JP2019099849A - Copper terminal material and production method of the same - Google Patents

Copper terminal material and production method of the same Download PDF

Info

Publication number
JP2019099849A
JP2019099849A JP2017229794A JP2017229794A JP2019099849A JP 2019099849 A JP2019099849 A JP 2019099849A JP 2017229794 A JP2017229794 A JP 2017229794A JP 2017229794 A JP2017229794 A JP 2017229794A JP 2019099849 A JP2019099849 A JP 2019099849A
Authority
JP
Japan
Prior art keywords
layer
alloy
less
fired
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017229794A
Other languages
Japanese (ja)
Other versions
JP6972978B2 (en
Inventor
隆二 植杉
Ryuji Uesugi
隆二 植杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017229794A priority Critical patent/JP6972978B2/en
Publication of JP2019099849A publication Critical patent/JP2019099849A/en
Application granted granted Critical
Publication of JP6972978B2 publication Critical patent/JP6972978B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

To provide a copper terminal material and a production method of the same which eliminates processing of drainage etc. in a terminal material composed of copper or copper alloy.SOLUTION: In the copper terminal material of the invention, a burned layer in which any of Au-Pt alloy, Au-Pd alloy, Ag-P alloy or Ag-Pd alloy is a main component, is formed on a part of a surface of a substrate consisting of Cu or Cu alloy. A density of Pt or Pd in the burned layer is 0 mass% or more and 40 mass% or less in a range of 1/10 of a thickness from a surface of the burned layer in a whole film thickness of the burned layer, and 90 mass% or more and 100 mass% or less in a range of 1/10 or less from a boundary surface with a substrate in a whole film thickness of the burned layer.SELECTED DRAWING: Figure 1

Description

本発明は、自動車や民生機器等の電気配線の接続に使用されるコネクタ用端子として有用な白金、パラジウム等の貴金属を含有する被膜が設けられた銅端子材及びその製造方法に関する。   The present invention relates to a copper terminal material provided with a coating containing a noble metal such as platinum or palladium, which is useful as a terminal for a connector used to connect an electrical wiring of an automobile or a consumer device, and a method of manufacturing the same.

従来、自動車や民生機器などの電気配線の接続に用いられるコネクタ用端子が知られている。このようなコネクタ用端子として用いられる端子材として、銅又は銅合金基材の表面にニッケルやコバルト等の金属により構成されるめっき層が下地層として形成され、該下地層の上面に錫等の金属メッキ層が形成された端子材が開示されている(例えば、特許文献1参照)。
この特許文献1に記載の端子材では、ニッケルやコバルト等のめっき層が銅又は銅合金基材の表面に形成されていることから、表面に位置する錫等の金属メッキ層に銅又は銅合金基材の銅成分が拡散することを抑制している。
DESCRIPTION OF RELATED ART Conventionally, the terminal for connectors used for the connection of electrical wiring, such as a motor vehicle and a household appliance, is known. As a terminal material used as such a connector terminal, a plating layer composed of a metal such as nickel or cobalt is formed on the surface of a copper or copper alloy substrate as a base layer, and tin or the like is formed on the upper surface of the base layer. The terminal material in which the metal plating layer was formed is disclosed (for example, refer to patent documents 1).
In the terminal material described in Patent Document 1, since the plating layer of nickel, cobalt or the like is formed on the surface of the copper or copper alloy substrate, the copper or copper alloy is formed on the metal plating layer of tin or the like located on the surface. Diffusion of the copper component of the base material is suppressed.

また、端子材の接点箇所の信頼性を向上させるため、金や銀等の貴金属を接点箇所に部分めっきする方法が提案されている(例えば、特許文献2参照)。   Moreover, in order to improve the reliability of the contact point of the terminal material, a method of partially plating a noble metal such as gold or silver on the contact point has been proposed (see, for example, Patent Document 2).

特開平8−7960号公報JP-A-8-7960 特開2000−87289号公報JP, 2000-87289, A

しかしながら、特許文献1に記載の端子材では、ニッケルやコバルトなどの下地層を形成しているので、工程が煩雑である。この下地層はめっき法を用いて形成されることから、めっき廃液の処理が必要であること等、環境負荷の低減への対策が必要となる。また、特許文献2に記載の部分めっき方法では、金や銀等の貴金属を接点箇所に部分めっきする際にマスキングなどの工程や装置が複雑になる他、シアン等の毒物の使用や廃液の処理が必要になる等、環境負荷の低減への対策が必要となる。   However, in the terminal material described in Patent Document 1, since the underlayer such as nickel or cobalt is formed, the process is complicated. Since this base layer is formed using a plating method, it is necessary to treat the plating waste solution and to take measures to reduce the environmental load. In addition, in the partial plating method described in Patent Document 2, when partially plating noble metals such as gold and silver on contact points, processes and apparatuses such as masking become complicated, and use of poisons such as cyanide and treatment of waste liquid Measures are needed to reduce environmental load.

本発明は、このような事情に鑑みてなされたもので、銅又は銅合金からなる端子材の被膜形成において廃液等の処理を不要にできる銅端子材及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a copper terminal material which does not require treatment with waste liquid or the like in forming a film of a terminal material made of copper or copper alloy. Do.

本発明の銅端子材は、Cu又はCu合金からなる基材の表面の一部にAu−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金のいずれかを主成分とする焼成層が形成されており、前記焼成層中のPt又はPdの濃度が前記焼成層の全膜厚のうち前記焼成層の表面から厚さの1/10以下の範囲において0質量%以上40質量%以下であり、かつ、前記焼成層の全膜厚のうち前記基材との界面から1/10以下の範囲において90質量%以上100質量%以下である。   In the copper terminal material according to the present invention, a part of the surface of the base material made of Cu or Cu alloy is fired mainly composed of any of Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy. A layer is formed, and the concentration of Pt or Pd in the fired layer is 0% by mass or more and 40% by mass in the range of 1/10 or less of the thickness from the surface of the fired layer in the total thickness of the fired layer The total thickness of the fired layer is 90% by mass or more and 100% by mass or less in the range of 1/10 or less from the interface with the base material.

