JP2019100588A - Control method of heat exchange type ventilation fan - Google Patents

Control method of heat exchange type ventilation fan Download PDF

Info

Publication number
JP2019100588A
JP2019100588A JP2017229828A JP2017229828A JP2019100588A JP 2019100588 A JP2019100588 A JP 2019100588A JP 2017229828 A JP2017229828 A JP 2017229828A JP 2017229828 A JP2017229828 A JP 2017229828A JP 2019100588 A JP2019100588 A JP 2019100588A
Authority
JP
Japan
Prior art keywords
air
heat exchange
room
concentration
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017229828A
Other languages
Japanese (ja)
Other versions
JP6982727B2 (en
Inventor
訓 藤本
Satoshi Fujimoto
訓 藤本
大輔 橋野
Daisuke Hashino
大輔 橋野
健太 種治
Kenta Taneharu
健太 種治
真璃子 杉山
Mariko Sugiyama
真璃子 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017229828A priority Critical patent/JP6982727B2/en
Priority to PCT/JP2018/042218 priority patent/WO2019107162A1/en
Publication of JP2019100588A publication Critical patent/JP2019100588A/en
Application granted granted Critical
Publication of JP6982727B2 publication Critical patent/JP6982727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

To solve the problem in which, in a heat exchange type ventilation fan, in the case where carbon dioxide concentration in a room is high, the carbon dioxide concentration in the room is made to decrease by performing air supply/exhaustion by a heat exchange operation, however, as a heat exchange element passes during the air supply/exhaustion time, power loss occurs by the amount of the pressure loss of the element.SOLUTION: In the case where detection concentration by a fine particle concentration detection sensor 14 outdoors is lower than a predetermined preset value, the outside air is directly taken in without performing a heat exchange operation. With this control, power by the amount of the pressure loss of a heat exchange element can be reduced, while reducing carbon dioxide concentration indoors.SELECTED DRAWING: Figure 2

Description

本発明は、熱交換型換気扇の制御方法に関する。   The present invention relates to a control method of a heat exchange type ventilation fan.

従来、この種の熱交換型換気扇は図5の概略図に示すように、本体101に外気口102から給気口103に通風する送風路104と、室内空気を吸い込む還気口105から排気口106に通風する送風路107と、還気口から取り込んだ排気流と外気口から取り込んだ給気流の熱交換を行う熱交換素子108と、給気流を発生させる電動機109及び排気流を発生させる電動機110、および室内の二酸化炭素濃度を検出する二酸化炭素センサー111を備えた熱交換型換気扇が知られている。   Conventionally, as shown in the schematic diagram of FIG. 5, this type of heat exchange type ventilation fan has an air outlet 104 for ventilating the air outlet 102 to the air outlet 103 and an air outlet 105 for sucking room air. A heat exchange element 108 for exchanging heat between the air flow path 107 ventilating to 106, the exhaust flow taken in from the return air port and the air supply flow taken in from the outside air port, the electric motor 109 for generating the air supply flow, and the electric motor for generating the exhaust flow A heat exchange type ventilation fan is known which is equipped with a carbon dioxide sensor 111 for detecting the carbon dioxide concentration in the room 110 and in the room.

前記従来の熱交換型換気扇は、二酸化炭素センサー111からの信号より二酸化炭素濃度を換算し、換算した二酸化炭素濃度に基づいて電動機109及び110を制御している。(例えば、特許文献1参照)。   The conventional heat exchange type ventilation fan converts the carbon dioxide concentration based on the signal from the carbon dioxide sensor 111, and controls the motors 109 and 110 based on the converted carbon dioxide concentration. (See, for example, Patent Document 1).

特開2017−026273号公報JP, 2017-026273, A

しかしながら、このような従来の熱交換型換気扇では室内の二酸化炭素濃度に応じて排気を行うことはできるが、常に熱交素子を通しての熱交換を行いながらの排気となるため、室外の微粒子濃度が低く、室内室外の温度差が小さい場合でも、熱交素子を介した熱交運転を行うことになり、熱交素子の圧力損失分消費電力が増えてしまうという課題があった。   However, in such a conventional heat exchange type ventilation fan, although exhaust can be performed according to the concentration of carbon dioxide in the room, since exhaust is always performed while exchanging heat through the heat exchange element, the concentration of particulates outside the room is Even if the temperature difference between the room and the outside is small, the heat exchange operation is performed via the heat exchange element, and there is a problem that power consumption for the pressure loss of the heat exchange element is increased.

そこで、本発明は、このような従来の問題を解決するもので、室外の微粒子濃度と室内室外の温度を検出する手段を備え、室内の二酸化炭素濃度が高くても室外の微粒子濃度が低く、また、室内外の温度差が小さい場合に熱交素子を介さない換気運転が可能と判断した場合には、熱交運転を行わず直接外気を取り入れる換気風路を備えたことにより、熱交素子による圧力損失を避け室内の二酸化炭素濃度を低減することができる熱交換型換気装置を提供することを目的とする。   Therefore, the present invention solves such conventional problems, and comprises means for detecting the concentration of particulates outside the room and the temperature outside the room outside, even if the concentration of carbon dioxide in the room is high, the concentration of particulates outside the room is low. In addition, when it is judged that the ventilation operation without heat exchange element is possible when the temperature difference between inside and outside of the room is small, the heat exchange element is provided by providing a ventilation air path that directly takes in the outside air without performing the heat exchange operation. It is an object of the present invention to provide a heat exchange ventilator capable of reducing the carbon dioxide concentration in a room by avoiding pressure loss due to

この目的を達成するために、本発明の熱交換型換気扇は、室外吸込口より室外の空気を取り入れ、室内給気口より室内に供給する給気風路と、室内吸込口より室内の空気を取り入れ、室外排気口より室外に排気する排気風路と、前記給気風路における給気流を発生させる給気流発生手段と、前記排気風路における排気流を発生させる排気流発生手段と、前記室外吸込口を通る空気の微粒子を除去する第一微粒子除去手段と、前記室内給気口を通る空気の微粒子を除去する第二微粒子除去手段と、室内の微粒子濃度を検出する第一微粒子濃度検出手段と、室外の微粒子濃度を検出する第二微粒子濃度検出手段と、室内の二酸化炭素濃度を検知する二酸化炭素濃度検出手段と、室内の温度を検出する第一温度検出手段と、室外の温度を検出する第二温度検出手段と、前記給気風路は、前記排気風路を通る空気と熱交換を行うための熱交換素子を介して前記室内給気口に室外の空気を供給する熱交換風路と、前記給気風路は、熱交換素子を介さず室外の空気を室内に取り入れる換気風路と、室内吸込口より取り入れた室内の空気を、室内給気口より室内に供給する循環風路と、を備えた熱交換型換気装置において、前記熱交換風路と前記換気風路とを切り替える第一切替手段と、前記排気風路と前記循環風路とを切り替える第二切替手段と、さらに、前記第一切替手段、前記第二切替手段、前記給気流発生手段及び前記排気流発生手段を制御する制御手段とを備えるものであり、これにより所期の目的を達成するものである。   In order to achieve this object, the heat exchange type ventilation fan of the present invention takes in the air from the outside through the outdoor suction port and supplies the air from the indoor air supply port to the room and the indoor air from the indoor suction port. An exhaust air flow path for exhausting air from the outdoor exhaust port, an air supply flow generation means for generating an air supply flow in the air supply air path, an exhaust flow generation means for generating an exhaust flow in the exhaust air path; A first particulate removal means for removing particulates of air passing through the inside of the chamber; a second particulate removal means for removing particulates of air passing through the indoor air supply port; a first particulate concentration detection means for detecting particulate concentration in the room; Second particulate concentration detection means for detecting the concentration of particulates outside the room, carbon dioxide concentration detection means for detecting the concentration of carbon dioxide in the room, first temperature detection means for detecting the temperature in the room, and The heat exchange air path for supplying the outdoor air to the indoor air supply port through the temperature detecting means and the air exchange path for heat exchange with the air passing through the exhaust air path; The air supply air path is provided with a ventilation air path which takes in outdoor air into the room without a heat exchange element, and a circulating air path which supplies indoor air taken in from the indoor suction port into the room from the indoor air inlet. A first switching means for switching between the heat exchange air path and the ventilation air path, a second switching means for switching between the exhaust air path and the circulation air path, and A switching means, the second switching means, a control means for controlling the air supply flow generation means and the exhaust flow generation means are provided, thereby achieving the intended purpose.

