by using an air micrometer in the MIRS method or the DHD method and an optimum hole diameter measuring apparatus using the method.SOLUTION: In the present invention, a reference hole in a thickness direction and a trepanning hole in an annular shape substantially concentrically outside the reference hole are formed, a hole diameter change of the reference hole before and after the formation of the trepanning hole is measured, and the method for measuring the optimum hole diameter in the residual stress measurement calculates a residual stress value on the surface and inside of the measuring object member. The hole diameter of the reference hole is measured by using a 2-point air micrometer having an air probe inserted into the reference hole to inject air flow to both sides in the radial direction and measuring a distance from the change in air pressure of the air flow.SELECTED DRAWING: Figure 6

Description

本発明は、溶接構造物などの測定対象物に参照孔とその同心外側に環状のトレパニング孔とを穿けて参照孔を形状変化を測定することで測定対象物の表面および内部の残留応力を測定する方法(MIRS法)において、エアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適な孔径測定方法やこれを用いた最適孔径測定装置に関する。   The present invention measures the residual stress on the surface and the inside of the measurement object by forming a reference hole and an annular trepanning hole concentrically on the measurement object such as a welded structure and measuring the shape change of the reference hole. The present invention relates to an optimum hole diameter measuring method capable of measuring the hole diameter of a reference hole with high accuracy and easily using an air micrometer in a method (MIRS method) and an optimum hole diameter measuring device using the same.

従来、深穴穿孔法(DHD:Deep Hole Drilling)による残留応力評価方法は、図7に示すような4つの手順により、応力解放前後の孔径を測定し孔径変化量から板厚内部の残留応力値を算出する。まず、被測定物の穴あけ箇所に当金(Front bush)を装着し、ガンドリル(Gun drill)を用いて、孔あけ加工による貫通もしくは未貫通孔(Reference hole(以下。「参照孔」と称する))を加工する(図7(a)のStep1参照)。次に、この参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、孔径を測定する(図7(b)のStep2参照)。次に、この参照孔に対して、同軸に円筒状にくり抜き加工(トレパニング加工)などの除去加工を行い、周辺の拘束を開放し、残留応力を開放する(図7(c)のStep3参照)。そして、再度、トレパニング加工で周辺除去した後の参照孔に関して孔深さ方向に1箇所以上、周方向に3箇所以上、孔径を測定する(図7(d)のStep4参照)。これらの測定値より、弾性材料であること、無限平板における孔であること、平面応力状態であることなどを仮定条件とし、孔径に対する面内応力成分(σx、σy、σxy)を算出できる。   Conventionally, according to the residual stress evaluation method by deep hole drilling (DHD), according to the four procedures shown in FIG. 7, the pore diameter before and after stress release is measured, and the residual stress value inside the plate thickness Calculate First, a punch (Front bush) is attached to the drilled portion of the object to be measured, and a drill hole (Reference hole) (hereinafter referred to as "reference hole") by drilling using a gun drill (Gun drill). ) (Refer to Step 1 in FIG. 7A). Next, the hole diameter is measured at one or more places in the hole depth direction and three or more places in the circumferential direction with respect to this reference hole (see Step 2 of FIG. 7B). Next, removal processing such as hollowing out (trepening processing) in a cylindrical shape is performed coaxially on this reference hole to release peripheral restraint and release residual stress (see Step 3 in FIG. 7C). . Then, with respect to the reference holes after peripheral removal by trepanning again, the hole diameter is measured at one or more places in the hole depth direction and three or more places in the circumferential direction (see Step 4 of FIG. 7D). From these measured values, it is possible to calculate in-plane stress components (σx, σy, σxy) with respect to the hole diameter, assuming that it is an elastic material, a hole in an infinite flat plate, a plane stress state, and the like.

また、同軸に円筒状にトレパニング加工を施す応力解放過程に生じる塑性変形の影響を排除するために、トレパニング加工と孔径測定とを逐次実施する逐次深穴穿孔法(iDHD法:incremental Deep Hole Drilling)などがあり、上述の深穴穿孔法で算出できる孔軸方向成分(σz)も算出することができる。   In addition, in order to eliminate the influence of plastic deformation that occurs in the stress release process in which the cylindrical trepanning process is coaxially performed, successive deep hole drilling method (iDHD: incremental Deep Hole Drilling) in which the trepanning process and the hole diameter measurement are sequentially performed. And the axial axial component (σz) that can be calculated by the above-described deep hole drilling method can also be calculated.

さらに、上記DHD法やiDHD法では、上記仮定条件により孔径に及ぼす三次元的な応力状態や塑性変形の影響が考慮されておらず、実値と理論値とが乖離し、するという問題があり、面内応力(残留応力(σx、σy、σxy))の精度が落ちるため、DHD法やiDHD法(以下、単に「DHD法」とも称する。)は残留応力測定方法の実用的な測定方法として普及していなかった。これに対して出願人は、仮定条件を実現象に近づけて三次元応力状態、塑性変形の影響を考慮できる高精度の板厚内部残留応力測定方法改良型の深孔穿孔法(以下、「MIRS法」と称する)を特許文献2において提供している(詳細には後述する)。   Furthermore, in the above-mentioned DHD method and iDHD method, the influence of the three-dimensional stress state and plastic deformation exerted on the hole diameter is not considered by the above-mentioned hypothetical conditions, and there is a problem that the actual value and the theoretical value are separated. Because the accuracy of in-plane stress (residual stress (σx, σy, σxy)) decreases, the DHD method or iDHD method (hereinafter, also simply referred to as “DHD method”) is a practical measurement method of residual stress measurement method. It was not widespread. On the other hand, the applicant of the present invention is a high precision hole thickness internal residual stress measuring method which can take into account the effects of three-dimensional stress state and plastic deformation by bringing the assumption conditions close to the actual phenomenon. Patent Document 2 (hereinafter referred to as "details").

上記DHD法、iDHD法又はMIRS法(以下。「MIRS法等」)のいずれにおいても、参照孔の孔径の測定には、接触式測定として機械式・電気式のマイクロメータを用いる方法や、非接触式測定としてエアプローブ(Air probe)を用いるエアマイクロメータを用いる方法が考えられる。このうちエアマイクロメータ(空気マイクロメータ)は、空気の流量で物の寸法を測る比較測定器であり、流量式、背圧式などの測定方式がある。具体的に参照孔を測定するときに採用される流量式の場合、まずコンプレッサとフィルタできれいな圧縮空気を作った後、これをレギュレータにより一定の圧力に保ち、参照孔に挿入したエアプローブのノズルから圧縮空気を噴出させる。ノズルと参照孔の内壁とのすきまが変化するとノズルから吹き出る流量が変化し、これによりフロートの浮き上がる高さが変化し、フロートの位置移動により参照孔の内径を測定する。   In any of the above-mentioned DHD method, iDHD method or MIRS method (hereinafter referred to as "MIRS method etc."), a method using a mechanical / electrical micrometer as a contact type measurement or a non-contact type measurement for measuring the diameter of the reference hole As a contact measurement, a method using an air micrometer using an air probe is considered. Among them, the air micrometer (air micrometer) is a comparative measuring instrument that measures the dimensions of an object by the flow rate of air, and there are measurement methods such as a flow type and a back pressure type. Specifically, in the case of the flow type adopted when measuring the reference hole, first, after creating clean compressed air with the compressor and filter, this is maintained at a constant pressure by the regulator, and the nozzle of the air probe inserted in the reference hole Eject compressed air from the When the clearance between the nozzle and the inner wall of the reference hole changes, the flow rate blown out from the nozzle changes, which changes the floating height of the float, and the inner diameter of the reference hole is measured by the positional movement of the float.