ここで、焼成層における全膜厚のうち基材との界面から1/10以下の範囲におけるPt又はPdの濃度が90質量%未満であると焼成層へのCu成分の拡散防止効果が低減する。一方、焼成層における全膜厚のうち表面から1/10以下の範囲におけるPt又はPdの濃度が、40質量%を超えると、相対的にAuの濃度が低く、なるため、接触抵抗が増加して接点信頼性が低下するおそれがある。
これに対し、本発明では、焼成層の全膜厚のうち基材との界面から1/10以下の範囲におけるPt又はPdの濃度が90質量%以上であるので、基材のCu成分が焼成層に拡散することを上記基材との界面から1/10以下の範囲内で抑制でき、Cu成分の拡散防止効果を向上できる。一方、焼成層の全膜厚のうち焼成層の表面から1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であることから、相対的にAuの濃度が高いので、銅端子材がコネクタとして用いられる場合に、接点箇所の接触抵抗を低減させることができ、接点信頼性を高めることができる。
Here, the diffusion preventing effect of the Cu component to the fired layer is reduced if the concentration of Pt or Pd in the range of 1/10 or less from the interface with the base material in the entire film thickness in the fired layer is less than 90% by mass . On the other hand, if the concentration of Pt or Pd in the range of 1/10 or less from the surface out of the total film thickness in the fired layer exceeds 40% by mass, the concentration of Au becomes relatively low, and the contact resistance increases. Contact reliability may be reduced.
On the other hand, in the present invention, since the concentration of Pt or Pd in the range of 1/10 or less from the interface with the substrate is 90% by mass or more in the total film thickness of the fired layer, the Cu component of the substrate is fired Diffusion to a layer can be suppressed within a range of 1/10 or less from the interface with the base material, and the diffusion preventing effect of the Cu component can be improved. On the other hand, since the concentration of Pt or Pd in the range of 1/10 or less from the surface of the fired layer is 0 mass% or more and 40 wt% or less in the total film thickness of the fired layer, the concentration of Au is relatively high. When the copper terminal material is used as a connector, the contact resistance at the contact point can be reduced, and the contact reliability can be enhanced.

さらに、Cu又はCu合金からなる基材の表面に下地層及び貴金属層の2層を形成する従来の構成に比べて、基材の表面の一部に焼成層を1層形成するだけの簡単な構成で、Cu成分の拡散を抑制し、かつ接点信頼性を高めることができる。また、めっき法を用いることなく被膜を形成できるので、めっき法を用いて下地層や貴金属層を形成する際に生じる廃液を処理する必要がないため、環境負荷を低減できる。   Furthermore, as compared with the conventional configuration in which two layers of the base layer and the noble metal layer are formed on the surface of the substrate made of Cu or Cu alloy, it is simple to form only one fired layer on a part of the surface of the substrate. By the configuration, the diffusion of the Cu component can be suppressed, and the contact reliability can be enhanced. In addition, since the film can be formed without using the plating method, it is not necessary to treat the waste solution generated when forming the underlayer or the noble metal layer by using the plating method, so that the environmental load can be reduced.

本発明の銅端子材の好ましい態様としては、前記焼成層中のPt又はPdの濃度が前記焼成層の表面から前記基材との界面にかけて漸次増加しているとよい。
上記態様では、銅端子材がコネクタとして用いられる場合、接点箇所となる焼成層がその使用により摩耗するが、摩耗による表面の組成の変化が小さいので、接触抵抗が急激に増加して、接点信頼性が低下する等の不具合が生じることを抑制できる。
As a preferable aspect of the copper terminal material of the present invention, it is preferable that the concentration of Pt or Pd in the fired layer gradually increases from the surface of the fired layer to the interface with the base material.
In the above embodiment, when the copper terminal material is used as a connector, the fired layer to be the contact point wears due to the use, but the change in the composition of the surface due to the wear is small, so the contact resistance sharply increases. It is possible to suppress the occurrence of a defect such as a decrease in the property.

本発明の銅端子材の好ましい態様としては、前記焼成層の空隙率が20%以下であるとよい。
焼成層の空隙率が20%を超えている場合、焼成層の強度が低下する。これに対し、上記態様では、焼成層の空隙率が20%以下であるので、焼成層の強度を高めることができる。
As a preferable aspect of the copper terminal material of this invention, it is good for the porosity of the said baking layer to be 20% or less.
When the porosity of the fired layer exceeds 20%, the strength of the fired layer is reduced. On the other hand, in the above aspect, since the porosity of the fired layer is 20% or less, the strength of the fired layer can be increased.

本発明の銅端子材の好ましい態様としては、前記焼成層の膜厚は、0.5μm以上3.0μm以下であるとよい。
焼成層の膜厚が0.5μm以下であると、基材からのCu成分の拡散を防止する効果が乏しくなることから上記接点信頼性が低下し、膜厚が3.0μmを超えると焼結性が低下し焼成層の空隙率が上昇する。
これに対し、上記態様では、焼成層の膜厚が0.5μm以上3.0μm以下であるため、基材からのCu成分の拡散を確実に抑制し、かつ、空隙率の上昇を抑制できるので、焼成層の接点信頼性を高めることができる。
As a preferable aspect of the copper terminal material of the present invention, the film thickness of the fired layer is preferably 0.5 μm or more and 3.0 μm or less.
When the film thickness of the fired layer is 0.5 μm or less, the effect of preventing the diffusion of the Cu component from the base material is poor, and the contact reliability is lowered. When the film thickness exceeds 3.0 μm, sintering occurs. The porosity decreases and the porosity of the fired layer increases.
On the other hand, in the above embodiment, since the film thickness of the fired layer is 0.5 μm or more and 3.0 μm or less, the diffusion of the Cu component from the base material can be reliably suppressed and the increase in porosity can be suppressed. And the contact reliability of the fired layer can be enhanced.

本発明の銅端子材の製造方法は、Cu又はCu合金からなる基材の表面の一部にPt及びPdの少なくとも一種の粉末を主成分として含む第1塗布材を塗布して乾燥させた第1塗布層を形成して、前記第1塗布層の上にAu及びAgの少なくとも一種の粉末を主成分として含む第2塗布材を塗布して乾燥させた第2塗布層を形成し、これら前記第1塗布層及び前記第2塗布層を焼成して焼成層を形成する。
このような構成によれば、基材との界面近傍の領域のPt又はPdの濃度が高まり、焼成層の表面近傍の領域のAu又はAgの濃度が高まるので、焼成層へのCu成分の拡散を抑制することで接点信頼性を高めることができる銅端子材を、めっき法等を用いることなく提供できる。
In the method for producing a copper terminal material according to the present invention, the first coating material containing at least one powder of Pt and Pd as a main component is applied to and dried on a part of the surface of a substrate made of Cu or Cu alloy (1) forming a coating layer, forming a second coating layer obtained by coating and drying a second coating material containing at least one powder of at least one of Au and Ag on the first coating layer; The first coating layer and the second coating layer are fired to form a fired layer.
According to such a configuration, the concentration of Pt or Pd in the region near the interface with the base material is increased, and the concentration of Au or Ag in the region near the surface of the sintered layer is increased. The copper terminal material which can improve contact reliability by suppressing these can be provided without using a plating method or the like.

