JP2019099578A - Ophthalmic pharmaceutical composition containing cell membrane-permeable peptide - Google Patents

Ophthalmic pharmaceutical composition containing cell membrane-permeable peptide Download PDF

Info

Publication number
JP2019099578A
JP2019099578A JP2018227946A JP2018227946A JP2019099578A JP 2019099578 A JP2019099578 A JP 2019099578A JP 2018227946 A JP2018227946 A JP 2018227946A JP 2018227946 A JP2018227946 A JP 2018227946A JP 2019099578 A JP2019099578 A JP 2019099578A
Authority
JP
Japan
Prior art keywords
drug
solution
cell membrane
permeable peptide
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018227946A
Other languages
Japanese (ja)
Inventor
高明 岡部
Takaaki Okabe
高明 岡部
裕志 榎本
Hiroshi Enomoto
裕志 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santen Pharmaceutical Co Ltd
Original Assignee
Santen Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santen Pharmaceutical Co Ltd filed Critical Santen Pharmaceutical Co Ltd
Publication of JP2019099578A publication Critical patent/JP2019099578A/en
Pending legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

To provide novel ophthalmic pharmaceutical compositions capable of improving transferability of a drug to a target site.SOLUTION: The ophthalmic pharmaceutical composition according to the present invention comprises a drug and a cell membrane-permeable peptide or a salt thereof which is present without covalent bond to the drug. It improves transferability of a drug into an ocular tissue by allowing a cell membrane-permeable peptide and the drug to co-exist, and can be prepared easily only by separately combining a cell membrane-permeable peptide and a drug, because there is no need to form a complex in which a cell membrane-permeable peptide and a drug are covalently bonded.SELECTED DRAWING: None

Description

本発明は、細胞膜透過性ペプチド(以下、「CPP」ともいう。)又はその塩と薬物を含有する眼科用医薬組成物に関する。   The present invention relates to an ophthalmic pharmaceutical composition containing a cell membrane permeable peptide (hereinafter also referred to as "CPP") or a salt thereof and a drug.

眼科用の薬物を投与する方法として、点眼剤による点眼投与が汎用されている。しかし、点眼投与された薬物が角膜に移行する割合は決して高くなく、さらに内部にある前房、虹彩、毛様体、水晶体、硝子体、網膜等に到達する割合はわずかである。このような点眼剤の低いバイオアベイラビリティを改善する目的で、リポソーム、エマルジョン、マイクロスフェア、デポ製剤、徐放デバイス等、種々のドラッグデリバリーシステムが開発されている。アルコール類や界面活性剤等は角膜移行性を向上させる目的で使用されるが、毒性の問題等が懸念されるために、高濃度での使用には適さない。   Ophthalmic administration by means of eye drops is widely used as a method for administering ophthalmic drugs. However, the rate at which the drop-administered drug migrates to the cornea is never high, and the rate at which the drug reaches the internal anterior chamber, iris, ciliary body, lens, vitreous body, retina, etc. is small. In order to improve the low bioavailability of such eye drops, various drug delivery systems such as liposomes, emulsions, microspheres, depot preparations, sustained release devices and the like have been developed. Alcohols, surfactants and the like are used for the purpose of improving corneal migration, but are not suitable for use at high concentrations because of the concern of toxicity and the like.

また、細胞膜透過性ペプチドを利用した眼科用ドラッグデリバリーシステムも報告されている。例えば、非特許文献1には、POD−GFP fusion proteinの点眼投与により、角膜上皮への取り込みが改善することが報告されている。また、非特許文献2には、TAT−conjugated aFGF−Hisの点眼投与により、網膜への移行が向上することが報告されている。しかし、これらは薬物と細胞膜透過性ペプチドが直接又はリンカー等を介して共有結合した複合体を利用する。   In addition, ophthalmic drug delivery systems using cell membrane permeable peptides have also been reported. For example, Non-Patent Document 1 reports that eye drop administration of POD-GFP fusion protein improves uptake into the corneal epithelium. In addition, Non-Patent Document 2 reports that the transition to the retina is improved by eye drop administration of TAT-conjugated aFGF-His. However, these utilize a complex in which a drug and a cell membrane permeable peptide are covalently linked directly or via a linker or the like.

Vision Res.,2010,50(7),686−697Vision Res. , 2010, 50 (7), 686-697. J.Cell.Mol.Med.,2010,14(7),1998−2005J. Cell. Mol. Med. , 2010, 14 (7), 1998-2005.