エアマイクロメータには、両側2方向(対角方向)に空気が噴出する2点式と120°間隔に3箇所から側方(径方向)に空気が噴出する3点式などがある。測定し易さ、負担を考慮すると2点式の方が容易であるが、一般にエアマイクロメータで孔の内径を測定する場合、内径測定には基準点(0点)がないため測定技術の熟練や孔の中心を求める(求心)必要があり、測定精度を要求する場合、3点式エアマイクロメータを採用することが好ましいと考えられていた。その一方、3点式エアマイクロメータによる測定の場合、リングゲージでゼロ合わせをしなければならず、参照孔が真円でないと測定も難しいのに対して、2点式エアマイクロメータの場合、冶具でのゼロ合わせができ、参照孔の円に歪みがあっても測定できる。すなわち、2点式、3点式いずれのエアマイクロメータも内径測定では背反する利害得失があり、MIRS法等の普及の妨げの1つとの要因となっていた。   The air micrometer includes a two-point system in which air is jetted in two directions (diagonal directions) on both sides and a three-point system in which air is jetted laterally (in radial direction) from three points at intervals of 120 °. The two-point method is easier in terms of ease of measurement and load, but generally when measuring the inside diameter of a hole with an air micrometer, there is no reference point (0 point) in inside diameter measurement, so the skill of measurement technology When it is necessary to determine the center of the hole (centre) and to require measurement accuracy, it has been considered preferable to adopt a three-point air micrometer. On the other hand, in the case of measurement with a three-point air micrometer, it is necessary to perform zero alignment with a ring gauge, and measurement is also difficult if the reference hole is not a perfect circle, while in the case of a two-point air micrometer It can be zeroed with a jig and can measure even if there is distortion in the circle of the reference hole. That is, both the two-point and three-point air micrometers have conflicting interests in internal diameter measurement, which has been one of the obstacles to the spread of the MIRS method and the like.

特開2007−167937号公報JP 2007-167937 A 特開2015−184118号公報JP, 2015-184118, A

そこで、本発明は、MIRS法等においてエアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適孔径測定方法、およびこの方法を用いる最適孔径測定装置を提供することを目的とする。   Therefore, the present invention aims to provide an optimum hole diameter measuring method capable of measuring the hole diameter of a reference hole with high accuracy and easily using an air micrometer in MIRS method and the like, and an optimum hole diameter measuring device using this method. Do.

本発明は、
測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定における最適孔径測定方法を提供する。前記参照孔の孔径の測定は、前記参照孔に挿入して径方向両側(対角方向)に空気流を噴出させるエアプローブを有して、該空気圧の変化から距離を測定する2点式エアマイクロメータを用いる。
The present invention
A reference hole in the thickness direction is formed at the measurement location of the member to be measured and a trepanning hole which is annularly cut out substantially concentrically with the reference hole, and changes in the diameter of the reference hole before and after the formation of the trepanning hole are measured. Provided is an optimum hole diameter measuring method in residual stress measurement for calculating residual stress values on the surface and the inside of a member to be measured. The measurement of the diameter of the reference hole is performed by using an air probe inserted into the reference hole to jet air flow radially on both sides (diagonal direction), and measuring a distance from a change in the air pressure Use a micrometer.

また、本発明の最適孔径測定方法は、
切削工具の先端位置を制御し切削工具を交換に把持するツールホルダを有する加工装置の切削工具によって前記参照孔及びトレパニング孔を形成し、前記加工装置は、前記参照孔の中心位置を記憶しており、
前記参照孔の孔径の測定は、前記加工装置のツールホルダに把持される切削工具を前記2点式エアマイクロメータと交換して、前記加工装置が記憶している前記参照孔の中心位置に前記2点式エアマイクロメータのエアプローブを挿入することにより行う、ことが好ましい。
Further, the method for measuring the optimum pore size of the present invention is
The reference hole and the trepanning hole are formed by the cutting tool of a processing apparatus having a tool holder that controls the tip position of the cutting tool and holds the cutting tool in exchange, and the processing apparatus stores the central position of the reference hole Yes,
In the measurement of the hole diameter of the reference hole, the cutting tool held by the tool holder of the processing device is replaced with the two-point air micrometer, and the center position of the reference hole stored by the processing device is changed. It is preferable to carry out by inserting an air probe of a two-point air micrometer.

また、本発明は、切削工具の先端位置を制御し、切削工具を交換に把持するツールホルダを有する加工装置によって測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定に用いる最適孔径装置を提供する。
この最適孔径装置では、前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有し、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータのエアプローブが、切削工具と交換可能に前記ツールホルダに装着され、
前記加工装置は、前記参照孔の中心位置を記憶し、該中心位置に前記エアプローブを挿入する、構成を有する。
Further, the present invention controls the tip position of the cutting tool, and by means of a processing apparatus having a tool holder for holding the cutting tool in exchange, the reference hole in the thickness direction and the substantially concentric outer side with the reference hole An optimum hole diameter used for residual stress measurement for forming a ring-shaped hollowed trepanning hole, measuring a change in hole diameter of the reference hole before and after the formation of the trepanning hole, and calculating residual stress values on the surface and the inside of the measurement target member Provide an apparatus.
In this optimum hole diameter apparatus, a two-point air micrometer air probe is provided which has an air probe inserted into the reference hole to eject an air flow radially on both sides, and measuring a distance from a change in air pressure of the air flow. Mounted on the tool holder interchangeably with a cutting tool,
The processing device has a configuration for storing the central position of the reference hole and inserting the air probe at the central position.