本発明によれば、焼成層への基材からのCu成分の拡散を抑制することで接点信頼性を向上させ、また、この銅端子材の被膜形成において廃液等の処理を不要にできる。   According to the present invention, it is possible to improve the contact reliability by suppressing the diffusion of the Cu component from the base material into the fired layer, and it is possible to dispense with the treatment of waste liquid or the like in forming a film of the copper terminal material.

本発明の一実施形態に係る銅端子材を模式的に示す断面図である。It is a sectional view showing typically the copper terminal material concerning one embodiment of the present invention. 上記実施形態の銅端子材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the copper terminal material of the said embodiment. 上記実施形態の基材上に第1塗布材が塗布された状態を示す断面図である。It is sectional drawing which shows the state by which the 1st application material was apply | coated on the base material of the said embodiment. 上記実施形態の第1塗布層上に第2塗布材が塗布された状態を示す断面図である。It is sectional drawing which shows the state by which the 2nd application material was apply | coated on the 1st application layer of the said embodiment. 上記銅端子材の製造途中において第1及び第2塗布層にレーザ光を照射している状態を模式的に示す断面図である。It is sectional drawing which shows typically the state which is irradiating the laser beam to the 1st and 2nd application layer in the middle of manufacture of the said copper terminal material.

以下、本発明の一実施形態について説明する。
<銅端子材の構成>
実施形態の銅端子材1は、図1に断面を模式的に示したように、CuまたはCu合金からなる基材2上の一部に、焼成層3が積層されている。
基材2は、CuまたはCu合金からなるものであれば、特に、その組成が限定されるものではない。
Hereinafter, an embodiment of the present invention will be described.
<Composition of copper terminal material>
In the copper terminal material 1 of the embodiment, as the cross section is schematically shown in FIG. 1, the fired layer 3 is laminated on a part of the base 2 made of Cu or a Cu alloy.
The composition of the base material 2 is not particularly limited as long as it is made of Cu or a Cu alloy.

焼成層3は、厚さが0.5μm以上3.0μm以下であり、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金の少なくともいずれかを主成分とする貴金属層である。焼成層3は、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金の少なくともいずれかを主成分とする金属層であるから、Au−Pt合金、Ag−Pt合金、Au−Pd合金及びAg−Pd合金に他の金属等が含まれた焼成層3としてもよい。
いずれの場合も、焼成層3全体としての厚さが0.5μm以上3.0μm以下である。この焼成層3の厚さが0.5μm未満では、基材2からのCu成分の拡散を防止する効果が乏しく、厚さが3.0μmを超えるとプレス加工時に割れが生じ易い。また、焼成層3の厚さが3.0μmを超えると、焼結性が低下し、焼成層3の空隙率が上昇するからである。
また、焼成層3の空隙率は、0%以上20%以下に設定されている。これは、焼成層3の空隙率が20%を超えると、空隙が多くなることで抵抗が大きくなり、焼成層3の接点信頼性が低下するからである。なお、空隙率は、焼成層3の全体積中の空隙の体積比率である。
The fired layer 3 has a thickness of 0.5 μm to 3.0 μm and is a noble metal layer mainly composed of at least one of an Au-Pt alloy, an Ag-Pt alloy, an Au-Pd alloy and an Ag-Pd alloy. is there. The fired layer 3 is a metal layer mainly composed of at least one of an Au-Pt alloy, an Ag-Pt alloy, an Au-Pd alloy and an Ag-Pd alloy, and thus the Au-Pt alloy, the Ag-Pt alloy, Au -It is good also as the baked layer 3 in which other metals etc. were contained in Pd alloy and Ag-Pd alloy.
In any case, the thickness of the entire baked layer 3 is 0.5 μm or more and 3.0 μm or less. If the thickness of the fired layer 3 is less than 0.5 μm, the effect of preventing the diffusion of the Cu component from the base material 2 is poor, and if the thickness exceeds 3.0 μm, cracking easily occurs during press working. In addition, when the thickness of the fired layer 3 exceeds 3.0 μm, the sinterability is reduced, and the porosity of the fired layer 3 is increased.
Moreover, the porosity of the baked layer 3 is set to 0% or more and 20% or less. This is because when the porosity of the fired layer 3 exceeds 20%, the number of voids increases to increase the resistance, and the contact reliability of the fired layer 3 is lowered. The porosity is the volume ratio of the voids in the entire volume of the fired layer 3.

例えば、焼成層3がAu−Pt合金又はAg−Pt合金を主成分とする場合には、その組成は、Au−(30質量%〜90質量%)Pt、又はAg−(50質量%〜90質量%)Ptであることが好ましい。また、焼成層3がAu−Pd合金又はAg−Pd合金を主成分とする場合には、その組成は、Au−(35質量%〜90質量%)Pd、又はAg−(75質量%〜90質量%)Ptであることが好ましい。また、Au又はAgの成分比率と、Pt又はPdの成分比率との和は、金属成分中の95質量%以上であることが好ましい。これらの成分比率にすることにより、基材2からの焼成層3へのCu成分の拡散を抑制させることにより、焼成層3の接触抵抗の変化を抑制でき、接点信頼性をより高めることができる。なお、焼成層3は、ルテニウム、オスミウム、ロジウム及びイリジウムの少なくともいずれかを成分比率5質量%未満の範囲で含んでいてもよい。   For example, when the fired layer 3 contains an Au-Pt alloy or an Ag-Pt alloy as a main component, the composition thereof is Au- (30 mass% to 90 mass%) Pt, or Ag- (50 mass% to 90) It is preferable that it is mass%) Pt. When the fired layer 3 contains an Au-Pd alloy or an Ag-Pd alloy as its main component, the composition thereof is Au- (35 mass% to 90 mass%) Pd, or Ag- (75 mass% to 90) It is preferable that it is mass%) Pt. The sum of the component ratio of Au or Ag and the component ratio of Pt or Pd is preferably 95% by mass or more in the metal component. By using these component ratios, by suppressing the diffusion of the Cu component from the base material 2 to the fired layer 3, the change in the contact resistance of the fired layer 3 can be suppressed, and the contact reliability can be further enhanced. . The fired layer 3 may contain at least one of ruthenium, osmium, rhodium and iridium in a range of less than 5% by mass.

さらに、焼成層3においては、焼成層3がAu−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金のいずれを主成分とする場合でも、該焼成層3中のPt又はPdの濃度が焼成層3の全膜厚のうち焼成層の表面から厚さの1/10以下の範囲(図1におけるL1の範囲)において0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲(図1におけるL2の範囲)において90質量%以上100質量%以下に設定されている。   Furthermore, in the case where the fired layer 3 contains any of Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy as the main component in the fired layer 3, Pt or Pd in the fired layer 3 is used. Is 0 mass% or more and 40 mass% or less in the range of 1/10 or less of the thickness (the range of L1 in FIG. 1) from the surface of the baked layer in the total film thickness of the baked layer 3 The total film thickness of 3 is set to 90% by mass or more and 100% by mass or less in the range of 1/10 or less (the range of L2 in FIG. 1) from the interface with the base material 2.