本発明の課題は、薬物のターゲット部位への移行性を改善できる新たな眼科用医薬組成物を提供することである。   An object of the present invention is to provide a new ophthalmic pharmaceutical composition capable of improving the transferability of a drug to a target site.

本発明者らは、鋭意研究の結果、細胞膜透過性ペプチドは薬物と共有結合させなくとも、薬物と共存させて点眼投与することにより、薬物の角膜上皮細胞への移行性を改善させることができ、しかも、角膜への顕著な毒性を生じることなく安全に利用できることを見出して、本発明を完成させた。具体的に、本発明は以下を提供する。   The present inventors, as a result of earnest studies, can improve the transferability of a drug to corneal epithelial cells by coadministration with a drug, even if the cell membrane permeable peptide is not covalently linked to the drug. Furthermore, the present invention has been completed by finding that it can be safely used without causing significant toxicity to the cornea. Specifically, the present invention provides the following.

(1)薬物と、前記薬物と共有結合せずに存在する細胞膜透過性ペプチド又はその塩とを含有する眼科用医薬組成物。
(2)細胞膜透過性ペプチドがR8、R8−NH、Penetratin RQIKIWFQNRRMKWKK、HIV−TAT (47−57) YGRKKRRQRRR、HIV−TAT (48−60) GRKKRRQRRRPPQ、pVEC LLIILRRRIRKQAHAHSK−NH、 Transportan (TP10) AGYLLGKINLKALAALAKKIL−NH、Protein transduction domains sequence ARKKAAKA、289−W RWIKIWFWWRRMKWKK、L17E IWLTALKFLGKHAAKHEAKQQLSKL、及びL−K6 IKILSKIKKLLKからなる群より選択される一又は複数の細胞膜透過性ペプチドである、(1)に記載の組成物。
(3)細胞膜透過性ペプチド又はその塩を0.00001〜10%(w/v)含有する、(1)又は(2)に記載の組成物。
(4)細胞透過性ペプチド又はその塩と、薬物とのモル比が、1000:1〜1:1000である、(1)〜(3)のいずれかに記載の組成物。
(5)細胞膜透過性ペプチド又はその塩を含有し、送達対象の薬物と共有結合させずに用いられる眼科用ドラッグデリバリーシステム。
(6)眼科用医薬組成物に細胞膜透過性ペプチド又はその塩を薬物と共有結合させずに含有させることによる、前記薬物の眼組織への移行性を向上させる方法。
(1) An ophthalmic pharmaceutical composition containing a drug and a cell membrane-permeable peptide or a salt thereof present without being covalently linked to the drug.
(2) a cell membrane permeable peptide is R8, R8-NH 2, Penetratin RQIKIWFQNRRMKWKK, HIV-TAT (47-57) YGRKKRRQRRR, HIV-TAT (48-60) GRKKRRQRRRPPQ, pVEC LLIILRRRIRKQAHAHSK-NH 2, Transportan (TP10) AGYLLGKINLKALAALAKKIL- It is described in (1), which is one or more cell membrane permeable peptides selected from the group consisting of NH 2 , Protein transduction domains sequence ARKKAAKA, 289-W RWI KIWF WWRRM KWKK, L17E IWLTALKLFLGKHAAKHEAKQQLSKL, and L-K6 IKILSKIKKLLK Composition of
(3) The composition according to (1) or (2), containing 0.00001 to 10% (w / v) of a cell membrane permeable peptide or a salt thereof.
(4) The composition according to any one of (1) to (3), wherein the molar ratio of the cell permeable peptide or the salt thereof to the drug is 1000: 1 to 1: 1000.
(5) An ophthalmic drug delivery system containing a cell membrane permeable peptide or a salt thereof and used without being covalently linked to a drug to be delivered.
(6) A method for improving the transferability of the drug to ocular tissues by containing a cell membrane permeable peptide or a salt thereof in a pharmaceutical composition for ophthalmic use without covalently bonding the drug to the drug.

なお、前記(1)から(6)の各構成は、任意に2以上を選択して組み合わせることができる。   In addition, each structure of said (1) to (6) can select 2 or more arbitrarily, and can combine them.