本発明の熱交換型換気扇によれば、室内の二酸化炭素濃度と室外の微粒子濃度および室内外の温度を検出し、室内の二酸化炭素濃度が高い場合でも室外の微粒子濃度が低く、室内外の温度が換気に適した状況であれば、熱交換素子を通さずに直接外気を取り入れることで熱交換素子の圧力損失分の軸動力を減らすことにより省エネを実現するものである。   According to the heat exchange type ventilation fan of the present invention, the indoor carbon dioxide concentration and the outdoor particulate concentration and the indoor and outdoor temperature are detected, and even when the indoor carbon dioxide concentration is high, the outdoor particulate concentration is low and the indoor and outdoor temperature If the condition is suitable for ventilation, energy saving is realized by reducing the axial power for the pressure loss of the heat exchange element by directly introducing the outside air without passing through the heat exchange element.

本発明の実施の形態1の構成を示す図The figure which shows the structure of Embodiment 1 of this invention. 本発明の実施の形態1の換気風路を示す図The figure which shows the ventilation air path of Embodiment 1 of this invention. 本発明の実施の形態1の循環風路を示す図The figure which shows the circulation air path of Embodiment 1 of this invention. 本発明の実施の形態1の運転状態を決定するフローチャートを示す図The figure which shows the flowchart which determines the driving | running state of Embodiment 1 of this invention. 従来技術の概略構成図Schematic diagram of prior art

本発明の実施の形態を図面に基づいて説明する。ただし、未満に示す実施の形態は、本発明の技術思想を具体化するために例示するものであって、本発明は未満のものに特定しない。特に実施の形態に記載されている数値、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる実施例に過ぎない。   An embodiment of the present invention will be described based on the drawings. However, the embodiments shown below are illustrated to embody the technical idea of the present invention, and the present invention is not limited to the following. In particular, the numerical values, materials, shapes, relative arrangements, and the like described in the embodiments are not intended to limit the scope of the present invention to only the specific embodiments, but are merely examples. Absent.

本発明の請求項1記載の熱交換型換気扇は、室外吸込口より室外の空気を取り入れ、室内給気口より室内に供給する給気風路と、室内吸込口より室内の空気を取り入れ、室外排気口より室外に排気する排気風路と、給気風路における給気流を発生させる給気流発生手段と、排気風路における排気流を発生させる排気流発生手段と、室外吸込口を通る空気の微粒子を除去する第一微粒子除去手段と、室内給気口を通る空気の微粒子を除去する第二微粒子除去手段と、室内の微粒子濃度を検出する第一微粒子濃度検出手段と、室外の微粒子濃度を検出する第二微粒子濃度検出手段と、室内の二酸化炭素濃度を検知する二酸化炭素濃度検出手段と、室内の温度を検出する第一温度検出手段と、室外の温度を検出する第二温度検出手段と、給気風路は、排気風路を通る空気と熱交換を行うための熱交換素子を介して前記室内給気口に室外の空気を供給する熱交換風路と、給気風路は、熱交換素子を介さず室外の空気を室内に取り入れる換気風路と、室内吸込口より取り入れた室内の空気を、室内給気口より室内に供給する循環風路と、を備えた熱交換型換気装置において、熱交換風路と換気風路とを切り替える第一切替手段と、排気風路と循環風路とを切り替える第二切替手段と、さらに、第一切替手段、第二切替手段、給気流発生手段及び排気流発生手段を制御する制御手段とを備えたものである。   The heat exchange type ventilation fan according to claim 1 of the present invention takes in outdoor air from the outdoor suction port and takes in air from the indoor air intake port and the air supply path which is supplied into the room from the indoor air intake port. Exhaust air passage exhausting air from the outside of the mouth, supply flow generation means for generating an air supply flow in the supply air passage, exhaust flow generation means for generating an exhaust flow in the exhaust air passage, air particles passing through an outdoor suction port A first particulate removal means to remove, a second particulate removal means to remove particulates of air passing through the indoor air supply port, a first particulate concentration detection means to detect particulate concentration in the room, and a particulate concentration outside the room Second particulate concentration detection means, carbon dioxide concentration detection means for detecting carbon dioxide concentration in the room, first temperature detection means for detecting the temperature in the room, second temperature detection means for detecting the temperature in the outdoor, supply The air course is The heat exchange air path for supplying the outdoor air to the indoor air supply port through the heat exchange element for performing heat exchange with the air passing through the exhaust air path, and the air supply air path do not A heat exchange type ventilation system comprising: a ventilation air path for introducing air into the room; and a circulating air path for supplying room air taken in from the indoor suction port to the room from the indoor air inlet; First switching means for switching to the ventilation air path, second switching means for switching the exhaust air path and the circulation air path, and further, first switching means, second switching means, air supply flow generation means, and exhaust flow generation means And control means for controlling.

これにより、制御手段は、第一微粒子濃度検出手段、第二微粒子濃度検出手段、二酸化炭素濃度検出手段、第一温度検出手段、第二温度検出手段より得られる情報に基づいて、第一切替手段及び第二切替手段を制御することで、室内二酸化炭素濃度、室内微粒子濃度、室外微粒子濃度、室内温度、室外温度を総合的に判断し、状況に応じて熱交換運転、換気運転、循環運転のいずれかを選択することにより省エネルギーで最適な換気運転を行うことができる。   Thereby, the control means is the first switching means based on the information obtained from the first particle concentration detecting means, the second particle concentration detecting means, the carbon dioxide concentration detecting means, the first temperature detecting means, and the second temperature detecting means By controlling the second switching means, indoor carbon dioxide concentration, indoor particulate concentration, outdoor particulate concentration, indoor temperature, outdoor temperature are comprehensively judged, and heat exchange operation, ventilation operation, circulation operation according to the situation Energy saving and optimal ventilation operation can be performed by selecting one of them.

本発明の請求項2記載の熱交換型換気扇は、二酸化炭素濃度検出手段によって検出された二酸化炭素濃度が所定の値よりも高く、第二微粒子濃度検出手段によって検出された微粒子濃度が所定の値よりも低い場合に、制御手段は、切替え手段を制御して普通換気運転を行うことを特徴としたものである。   In the heat exchange type ventilation fan according to claim 2 of the present invention, the carbon dioxide concentration detected by the carbon dioxide concentration detecting means is higher than a predetermined value, and the particle concentration detected by the second particle concentration detecting means is a predetermined value If lower than the above, the control means is characterized by controlling the switching means to perform the normal ventilation operation.

これにより、室内の二酸化炭素濃度が高く、室外の微粒子濃度が低く、室内外の温度が外気導入に適する場合は、熱交換素子を通さずに外気を直接取り入れることにより、熱交換素子の圧力損失分による軸動力を低減し省エネを実現し、室内空気を排出し、室外空気を室内に取り入れることが可能である。   As a result, when the concentration of carbon dioxide in the room is high, the concentration of fine particles outside the room is low, and the temperature inside and outside the room is suitable for the introduction of outside air, the pressure loss of the heat exchange element can be obtained by directly taking in the outside air It is possible to reduce the axial power by the minute and realize energy saving, to discharge the indoor air and to take the outdoor air into the room.

本発明の請求項3記載の熱交換型換気扇は、二酸化炭素濃度検出手段による二酸化炭素濃度が所定の値より低く、室内温度と室外温度の温度差が所定の値よりも大きい場合、制御手段は、循環運転を行うことを特徴としたものである。   In the heat exchange type ventilation fan according to claim 3 of the present invention, when the carbon dioxide concentration by the carbon dioxide concentration detecting means is lower than a predetermined value and the temperature difference between the indoor temperature and the outdoor temperature is larger than the predetermined value, the control means , It is characterized by performing circulation operation.

これにより、室内の二酸化炭素が低い場合には熱交換運転を行わずに循環運転を行うことで室内の空調空気を排出せず省エネルギーで実現できる。   As a result, when the carbon dioxide in the room is low, the heat exchange operation is not performed, and the circulation operation is performed, thereby achieving energy saving without discharging the conditioned air in the room.

本発明の請求項4記載の熱交換型換気扇は、換気運転時および循環運転時には、排気流発生手段を停止することを特徴としたものである。   The heat exchange type ventilation fan according to claim 4 of the present invention is characterized in that the exhaust flow generation means is stopped during the ventilation operation and the circulation operation.

これにより、換気運転時および循環運転時には排気流発生手段の軸動力を削減し、省エネルギーを実現できる。   Thus, the axial power of the exhaust flow generation means can be reduced during the ventilation operation and the circulation operation, and energy saving can be realized.

未満、本発明を実施するための形態について添付図面を参照して説明する。   Hereinafter, modes for carrying out the present invention will be described with reference to the attached drawings.

(実施の形態1)
図1〜図4を参照して本発明の実施の形態1の熱交換型換気扇について説明する。
Embodiment 1
A heat exchange type ventilation fan according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.