この焼成層3は、コネクタとして用いられる銅端子材1の接点信頼性を高める機能を有し、焼成層3において全膜厚のうち表面から1/10以下の範囲においてPt又はPdの濃度が40質量%を超えている場合、接触抵抗の初期抵抗値が増加して接点信頼性が低下するおそれがある。一方、焼成層3において全膜厚のうち基材2との界面から1/10以下の範囲において、Pt又はPdの濃度が90%未満である場合、基材2からのCu成分の拡散を上記界面近傍にて抑制することができないからである。このため、本実施形態では、上記焼成層3の全膜厚のうち表面から1/10の範囲及び焼成層3の全膜厚のうち基材2との界面から1/10の範囲以外の範囲、すなわち、焼成層3の全膜厚のうち表面から1/10を超え、かつ、焼成層3の全膜厚のうち表面から9/10未満の範囲については、Au又はAg及びPt又はPdの濃度は問わない。   The fired layer 3 has a function of enhancing the contact reliability of the copper terminal material 1 used as a connector, and in the fired layer 3, the concentration of Pt or Pd is 40 or less in the range of 1/10 or less from the surface. When the content is more than% by mass, the initial resistance value of the contact resistance may be increased to lower the contact reliability. On the other hand, if the concentration of Pt or Pd is less than 90% in the range of 1/10 or less from the interface with the base material 2 in the entire film thickness in the fired layer 3, the diffusion of the Cu component from the base material It is because it can not suppress in the interface vicinity. For this reason, in the present embodiment, the range from the surface to 1/10 of the total film thickness of the fired layer 3 and the range from the interface to the substrate 2 and 1/10 of the total film thickness of the fired layer 3 That is, for the range of more than 1/10 of the total film thickness of the fired layer 3 and less than 9/10 of the total film thickness of the fired layer 3, Au or Ag and Pt or Pd The concentration does not matter.

次に、この銅端子材1の製造方法について説明する。
まず、基材2として、銅または銅合金からなる板材を用意し、図2に示す工程順で銅端子材1を製造する。
まず、この板材に脱脂、酸洗等をすることによって表面を清浄にする前処理を行う(前処理工程)。
次に、焼成層3のための塗布材として、例えば、金属粉末に溶剤を混合した第1塗布材4を、図3に示すように、基材2の表面の一部に塗布する(第1塗布材塗布工程)。この第1塗布材4に含まれる金属粉末は、例えば、Pt又はPdを主成分として含む金属粉末である。また、溶剤としては、水、エタノール、イソプロピルアルコール等のアルコール系溶剤、トルエン、ドデカン、n−デカン、テトラデカン、AF−ソルベント等の炭化水素系溶剤等を単独もしくは混合して用いることが好適である。このような金属粉末を含む第1塗布材4の粘度は、1mPa・s以上1000mPa・s未満であり、この第1塗布材4の塗布は、例えば、インクジェット方式のプリンタ等により実行される。
なお、本実施形態では、上記金属粉末を含む第1塗布材4をプリンタにより塗布することとしたが、例えば、上記金属粉末を含む粘度が1Pa・s以上100Pa・s以下の塗布材(ペースト)をディスペンサ等により塗布してもよい。この際、ペーストに含まれるバインダもしくはレオロジー調整剤は、まず、バインダとしては、400℃以下での熱分解性が良好な高分子材料であることが好ましく、例えば、アクリル樹脂、ウレタン樹脂やポリアクリル酸、ポリビニルピロリドン、ポリエチレンイミン等を用いることが好適である。また、レオロジー調整剤としては、溶剤中で自己会合し、少量で溶剤の粘度を増加させることが可能な材料であることが好ましく、例えば、12−ヒドロキシステアリン酸、硬化ひまし油、ベンジリデンソルビトール及びその誘導体、ラウロイル−L−グルタミン酸−α、γ−ジブチルアミド等を用いることが好適である。
Next, the manufacturing method of this copper terminal material 1 is explained.
First, a plate material made of copper or a copper alloy is prepared as the base material 2, and the copper terminal material 1 is manufactured in the order of steps shown in FIG.
First, pretreatment is performed to clean the surface of the plate material by degreasing, pickling or the like (pretreatment step).
Next, as a coating material for the baked layer 3, for example, a first coating material 4 in which a solvent is mixed with metal powder is coated on a part of the surface of the base 2 as shown in FIG. Coating material application process). The metal powder contained in the first coating material 4 is, for example, a metal powder containing Pt or Pd as a main component. As the solvent, water, alcohol solvents such as ethanol and isopropyl alcohol, and hydrocarbon solvents such as toluene, dodecane, n-decane, tetradecane and AF-solvent are preferably used alone or in combination. . The viscosity of the first coating material 4 containing such a metal powder is 1 mPa · s or more and less than 1000 mPa · s, and the application of the first coating material 4 is performed by, for example, an ink jet printer or the like.
In the present embodiment, although the first coating material 4 containing the metal powder is applied by a printer, for example, a coating material (paste) having a viscosity of 1 Pa · s to 100 Pa · s containing the metal powder May be applied by a dispenser or the like. Under the present circumstances, it is preferable that the binder or the rheology modifier contained in a paste is a polymeric material which is favorable as a binder in the thermal decomposition property at 400 degrees C or less first, for example, an acrylic resin, a urethane resin, and polyacryl. It is preferable to use an acid, polyvinyl pyrrolidone, polyethylene imine or the like. The rheology modifier is preferably a material capable of self-association in a solvent and increasing the viscosity of the solvent by a small amount, for example, 12-hydroxystearic acid, hydrogenated castor oil, benzylidene sorbitol and derivatives thereof It is preferable to use lauroyl-L-glutamic acid-α, γ-dibutylamide and the like.