上述するように、孔径の測定方法としてはエアマイクロメータ、機械式・電気式のマイクロメータを用いる方法が考えられるが、参照孔作成の際には穿孔による切りくずが表面や内壁に付着していることもあり、接触式の機械式・電気式のマイクロメータの場合には切りくずの有無によって測定精度が変化する可能性がある。これに対してエアマイクロメータの場合、空気流によって切りくずを吹き飛ばす効果がありMIRS法等における参照孔の孔径測定に好適である。また、機械式マイクロメータではMIRS法等における参照孔のような深穴かつ小径を測定する場合、マイクロメータ自体が歪んだり、孔の内壁に接してしまって測定不能なことがあるため採用し難い。したがって、MIRS法等の参照孔の孔径測定にはエアマイクロメータを採用するのが好ましいことがわかった。   As described above, although it is conceivable to use an air micrometer or a mechanical / electrical micrometer as a method of measuring the hole diameter, when the reference hole is formed, chips from perforations adhere to the surface or the inner wall. In the case of a contact type mechanical / electrical micrometer, the measurement accuracy may change depending on the presence or absence of chips. On the other hand, in the case of an air micrometer, there is an effect of blowing off chips by an air flow, which is suitable for measuring the diameter of the reference hole in the MIRS method or the like. In the case of measuring a deep hole and a small diameter such as a reference hole in the MIRS method with a mechanical micrometer, the micrometer itself may be distorted or it may be impossible to measure because it may be in contact with the inner wall of the hole. . Therefore, it was found that it is preferable to use an air micrometer for measuring the hole diameter of the reference hole such as the MIRS method.

また、上述するように一般に孔の内径測定を行う場合、2点式エアマイクロメータを用いるよりも3点式エアマイクロメータを用いる方が好ましいと考えられていた。しかしながら、MIRS法等の場合、マシンニングセンタ等の切削加工装置で刃物を付け替えて参照孔とトレパニング孔とを形成するため、その切削加工装置に切削工具を付け替えて加工装置の主軸のツールホルダにエアマイクロメータを取り付けた場合、基準点を自動求心しなくても加工装置自体が参照孔の中心位置(基準点)を設定しているので、本来、測定技量を要する2点式エアマイクロメータであっても精度良く測定することができる。   In addition, when the inside diameter of a hole is generally measured as described above, it has been considered more preferable to use a three-point air micrometer than to use a two-point air micrometer. However, in the case of the MIRS method, the cutting tool is replaced by a cutting device such as a machining center to form a reference hole and a trepanning hole, so the cutting tool is replaced with the cutting device and the tool holder of the spindle of the processing device is used. When an air micrometer is attached, the processing device itself sets the center position (reference point) of the reference hole without automatically centering the reference point, so a two-point air micrometer that originally requires measurement skills Even if it exists, it can measure accurately.

また、3点式エアマイクロメータの場合、参照孔が真円でないと測定誤差を含みやすい。このためトレパニング加工後に略楕円形状に変形している参照孔の孔径測定に採用するのは好ましくない。この点、2点式エアマイクロメータの場合、加工装置の主軸によりゼロ点合わせができ、参照孔にトレパニング加工時の歪みが生じても測定することが可能である。本発明によれば、2点式エアマイクロメータを参照孔の穿孔を行う加工装置の主軸に取り付ける構成であるため、加工装置側で基準位置がわかっており2点式エアマイクロメータの不利な点が解消され、有利な点のみを活用することができる。したがって、MIRS法等での孔径測定にはベストであることがわかった。本発明は、MIRS法やDHD法での孔径測定に最適な構成を提供して点で大きく有利である。   In the case of a three-point air micrometer, if the reference hole is not a perfect circle, it is likely to include a measurement error. For this reason, it is unpreferable to employ | adopt for the hole diameter measurement of the reference hole which is deform | transformed into substantially elliptical shape after trepanning process. In this respect, in the case of a two-point air micrometer, zeroing can be performed by the main shaft of the processing device, and measurement can be performed even if distortion occurs during trepanning processing in the reference hole. According to the present invention, since the two-point air micrometer is attached to the main shaft of the processing device for drilling the reference hole, the reference position is known on the processing device side and the disadvantages of the two-point air micrometer Can be eliminated, and only advantages can be taken advantage of. Therefore, it turned out that it is the best for pore diameter measurement by MIRS method etc. The present invention is greatly advantageous in that it provides an optimum configuration for pore diameter measurement in the MIRS method or the DHD method.

本発明の残留応力の最適測定方法および残留応力の最適測定装置によれば、種々の測定対象物の残留応力測定評価としてのMIRS法等において、エアマイクロメータを用いて高精度かつ容易に参照孔の孔径を測定し得る最適な孔径測定方法やこれを用いた最適孔径測定装置の構成が提供されることで、MIRS法等が今後、標準化され一般ユーザが活用する場合の重要な測定方法及び測定装置となる。   According to the optimal measuring method of residual stress and the optimal measuring device of residual stress of the present invention, in the MIRS method etc. for measuring and evaluating residual stress of various objects to be measured, reference holes can be accurately and easily used with an air micrometer. By providing the optimum pore diameter measuring method capable of measuring the pore diameter of the pore and the configuration of the optimum pore diameter measuring device using the same, the important measuring method and measurement when the MIRS method etc. are standardized from now on and used by general users It becomes an apparatus.

(a)〜(e)は、本発明の最適孔径測定方法が用いられる残留応力測定の各工程を示した説明図である。(A)-(e) is explanatory drawing which showed each process of the residual stress measurement in which the optimal hole diameter measuring method of this invention is used. 本発明で使用されるエアマイクロメータがそのツールホルダに取り付けられる加工装置の一例としての切削装置の斜視図を示している。Fig. 2 shows a perspective view of a cutting device as an example of a processing device in which the air micrometer used in the present invention is attached to its tool holder. トレパニング加工前後の参照孔の変化と測定する孔径とを表す略平面図を示している。The schematic plan view showing the change of the reference hole before and behind trepanning processing and the hole diameter to measure is shown. 3点式エアマイクロメータによる参照孔の孔径測定を示した図である。It is the figure which showed the hole diameter measurement of the reference hole by 3 point-type air micrometer. 2点式エアマイクロメータによる参照孔の孔径測定を示した図である。It is the figure which showed the hole diameter measurement of the reference hole by two-point-type air micrometer. 2点式エアマイクロメータによる参照孔の孔径測定を加工装置で行う様子を示す図である。It is a figure which shows a mode that the hole diameter measurement of the reference hole by a two-point-type air micrometer is performed with a processing apparatus. 従来の深穴穿孔法による残留応力評価方法の各工程を示した説明図である。It is explanatory drawing which showed each process of the residual stress evaluation method by the conventional deep hole drilling method.