図1は本発明の実施の形態1の熱交換型換気扇を平面視したものであり、熱交換型換気扇の主要部の構成を示すものである。   FIG. 1 is a plan view of a heat exchange type ventilation fan according to a first embodiment of the present invention, and shows a configuration of a main part of the heat exchange type ventilation fan.

熱交換型換気扇1は、建物内の天井裏または、側面壁内もしくは床下に設置されるものであり、以下、床下に設置した場合について説明する。   The heat exchange type ventilation fan 1 is installed under the ceiling in the building, or in the side wall or under the floor, and the case where it is installed under the floor will be described below.

熱交換型換気扇1は直方体の形状をしており、室外側側面19には室外の空気を吸い込む室外吸込口2と、室外に排気する室外排気口5を有していて(図1における左側)、室内外側面20には室内に給気を行う室内給気口3と、室内の空気を吸い込む室内吸込口4を有している(図1における右側)。   The heat exchange type ventilation fan 1 has a rectangular parallelepiped shape, and the outdoor side surface 19 has an outdoor suction port 2 for sucking outdoor air and an outdoor exhaust port 5 for exhausting the outdoor (left side in FIG. 1) The indoor outer side surface 20 has an indoor air supply port 3 for supplying air into the room and an indoor air inlet 4 for drawing in air from the room (right side in FIG. 1).

室外吸込口2と室内給気口3は給気風路Aで連通していて、給気風路Aの室内給気口3の近傍には、給気流を発生させるための給気ファン6を備えている。   The outdoor suction port 2 and the indoor air supply port 3 communicate with each other via the air supply path A, and an air supply fan 6 for generating an air supply flow is provided in the vicinity of the indoor air supply port 3 of the air supply path A There is.

また、室内吸込口4と室外排気口5は排気風路Bで連通していて、排気風路Bの室外排気口5の近傍には、排気流を発生させるための排気ファン7を備えている。   Further, the indoor suction port 4 and the outdoor exhaust port 5 communicate with each other through the exhaust air passage B, and an exhaust fan 7 for generating an exhaust flow is provided in the vicinity of the outdoor exhaust port 5 of the exhaust air passage B. .

給気ファン6により発生した給気流は、室外吸込口2から吸い込んだ外気を、給気風路Aを通じて室内給気口3より室内に送り込む。   The air flow generated by the air supply fan 6 feeds outside air sucked from the outdoor air suction port 2 into the room through the air supply air path A from the room air supply port 3.

給気風路Aには、吸込んだ外気の微粒子により熱交換素子9が目詰まりすることを防ぐための微粒子除去フィルタ8が、熱交換素子9の熱交室外吸込口21と室外吸込口2と間に設けられている。   In the supply air passage A, a particulate removal filter 8 for preventing the heat exchange element 9 from being clogged by the fine particles of the sucked outside air is provided between the suction port 21 of the heat exchange element 9 and the outdoor suction port 2. Provided in

微粒子除去フィルタ8は、熱交換素子9が目詰まりしなければよく、熱交換素子9の素子の目よりも大きい粒子を捕集できればよい。   The particulate removal filter 8 may be used so long as the heat exchange element 9 is not clogged, as long as particles larger than the size of the element of the heat exchange element 9 can be collected.

また、給気風路Aには、微粒子除去フィルタ8と熱交換素子9を通過した目の細かい微粒子を取り除くための微粒子除去フィルタ10を、熱交換素子9の熱交室内給気口22と室内給気口3との間に配置していて、微粒子除去フィルタ8,10によりPM2.5や花粉などの微粒子が除去された後に室内に清浄化された外気が給気される。   Further, in the supply air passage A, a particulate removal filter 10 for removing fine particulates having passed through the particulate removal filter 8 and the heat exchange element 9, the heat exchange chamber air inlet 22 of the heat exchange element 9 and the indoor air supply port It is disposed between the vent 3 and the inside of the room is supplied with air that has been cleaned in the room after particulates such as PM 2.5 and pollen are removed by the particulate removal filters 8 and 10.

給気流と同様、排気ファン7により発生した排気流は、室内吸込口4から吸い込んだ室内空気を、熱交換素子9を通して室外排気口5から外部に排気する。   Similar to the air supply flow, the exhaust flow generated by the exhaust fan 7 exhausts the indoor air sucked from the indoor suction port 4 to the outside from the outdoor exhaust port 5 through the heat exchange element 9.

熱交換素子9は給気風路Aと排気風路Bの交差する位置に配置され、給気風路Aにおいて、室外空気を熱交室外吸込口21から吸い込み、熱交室内給気口22から給気し、排気風路Bにおいて、室内空気を熱交室内吸込口23から吸い込み、熱交室外排気口24から排気している。   The heat exchange element 9 is disposed at a position where the supply air passage A and the exhaust air passage B intersect, and in the supply air passage A, the outdoor air is sucked from the suction port 21 outside the heat exchange room, and the air is supplied from the heat exchange room air supply opening 22 In the exhaust air passage B, indoor air is sucked from the heat exchange chamber suction port 23 and exhausted from the heat exchange outdoor exhaust port 24.

つまり、給気風路Aは、室外吸込口2〜微粒子除去フィルタ8〜熱交室外吸込口21〜熱交室内給気口22〜微粒子除去フィルタ10〜室内給気口3という直線状の風路を形成していて、排気風路Bは、室内吸込口4〜熱交室内吸込口23〜熱交室外排気口24〜室外排気口5という直線状の風路を形成している。   That is, the air supply path A is a straight air path such as the outdoor suction port 2 to the particulate removal filter 8 to the heat exchange port suction port 21 to the heat exchange chamber air inlet 22 to the particulate removal filter 10 to the indoor gas supply port 3. The exhaust air passage B forms a straight air passage such as the indoor suction port 4 to the heat exchange chamber suction port 23 to the heat exchange outdoor air outlet 24 to the outdoor exhaust port 5.

この熱交換素子9は、排気流からの排気熱を回収して給気流に熱を与える機能を有していて、所定の間隔をあけて積層された複数の伝熱板により構成されている。   The heat exchange element 9 has a function of recovering the exhaust heat from the exhaust flow to give heat to the charge air flow, and is constituted by a plurality of heat transfer plates stacked at predetermined intervals.

この伝熱板は、気体遮蔽性と透湿性を有していて、室内の空気と室外の空気を伝熱板の間に交互に流すことで、換気を行いながら伝熱板を介して熱交換および水分の交換を行うことができる構成となっている。   The heat transfer plate has gas shielding properties and moisture permeability, and heat is exchanged and moisture is exchanged through the heat transfer plate while ventilating by alternately flowing indoor air and outdoor air between the heat transfer plates. It is configured to be able to exchange the

すなわち、熱交換素子9の内部では、給気風路Aと排気風路Bが伝熱板を挟んで交互に積層されて設けられている構成となっており、これにより、給気流と排気流が交わることなく熱交換を行うことができるものである。   That is, inside the heat exchange element 9, the air supply air passage A and the air discharge air passage B are alternately stacked on both sides of the heat transfer plate, thereby providing the air supply flow and the exhaust flow. It is possible to perform heat exchange without crossing each other.

また、熱交換型換気扇1には、室内の二酸化炭素と微粒子濃度、および温度を検出するための二酸化炭素濃度検出センサ11、微粒子濃度検出センサ12、温度検出センサ13を備えていて、室内の二酸化炭素と微粒子、および温度を正確に測定するために排気風路Bの室内吸込口4近傍に配置している。室外の微粒子濃度および温度を検出するための微粒子濃度検出センサ14と温度検出センサ15を備えており、室外の微粒子濃度と温度を正確に検出するために給気風路Aの室外吸込口2近傍に配置している。   Further, the heat exchange type ventilation fan 1 is provided with a carbon dioxide concentration detection sensor 11 for detecting the concentration of carbon dioxide and particles in the room and the temperature, a particle concentration detection sensor 12 and a temperature detection sensor 13. In order to measure carbon, particulates, and temperature accurately, it is disposed near the indoor suction port 4 of the exhaust air passage B. A particulate concentration detection sensor 14 and a temperature detection sensor 15 for detecting particulate concentration and temperature outside the room are provided, and in order to accurately detect particulate concentration and temperature outside the room, in the vicinity of the outdoor suction port 2 of the air supply passage A. It is arranged.

なお、二酸化炭素濃度検出センサ11と微粒子濃度検出センサ12、および微粒子濃度検出センサ14については、センサ内部に光学レンズを使用している都合上ほこりでレンズが汚れることが予想されるため、風路には直接配置せず対流によって濃度検出が行える場所、例えば風路内でも気流の変化が小さい場所への配置が望ましい。   The carbon dioxide concentration detection sensor 11, the fine particle concentration detection sensor 12, and the fine particle concentration detection sensor 14 use an optical lens inside the sensor and it is expected that the lens will be stained by dust, so the air path It is desirable that the sensor be placed at a place where concentration detection can be performed by convection instead of direct placement, for example, at a place where the change in air flow is small even in the air path.