本発明によれば、細胞膜透過性ペプチドを薬物と共存させることにより、眼組織中への薬物の移行性を改善した眼科用医薬組成物を提供することができる。細胞膜透過性ペプチドと薬物とを共有結合させた複合体を形成させる必要がないため、細胞膜透過性ペプチドと薬物を別個に配合するだけで簡便に調製することができる。また、アルコール類や界面活性剤等ではなく細胞膜透過性ペプチドを利用したものであることから、医薬品として安全に眼に投与することができる。   According to the present invention, it is possible to provide an ophthalmic pharmaceutical composition in which the migration of the drug into the ocular tissue is improved by making the cell membrane permeable peptide coexist with the drug. Since it is not necessary to form a complex in which the cell membrane permeable peptide and the drug are covalently bound, it can be conveniently prepared only by separately blending the cell membrane permeable peptide and the drug. In addition, since the cell membrane-permeable peptide is used instead of alcohols, surfactants and the like, it can be safely administered to the eye as a pharmaceutical.

各製剤例における蛍光写真と画像解析の結果を示す。The fluorescence photograph in each formulation example and the result of image analysis are shown. 各製剤例における蛍光写真と画像解析の結果を示す。The fluorescence photograph in each formulation example and the result of image analysis are shown. 各製剤例における蛍光写真と画像解析の結果を示す。The fluorescence photograph in each formulation example and the result of image analysis are shown. 各製剤例における生細胞率を示す。The viable cell rate in each formulation example is shown. 各製剤例における生細胞率を示す。The viable cell rate in each formulation example is shown. 各被験溶液0.5mMにおけるR8−NHとのアフィニティの比較を示す。It shows affinity comparisons with R8-NH 2 in the test solution 0.5 mM. 各被験溶液0.5mMにおけるR8−NHとのアフィニティの比較を示す。It shows affinity comparisons with R8-NH 2 in the test solution 0.5 mM. 各被験溶液0.5mMにおけるPenetratin−NHとのアフィニティの比較を示す。It shows affinity comparisons with Penetratin-NH 2 in the test solution 0.5 mM. 各被験溶液0.5mMにおけるPenetratin−NHとのアフィニティの比較を示す。It shows affinity comparisons with Penetratin-NH 2 in the test solution 0.5 mM. 各被験溶液0.5mMにおけるD−R8−NHとのアフィニティの比較を示す。It shows affinity comparisons with D-R8-NH 2 in the test solution 0.5 mM. 各被験溶液0.5mMにおけるARKKAAKA−NH2とのアフィニティの比較を示す。The comparison of the affinity with ARKKAAKA-NH2 in 0.5 mM of each test solution is shown. 各被験溶液0.5mMにおけるTAT(47−57)−NH2とのアフィニティの比較を示す。The comparison of the affinity with TAT (47-57) -NH2 in 0.5 mM of each test solution is shown. 各被験溶液0.5mMにおけるHIV−TAT (48−60)−NH2とのアフィニティの比較を示す。The comparison of the affinity with HIV-TAT (48-60) -NH2 in 0.5 mM of each test solution is shown. 各製剤例における画像解析の結果を示す。The result of the image analysis in each formulation example is shown. 各製剤例における画像解析の結果を示す。The result of the image analysis in each formulation example is shown. 各製剤例における画像解析の結果を示す。The result of the image analysis in each formulation example is shown. 各製剤例における画像解析の結果を示す。The result of the image analysis in each formulation example is shown. 各製剤例における画像解析の結果を示す。The result of the image analysis in each formulation example is shown. 各製剤例における生細胞率を示す。The viable cell rate in each formulation example is shown. 各製剤例における生細胞率を示す。The viable cell rate in each formulation example is shown. 各製剤例における生細胞率を示す。The viable cell rate in each formulation example is shown.

以下に、本発明の実施形態を詳細に説明するが、本発明はこれに特に限定されない。   Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not particularly limited thereto.

本発明の医薬組成物は、薬物と、前記薬物と共有結合せずに存在する細胞膜透過性ペプチドとを含有する眼科用医薬組成物である。なお、細胞膜透過性ペプチドは、薬物と非共有結合的相互作用(金属イオンを用いた架橋以外の静電的相互作用、水素結合、疎水結合、π−スタッキング相互作用、ファンデルワールス引力による相互作用など)を介した結合をしてもよいし、していなくてもよい。   The pharmaceutical composition of the present invention is an ophthalmic pharmaceutical composition containing a drug and a cell membrane-permeable peptide which is present without being covalently linked to the drug. In addition, the cell membrane permeable peptide has noncovalent interaction with drug (electrostatic interaction other than crosslinking with metal ion, hydrogen bond, hydrophobic bond, π-stacking interaction, interaction by van der Waals attraction) Etc.) may or may not be linked.