(残留応力測定方法)
まず。本発明の実施形態を説明する前提として、本最適孔径測定方法が用いられる残留応力測定について説明する。
図1(a)〜(e)は、本発明の最適孔径測定方法が用いられる残留応力測定の各工程を示した説明図である。この残留応力評価方法では、図1(a)〜(e)に示すような5つの手順により、板厚内部の残留応力値を算出する。ここで、図中の符号1は、溶接構造物などの測定対象部材であり、符号2は測定対象部材1に参照孔10を形成可能なドリルである。また、符号3は、測定対象部材1に形成された参照孔10の内径を測定可能なエアプローブ(孔径測定部及び孔径再測定部)であり、符号4は、放電によって参照孔10の周辺にくり抜き加工(トレパニング加工)を施してトレパニング孔11を形成可能な放電加工機である。符号5は、円筒部分12の軸方向の伸び量ΔZ及び倒れ量Δθのそれぞれを測定可能なタッチプローブである。この残留応力測定では、少なくとも、エアプローブ3を用いて、前記くり抜き加工(トレパニング加工)の前後における参照孔10の形状変化に基づき、応力値算出部(不図示)で測定対象部材1の表面および内部の残留応力値を算出する。応力値算出部は、残留応力値の算出において、参照孔10の孔径、参照孔10の長手方向の長さ変化(伸び量ΔZ)、及び、参照孔10の軸の傾き(倒れ量Δθ)を考慮する。
(Method of measuring residual stress)
First of all. On the premise of describing the embodiment of the present invention, residual stress measurement in which the present optimum pore diameter measuring method is used will be described.
Fig.1 (a)-(e) is explanatory drawing which showed each process of the residual stress measurement in which the optimal hole diameter measuring method of this invention is used. In this residual stress evaluation method, the residual stress value inside the plate thickness is calculated by five procedures as shown in FIGS. 1 (a) to 1 (e). Here, the reference numeral 1 in the figure is a measurement target member such as a welded structure, and the reference numeral 2 is a drill capable of forming the reference hole 10 in the measurement target member 1. In addition, reference numeral 3 is an air probe (hole diameter measurement unit and hole diameter re-measurement unit) capable of measuring the inner diameter of the reference hole 10 formed in the measurement target member 1, and reference numeral 4 is around the reference hole 10 by discharge. This is an electric discharge machine capable of forming the trepanning holes 11 by applying a hollowing process (trepanning process). The code | symbol 5 is a touch probe which can measure each of extension amount (DELTA) Z of the axial direction of the cylindrical part 12, and fall amount (DELTA) (theta). In this residual stress measurement, the surface of the measurement target member 1 and the stress value calculation unit (not shown) based on the change in the shape of the reference hole 10 before and after the hollowing (trepanning) using at least the air probe 3. Calculate the internal residual stress value. The stress value calculation unit calculates the residual stress value by changing the hole diameter of the reference hole 10, the change in length of the reference hole 10 in the longitudinal direction (elongation amount ΔZ), and the inclination of the axis of the reference hole 10 (fall amount Δθ). Consider.

図1では、参照孔10の中心位置を原点O、紙面右方向をX軸、紙面に垂直奥方向をY軸、上垂直方向をZ軸とする。まず、図1(a)において、測定対象部材1の穴あけ箇所に当金(不図示)を装着し、ドリル2を用いた孔あけ加工によって参照孔10を形成する。参照孔10は、貫通孔であっても半貫通孔であっても良い。次に、図1(b)において、参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定を行う。この孔径測定において本発明の最適孔径測定方法では、2点式エアマイクロメータを使用する(後述)。次に、図1(c)において、参照孔10の周辺に対してくり抜き加工(トレパニング加工)を行い、参照孔10の周辺部分の拘束を解放すると共に、同軸に円筒状の円筒部分12を形成する。そして、図1(d)において、再度、周辺除去加工後の参照孔10に関して長手方向(Z方向)に1箇所以上、周方向に3箇所以上、エアプローブ3を用いた孔径の測定を行う。そして、図1(e)において、タッチプローブ5を用いて、円筒部分12の軸方向(Z方向)の伸び量(ΔZ)、及び、XY方向の倒れ量(Δθ)を測定する。これら伸び量(ΔZ)及び倒れ量(Δθ)の測定により、従来法(深穴穿孔法、逐次深穴穿孔法)で残留応力測定が、(σx、σy、σxy)の3つからなる残留応力成分のみを考慮するものであるのに対して、本発明の残留応力測定方法では、(σx、σy、σz、σxy、σyz、σzx)の6成分からなる残留応力成分まで考慮した残留応力測定が可能となり、これまでの仮定条件では省略されていた三次元の残留応力成分を高精度に測定することができる。   In FIG. 1, the center position of the reference hole 10 is the origin O, the right direction in the drawing is the X axis, the back direction perpendicular to the drawing is the Y axis, and the upper vertical direction is the Z axis. First, in FIG. 1 (a), a counter metal (not shown) is attached to the drilled portion of the measurement target member 1, and the reference hole 10 is formed by drilling using a drill 2. The reference hole 10 may be a through hole or a half through hole. Next, in FIG. 1B, the hole diameter is measured using the air probe 3 at one or more locations in the longitudinal direction (Z direction) and at least three locations in the circumferential direction with respect to the reference hole 10. In the method of measuring the optimum hole diameter according to the present invention for measuring the hole diameter, a two-point air micrometer is used (described later). Next, in FIG. 1C, the periphery of the reference hole 10 is hollowed out (trepanning) to release the restraint of the peripheral portion of the reference hole 10 and form the cylindrical portion 12 coaxially coaxially. Do. Then, in FIG. 1D, the hole diameter is measured again using the air probe 3 at one or more locations in the longitudinal direction (Z direction) and three or more locations in the circumferential direction with respect to the reference hole 10 after peripheral removal processing. Then, in FIG. 1E, using the touch probe 5, the amount of extension (ΔZ) in the axial direction (Z direction) of the cylindrical portion 12 and the amount of inclination (Δθ) in the XY direction are measured. Based on the measurement of the amount of extension (ΔZ) and the amount of fall (Δθ), the residual stress measurement by the conventional method (deep hole drilling method, sequential deep hole drilling method) is a residual stress consisting of three (σx, σy, σxy) In the residual stress measurement method of the present invention, the residual stress measurement taking into consideration the residual stress component consisting of six components (σx, σy, σz, σxy, σyz, σzx) is taken into consideration, while only the component is considered. This makes it possible to measure with high accuracy the three-dimensional residual stress component that has been omitted under the previous assumptions.