また、熱交換型換気扇1の内部には、給気風路を切替えるための換気ダンパ16と循環ダンパ17を備えている。   Further, inside the heat exchange type ventilation fan 1, a ventilation damper 16 and a circulation damper 17 for switching the air supply path are provided.

換気ダンパ16は、図1に示すように、熱交換素子9の給気風路A側において、熱交室外吸込口21の端部に支点を有する開閉自在の隔壁であり、換気ダンパ16により熱交室外吸込口21を開閉することで熱交換素子9への外気の流入の有り無しを制御するものである。   As shown in FIG. 1, the ventilation damper 16 is an openable / closable partition having a fulcrum at the end of the suction port 21 outside the heat exchange element on the air supply path A side of the heat exchange element 9. By opening and closing the outdoor suction port 21, the presence or absence of the inflow of the outside air to the heat exchange element 9 is controlled.

給気流と排気流の熱交換を行う熱交換運転においては、給気流を熱交換素子9に通す必要があるため、換気ダンパ16を熱交室外吸込口21が開放される側に可動する。   In the heat exchange operation for heat exchange between the charge air flow and the exhaust gas flow, the air charge flow needs to be passed through the heat exchange element 9, so the ventilation damper 16 is moved to the side where the suction port 21 outside the heat exchanger is open.

これにより、熱交換素子9をバイパスする第一給気風路Cが塞がれ、給気流が熱交換素子9を通過する給気風路Aが形成される。   As a result, the first air supply air passage C bypassing the heat exchange element 9 is closed, and the air supply air passage A where the air supply flow passes the heat exchange element 9 is formed.

従って、給気風路Aにおいて給気ファン6が動作することで、室外吸込口2から吸い込まれた外気を微粒子除去フィルタ8を通した後に熱交室外吸込口21から吸込み、熱交し熱交換素子9を通過させ、その後、微粒子除去フィルタ10を通して清浄化した空気を室内給気口3から給気を行うことができる。   Therefore, when the air supply fan 6 is operated in the air supply air path A, the outside air sucked from the outdoor suction port 2 is passed through the particulate removal filter 8 and then sucked from the suction port 21 outside the heat exchange room to exchange heat and heat exchange elements. Then, after passing through the particulate removal filter 10, the cleaned air can be supplied from the indoor air supply port 3.

一方、熱交運転を行わない、外気を熱交換素子9に通さずに室内に導入する換気運転を行う時には、図2に示すように、換気ダンパ16を、熱交室外吸込口21を塞ぐ側に可動する。   On the other hand, when performing a ventilation operation of introducing outside air into the room without passing the heat exchange element 9 without performing the heat exchange operation, as shown in FIG. Move to

これにより、熱交換素子9をバイパスする第一給気風路Cが開放されて、室外吸込口2から室内給気口3への直線状の風路、換気風路Dが形成される。   Thereby, the first air supply air passage C bypassing the heat exchange element 9 is opened, and a linear air passage from the outdoor suction port 2 to the indoor air supply opening 3 and the ventilation air passage D are formed.

換気風路Dが形成された状態で給気ファン6が動作することにより、室外吸込口2から吸い込まれた外気は熱交室外吸込口21に流入することなく第一給気風路Cを通り、微粒子除去フィルタ10を通じて室内給気口3から室内に給気されることとなる。   By operating the air supply fan 6 in a state where the ventilation air passage D is formed, the outside air sucked from the outdoor suction port 2 passes through the first air supply air passage C without flowing into the suction port 21 outside the heat exchange chamber, The air is supplied into the room from the indoor air supply port 3 through the particulate removal filter 10.

すなわち、換気ダンパ16は、給気風路Aと排気風路Bで給排気を行う熱交換運転と、第一給気風路Cおよび換気風路Dを通じて外気を直接室内に給記する換気運転とを切替えるためのダンパである。   That is, the ventilation damper 16 performs a heat exchange operation in which air supply and discharge are performed in the air supply air passage A and the air discharge passage B, and a ventilation operation in which outside air is supplied directly into the room through the first air supply air passage C and the ventilation air passage D. It is a damper for switching.

循環ダンパ17は、図1に示すように、熱交室内給気口22の端部に支点を有する開閉自在の隔壁であり、循環ダンパ17により熱交室内給気口22を開閉することで、熱交換素子9からの外気の流出の有り無しを調整するものである。   The circulation damper 17 is an openable / closable partition having a fulcrum at the end of the heat exchange chamber air supply port 22 as shown in FIG. 1, and by opening and closing the heat exchange chamber air supply port 22 by the circulation damper 17, The presence or absence of the outflow of the outside air from the heat exchange element 9 is adjusted.

熱交換運転時には、循環ダンパ17を、熱交換素子9をバイパスする第二給気風路Eを塞ぐ側に可動することで、給気風路Aと排気風路Bが独立し、熱交室内給気口22が開放される。   At the time of heat exchange operation, by moving the circulation damper 17 to the side closing the second air supply air passage E bypassing the heat exchange element 9, the air supply air passage A and the exhaust air passage B become independent and air supply in the heat exchange chamber The mouth 22 is opened.

これにより、給気流は排気流と交わることがなく、給気風路Aを通じて外気を室内に給気でき、排気ファン7により発生した排気流は、排気風路Bにおいて室内吸込口4から室内空気を吸込み、熱交室内吸込口23より吸い込んだ室内空気を熱交室外排気口24から排出し、室外排気口5より排気することができる。   As a result, the air supply flow does not intersect the exhaust flow, and the outside air can be supplied into the room through the air supply air passage A. The exhaust gas flow generated by the exhaust fan 7 flows indoor air from the indoor suction port 4 in the exhaust air passage B. The indoor air sucked and sucked through the heat exchange chamber suction port 23 can be exhausted from the heat exchange outdoor exhaust port 24 and exhausted from the outdoor exhaust port 5.

一方、熱交換素子9に室内空気を通さずに室内に再び給気する循環運転を行う時には、図3に示すように、循環ダンパ17を、熱交給気吸込口26を塞ぐ側に可動することで、熱交換素子9をバイパスし給気風路Aと排気風路Bを連通する第二給気風路Eが開放され、循環風路Fが形成される。   On the other hand, when performing a circulation operation in which the heat exchange element 9 is again supplied with air without passing the room air, as shown in FIG. 3, the circulation damper 17 is moved to the side for closing the heat supply inlet 26. As a result, the second air supply passage E bypassing the heat exchange element 9 and connecting the air supply passage A and the exhaust air passage B is opened, and the circulation passage F is formed.

循環風路Fが形成された状態で給気ファン6が動作することにより、室内吸込口4から吸い込まれた室内空気は熱交室内吸込口23に流入することなく第二給気風路Eを通り、微粒子除去フィルタ10を通して清浄化したのちに室内給気口3から給気することができる。   With the air supply fan 6 operating in a state where the circulation air passage F is formed, the indoor air sucked from the indoor suction port 4 passes through the second air supply air duct E without flowing into the heat exchange chamber suction port 23. After being cleaned through the particulate removal filter 10, the air can be supplied from the indoor air supply port 3.

すなわち、循環ダンパ17は、給気風路Aと排気風路Bで給排気を行う熱交換運転と、第二給気風路Eおよび循環風路Fを通じて室内空気を再び室内に循環させるための循環運転とを切替えるためのダンパである。   That is, the circulation damper 17 performs a heat exchange operation in which air supply and discharge are performed in the air supply passage A and the air discharge passage B, and a circulation operation in which the indoor air is circulated again into the room through the second air supply passage E and the circulation passage F. And a damper for switching between

熱交換型換気扇1の側面に配置したコントローラ18は、これら換気ダンパ16や循環ダンパ17と給気ファン6および排気ファン7を、二酸化炭素濃度検出センサ11、微粒子濃度検出センサ12、温度検出センサ13、微粒子濃度検出センサ14、温度検出センサ15からの信号に基づき制御するものである。   The controller 18 disposed on the side of the heat exchange type ventilation fan 1 includes the ventilation damper 16, the circulation damper 17, the air supply fan 6 and the exhaust fan 7, a carbon dioxide concentration detection sensor 11, a particulate concentration detection sensor 12, and a temperature detection sensor 13. The control is performed based on the signals from the particle concentration detection sensor 14 and the temperature detection sensor 15.

次に本発明の内容について説明する。   Next, the contents of the present invention will be described.

室内の二酸化炭素濃度が高い場合には、室内空気を排気することにより室内の二酸化炭素濃度を下げることができる。   When the concentration of carbon dioxide in the room is high, the concentration of carbon dioxide in the room can be lowered by exhausting the room air.