本発明の組成物に含有される細胞膜透過性ペプチドは、細胞膜を透過する性質を有するペプチドであり、具体的には、所望の薬物と共存した状態で投与した際、その薬物単独での投与時に比べ、薬物の透過性を向上(例えば、透過速度の増加)できる任意のペプチドを指す。従って、細胞膜透過性ペプチドは、眼組織への移行を促進すべき薬物の種類に応じて適宜選択されてよい。   The cell membrane-permeabilizing peptide contained in the composition of the present invention is a peptide having a property of permeating the cell membrane, and specifically, when administered in the state of coexistence with a desired drug, the drug alone is administered In comparison, it refers to any peptide that can improve drug permeability (eg, increase permeation rate). Therefore, the cell membrane permeable peptide may be appropriately selected according to the type of drug to be promoted to ocular tissue.

本発明の組成物に含有される細胞膜透過性ペプチドのアミノ酸残基の数は、特に制限されないが、6〜50が好ましく、6〜40がより好ましく、6〜30であることが特に好ましい。ペプチドは、アルギニン残基に富むことが好ましく、具体的にはペプチド中に、3以上、より好ましくは4以上、特に好ましくは5以上のアルギニン残基を含んでよい。6〜50のアミノ酸残基を含み、そのうち3以上の残基がアルギニン残基であるペプチドが好ましく、6〜40のアミノ酸残基を含み、そのうち4以上の残基がアルギニン残基であるペプチドがより好ましく、6〜30のアミノ酸残基を含み、そのうち5以上の残基がアルギニン残基であるペプチドが特に好ましい。アルギニンは、各々独立してL体でもD体でもよい。また、細胞膜透過性ペプチドには、C末端及び/又はN末端及び/又は側鎖が修飾されたペプチドも含まれる。カルボキシル基の修飾の具体例としては、アミド化(CONH)、メチルアミド化等のアミド化;メチルエステル化、エチルエステル化等のエステル化等が挙げられ、アミノ基の修飾の具体例としては、アセチル化、ホルミル化等のアミド化;メチル化、ジメチル化等のアルキル化等が挙げられ、水酸基の修飾の具体例としては、アセチル化等のエステル化;リン酸化等が挙げられ、チオール基の修飾の具体例としては、メチル化等のアルキル化等が挙げられる。細胞膜透過性ペプチドは、具体的には、R8(アミノ酸配列;RRRRRRRR)、配列番号1)、R8−NH(アミノ酸配列;RRRRRRRR−NH)、配列番号2)、HIV−TAT (48−60)(アミノ酸配列;GRKKRRQRRRPPQ、配列番号3)、Penetratin RQIKIWFQNRRMKWKK(配列番号4), HIV−TAT (47−57) YGRKKRRQRRR(配列番号5)、pVEC LLIILRRRIRKQAHAHSK(配列番号6)−NH、Transportan (TP10) AGYLLGKINLKALAALAKKIL(配列番号7)−NH,Protein transduction domains sequence ARKKAAKA(配列番号8)、HIV−1 Rev (34−50) KQAIPVAK(配列番号9)−amide, FHV coat(35−49) RRRRNRTRRNRRRVR(配列番号10)−amide、 Oligoarginines (R9−R12) RRRRRRRRR(配列番号11)/ RRRRRRRRRRRR(配列番号12), CCMV Gag (7−25) KLTRAQRRAAARKNKRNTRGC(配列番号13), Chimeric dermaseptin S4 and SV40 ‘S413−PV’ ALWKTLLKKVLKAPKKKRKVC(配列番号14), Herpes simplex virus transcription factor (267−300) VP22 DAATATRGRSAASRPTERPRAPARSASRPRRPVE(配列番号15), (Chimeric galanin/mastoparan) Transportan GWTLNSAGYLLGKINLKALAALAKKIL(配列番号16)−amide, CPP with protease cleavage side YTA2 YTAIAWVKAFIRKLRK(配列番号17)−amide, Pep−1 Ac−KETWWETWWTEWSQPKKKRKV(配列番号18)−NH−CH2−CH2−SH, MPGα Ac−GALFLAFLAAALSLMGLWSQPKKKRKV(配列番号19)−NH−CH2−CH2−SH, MPGβ Ac−GALFLGFLGAAGSTMGAWSQPKKKRKV(配列番号20)−NH−CH2−CH2−SH, MPG8β AFLGWLGAWGTMGWSPKKRK(配列番号21)−NH−CH2−CH2−SH, CADY Ac−GLWRALWRLLRSLWRLLWKA(配列番号22)−NH−CH2−CH2−SH, Pepfect6 Stearyl−AGYLLGK(ε−TMQ)INLKALAALAKKIL(配列番号23), PepFect14 