≪エアマイクロメータ(2点式及び3点式)の概説及び本発明で2点式エアマイクロメータを採用する理由について≫
上記参照孔10の孔径に使用するエアマイクロメータについて概明する。
上述したようにエアマイクロメータは、空気の流量で物の寸法を測る比較測定器で流量式、背圧式(差圧方式)などの測定方式があるが、流量式の場合、まずコンプレッサとフィルタできれいな圧縮空気を作った後、これをレギュレータにより一定の圧力に保ったまま、ノズルから噴出させる。ノズル部と測定対象物のすきまが変化するとノズルから吹き出る流量が変化し、フロートの浮き上がる高さが変化する。このフロートの位置移動により測定対象物の寸法を測定することができる。このエアマイクロメータには、2点式エアマイクロメータと、3点式エアマイクロメータとがある。本発明の孔径の最適測定方法で採用する2点式エアマイクロメータは、孔径方向両側(対角:180°間隔)に空気が噴出する2つのノズルがあり、ノズルから参照孔10の内壁に向かって噴出される空気の流量変化による軸線方向のフロートの移動量で孔径を測定する。以下、本発明で2点式エアマイクロメータを採用した理由について説明する。
<< About the outline of the air micrometer (2 point type and 3 point type) and the reason for adopting the 2 point type air micrometer in the present invention >>
The air micrometer used for the hole diameter of the reference hole 10 will be briefly described.
As mentioned above, an air micrometer is a comparative measuring instrument that measures the dimensions of an object by the flow rate of air. There are measurement methods such as flow rate type and back pressure type (differential pressure type). After creating clean compressed air, it is jetted from the nozzle while keeping it at a constant pressure by the regulator. When the gap between the nozzle portion and the object to be measured changes, the flow rate blown out from the nozzle changes, and the floating height of the float changes. The position of the float can measure the dimensions of the object to be measured. The air micrometer includes a two-point air micrometer and a three-point air micrometer. The two-point air micrometer employed in the method for optimum measurement of the hole diameter of the present invention has two nozzles from which air is jetted on both sides in the hole diameter direction (diagonal: 180 ° intervals). The hole diameter is measured by the amount of movement of the float in the axial direction due to a change in the flow rate of the air ejected. Hereinafter, the reason why the two-point air micrometer is adopted in the present invention will be described.

まず、前提として実際に測定を所望するトレパニング加工前後の参照孔10の孔径について説明する。図3にはトレパニング加工前後の参照孔10の変化と測定する孔径とを表す略平面図が示され、(a)にはトレパニング加工前、(b)にはトレパニング加工後が示されている。トレパニング加工前の測定では、(a)に示すように参照孔10の中心O周り45°ごとの直径D1,D2,D3,D4を測定する。その後、参照孔10の外周周りに環状のトレパニング孔11(図1(d)参照)を穿けて残留応力を解放した後に、(b)に示すようにトレパニング加工前の直径D1,D2,D3,D4と同位相の参照孔10’の直径D1’,D2’,D3’,D4’を測定する。図3からもわかるようにトレパニング加工を行うと通常、略真円の参照孔10が略楕円の参照孔10’に変形することがわかった。   First, the hole diameter of the reference hole 10 before and after trepanning, which is actually desired to be measured, will be described as a premise. FIG. 3 shows a schematic plan view showing the change of the reference hole 10 before and after the trepanning process and the hole diameter to be measured, and (a) shows the before trepanning process and (b) shows the after trepanning process. In the measurement before the trepanning processing, diameters D1, D2, D3, and D4 are measured at every 45 ° around the center O of the reference hole 10 as shown in (a). Thereafter, after an annular trepanning hole 11 (see FIG. 1 (d)) is drilled around the outer periphery of the reference hole 10 to release the residual stress, the diameters D1, D2, D3 before trepanning processing as shown in (b) The diameters D1 ', D2', D3 'and D4' of the reference holes 10 'in phase with D4 are measured. As can be seen from FIG. 3, it is found that when the trepanning process is performed, the substantially circular reference hole 10 is deformed into the substantially elliptical reference hole 10 ′.

次に、3点式エアマイクロメータによる孔径測定と2点式エアマイクロメータによる孔径測定について、その利点と欠点とを具体的に説明する。
図4は3点式エアマイクロメータによる参照孔10の直径測定(孔径測定)を示している。3点式エアマイクロメータによる測定の場合、図4(a)に示すようにエアプローブ3の中心軸周りに60°間隔で放射状にノズル部3a、3b、3cが設けられ、それぞれ参照孔10の内壁方向に空気を噴射する。参照孔10が真円の場合、ノズル部3a、3b、3cから空気が噴射されると、3方向の空気圧が釣り合う位置にエアプローブ3の中心軸線が参照孔10の中心Oに自動的に位置決めされる。そして、基準となるノズル部3aの位置からその対角方向の直径値を直径D1の直径値として採用する(図4(b)参照)。3点式エアマイクロメータではこのような自動求心作用が働くため測定技量がない測定者でも誤差が少ない。したがって、孔径の測定には一般的に3点式エアマイクロメータが採用されることが多く、MIRS法等においても同様であった。
Next, advantages and disadvantages of the hole diameter measurement by the three-point air micrometer and the hole diameter measurement by the two-point air micrometer will be specifically described.
FIG. 4 shows the diameter measurement (pore diameter measurement) of the reference hole 10 by a three-point air micrometer. In the case of measurement by a three-point air micrometer, as shown in FIG. 4A, nozzles 3a, 3b, 3c are provided radially at intervals of 60 ° around the central axis of the air probe 3, respectively. Air is injected in the direction of the inner wall. When the reference hole 10 is a perfect circle, the central axis of the air probe 3 is automatically positioned at the center O of the reference hole 10 at a position where the air pressure in three directions balances when air is jetted from the nozzle portions 3a, 3b, 3c. Be done. Then, the diameter value in the diagonal direction from the position of the nozzle portion 3a as the reference is adopted as the diameter value of the diameter D1 (see FIG. 4B). With such a three-point air micrometer, such an automatic centripetal action works, so that even a measurer who does not have measurement skills has less error. Therefore, in general, a three-point air micrometer is often employed for measurement of the pore diameter, and the same applies to the MIRS method and the like.

一方、MIRS法等での参照孔10の孔径測定では図3に示すように各位相の直径値D1〜D4をそれぞれ測定する必要がある。図3(b)で上述したようにトレパニング加工後の参照孔10’は略楕円であり、それぞれの位相の直径値D1〜D4が異なるからである。したがって、3点式エアマイクロメータの場合、エアプローブ3が自動求心しても偏心している楕円の場合、適正な直径値D1〜D4を把握することができないということがわかった(図4(c)参照)。   On the other hand, in the measurement of the diameter of the reference hole 10 by the MIRS method or the like, it is necessary to measure the diameter values D1 to D4 of each phase as shown in FIG. As described above with reference to FIG. 3B, the reference holes 10 'after the trepanning process are substantially elliptical, and the diameter values D1 to D4 of the respective phases are different. Therefore, in the case of the three-point air micrometer, it was found that even if the air probe 3 is automatically centered, it can not grasp the proper diameter values D1 to D4 in the case of an eccentric ellipse (FIG. 4 (c)) reference).