しかし、従来の熱交換型換気扇は熱交換素子を通しての排気となるため、通常の排気と比較して熱交換素子を通す分圧力損失が発生し、排気ファンの電力は損失となる。   However, since the conventional heat exchange type ventilation fan becomes exhaust air through the heat exchange element, a pressure loss occurs by passing the heat exchange element as compared with the normal exhaust, and the power of the exhaust fan becomes a loss.

さらに、熱交換素子を通さずに直接外気を給気できる熱交換型換気扇も存在する。このような熱交換型換気扇では、外気吸込口にフィルタを設けており、フィルタを通して室内に直接外気を導入するものであるが、室内の二酸化炭素濃度や室外の微粒子濃度での換気判断は行わずに、室内外の温度差のみにより直接換気を行っているものである。   Furthermore, there is also a heat exchange type ventilation fan that can supply the outside air directly without passing through the heat exchange element. In such a heat exchange type ventilation fan, a filter is provided at the outside air suction port, and outside air is directly introduced into the room through the filter, but ventilation judgment is not performed on the indoor carbon dioxide concentration or the outdoor particulate concentration. In addition, direct ventilation is performed only by the temperature difference inside and outside the room.

室内の二酸化炭素濃度が低く外気の微粒子濃度が高いときには換気を行う必要はないが、従来の熱交換型換気扇では室内外の温度差が小さい場合に直接外気を取り入れてしまうため、微粒子除去フィルタ10の目詰まりが早くなる、という課題がある。   It is not necessary to ventilate when the concentration of carbon dioxide in the room is low and the concentration of fine particles in the outside air is high, however, in the conventional heat exchange type ventilation fan, outside air is directly taken in when the temperature difference inside and outside the room is small. There is a problem that the clogging of the

本発明はこれら課題を解決するものであり、室内の二酸化炭素濃度を検出する二酸化炭素濃度検出センサ11、室内の微粒子濃度を検出する微粒子濃度検出センサ12、室内温度を計測する温度検出センサ13、室外の微粒子濃度を検出する微粒子濃度検出センサ14、室外の温度を計測する温度検出センサ15の計測値を受信したコントローラ18が、給気ファン6、排気ファン7、換気ダンパ16、循環ダンパ17を制御することにより所期の目的を達成するものである。   The present invention solves these problems, and a carbon dioxide concentration detection sensor 11 for detecting the concentration of carbon dioxide in the room, a particulate concentration detection sensor 12 for detecting the concentration of particulates in the room, and a temperature detection sensor 13 for measuring room temperature The particle concentration detection sensor 14 that detects the concentration of particles outside the room, and the controller 18 that receives the measurement values of the temperature detection sensor 15 that measures the temperature outside the room are the air supply fan 6, the exhaust fan 7, the ventilation damper 16, the circulation damper The purpose is achieved by controlling.

室内の二酸化炭素濃度が高く室外の微粒子濃度が低い場合には、室外の空気を熱交換素子を介さずに取り入れ、また、排気ファンを停止することにより、室内の二酸化炭素濃度を低下させると同時に、熱交換素子の圧力損失分の電力損失を削減し省エネルギーを図れる。   When the indoor carbon dioxide concentration is high and the outdoor particulate concentration is low, outdoor air is taken in without passing through the heat exchange element, and the exhaust fan is stopped to simultaneously reduce the indoor carbon dioxide concentration. The power loss of the heat exchange element can be reduced to save energy.

また、室内の二酸化炭素濃度が低く室外の微粒子濃度が高い場合には、温度的に熱交運転に適した条件であっても、外気を取りいれずに循環運転を行うことにより、省エネルギーを図るとともに微粒子除去フィルタ10の寿命を延長することができるものである。   In addition, when the concentration of carbon dioxide in the room is low and the concentration of particulates outside the room is high, energy saving can be achieved by performing the circulation operation without taking in the outside air even if the temperature is suitable for the heat exchange operation. The life of the particulate removal filter 10 can be extended.

以下に本発明の熱交換型換気扇の運転状態の決定について、図4のフローチャートを用いて説明する。なお、図4中のSはステップを意味する。   Hereinafter, determination of the operating state of the heat exchange type ventilation fan of the present invention will be described using the flowchart of FIG. In addition, S in FIG. 4 means a step.

まず、最初に熱交換型換気扇の運転状態において、コントローラ18は、二酸化炭素濃度検出センサ11、室内の微粒子濃度検出センサ12、室内の温度検出センサ13、室外の微粒子濃度検出センサ14、室外の温度検出センサ15の計測値を読み込む(S01)。   First, first, in the operating state of the heat exchange type ventilation fan, the controller 18 detects the carbon dioxide concentration detection sensor 11, the indoor particulate concentration detection sensor 12, the indoor temperature detection sensor 13, the outdoor particulate concentration detection sensor 14, and the outdoor temperature. The measurement value of the detection sensor 15 is read (S01).

次に、コントローラ18は読み込んだ二酸化炭素濃度検出センサ11の計測値を予め定められた閾値と比較する(S02)。   Next, the controller 18 compares the read measurement value of the carbon dioxide concentration detection sensor 11 with a predetermined threshold (S02).

なお、ここでは閾値として、人が眠気を感じ始め集中力が低下する1000ppmを設定するものとする。   Here, as a threshold value, 1000 ppm at which a person starts to feel sleepy and concentration decreases is set.

コントローラ18は室内の二酸化炭素濃度を閾値と比較した結果、室内の二酸化炭素濃度が閾値(1000ppm)以上であれば、室内の二酸化炭素濃度を下げる必要があると判断し、熱交運転の排気による室内の二酸化炭素濃度の低減を行うか、換気運転の外気導入による室内の二酸化炭素濃度の低減を行うかいずれかを決定するために、室内と室外の温度差による判定を行う次のステップ(S03)に進む。   As a result of comparing the concentration of carbon dioxide in the room with the threshold value, the controller 18 determines that the concentration of carbon dioxide in the room needs to be lowered if the concentration of carbon dioxide in the room is equal to or higher than the threshold (1000 ppm). In order to decide whether to reduce the concentration of carbon dioxide in the room or to reduce the concentration of carbon dioxide in the room by the introduction of outside air during the ventilation operation, the next step of performing the determination based on the temperature difference between the room and the outside (S03 Go to).

一方、室内の二酸化炭素濃度が閾値未満であれば、室内の二酸化炭素濃度を下げる必要がないと判断し、熱交運転か、換気運転か、循環運転かのいずれかを決定するために、室内と室外の温度差による判定を行う次のステップ(S04)に進む。   On the other hand, if the concentration of carbon dioxide in the room is less than the threshold value, it is judged that it is not necessary to lower the concentration of carbon dioxide in the room, and the room is operated to determine either heat exchange operation, ventilation operation or circulation operation. The process proceeds to the next step (S04) in which the determination is made based on the temperature difference outside the room.

室内の二酸化炭素濃度を下げる必要があると判断したステップ(S03)では、コントローラ18は、読み込んだ室内温度と室外温度の温度差を計算し、予め定められた閾値と比較する。   In step (S03) where it is determined that the concentration of carbon dioxide in the room needs to be lowered, the controller 18 calculates the temperature difference between the read indoor temperature and the outdoor temperature, and compares it with a predetermined threshold.

ここでは、室内外の温度差が小さい場合に行える外気を熱交換せずに直接室内に導入する運転=換気運転を行えるかどうかを判断するために、室内外の温度差の閾値として4℃を設定する。   Here, 4 ° C. is set as a threshold of the indoor / outdoor temperature difference in order to determine whether the outdoor air can be directly introduced into the room without heat exchange when the indoor / outdoor temperature difference is small. Set

室内と室外の温度差が4℃未満であれば、換気運転を行えると判断し、換気運転優先として次のステップ(S05)に進み、4℃以上であれば、換気運転は行えず熱交運転を行う必要があると判断し、熱交運転を優先して次のステップ(S06)に進む。   If the temperature difference between indoor and outdoor is less than 4 ° C, it is judged that ventilation operation can be performed, and proceeds to the next step (S05) as ventilation operation priority, and if 4 ° C or higher, ventilation operation can not be performed and heat exchange operation It is determined that it is necessary to give priority to the heat exchange operation to proceed to the next step (S06).