Stearyl−AGYLLGKLLOOLAAAALOOLL(配列番号24)−amide, PepFect 15 Stearyl−AGYLLGK(K3QN4)LLOOLAAAALOOLL(配列番号25)−amide, NickFect NF61: Stearyl−AGYLLGOINLKALAALAKKIL(配列番号26)−amide, Hel 11−27 KLLKLLLKLWKLLLKLLK(配列番号27), InfluencaHA−2 (1−20) KALA sequence WEAKLAKALAKALAHLAKALAKALKACEA(配列番号28), KLA sequence Acetyl−KLALKLALKALKAALKLA(配列番号29)−amide, sC18 GLRKRLRKFRNKIKEK(配列番号30), (Vascular endothelial cadherin) pVEC LLIILRRRIRKQAHAHSK(配列番号31)−amide, Kaposis sarcoma fibroblast growth factor Kaposi FGF AAVALLPAVLLALLAP(配列番号32), Signal sequence of Ig light chain from Caiiman crocodylus MGLGLHLLVLAAALQGAMGLGLHLLLAAALQGA(配列番号33), Integrin β3−fragment VTVLAGALAGVGVG(配列番号34), Grb2 (SH2 domain) AAVLLPVLLAAP(配列番号35), Fusion sequence HIV−1 gp41(1−23) GALFLGFLGAAGSTMGA(配列番号36), Hepatitis B virus translocation motif PLSSIFSRIGDP(配列番号37), Sperm−egg fusion protein (89−111) SFP23: Ac−KLIATGISSIPPIRALFAAIQIP(配列番号38)−amide, Human calcitonin partial sequence 9−32, hCT(9−32)−br, LGTYTQDFNK(X)FHTFPQTAIGVGAP(配列番号39)−amide X: PKKKRKVEDPGVGFA(配列番号40), hCT(18−32)−br, Capr−K(X)FHTFPQTAIGVGAP(配列番号41)−amide X:KKRKAPKKKRKFA(配列番号42), Substance P and analogs RPKPQQFGLM(配列番号43)−amide, RGD peptides αvβ3 RGD−Temporin−LA, RGD−Dye RGD−bearing PAMAM dendrimers, RGD peptides αvβ3, αvβ5 Cilengitide: Cyclo[RGDfNmeV], RGD peptide Cyclo(RGDfK); cyclo(RGDyK), RGD peptides α5β1 RGD mimic, AGR (prostata carcinoma) CAGRRSAYC(配列番号44), LyP−2 (skin and cervix tumor) CNRRTKAGC(配列番号45), REA (prostata, cervix, breast carcinoma) CREAGRKAC(配列番号46), LSD (melanoma, osteosarcoma) CLSDGKRKC(配列番号47), Mastoparan INLKALAALAKKIL(配列番号48)−amide, Mellitin GIGAVLKVLTTGLPALISWIKRKRQQ(配列番号49)−amide, Scorpion toxin MAUROCALCINE with replacement of C by Abu GDAbuLPHLKLAbuKENKDAbuAbuSKKAbuKRRGTNIEKRAbuR(配列番号50), Mini maurocalcine peptides MCaUF1−9: GDAbuLPHLKL(配列番号51), Rattle snake toxin (Crotamine) derived NrTP6 YKQSHKKGGKKGSG(配列番号52), CPP5 VPTLK, CPP5 KLPVM, Bac7 (1−35) RRIRPRPRLPRPRPRPLPFPRGPRPIPRPLPFP(配列番号53), Bac7 (5−35) PRPRLPRPRPRPRPLPFPRGPRPIPRPLPFP(配列番号54), Protegrin−1 RGGRLCYCRRRFCVCVGR(配列番号55), Lactoferrin sequences VSQPEATKCFQWQRNMRKVRGPPVSCIKRDSPIQI(配列番号56), Partial sequences 1−24 Bovine PrP 1−24: MVKSKIGSWILVLFVAMWSDVGLC(配列番号57), Partial sequences 1−30 Bovine PrP 1−30: MVKSKIGSWILVLFVAMWSDVGLCKKRPKP(配列番号58), Histidine−rich CPP HR9: C−HHHHH−RRRRRRRRR−HHHHH−C(配列番号59), Branched copolymers Poly(Lys), poly(Orn), poly[Lys(Glun,Alam)], Sweet arrow peptide (SAP) (VRLPPP(配列番号60))3, Amphipathic negative