そして、第1塗布材4を乾燥させて第1塗布層4´を形成した後、図4に示すように、第1塗布層4´上に第2塗布材5を塗布する(第2塗布材塗布工程)。この第2塗布材5に含まれる金属粉末は、例えば、Au又はAgを主成分として含む金属粉末である。このような成分比率の金属粉末を含む第2塗布材5の粘度は、1mPa・s以上1000mPa・s未満であり、この第2塗布材5の塗布は、第1塗布材4と同様、インクジェット方式のプリンタ等により実行される。   Then, after the first coating material 4 is dried to form a first coating layer 4 ′, as shown in FIG. 4, the second coating material 5 is coated on the first coating layer 4 ′ (a second coating material Coating process). The metal powder contained in the second coating material 5 is, for example, a metal powder containing Au or Ag as a main component. The viscosity of the second coating material 5 containing the metal powder having such a component ratio is 1 mPa · s or more and less than 1000 mPa · s, and the coating of the second coating material 5 is the same as the first coating material 4 by the inkjet method It is executed by the printer of

このようにして第1塗布層4´上に第2塗布材5を塗布し、乾燥させて第2塗布層5´を形成した後、図5に示すように、その第1及び第2塗布層4´,5´の表面にレーザ光Lを所定時間(例えば、0.01〜1秒間)照射して、第1及び第2塗布層4´,5´を加熱する。このレーザ光Lは、照射面内(第2塗布層5´の表面内)に均一なレーザ光であり、このレーザ光Lの焦点サイズは0.5〜5mm角に設定されている。この焼成層3が形成される部分のサイズが、レーザ光Lの焦点サイズよりも小さい場合は、レーザ光Lを走査(スキャン)することなく照射する。それに対して、焼成層3が形成される部分のサイズが、レーザ光Lの焦点サイズよりも大きい場合は、ガルバノミラー等のスキャニングミラーを使用し、焼成層3が形成される部分全体に、レーザ光Lを走査(スキャン)して照射する(レーザ光照射工程)。
レーザ光としては、固体レーザ、ファイバーレーザ、半導体レーザ(LD)もしくはガスレーザを用いることができる。レーザ光の波長は、400nm以上11μm以下の範囲であり、第2塗布材5表面における単位面積当たりの照射エネルギーが1.0×10J/cm以上1.0×10J/cm以下となるように照射する。
After the second coating material 5 is coated on the first coating layer 4 'and dried to form the second coating layer 5', as shown in FIG. 5, the first and second coating layers are formed. The first and second coating layers 4 'and 5' are heated by irradiating the surfaces 4 'and 5' with a laser beam L for a predetermined time (for example, 0.01 to 1 second). The laser beam L is a uniform laser beam in the irradiation plane (in the surface of the second coated layer 5 ′), and the focal size of the laser beam L is set to 0.5 to 5 mm square. When the size of the portion where the baked layer 3 is formed is smaller than the focal size of the laser beam L, the laser beam L is irradiated without being scanned. On the other hand, when the size of the portion where the fired layer 3 is formed is larger than the focal point size of the laser light L, a scanning mirror such as a galvano mirror is used, and the laser is used for the entire portion where the fired layer 3 is formed. The light L is scanned (scanned) and irradiated (laser light irradiation step).
As the laser beam, a solid laser, a fiber laser, a semiconductor laser (LD) or a gas laser can be used. The wavelength of the laser beam is in the range of 400 nm to 11 μm, and the irradiation energy per unit area on the surface of the second coating material 5 is 1.0 × 10 2 J / cm 2 or more and 1.0 × 10 6 J / cm 2. Irradiate as follows.

レーザ光は波長の揃った高エネルギー密度の光を局所的に集光することが可能という特徴を有していることから、レーザ光を使用することにより、複雑な工程を必要とすることなく、短時間に、第1塗布層4´及び第2塗布層5´を焼成させ、第1塗布層4´及び第2塗布層5´のそれぞれに含まれる金属成分が合金化し、該合金を主成分とする焼成層3を形成することができる。
このようにして、第1塗布層4´及び第2塗布層5´にレーザ光照射工程を施すことにより、第1塗布材4がPt又はPd粉末を主成分として含み、かつ第2塗布材5がAu粉末を主成分として含む場合、焼成層3の全膜厚のうち表面から厚さの1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲において90質量%以上100質量%以下のAu−Pt合金又はAu−Pd合金を主成分とする焼成層3が形成される。
また、第1塗布材4がPt又はPd粉末を主成分として含み、第2塗布材5がAg粉末を主成分として含む場合、焼成層3の全膜厚のうち表面から厚さの1/10以下の範囲におけるPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲において90質量%以上100質量%以下のAu−Pt合金又はAu−Pd合金を主成分とする焼成層3が形成される。
なお、このような第1塗布層4´及び第2塗布層5´にレーザ光Lが照射されると、第1塗布層4´と第2塗布層5´との界面近傍が合金化されるため、焼成層3は、該焼成層3の表面から基材2との界面にかけてPt又はPdの濃度が漸次増加するものとなる。
Since laser light has the feature of being able to locally collect light of high energy density with uniform wavelength, the use of laser light eliminates the need for complicated processes. The first coating layer 4 'and the second coating layer 5' are fired in a short time, and the metal component contained in each of the first coating layer 4 'and the second coating layer 5' is alloyed, and the alloy is a main component. The fired layer 3 can be formed.
Thus, the first coating material 4 contains Pt or Pd powder as a main component by applying the laser beam irradiation step to the first coating layer 4 ′ and the second coating layer 5 ′, and the second coating material 5 When the powder contains Au powder as a main component, the concentration of Pt or Pd in the range of 1/10 or less of the thickness from the surface is 0% by mass or more and 40% by mass or less of the total film thickness of the fired layer 3 and The fired layer 3 containing 90% by mass or more and 100% by mass or less of Au-Pt alloy or Au-Pd alloy as a main component in a range of 1/10 or less from the interface with the base material 2 in the entire film thickness of the fired layer 3 It is formed.
In addition, when the first coating material 4 contains Pt or Pd powder as a main component and the second coating material 5 contains Ag powder as a main component, 1/10 of the thickness of the entire thickness of the fired layer 3 The concentration of Pt or Pd in the following range is 0 mass% or more and 40 mass% or less, and 90 mass% or more in the range of 1/10 or less from the interface with the base material 2 in the total film thickness of the fired layer 3 The baked layer 3 which has 100 mass% or less of Au-Pt alloy or Au-Pd alloy as a main component is formed.
In addition, when the laser beam L is irradiated to such 1st application layer 4 'and 2nd application layer 5', the interface vicinity of 1st application layer 4 'and 2nd application layer 5' is alloyed. Therefore, the concentration of Pt or Pd in the fired layer 3 gradually increases from the surface of the fired layer 3 to the interface with the substrate 2.