同様に、室内の二酸化炭素濃度を下げる必要がないと判断したステップ(S04)では、ステップ(S03)と同じ室内外の温度差による換気運転の有無の判定を行い、室内と室外の温度差が4℃未満であれば換気運転を行えると判断し、換気運転優先として次のステップ(S07)に進み、4℃以上であれば換気運転は行えず熱交運転を行う必要があると判断し、熱交運転を優先として次のステップ(S08)に進む。   Similarly, in step (S04) where it is determined that it is not necessary to lower the concentration of carbon dioxide in the room, the same temperature difference outside the room as in step (S03) is used to determine the presence or absence of the ventilation operation. If it is less than 4 ° C., it is judged that the ventilation operation can be performed, and the next step (S07) is given as the ventilation operation priority, and if it is 4 ° C. or more, it is judged that the ventilation operation can not be performed and the heat exchange operation needs to be performed. The process proceeds to the next step (S08) with the heat exchange operation as a priority.

ステップ(S05)では、コントローラ18は、読み込んだ室外の微粒子濃度を予め定められた閾値と比較する。   In step (S05), the controller 18 compares the read outdoor particulate concentration with a predetermined threshold value.

なお、ここでは閾値として、人体に影響のないレベルとされる20μg/m3を設定するものとする。   Here, as the threshold value, 20 μg / m 3 which is a level not affecting the human body is set.

室外の微粒子濃度が20μg/m3より低ければ、室外の空気を直接室内に取り入れることができるため換気運転ができると判断し、換気運転優先として次のステップ(S09)に進み、室外の微粒子濃度が20μg/m3より高ければ、室外の空気を取り入れることができないため換気運転はできないと判断し、次のステップ(S10)に進む。   If the concentration of particulates outside the room is lower than 20 μg / m 3, it is judged that ventilation operation can be performed because outdoor air can be taken directly into the room, and the flow proceeds to the next step (S09) as ventilation operation priority, and the concentration of particulates outside the room is If it is higher than 20 μg / m 3, it is determined that the ventilation operation can not be performed because outdoor air can not be taken in, and the process proceeds to the next step (S 10).

なお、ステップ(S06)、ステップ(S07)、ステップ(S08)でも、ステップ(S05)と同様の判定を行う。   The same determination as in step (S05) is performed in steps (S06), (S07), and (S08).

ステップ(S06)、ステップ(S07)、ステップ(S08)において、室外の微粒子濃度が20μg/m3より低ければ、室外の空気を取り入れることができるため換気運転ができると判断し、換気運転優先としてそれぞれステップ(S10)、ステップ(S11)、ステップ(S13)、ステップ(S15)に進み、室外の微粒子濃度が20μg/m3より高ければ、室外の空気を室内に直接取り入れることができないため換気運転ができないと判断し、それぞれステップ(S12)、ステップ(S14)、ステップ(S16)に進む。   In step (S06), step (S07), and step (S08), if the concentration of particles outside the room is lower than 20 μg / m 3, it is judged that ventilation operation can be performed because outdoor air can be taken in, and priority is given to ventilation operation. Proceed to step (S10), step (S11), step (S13), and step (S15). If the concentration of particulates outside the room is higher than 20 μg / m3, the air can not be taken directly into the room and the ventilation operation can not be performed. Then, the process proceeds to step (S12), step (S14) and step (S16).

次に、ステップ(S09)では、コントローラ18は、読み込んだ室内の微粒子濃度を予め定められた閾値と比較する。   Next, in step (S09), the controller 18 compares the read particulate concentration in the room with a predetermined threshold.

なお、ここでは閾値として、室外と同様、人体に影響のないレベルとされる20μg/m3を設定するものとする。   Here, as the threshold value, 20 μg / m 3, which does not affect the human body, is set as in the case of outdoor.

室内の微粒子濃度が20μg/m3より低ければ、室内の微粒子濃度を下げる必要がないと判断し、室内の微粒子濃度が20μg/m3より高ければ、室内の微粒子濃度を下げる必要があると判断する。   If the particle concentration in the room is lower than 20 μg / m 3, it is judged that it is not necessary to lower the particle concentration in the room, and if the particle concentration in the room is higher than 20 μg / m 3, it is judged that the particle concentration in the room needs to be lowered.

ステップ(S09)の状態は、室内の二酸化炭素濃度が高いので室内の二酸化炭素濃度を下げる必要があり、熱交運転か換気運転のいずれかの選択、室内外の温度差は4℃未満なので換気運転を優先、室外の微粒子濃度が低いために室外の空気を直接取り入れられる換気運転を優先、すなわち、ステップ(S02)、ステップ(S03)、ステップ(S05)を通じての運転判断は換気運転を行う、という判断となる。   In the state of step (S09), it is necessary to lower the concentration of carbon dioxide in the room because the concentration of carbon dioxide in the room is high, and either heat exchange operation or ventilation operation is selected. Priority is given to operation, priority is given to ventilation operation where outdoor air is directly taken in because outdoor particulate concentration is low, that is, operation judgment through step (S02), step (S03) and step (S05) is ventilation operation. It will be judged.

そして、ステップ(S09)においては、室内の微粒子濃度が低い場合は換気運転が可能、また、室内の微粒子濃度が高い場合でも換気運転による室内の微粒子濃度を低減できることから、最終の運転状態は換気運転に決定されることとなる。   In step (S09), ventilation operation is possible when the concentration of particulates in the room is low, and even if the concentration of particulates in the room is high, the concentration of particulates in the room by ventilation operation can be reduced. It will be decided to drive.

換気運転を決定したコントローラ18は、換気ダンパ16を可動して熱交外気吸込口25を塞ぎ、熱交換素子9をバイパスする第一給気風路Cを形成し、給気ファン6を運転し換気運転を行う。   The controller 18 that has determined the ventilation operation moves the ventilation damper 16 to close the heat exchange external air suction port 25, forms a first air supply air path C bypassing the heat exchange element 9, operates the air supply fan 6, and ventilates. Do the driving.

これにより、室外吸込口2から吸い込まれた外気は、熱交室外吸込口21より熱交素子に流入することがなく、第一給気風路Cを通じて微粒子除去フィルタ10を通り、清浄化された後に室内給気口3から給気される。   As a result, the outside air sucked from the outdoor suction port 2 does not flow into the heat exchange element from the heat exchange outdoor suction port 21 and passes through the particulate removal filter 10 through the first air supply passage C and is cleaned. The air is supplied from the indoor air supply port 3.

このように、熱交換型換気扇の運転状態を換気運転と決定することにより、室内の二酸化炭素濃度を下げ、室内の微粒子濃度を維持しつつ、熱交換素子9を通じることにより生じる排気ファン7の電力損失を削減することができる。   Thus, by determining the operating state of the heat exchange type ventilation fan as the ventilation operation, the concentration of carbon dioxide in the room is lowered, and the concentration of particulates in the room is maintained, and the exhaust fan 7 produced by passing through the heat exchange element 9 Power loss can be reduced.

もう一例、循環運転を選択する例を以下に説明する。   Another example, an example of selecting the circulation operation will be described below.

室内の二酸化炭素濃度が高い場合は、室内の空気を室外に排気する熱交運転か、外気を取り入れる換気運転のいずれかでしか室内の二酸化炭素濃度を下げることができないため、室内の空気を再度室内に給気する循環運転を選ぶことができない。   If the concentration of carbon dioxide in the room is high, the concentration of carbon dioxide in the room can be reduced only by either heat exchange operation in which the room air is exhausted to the outside or ventilation operation in which outside air is introduced. It is not possible to select the circulation operation to supply air to the room.

すなわち、循環運転は室内の二酸化炭素濃度が低い場合のみ選択が可能となる。   That is, the circulation operation can be selected only when the concentration of carbon dioxide in the room is low.

ステップ(S02)で、室内の二酸化炭素濃度が予め定められた閾値より低い場合は、前述したようにステップ(S04)に進む。   In step (S02), if the concentration of carbon dioxide in the room is lower than a predetermined threshold value, the process proceeds to step (S04) as described above.

ステップ(S04)では、室内外の温度差により熱交運転か換気運転かの判断を行っていて、室内外の温度差が予め定められた閾値より低い場合は、換気運転優先としてステップ(S07)に進み、室内外の温度差が予め定められた閾値より高い場合は、熱交運転優先としてステップ(S08)に進む。   In step (S04), it is determined whether the heat exchange operation or the ventilation operation is performed based on the temperature difference outside the room, and if the temperature difference outside the room is lower than a predetermined threshold, the step (S07) is prioritized as the ventilation operation. If the temperature difference between the inside and the outside of the room is higher than a predetermined threshold value, the process proceeds to step (S08) as heat exchange operation priority.

そして、熱交運転が選択されたステップ(S08)では、室外の微粒子濃度が予め定められた閾値より高いか低いかを判断し、予め定められた閾値より低ければステップ(S15)へ、予め定められた閾値より高ければステップ(S16)に進む。   Then, in step (S08) in which the heat exchange operation is selected, it is determined whether the concentration of particulates outside the room is higher or lower than a predetermined threshold, and if lower than the predetermined threshold, predetermined to step (S15) If it is higher than the threshold value, the process proceeds to step (S16).