図5は2点式エアマイクロメータによる参照孔10の直径測定(孔径測定)を示している。2点式エアマイクロメータによる測定の場合、図5(a)に示すようにエアプローブ3の中心軸周りに対角方向(孔径方向90°間隔)でノズル部3d、3eが設けられ、それぞれ参照孔10の内壁方向(対角方向)に空気を噴射し、2方向の空気圧が釣り合う位置にエアプローブ3の中心軸線が位置決めされる。そして、基準となるノズル部3dの位置からその対角方向の直径値を直径D1の直径値として採用する(図5(b)参照)。2点式エアマイクロメータの場合、3点式エアマイクロメータと異なり、自動求心作用がなくトレパニング加工後に略楕円形状の参照孔10’に変形していても参照孔10’の内壁までの距離が釣り合うため、その意味では適正な直径値D1〜D4を測定することができる。   FIG. 5 shows the diameter measurement (hole diameter measurement) of the reference hole 10 by a two-point air micrometer. In the case of measurement by a two-point air micrometer, as shown in FIG. 5 (a), the nozzle portions 3d and 3e are provided in the diagonal direction (90.degree. In the hole diameter direction) around the central axis of the air probe 3. Air is injected in the inner wall direction (diagonal direction) of the hole 10, and the central axis of the air probe 3 is positioned at a position where the air pressures in the two directions are balanced. Then, the diameter value in the diagonal direction from the position of the nozzle portion 3d as the reference is adopted as the diameter value of the diameter D1 (see FIG. 5 (b)). In the case of the two-point air micrometer, unlike the three-point air micrometer, there is no automatic centripetal action and the distance to the inner wall of the reference hole 10 ′ is In order to be balanced, appropriate diameter values D1 to D4 can be measured in that sense.

その反面、2点式エアマイクロメータによる測定の場合、図5(d)に示すように測定者の測定技量が低いとエアプローブ3の軸線が参照孔10の中心Oからズレれた状態で挿入される可能性があり、ズレた位置におけるノズル部3d、3eから内壁までの距離を直径値D1として測定してしまってトレパニング加工前の直径値の測定でさえ誤差を含んでしまうという問題があった。   On the other hand, in the case of measurement by a two-point air micrometer, as shown in FIG. 5 (d), if the measurement technique of the measurer is low, the axis of the air probe 3 is inserted with the axis of the air probe 3 shifted from the center O of the reference hole 10. There is a problem that the distance from the nozzle parts 3d and 3e to the inner wall at the shifted position is measured as the diameter value D1 and even the measurement of the diameter value before the trepanning process includes an error. The

これに対して本発明の最適孔径測定方法では、MIRS法等においてトレパニング加工後に変形し略楕円形状になった参照孔10を適正に測定し得るために2点式エアマイクロメータによる測定を推奨し、参照孔10へエアプローブ3をズレて挿入してしまうという問題を加工装置の主軸のツールホルダにエアプローブ3を装着することで解決している。まず参照孔10の穿孔は加工装置のツールホルダに装着された切削工具で行う。加工装置は、切削工具の移動を予め設定した位置座標から算出して自動制御するものである。したがって、ツールホルダが把持する工具等の中心位置の座標が記憶されている。したがって、図6(a)に示すように参照孔10を中心位置Oはドリルで穿孔するときにそのXY座標位置(x1、y1)が記憶されており、ツールホルダからドリルが外されてエアプローブ3が取り付けられるとその中心軸線のXY座標位置を(x1、y1)に維持した状態で参照孔10に挿入されると図6(d)のようにズレた位置で孔径を測定することがない。また、トレパニング加工後に再び参照孔10’の孔径を測定する際にもエアプローブ3の中心軸線のXY座標位置も(x1、y1)の状態で孔径測定することができる。   On the other hand, in the optimum hole diameter measuring method of the present invention, measurement with a two-point air micrometer is recommended in order to be able to properly measure the reference hole 10 which has been deformed into a substantially elliptical shape after trepanning in MIRS method etc. The problem of shifting and inserting the air probe 3 into the reference hole 10 is solved by mounting the air probe 3 on the tool holder of the main shaft of the processing apparatus. First, drilling of the reference hole 10 is performed by a cutting tool attached to the tool holder of the processing apparatus. The processing device automatically controls movement of the cutting tool by calculating it from position coordinates set in advance. Therefore, the coordinates of the center position of the tool or the like held by the tool holder are stored. Therefore, as shown in FIG. 6A, when drilling the reference hole 10 at the center position O, its XY coordinate position (x1, y1) is stored, and the drill is removed from the tool holder and the air probe When 3 is attached, if it is inserted into the reference hole 10 while maintaining the XY coordinate position of the central axis at (x1, y1), the hole diameter is not measured at the shifted position as shown in FIG. . Further, when measuring the hole diameter of the reference hole 10 'again after the trepanning process, the hole diameter of the central axis of the air probe 3 can also be measured in the state of (x1, y1).

《2点式エアマイクロメータを取り付ける切削装置による穴あけ・孔径測定例の概説》
図2には、本発明で使用されるエアマイクロメータがそのツールホルダに取り付けられる加工装置の一例としての切削装置100の斜視図を示している。切削装置100は、概ねツールホルダ把持部105と、測定対象部材1を載置する被加工部材設置面102a(当金は不図示)と、ワークステージ102と、ヘッド支台108と、ヘッド107と、操作盤106と、を備えて構成される。
<< Outline of drilling and hole diameter measurement examples with a cutting device to which a two-point air micrometer is attached >>
FIG. 2 shows a perspective view of a cutting device 100 as an example of a processing device in which the air micrometer used in the present invention is attached to its tool holder. The cutting apparatus 100 generally includes a tool holder holding portion 105, a workpiece mounting surface 102a (not shown) on which the measurement target member 1 is to be mounted, a work stage 102, a head support 108, a head 107, and the like. , And the control panel 106.

まず、ツールホルダ把持部105に加工対象となる測定対象部材1(図1参照)の残留応力の測定位置(参照孔10の中心位置)に回転当接(当接方向=矢印Z方向、回転方向=矢印Zの軸周り方向)させるドリル2(図1参照)を把持させたツールホルダ104を装着する。これにより主軸101下端のツールホルダ把持部105とツールホルダ104及びドリル2は一体に回転する。また、測定対象部材(被加工部材)2は、基台103上をX方向に移動するワークステージ102の上面の被加工部材設置面102aに載置され、固定用クランプ(図示せず)や固定用ポルト(図示せず〉等を用いて固定される。   First, rotational contact (abutment direction = arrow Z direction, rotational direction) with the measurement position (center position of reference hole 10) of residual stress of measurement target member 1 (refer to FIG. 1) to be processed on tool holder gripping portion 105 Attach the tool holder 104 holding the drill 2 (see FIG. 1) to make the direction around the axis of arrow Z). As a result, the tool holder gripping portion 105 at the lower end of the main spindle 101, the tool holder 104, and the drill 2 rotate integrally. Further, the measurement target member (workpiece) 2 is placed on the workpiece installation surface 102a of the upper surface of the work stage 102 moving in the X direction on the base 103, and a fixing clamp (not shown) or a fixing It is fixed using a porto (not shown) or the like.