このようにして基材2の表面の一部に焼成層3が形成された銅端子材1に対してプレス加工等を施し、接点として用いられる部分に焼成層3が配置される端子を形成する。
この端子は、焼成層3の全膜厚のうち基材2との界面から1/10以下の範囲においてPt又はPdの濃度が90質量%以上100質量%以下であるので、基材2からの銅の焼成層3への拡散を有効に防止することができ、優れた耐熱性を維持することができる。例えば、200℃の温度に長時間(〜1000時間)晒しても、基材2の銅が焼成層3に拡散することを抑制できる。
また、焼成層3の全膜厚のうち表面から1/10以下の範囲においてAu又はAgの濃度が高いので、接点箇所の接触抵抗を低減させることができ、接点信頼性を高めることができる。このため、本実施形態では、銅又は銅合金からなる基材2の表面に下地層及び貴金属層の2層を形成する従来の構成に比べて、基材2の表面の一部に焼成層3を1層形成するだけの簡単な構成で、銅成分の拡散を抑制し、かつ接点信頼性を高めることができる。
また、めっき法を用いることなく貴金属を含む被膜を形成できることから、めっき法を用いて下地層や貴金属層を形成する際に生じる廃液を処理する必要がないため、環境負荷を低減できる。
Thus, the copper terminal material 1 in which the sintered layer 3 is formed on a part of the surface of the base material 2 is subjected to pressing or the like to form a terminal in which the sintered layer 3 is disposed in a portion used as a contact. .
This terminal has a concentration of Pt or Pd of 90% by mass or more and 100% by mass or less in the range of 1/10 or less from the interface with the base material 2 in the total film thickness of the fired layer 3. Diffusion of copper into the fired layer 3 can be effectively prevented, and excellent heat resistance can be maintained. For example, even if it expose | bleached to the temperature of 200 degreeC for a long time (1000 hours), it can suppress that the copper of the base material 2 spread | diffuses in the baked layer 3. As shown in FIG.
Moreover, since the concentration of Au or Ag is high in the range of 1/10 or less from the surface of the total film thickness of the fired layer 3, the contact resistance at the contact portion can be reduced, and the contact reliability can be enhanced. For this reason, in the present embodiment, the fired layer 3 is formed on a part of the surface of the base 2 as compared with the conventional configuration in which two layers of the base layer and the noble metal layer are formed on the surface of the base 2 made of copper or copper alloy. With a simple configuration of forming only one layer, the diffusion of the copper component can be suppressed and the contact reliability can be enhanced.
In addition, since a film containing a noble metal can be formed without using a plating method, it is not necessary to treat the waste liquid generated when forming an underlayer or a noble metal layer using a plating method, so that the environmental load can be reduced.

また、接点箇所となる焼成層3がその使用により摩耗するが、Pt又はPdの濃度が表面から基材2との界面にかけて漸次増加していることから、摩耗による表面の組成の変化が小さいので、接触抵抗が急激に増加して、接点信頼性が低下する等の不具合が生じることを抑制できる。
さらに、焼成層3の空隙率が20%以下であるので、焼成層3の強度を高めることができる。また、焼成層3の膜厚が0.5μm以上3.0μm以下であるため、基材2からのCuの拡散を確実に抑制し、かつ、空隙率の上昇を抑制できるので、焼成層3の接点信頼性を高めることができる。
In addition, although the fired layer 3 to be a contact point is worn by its use, the concentration of Pt or Pd gradually increases from the surface to the interface with the substrate 2, so the change in the composition of the surface due to wear is small. In addition, it is possible to suppress the occurrence of problems such as a decrease in contact reliability due to a rapid increase in contact resistance.
Furthermore, since the porosity of the fired layer 3 is 20% or less, the strength of the fired layer 3 can be increased. Moreover, since the film thickness of the baked layer 3 is 0.5 μm or more and 3.0 μm or less, the diffusion of Cu from the base material 2 can be reliably suppressed and the increase in porosity can be suppressed. Contact reliability can be improved.

その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, the detailed configuration is not limited to the configuration of the embodiment, and various modifications can be made without departing from the scope of the present invention.

基材として、表1に示すCDA(Copper Development Association)合金番号の厚さ0.25mmの材料を使用した。前処理として、電解脱脂(NaOH水溶液60g/リットルを用いて、液温60℃、電流密度2.5ASD(A/dm2)、脱脂時間60秒間)及び酸洗(硫酸10%水溶液、液温25℃、浸漬時間30秒間)を行った。   As a substrate, a material with a thickness of 0.25 mm of a CDA (Copper Development Association) alloy number shown in Table 1 was used. As pretreatment, electrolytic degreasing (using NaOH aqueous solution 60 g / l, liquid temperature 60 ° C., current density 2.5 ASD (A / dm 2), degreasing time 60 seconds) and pickling (10% aqueous sulfuric acid solution, liquid temperature 25 ° C.) , Immersion time 30 seconds).

また、焼成層は、基材上に塗布材を塗布し、この塗布材にレーザ光を照射することにより形成した。この塗布材に含まれる貴金属の成分比率及び膜厚は、表1に示す通りである。
レーザ光の照射は、焼成層が形成される箇所の所定のエリアに対して、レーザ光の波長が1070nm、ペースト表面における単位面積当たりの照射エネルギーが1.5×10J/cmとなるように照射を行った。尚、焦点サイズよりも焼成層が形成されるエリアが大きい場合は、上記レーザ光をスキャンすることによりエリア全体に照射した。
Moreover, the baked layer apply | coated the coating material on the base material, and was formed by irradiating a laser beam to this coating material. The component ratio and film thickness of the noble metal contained in the coating material are as shown in Table 1.
With respect to the irradiation of the laser light, the wavelength of the laser light is 1070 nm and the irradiation energy per unit area on the paste surface is 1.5 × 10 3 J / cm 2 with respect to the predetermined area where the fired layer is formed. Irradiation was done. When the area where the fired layer is formed is larger than the focal point size, the entire area is irradiated by scanning the laser beam.

(焼成層の空隙率)
焼成層の空隙率は、焼成層が形成された端子材の断面をクロスセクションポリッシャ加工により断面を研磨したサンプルを、電子顕微鏡(SEM)を用いて、倍率が5000倍での観察により得られた画像より、焼成層中の空隙の総面積を、空隙を含む焼成層の面積で除した値の百分率を空隙率とした。
(Void ratio of fired layer)
The porosity of the fired layer was obtained by observing a cross section of the terminal material on which the fired layer was formed by polishing the cross section by cross section polishing using an electron microscope (SEM) and observing at a magnification of 5000 From the image, the percentage of the value obtained by dividing the total area of the voids in the fired layer by the area of the fired layer including the void was defined as the porosity.

(膜厚及び膜厚バラつき)
焼成層の膜厚及び膜厚バラつきは、焼成層が形成された端子材の断面をクロスセクションポリッシャ加工により断面を研磨したサンプルを、電子顕微鏡(SEM)を用いて、倍率が1000倍での観察により得られた画像より、焼成層の膜厚を任意に5か所測定し、5か所の膜厚の平均値を膜厚とし、標準偏差の値を膜厚バラつきとした。
(Thickness and thickness variation)
The film thickness and thickness variation of the fired layer are obtained by observing a cross section of the terminal material on which the fired layer is formed by polishing the cross section by cross section polishing using an electron microscope (SEM) at a magnification of 1000 times The film thickness of the fired layer was arbitrarily measured at five places from the image obtained by the above, the average value of the film thickness at five places was taken as the film thickness, and the value of the standard deviation was taken as the film thickness variation.