ステップ(S16)では、室内の微粒子濃度が予め定められた閾値より高いか低いかを判断する。   In step (S16), it is determined whether the particle concentration in the room is higher or lower than a predetermined threshold.

ステップ(S16)の状態は、室内の二酸化炭素濃度は濃度が低いため熱交運転、換気運転、循環運転のいずれも選択可能、室内外の温度差は4℃以上のため熱交運転優先、室外の微粒子濃度は、濃度が高いため外気を取り入れる換気運転は行えない状況、すなわち、運転状態は熱交運転か循環運転のいずれかの選択に絞られた状態にある。   In the state of step (S16), since the concentration of carbon dioxide in the room is low, any of heat exchange operation, ventilation operation, and circulation operation can be selected, and the temperature difference outside the room is 4 ° C. or more. Since the concentration of fine particles is high, it is not possible to carry out the ventilation operation to take in the outside air, that is, the operation condition is narrowed down to either the heat exchange operation or the circulation operation.

室内の微粒子濃度の低減については、熱交運転時には排気を行うため室内の微粒子濃度の低減が可能、また、循環運転時にも微粒子除去フィルタ10により微粒子を除去できるため、熱交運転、循環運転いずれを選択しても室内の微粒子濃度の低減は可能である。   As for the reduction of particulate concentration in the room, exhausting is performed at the time of heat exchange operation so that the concentration of particulate in the room can be reduced, and since particulates can be removed by the particulate removal filter 10 also at the time of circulation operation It is possible to reduce the concentration of particulates in the room even by selecting.

そこで、ステップ(S16)においては、排気を行わないため室内空調エネルギーを捨てることがなく、省エネルギー性の高い循環運転を選択することとする。   Therefore, in step (S16), since the exhaust is not performed, the indoor air conditioning energy is not discarded, and the circulation operation with high energy saving property is selected.

循環運転選択時に、コントローラ18は、循環ダンパ17を可動して熱交室内給気口22を塞ぎ、給気風路Aと排気風路Bを連通して熱交換素子9をバイパスする第二給気風路Eおよび循環風路Fを形成し、給気ファン6を運転する。   At the time of the circulation operation selection, the controller 18 moves the circulation damper 17 to close the air inlet 22 in the heat exchange chamber, and connects the air supply path A and the exhaust air path B to bypass the heat exchange element 9. The passage E and the circulation air passage F are formed, and the air supply fan 6 is operated.

また、このとき、室内吸込口4から吸い込まれた室内空気が室外排気口5から排気されることがないよう、排気ファン7を停止する。   At this time, the exhaust fan 7 is stopped so that the indoor air sucked from the indoor suction port 4 is not exhausted from the outdoor exhaust port 5.

これにより、室内吸込口4から吸い込まれた室内空気は、熱交室内吸込口23に流入することなく、第二給気風路Eを通じて微粒子除去フィルタ10を通り、清浄化された後に室内給気口3より給気される。   As a result, the indoor air sucked from the indoor suction port 4 passes through the particulate removal filter 10 through the second air supply air passage E without flowing into the heat exchange indoor suction port 23, and is then cleaned. Supply air from 3

このように、熱交換型換気扇の運転状態を循環運転と決定することで、室内の二酸化炭素濃度を維持しつつ、室内の微粒子濃度を低減し、室内空調空気を外部に排出せずに省エネルギー化を図ることができる。   Thus, by determining the operating state of the heat exchange type ventilation fan as the circulating operation, the concentration of particulates in the room is reduced while maintaining the carbon dioxide concentration in the room, and energy saving is achieved without discharging the indoor conditioned air to the outside. Can be

その他のステップについても同様に、図4に示すフローに従い、熱交運転、換気運転、循環運転の選択を進め、最終の運転状態を決定する。   Likewise, in the other steps, the heat exchange operation, the ventilation operation, and the circulation operation are selected according to the flow shown in FIG. 4 to determine the final operation state.

なお、各ステップの上位と下位で判断が異なる場合は、上位の判断を優先し運転状態を決定するものとする。   In addition, when judgment is different in the high-order of each step, and a low-order, a higher-order judgment shall be given priority and a driving | running state shall be determined.

上述のように熱交換型換気扇の運転状態を決定することで、室内の二酸化炭素濃度と微粒子濃度を閾値未満に維持しつつ、微粒子除去フィルタ8および微粒子除去フィルタ10の長寿命化を図りながら、省エネルギーを図ることができる。   By determining the operating state of the heat exchange type ventilation fan as described above, the life of the particulate removal filter 8 and the particulate removal filter 10 can be extended while maintaining the concentration of carbon dioxide in the room and the concentration of particulates below the threshold. Energy saving can be achieved.

また、本発明の図1、図2および図3では、天井または床下に設置する横置きタイプの熱交換型換気扇の構成を表しているが、熱交換型換気扇本体は床に設置する縦置き型のものでもかまわない。   Moreover, although FIG. 1, FIG. 2, and FIG. 3 of this invention show the structure of the heat exchange type ventilation fan of the horizontal installation type installed in a ceiling or under a floor, the heat exchange type ventilation fan main body is vertical installation type installed in a floor. It does not matter.

以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited at all to the said embodiment, It is easy that various improvement deformation | transformation is possible within the range which does not deviate from the meaning of this invention. It can be guessed.

また、上記各実施形態で挙げた数値は一例であり、他の数値を採用することは当然可能である。   Further, the numerical values mentioned in each of the above embodiments are merely examples, and it is naturally possible to adopt other numerical values.

本発明にかかる熱交換型換気扇は、住宅用やビル用、その他熱交換型換気扇全般に用いることができる。   The heat exchange-type ventilation fan according to the present invention can be used in general for heat exchange-type ventilation fans for homes and buildings.

1 熱交換型換気扇
2 室外吸込口
3 室内給気口
4 室内吸込口
5 室外排気口
6 給気ファン
7 排気ファン
8 微粒子除去フィルタ
9,108 熱交換素子
10 微粒子除去フィルタ
11 二酸化炭素濃度検出センサ
12 微粒子濃度検出センサ
13 温度検出センサ
14 微粒子濃度検出センサ
15 温度検出センサ
16 換気ダンパ
17 循環ダンパ
18 コントローラ
19 室外側側面
20 室内外側面
21 熱交室外吸込口
22 熱交室内給気口
23 熱交室内吸込口
24 熱交室外排気口
A 給気風路
B 排気風路
C 第一給気風路
D 換気風路
E 第二給気風路
F 循環風路
DESCRIPTION OF SYMBOLS 1 heat exchange type ventilation fan 2 outdoor suction port 3 indoor air supply port 4 indoor suction port 5 outdoor exhaust port 6 air supply fan 7 exhaust fan 8 particulate removal filter 9, 108 heat exchange element 10 particulate removal filter 11 carbon dioxide concentration detection sensor 12 Particulate concentration detection sensor 13 Temperature detection sensor 14 Particulate concentration detection sensor 15 Temperature detection sensor 16 Ventilation damper 17 Circulation damper 18 Controller 19 Room outer side surface 20 Room outer surface 21 Suction inlet outside heat exchanger 22 Air suction inlet within heat exchange chamber 23 Heat exchange chamber Suction port 24 Exhaust outlet A heat supply air path B Exhaust air path C First air supply path D Ventilation air path E Second air supply path F Circulation air path

Claims (4)