オペレータは、操作盤106を操作し、ワークステージ102をX方向へ移動させ、測定対象部材2が所望の参照孔10の中心位置の直上にドリル2が位置するところで停止・位置決めする。次に、被加工部材上に停止・位置決めされた状態で操作盤106を操作して、加えてドリル2を下降させ測定対象部材1の参照孔10の位置に当接させながら回転させ、参照孔10が穿孔されるとドリル2が上昇し一旦停止する。なお、連続して複数の参照孔10を穿孔する場合には、停止せずワークステージ102を移動させて次の参照孔の中心位置の真上にドリル2が位置するところで停止・位置決めし、再びドリル2の下降・当接させながらの回転、上昇させ穿孔する参照孔がなくなったところで停止する。   The operator operates the operation panel 106 to move the work stage 102 in the X direction, and stops and positions the measurement target member 2 at a position where the drill 2 is positioned directly above the center position of the desired reference hole 10. Next, the operation panel 106 is operated in a state of being stopped and positioned on the workpiece, and the drill 2 is additionally lowered and rotated while being in contact with the position of the reference hole 10 of the measuring object member 1 When 10 is drilled, the drill 2 ascends and temporarily stops. When drilling a plurality of reference holes 10 continuously, the work stage 102 is moved without stopping, and the drill 2 is stopped and positioned right above the center position of the next reference hole, and is again positioned. The drill 2 is rotated while it is lowered and brought into contact with the drill 2, and is stopped when the reference hole to be drilled disappears.

参照孔10が形成されると、停止した加工装置のツールホルダ104からドリル2を取り外し、エアマイクロメータのエアプローブ3に付け替えて図1(b)に示すようにエアプローブ3を下降させて参照孔10内に挿入し、孔径の測定を所望する深さ位置にエアプローブ3の空気噴出ノズルを位置決めする。そして、コンプレッサ(不図示)からのエアを内壁方向両側に噴出させて孔径を測定する。なお、複数の参照孔を連続穿孔した場合には、動作条件として予め記憶された参照孔10の中心位置座標に移動してエアプローブ3を挿入する。また、エアプローブ3の挿入後、ノズルから空気流を噴出させて孔径を測定し、エアプローブ3を上昇させて参照孔10から抜去する。   When the reference hole 10 is formed, remove the drill 2 from the tool holder 104 of the stopped processing apparatus, replace it with the air probe 3 of the air micrometer, and lower the air probe 3 as shown in FIG. The air is inserted into the hole 10 and the air jet nozzle of the air probe 3 is positioned at the depth position where the measurement of the hole diameter is desired. Then, air from a compressor (not shown) is jetted to both sides in the inner wall direction to measure the hole diameter. When a plurality of reference holes are continuously bored, the air probe 3 is inserted by moving to the center position coordinates of the reference hole 10 stored in advance as the operation condition. Further, after the air probe 3 is inserted, an air flow is jetted from the nozzle to measure the hole diameter, and the air probe 3 is lifted and removed from the reference hole 10.

次に、エアプローブ3をツールホルダ104から取り外し、放電加工機4に付け替えて図1(c)に示すように放電加工機4を下降させて放電することでトレパニング加工して参照孔10と同心状の環状円を形成する。トレパニング加工は深さ方向に予め設定した距離行う。トレパニング加工が終了すると放電加工機4を上昇させる。そして、再度、ツールホルダ104から放電加工機4を取り外し、エアプローブ3に付け替えて図1(d)に示すようにエアプローブ3を下降させて参照孔10内に挿入し、トレパニング加工前に孔径測定した深さ位置にエアプローブ3の空気噴出ノズルを位置決めし、再度、上述したようにエアプローブ3から空気を噴出させて孔径を測定する。   Next, the air probe 3 is removed from the tool holder 104, replaced with the electric discharge machine 4, and the electric discharge machine 4 is lowered and discharged as shown in FIG. Form a ring-like annular circle. The trepanning process is performed for a predetermined distance in the depth direction. When the trepanning process is completed, the electric discharge machine 4 is raised. Then, the electric discharge machine 4 is removed again from the tool holder 104, replaced with the air probe 3, and the air probe 3 is lowered and inserted into the reference hole 10 as shown in FIG. 1 (d). The air jet nozzle of the air probe 3 is positioned at the measured depth position, and air is jetted from the air probe 3 again as described above to measure the hole diameter.

以上のようにトレパニング加工前後の参照孔10の孔径を測定する。なお、ここではその後の図1(e)についての説明は省略する。また、この金属加工装置の一連動作は、オペレータが操作盤106で予め、ドリル2、エアプローブ3、放電加工機4の移動座標や移動速度(又は回転速度)や、これらに付与する荷重や空気量、電力、等の各パラメータを入力・設定しておき、設定したパラメータに基づいて加工装置を制御する。   As described above, the hole diameter of the reference hole 10 before and after trepanning is measured. In addition, the description about subsequent FIG. 1 (e) is abbreviate | omitted here. In addition, a series of operations of this metal working apparatus are performed by the operator using the operation panel 106 in advance with the moving coordinates and moving speed (or rotational speed) of the drill 2, the air probe 3 and the electric discharge machine 4, and the load and air Each parameter such as amount and power is input and set, and the processing device is controlled based on the set parameters.

以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、これらの実施形態に限定されるものではないことは言うまでもない。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   As mentioned above, although embodiment of this invention was described based on drawing, it can not be overemphasized that a specific structure is not limited to these embodiment. The scope of the present invention is indicated not by the description of the embodiments described above but by the claims, and further includes all modifications within the meaning and scope equivalent to the claims.

1 測定対象部材
2 ドリル
3 エアプローブ
3a,3B,3C,3D,3E ノズル部
4 放電加工機
5 タッチプローブ
10,10’ 参照孔
11 くり抜き孔(トレパニング孔)
12 円筒部分
100 加工装置(切削加工装置)
101 主軸
102 ワークステージ
102a 被加工部材設置面
103 基台
104 ツールホルダ
105 ツールホルダ把持部
106 操作盤
107 ヘッド
108 ヘッド支台O 中心
D1,D2,D3,D4 直径
D1’,D2’,D3’,D4’ 直径
Reference Signs List 1 measurement target member 2 drill 3 air probe 3a, 3B, 3C, 3D, 3E nozzle part 4 electric discharge machine 5 touch probe 10, 10 'reference hole 11 hollow hole (trepening hole)
12 cylindrical part 100 processing device (cutting processing device)
101 Main spindle 102 Work stage 102a Workpiece installation surface 103 Base 104 Tool holder 105 Tool holder gripping portion 106 Operation panel 107 Head 108 Head support O Center D1, D2, D3, D4 Diameter D1 ', D2', D3 ', D4 'diameter

Claims (3)