(焼成層の合金濃度の評価方法)
焼成層の合金の成分比率(濃度傾斜)は、焼成層が形成されたCu又はCu合金からなる端子材の断面をクロスセクションポリッシャ加工により断面研磨したサンプルを、電子線マイクロアナライザ(EPMA)を用いて、倍率が1000倍での観察により、Cu又はCu合金材界面と垂直方向に、各合金成分に関してライン分析して得られたプロファイルより、焼成層の全膜厚のうち該焼成層の表面から1/10以下の範囲のPt又はPdの濃度の平均値、及び焼成層の全膜厚のうち該焼成層の基材との界面から1/10以下の範囲のPt又はPdの濃度の平均値を求めた。
(Method of evaluating the alloy concentration of the fired layer)
The component ratio (concentration gradient) of the alloy in the fired layer is obtained by cross-section polishing the cross-section of the terminal material made of Cu or Cu alloy on which the fired layer is formed by cross-section polishing, using an electron probe microanalyzer (EPMA) From the profile obtained by line analysis of each alloy component in the direction perpendicular to the Cu or Cu alloy material interface by observation at a magnification of 1000 times, from the surface of the fired layer out of the total thickness of the fired layer Average value of concentration of Pt or Pd in the range of 1/10 or less, and average value of concentration of Pt or Pd in the range of 1/10 or less from the interface with the base material of the fired layer among total film thickness of the fired layer I asked for.

(初期抵抗及び接触抵抗変化率の評価方法)
最表面の焼成層の接触抵抗は、JCBA−T323に準拠し、4端子接触抵抗試験機を用いて、摺動式(1mm)で荷重0.98N時の接触抵抗を測定した。まず、焼成層形成直後の初期の接触抵抗を測定した後、熱処理として、恒温槽を用いて、大気雰囲気中、200℃、1000時間保持後、再度接触抵抗を測定した。
初期抵抗値については、5mΩ未満のものを「〇」とし、5mΩ以上10mΩ以下のものを「△」とし、10mΩより大きいものを「×」とした。
また、接触抵抗変化率については、初期の測定から200℃、1000時間保持後の測定値の変化率が、10%未満のものを「◎」とし、10%以上、20%未満のものを「○」とし、20%以上、25%未満のものを「△」とし、25%以上のものを「×」とした。
これらの結果を表1に示す。
(Evaluation method of initial resistance and contact resistance change rate)
The contact resistance of the baked layer on the outermost surface conformed to JCBA-T323, and the contact resistance at a load of 0.98 N was measured by a sliding method (1 mm) using a four-terminal contact resistance tester. First, after measuring the initial contact resistance immediately after the formation of the fired layer, as a heat treatment, the contact resistance was measured again after holding for 1000 hours in an air atmosphere at 200 ° C. using a thermostatic chamber.
As for the initial resistance value, those with less than 5 mΩ are regarded as “〇”, those with 5 mΩ or more and 10 mΩ or less are regarded as “Δ”, and those with more than 10 mΩ are regarded as “x”.
With regard to the contact resistance change rate, the change rate of the measured value after holding at 200 ° C for 1000 hours from the initial measurement is “◎” if less than 10%, “10% or more and less than 20%” A sample with 20% or more and less than 25% was designated as “Δ”, and one with 25% or more was designated as “X”.
The results are shown in Table 1.

Figure 2019099849
Figure 2019099849

表1の結果からわかるように、Cu又はCu合金からなる基材の表面の一部に、Au−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金を主成分とする焼成層において、全膜厚のうち表面から1/10以下の範囲においてPt又はPdの濃度が0質量%以上40質量%以下であり、かつ、全膜厚のうち基材との界面から1/10以下の範囲において90質量%以上100質量%以下である焼成層は、初期抵抗値及び接触抵抗変化率のいずれもが全て「△」以上であり、接点信頼性が高いことがわかった。特に、膜厚が0.5μm以上3.0μm以下の実施例では、初期抵抗及び接触抵抗変化率のいずれもが「〇」以上であり、接点信頼性が特に高いことがわかった。   As can be seen from the results in Table 1, a fired layer mainly composed of an Au-Pt alloy, an Au-Pd alloy, an Ag-Pt alloy and an Ag-Pd alloy on a part of the surface of a substrate made of Cu or Cu alloy In the total film thickness, the concentration of Pt or Pd is 0 mass% or more and 40 mass% or less in the range of 1/10 or less from the surface, and 1/10 or less from the interface with the substrate in the total film thickness. In the range of 90% by mass or more and 100% by mass or less, it was found that all of the initial resistance value and the contact resistance change rate were all “Δ” or more, and the contact reliability was high. In particular, in the examples in which the film thickness is 0.5 μm or more and 3.0 μm or less, it was found that both the initial resistance and the contact resistance change rate are “O” or more, and the contact reliability is particularly high.

1 銅端子材
2 基材
3 焼成層
4 第1塗布材
4´ 第1塗布層
5 第2塗布材
5´ 第2塗布層
L レーザ光
DESCRIPTION OF SYMBOLS 1 Copper terminal material 2 Base material 3 Firing layer 4 1st coating material 4 '1st coating layer 5 2nd coating material 5' 2nd coating layer L laser beam

Claims (5)