室外吸込口より室外の空気を取り入れ、室内給気口より室内に供給する給気風路と、
室内吸込口より室内の空気を取り入れ、室外排気口より室外に排気する排気風路と、
前記給気風路における給気流を発生させる給気流発生手段と、
前記排気風路における排気流を発生させる排気流発生手段と、
前記室外吸込口を通る空気の微粒子を除去する第一微粒子除去手段と、
前記室内給気口を通る空気の微粒子を除去する第二微粒子除去手段と、
室内の微粒子濃度を検出する第一微粒子濃度検出手段と、
室外の微粒子濃度を検出する第二微粒子濃度検出手段と、
室内の二酸化炭素濃度を検知する二酸化炭素濃度検出手段と、
室内の温度を検出する第一温度検出手段と、
室外の温度を検出する第二温度検出手段と、
前記給気風路は、前記排気風路を通る空気と熱交換を行うための熱交換素子を介して前記室内給気口に室外の空気を供給する熱交換風路と、
前記給気風路は、熱交換素子を介さず室外の空気を室内に取り入れる換気風路と、
室内吸込口より取り入れた室内の空気を、室内給気口より室内に供給する循環風路と、を備えた熱交換型換気装置において、
前記熱交換風路と前記換気風路とを切り替える第一切替手段と、前記排気風路と前記循環風路とを切り替える第二切替手段と、
さらに、前記第一切替手段、前記第二切替手段、前記給気流発生手段及び前記排気流発生手段を制御する制御手段とを備え、
前記制御手段は、前記第一微粒子濃度検出手段、前記第二微粒子濃度検出手段、前記二酸化炭素濃度検出手段、前記第一温度検出手段、前記第二温度検出手段より得られる情報に基づいて、前記第一切替手段及び前記第二切替手段を制御することを特徴とする熱交換型換気扇。
An air supply path that takes in air from the outside through the outdoor suction port and supplies the air from the indoor air supply port to the room,
An exhaust air passage that takes in the indoor air from the indoor suction port and exhausts the air from the outdoor exhaust port to the outdoor,
An air supply flow generating means for generating an air supply flow in the air supply air path;
Exhaust flow generating means for generating an exhaust flow in the exhaust air passage;
First particle removing means for removing air particles passing through the outdoor suction port;
Second particle removing means for removing air particles passing through the indoor air supply port;
First particle concentration detection means for detecting the concentration of particles in the room;
Second particle concentration detection means for detecting the concentration of particles outside the room;
Carbon dioxide concentration detection means for detecting the concentration of carbon dioxide in the room;
First temperature detection means for detecting the temperature in the room;
Second temperature detection means for detecting the temperature outside the room;
The air supply air passage is a heat exchange air passage that supplies outdoor air to the indoor air supply port via a heat exchange element for performing heat exchange with air passing through the exhaust air passage;
The air supply air path is a ventilation air path for introducing outdoor air into the room without using a heat exchange element;
In a heat exchange type ventilation system comprising: a circulation air path for supplying indoor air taken in from a room suction port to a room from a room air inlet;
First switching means for switching between the heat exchange air path and the ventilation air path, and second switching means for switching between the exhaust air path and the circulation air path;
And a control unit configured to control the first switching unit, the second switching unit, the air supply flow generation unit, and the exhaust flow generation unit.
The control means is based on information obtained from the first particle concentration detection means, the second particle concentration detection means, the carbon dioxide concentration detection means, the first temperature detection means, and the second temperature detection means. A heat exchange type ventilation fan characterized by controlling a first switching means and the second switching means.
前記二酸化炭素濃度検出手段によって検出された二酸化炭素濃度が所定の値よりも高く、
前記第二微粒子濃度検出手段によって検出された微粒子濃度が所定の値よりも低い場合に、前記制御手段は、前記切替え手段を制御して普通換気運転を行うことを特徴とする請求項1記載の熱交換型換気扇。
The carbon dioxide concentration detected by the carbon dioxide concentration detecting means is higher than a predetermined value,
2. The method according to claim 1, wherein the control means controls the switching means to perform a normal ventilation operation when the particle concentration detected by the second particle concentration detecting means is lower than a predetermined value. Heat exchange type ventilation fan.
前記二酸化炭素濃度検出手段による二酸化炭素濃度が前記所定の値より低く、室内温度と室外温度の温度差が所定の値よりも大きい場合、前記制御手段は、前記循環風路による循環運転を行うことを特徴とする請求項1または2に記載の熱交換型換気扇。 When the carbon dioxide concentration by the carbon dioxide concentration detecting means is lower than the predetermined value and the temperature difference between the indoor temperature and the outdoor temperature is larger than the predetermined value, the control means performs the circulation operation by the circulation air passage. The heat exchange type ventilation fan according to claim 1 or 2, characterized in that 前記換気風路による換気運転時および前記循環風路による循環運転時には、前記排気流発生手段を停止することを特徴とする請求項1から3のいずれかに記載の熱交換型換気扇。 The heat exchange type ventilation fan according to any one of claims 1 to 3, wherein the exhaust flow generation means is stopped at the time of the ventilation operation by the ventilation air path and the circulation operation by the circulation air path.
JP2017229828A 2017-11-30 2017-11-30 How to control the heat exchange type ventilation fan Active JP6982727B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017229828A JP6982727B2 (en) 2017-11-30 2017-11-30 How to control the heat exchange type ventilation fan
PCT/JP2018/042218 WO2019107162A1 (en) 2017-11-30 2018-11-15 Air purification device and heat-exchanging ventilation device equipped with air purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229828A JP6982727B2 (en) 2017-11-30 2017-11-30 How to control the heat exchange type ventilation fan

Publications (2)

Publication Number Publication Date
JP2019100588A true JP2019100588A (en) 2019-06-24
JP6982727B2 JP6982727B2 (en) 2021-12-17

Family

ID=66976618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229828A Active JP6982727B2 (en) 2017-11-30 2017-11-30 How to control the heat exchange type ventilation fan

Country Status (1)

Country Link
JP (1) JP6982727B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023442A (en) * 2019-11-05 2020-04-17 南京大学 Air purification equipment purification efficiency risk identification and filter screen resetting reminding system and method
CN112066505A (en) * 2020-09-03 2020-12-11 浙江曼瑞德环境技术股份有限公司 Constant flow control method and system
KR102507590B1 (en) * 2021-09-06 2023-03-09 미래하이테크(주) IWater filter type ventilatory system with inner circulating function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727782A (en) * 2004-07-26 2006-02-01 乐金电子(天津)电器有限公司 Ventilation system
JP2007003085A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Ventilation device
JP2014066400A (en) * 2012-09-25 2014-04-17 Panasonic Corp Heat exchanger
KR101513651B1 (en) * 2015-01-22 2015-04-21 은성화학(주) a apparatus of air condition to improve the control performance, and a control method of thereof
CN106403020A (en) * 2016-08-29 2017-02-15 广东遂联智能装备制造有限公司 Combined type indoor air treatment device and using method thereof
CN206618026U (en) * 2017-03-08 2017-11-07 孙金鹏 Newly, return air amount Intelligent adjustment formula air purifier

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1727782A (en) * 2004-07-26 2006-02-01 乐金电子(天津)电器有限公司 Ventilation system
JP2007003085A (en) * 2005-06-23 2007-01-11 Matsushita Electric Ind Co Ltd Ventilation device
JP2014066400A (en) * 2012-09-25 2014-04-17 Panasonic Corp Heat exchanger
KR101513651B1 (en) * 2015-01-22 2015-04-21 은성화학(주) a apparatus of air condition to improve the control performance, and a control method of thereof
CN106403020A (en) * 2016-08-29 2017-02-15 广东遂联智能装备制造有限公司 Combined type indoor air treatment device and using method thereof
CN206618026U (en) * 2017-03-08 2017-11-07 孙金鹏 Newly, return air amount Intelligent adjustment formula air purifier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111023442A (en) * 2019-11-05 2020-04-17 南京大学 Air purification equipment purification efficiency risk identification and filter screen resetting reminding system and method
CN112066505A (en) * 2020-09-03 2020-12-11 浙江曼瑞德环境技术股份有限公司 Constant flow control method and system
KR102507590B1 (en) * 2021-09-06 2023-03-09 미래하이테크(주) IWater filter type ventilatory system with inner circulating function

Also Published As

Publication number Publication date
JP6982727B2 (en) 2021-12-17

Similar Documents

Publication Publication Date Title
KR101808116B1 (en) Air purification system
KR101824148B1 (en) Ventilator
KR101790696B1 (en) Heat exchange type ventilator having bypass and recirculation function
CN100491851C (en) Ventilation system and method for driving the same
JP7209143B2 (en) heat exchange fan
KR101444323B1 (en) Cargo tank air conditioning system
KR101301046B1 (en) Energy-saving air conditioner
JP2008295448A (en) Air-isolator type biosafety cabinet
WO2019107162A1 (en) Air purification device and heat-exchanging ventilation device equipped with air purification device
KR102287901B1 (en) Ventilator
KR102224732B1 (en) Air Conditioning System with Outdoor Air Fine Dust Treatment System with Fine Dust Filter Mobile Device
JP2005221217A (en) Air circulation system, and its control method
JP6982727B2 (en) How to control the heat exchange type ventilation fan
KR20180080415A (en) Ventilation
KR20180054011A (en) heat exchange ventilation unit
KR100623526B1 (en) Energy recovery ventilation and method for controlling ventilation the same
KR100582457B1 (en) Transfering heat exchanger with purification mode
KR20190114466A (en) Air conditoiner and control method thereof
JP2020051658A (en) Heat exchange type ventilator
JP6482885B2 (en) Building air conditioning ventilation system
KR20180003341U (en) heat exchange ventilation unit
KR100845836B1 (en) ventilating device and method of operating the same
KR100531084B1 (en) A air cleaning system and a driving method thereof
KR102575089B1 (en) Air conditioning system
KR100563527B1 (en) A driving method of a air cleaning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6982727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151