測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定における最適孔径測定方法において、
前記参照孔の孔径の測定は、
前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有して、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータを用いる、最適孔径測定方法。
A reference hole in the thickness direction is formed at the measurement location of the member to be measured and a trepanning hole which is annularly cut out substantially concentrically with the reference hole, and changes in the diameter of the reference hole before and after the formation of the trepanning hole are measured. In the method for measuring the optimum hole diameter in residual stress measurement, which calculates residual stress values on the surface and the inside of the measurement target member,
The measurement of the hole diameter of the reference hole is
An optimum hole diameter measuring method using a two-point air micrometer which has an air probe inserted in the reference hole to eject an air flow radially on both sides, and measuring a distance from a change in air pressure of the air flow.
切削工具の先端位置を制御し切削工具を交換に把持するツールホルダを有する加工装置の切削工具によって前記参照孔及びトレパニング孔を形成し、
前記加工装置は、前記参照孔の中心位置を記憶しており、
前記参照孔の孔径の測定は、
前記加工装置のツールホルダに把持される切削工具を前記2点式エアマイクロメータと交換して、前記加工装置が記憶している前記参照孔の中心位置に前記2点式エアマイクロメータのエアプローブを挿入することにより行う、請求項1に記載の最適孔径測定方法。
Forming the reference hole and the trepanning hole by a cutting tool of a processing apparatus having a tool holder for controlling the tip position of the cutting tool and holding the cutting tool in exchange;
The processing device stores the center position of the reference hole,
The measurement of the hole diameter of the reference hole is
The cutting tool held by the tool holder of the processing device is replaced with the two-point air micrometer, and the air probe of the two-point air micrometer is located at the center position of the reference hole stored in the processing device. The method for measuring the optimum pore size according to claim 1, which is performed by inserting.
切削工具の先端位置を制御し、切削工具を交換に把持するツールホルダを有する加工装置によって測定対象部材の測定箇所に厚み方向の参照孔と該参照孔と略同心外側に環状にくり抜いたトレパニング孔とを形成し、前記トレパニング孔の形成前後の前記参照孔の孔径変化を測定し、前記測定対象部材の表面および内部の残留応力値を算出する残留応力測定に用いる最適孔径装置において、
前記参照孔に挿入して径方向両側に空気流を噴出させるエアプローブを有し、該空気流の空気圧の変化から距離を測定する2点式エアマイクロメータのエアプローブが、切削工具と交換可能に前記ツールホルダに装着され、
前記加工装置は、前記参照孔の中心位置を記憶し、該中心位置に前記エアプローブを挿入する、最適孔径測定装置。



A reference hole in the thickness direction at the measurement location of the measurement target member by means of a processing device having a tool holder that controls the tip position of the cutting tool and holds the cutting tool in exchange An optimum pore size apparatus used for residual stress measurement for calculating the residual stress value of the surface and the inside of the measurement target member by forming the pore diameter change of the reference hole before and after the formation of the trepanning hole,
A two-point air micrometer air probe, which has an air probe inserted into the reference hole and jets air flow on both sides in the radial direction and measures the distance from the change in air pressure of the air flow, is replaceable with the cutting tool Attached to the tool holder,
The processing device stores the center position of the reference hole and inserts the air probe at the center position.



JP2017230378A 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device Active JP7068567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017230378A JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017230378A JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Publications (2)

Publication Number Publication Date
JP2019100801A true JP2019100801A (en) 2019-06-24
JP7068567B2 JP7068567B2 (en) 2022-05-17

Family

ID=66973364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017230378A Active JP7068567B2 (en) 2017-11-30 2017-11-30 Optimal hole diameter measuring method and optimum hole diameter measuring device

Country Status (1)

Country Link
JP (1) JP7068567B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103082A (en) * 2020-01-14 2020-05-05 中国科学院金属研究所 Method for improving precision of measuring three-dimensional residual stress by deep hole method
CN111141438A (en) * 2020-01-14 2020-05-12 中国科学院金属研究所 Three-dimensional residual stress measuring method by deep hole method
CN113175902A (en) * 2021-04-19 2021-07-27 西安交通大学 Pneumatic measuring device and method for micro-aperture

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device
JP2015184118A (en) * 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010052103A (en) * 2008-08-29 2010-03-11 Mitsubishi Heavy Ind Ltd Method and device for measuring surface roughness and processing device
JP2015184118A (en) * 2014-03-24 2015-10-22 株式会社山本金属製作所 Residual stress measurement method and residual stress measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103082A (en) * 2020-01-14 2020-05-05 中国科学院金属研究所 Method for improving precision of measuring three-dimensional residual stress by deep hole method
CN111141438A (en) * 2020-01-14 2020-05-12 中国科学院金属研究所 Three-dimensional residual stress measuring method by deep hole method
CN111103082B (en) * 2020-01-14 2021-04-23 中国科学院金属研究所 Method for improving precision of measuring three-dimensional residual stress by deep hole method
CN111141438B (en) * 2020-01-14 2021-04-23 中国科学院金属研究所 Three-dimensional residual stress measuring method by deep hole method
CN113175902A (en) * 2021-04-19 2021-07-27 西安交通大学 Pneumatic measuring device and method for micro-aperture

Also Published As

Publication number Publication date
JP7068567B2 (en) 2022-05-17

Similar Documents

Publication Publication Date Title
JP2019100801A (en) Method for measuring optimum hole diameter and apparatus for measuring optimum hole diameter
EP2584419B1 (en) CNC machine for cutting with plasma, oxygen and water jet used as a cutting tool with automatic setting up a precise position of a cutting tool in a cutting head by autocalibration and method thereof
KR101668765B1 (en) Method for detecting standard point of worksheet
US10890427B2 (en) Nozzle inspection method and apparatus
US9656329B2 (en) Machining jig for rotatably supporting workpiece with respect to tool of machine tool and machining system
US10422620B2 (en) Contact-type position measuring device and measuring method using the same
CN103921170A (en) Rotary-table center positioning method for spindle-driving-five-shafts machining center
JP2006007369A (en) Surface shape determining device for object to be measured in machine tool
JPH01205906A (en) Method and device for stitch-working wall of columnar bag hole of workpiece
US10434591B2 (en) Wire electric discharge machine including unit for adjusting attachment position of workpiece
JP2016198835A (en) Supporting method, processing method, and apparatus implementing these methods
Penchev et al. Novel manufacturing platform for scale up production of miniaturized parts
CN115741623A (en) Open type cabin section inner cavity angle characteristic bench worker marking system and method
CN113370235B (en) Automatic milling device for weld reinforcement, path generation method and using method
CN107907035A (en) A kind of camshaft signal disk angle detection mechanism
JP6048657B2 (en) Water jet processing method and water jet processing apparatus
CN104454027A (en) Machining method of power turbine guider
JP2006021277A (en) Tool centering method and tool measuring method
JP5463091B2 (en) Automatic workpiece centering device
CN219403544U (en) Liquid outlet positioning device for middle cylinder wall drill
JP5436392B2 (en) Spindle position measuring device and measuring method
Bellotti et al. Definition of the reference point in micro-EDM drilling of a wire drawing die
CN117059508A (en) Automatic detection method for flatness of retaining ring backboard
JP2005177957A (en) Automatic drilling device
JP2007163302A (en) Article cradle and measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220304

R150 Certificate of patent or registration of utility model

Ref document number: 7068567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150