Cu又はCu合金からなる基材の表面の一部にAu−Pt合金、Au−Pd合金、Ag−Pt合金及びAg−Pd合金のいずれかを主成分とする焼成層が形成されており、
前記焼成層中のPt又はPdの濃度が前記焼成層の全膜厚のうち前記焼成層の表面から厚さの1/10以下の範囲において0質量%以上40質量%以下であり、かつ、前記焼成層の全膜厚のうち前記基材との界面から1/10以下の範囲において90質量%以上100質量%以下であることを特徴とする銅端子材。
A fired layer mainly composed of any of Au-Pt alloy, Au-Pd alloy, Ag-Pt alloy and Ag-Pd alloy is formed on a part of the surface of a substrate made of Cu or Cu alloy,
The concentration of Pt or Pd in the fired layer is 0% by mass or more and 40% by mass or less in the range of 1/10 or less of the thickness from the surface of the fired layer to the total film thickness of the fired layer 90% by mass or more and 100% by mass or less in the range of 1/10 or less from the interface with the base material in the total film thickness of the fired layer.
前記焼成層中のPt又はPdの濃度が前記焼成層の表面から前記基材との界面にかけて漸次増加していることを特徴とする請求項1に記載の銅端子材。   The copper terminal material according to claim 1, wherein the concentration of Pt or Pd in the fired layer gradually increases from the surface of the fired layer to the interface with the base material. 前記焼成層の空隙率が20%以下であることを特徴とする請求項1又は2に記載の銅端子材。   The porosity of the said baking layer is 20% or less, The copper terminal material of Claim 1 or 2 characterized by the above-mentioned. 前記焼成層の膜厚は、0.5μm以上3.0μm以下であることを特徴とする請求項1から3のいずれか一項に記載の銅端子材。   The film thickness of the said baking layer is 0.5 micrometer or more and 3.0 micrometers or less, The copper terminal material as described in any one of Claim 1 to 3 characterized by the above-mentioned. Cu又はCu合金からなる基材の表面の一部にPt及びPdの少なくとも一種の粉末を主成分として含む第1塗布材を塗布して乾燥させた第1塗布層を形成して、前記第1塗布層の上にAu及びAgの少なくとも一種の粉末を主成分として含む第2塗布材を塗布して乾燥させた第2塗布層を形成し、これら前記第1塗布層及び前記第2塗布層を焼成して焼成層を形成することを特徴とする銅端子材の製造方法。   A first coating layer is formed by applying and drying a first coating material containing at least one powder of at least one of Pt and Pd on a part of the surface of a substrate made of Cu or a Cu alloy, and drying the first coating layer. A second coating layer is formed by coating and drying a second coating material containing at least one powder of at least one of Au and Ag on the coating layer, and forming the first coating layer and the second coating layer. A method of producing a copper terminal material, comprising firing to form a fired layer.
JP2017229794A 2017-11-30 2017-11-30 Manufacturing method of copper terminal material Active JP6972978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017229794A JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229794A JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Publications (2)

Publication Number Publication Date
JP2019099849A true JP2019099849A (en) 2019-06-24
JP6972978B2 JP6972978B2 (en) 2021-11-24

Family

ID=66976193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229794A Active JP6972978B2 (en) 2017-11-30 2017-11-30 Manufacturing method of copper terminal material

Country Status (1)

Country Link
JP (1) JP6972978B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207193A (en) * 1987-02-23 1988-08-26 トヨタ自動車株式会社 Hybrid ic
JPH04167507A (en) * 1990-10-31 1992-06-15 Nec Corp Multilayer ceramic capacitor and manufacture thereof
JPH0528868A (en) * 1991-07-22 1993-02-05 Daido Steel Co Ltd Electronic contact member and band material for it
JPH0917262A (en) * 1995-06-30 1997-01-17 Copal Electron Co Ltd Electric contact
JP2002198624A (en) * 2000-12-27 2002-07-12 Kyocera Corp Circuit board
JP2006286338A (en) * 2005-03-31 2006-10-19 Mitsuboshi Belting Ltd Manufacturing method of silver-palladium alloy thin film
JP2011192947A (en) * 2010-03-17 2011-09-29 Hitachi Cable Ltd Manufacturing method for sintered layer, and structure
WO2014077410A1 (en) * 2012-11-19 2014-05-22 田中貴金属工業株式会社 Method and device for producing silver-containing layer, silver-containing layer, and sliding contact material using silver-containing layer
JP2015067855A (en) * 2013-09-27 2015-04-13 株式会社茨城技研 Metal film forming method, and production method and production device of metal film forming product
JP2017082296A (en) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 Method for forming metal film
JP2017095747A (en) * 2015-11-20 2017-06-01 株式会社 M&M研究所 Manufacturing method of metal film formation article

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207193A (en) * 1987-02-23 1988-08-26 トヨタ自動車株式会社 Hybrid ic
JPH04167507A (en) * 1990-10-31 1992-06-15 Nec Corp Multilayer ceramic capacitor and manufacture thereof
JPH0528868A (en) * 1991-07-22 1993-02-05 Daido Steel Co Ltd Electronic contact member and band material for it
JPH0917262A (en) * 1995-06-30 1997-01-17 Copal Electron Co Ltd Electric contact
JP2002198624A (en) * 2000-12-27 2002-07-12 Kyocera Corp Circuit board
JP2006286338A (en) * 2005-03-31 2006-10-19 Mitsuboshi Belting Ltd Manufacturing method of silver-palladium alloy thin film
JP2011192947A (en) * 2010-03-17 2011-09-29 Hitachi Cable Ltd Manufacturing method for sintered layer, and structure
WO2014077410A1 (en) * 2012-11-19 2014-05-22 田中貴金属工業株式会社 Method and device for producing silver-containing layer, silver-containing layer, and sliding contact material using silver-containing layer
JP2015067855A (en) * 2013-09-27 2015-04-13 株式会社茨城技研 Metal film forming method, and production method and production device of metal film forming product
JP2017082296A (en) * 2015-10-29 2017-05-18 三菱マテリアル株式会社 Method for forming metal film
JP2017095747A (en) * 2015-11-20 2017-06-01 株式会社 M&M研究所 Manufacturing method of metal film formation article

Also Published As

Publication number Publication date
JP6972978B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
DE112007000680B4 (en) Noble metal plating of titanium components
DE102015100665A1 (en) A method of forming a copper layer on a semiconductor body using a printing process
JP2014510408A (en) Sheet assembly with aluminum-based electrode
WO2008034638A2 (en) Method for metallising semiconductor elements and use thereof
CN106664805A (en) Electronic component and method for manufacturing same
DE102009020733B4 (en) Process for the contact sintering of band-shaped contact elements
DE112009001684T5 (en) Fuel cell separator and fuel cell
EP2690196B1 (en) Method for processing thin cu plate
JP2017155166A (en) Joining composition
CN107637184A (en) Printed substrate substrate and printed substrate
JP2009141292A (en) Electronic part having external terminal electrode and electronic supplies material mounted with the same, and method of manufacturing electronic part having external terminal electrode
DE112018001566T5 (en) SEMICONDUCTOR UNIT AND METHOD FOR PRODUCING THE SAME
JP2019099849A (en) Copper terminal material and production method of the same
JP7024358B2 (en) Manufacturing method of copper terminal material
JP6399494B2 (en) Method for producing metal film-formed product
JP6347385B2 (en) Copper material joining method
US20130192873A1 (en) Structure body and electronic component and printed wiring board including the same
Yamaguchi et al. On-demand infrared laser sintering of gold nanoparticle paste for electrical contacts
JP6443777B1 (en) Method for producing metal film-formed product
CN113897646B (en) Method for manufacturing wiring board and wiring board
JP6942479B2 (en) Copper terminal material and its manufacturing method
JP6825401B2 (en) Manufacturing method of copper terminal material with precious metal layer
JP6794863B2 (en) Copper terminal material and its manufacturing method
US20230420164A1 (en) Method of Producing a Surface Finish on an Electrically Conductive Substrate and Electric Conductor with the Surface Finish Thereon
JP6809265B2 (en) Manufacturing method of copper terminal material with precious metal layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150