CPP SAP(E): (VELPPP(配列番号61))3, Negative charged polymer Polyglutamic acid, MMP (2,9)−activatable CPP Suc−(D−Glu)8−PLGC(Me)AG(配列番号62)−(D−Arg)9−amide, Thrombin−activatable CPP Suc−(D−Glu)8−xPLGLAG(配列番号63)−(D−Arg)9−D−C−Cy5 Suc−(D−Glu)8−Ox−DPRSFL(配列番号64)−(D−Arg)9−amide, pH−sensitive (activatable) cell−penetrating peptides pHLIP: AEQNPIYWARYADWLFTTPLLLLELALLVDADEGT(配列番号65), KKLADap(Me2)AL Dap(Me2)LLALLWLDap(Me2)LADap(Me2)ALKKA−amide, ε−Lys succinyl amide, Viral fusion protein sequence Repeat−sequence: EALAWEAALAEALAEALAEHLAEALAEALAEALEALAA(配列番号66), pH−sensitive R8−construct Stearoyl−RRRRRRRR−(EALA)n, Redox protein azurin ‘p18’ Azurin Leu50−Gly67: LSTAADMQGVVTDMGASG(配列番号67), Redox protein azurin ‘p28’ Azurin Leu50−Asp77: LSTAADMQGVVTDMGASGLDKDYLKPDD(配列番号68), Influenca HA−2 (1−20) KALA sequence WEAKLAKALAKALAHLAKALAKALKACEA(配列番号69), N
ickFects NF61: Stearyl−AGYLLGOINLKALAALAKKIL(配列番号70)−amide, Nonaarginine (R9) RRRRRRRRR, Stearylated arginine−rich peptides Stearyl−RRRRRRRR, Amphipathic peptide Td3701 TRYLRIHPRSWVHQIALRLRYLRIHPRSWVHQIALRS(配列番号71), Amphipathic helical peptide ppTG1 GLPKALLKLLKSLWKLLLKA(配列番号72), Human calcitonin partial sequence 9−32, hCT(9−32)−br LGTYTQDFNK(X)FHTFPQTAIGVGAP(配列番号73)−amide X: PKKKRKVEDPGVGFA(配列番号74), Cell−penetrating DNA−binding protein YARVRRRGPRR(配列番号75)、 (Hph−1)−GAL4(DNA−binding domain), Simian virus 40 large T−antigen (NLS) PKKKRK(配列番号76), Stearylated NLS Stearyl−PKKKRKV(配列番号77), Homodimeric NLS (C−terminal) (GYGPKKKRKVGGC(配列番号78))2, Nucleoplasmin NLS, bipartite NLS KRPAATKKAGQAKKKK(配列番号79), Ku702−NLS C−GSKGARPAKKRKPKRGAAHK−HAGAKVRKTVTGAKK(配列番号80), ADAR1 NLS MMPNVKRKIGELVRYLNTNPVG(配列番号81), GluOct6 EEEAAGRKRKKRT(配列番号82), ReIB 405YGVDKKRKRGMPDVLGELNS424−425SDPMGIESKRRKKKPAILDHFL446(配列番号83), Dermaseptin−peptide K4−NLS PVK: PKKKRLKVAKWKTLLKKVLKA(配列番号84)−amide, Nucleolar targeting peptide YKQCHKKGGXKKGSG(配列番号85), Opioid peptides Dimethytyrosine−rFKF−NH, Mitochondria−penetrating peptides F−r−F−K−F−r−F−K, Mitoparan NLKKLAKL(Aib)KKIL(配列番号86), Lysosomal sorting sequences L1 YQRLC(配列番号87), Lysosomal sorting sequences L2 CNPGY(配列番号88),289−W: RWIKIWFWWRRMKWKK(配列番号89),L17E: IWLTALKFLGKHAAKHEAKQQLSKL(配列番号90),L−K6: IKILSKIKKLLK(配列番号91)等が挙げられ、R8、R8−NH、Penetratin RQIKIWFQNRRMKWKK, HIV−TAT (47−57) YGRKKRRQRRR, HIV−TAT (48−60) GRKKRRQRRRPPQ, pVEC LLIILRRRIRKQAHAHSK−NH, Transportan (TP10) AGYLLGKINLKALAALAKKIL−NH,Protein transduction domains sequence ARKKAAKA、289−W、L17E、L−K6が好ましく、Penetratin、R8、R8−NH、pVEC、289−W、L17E、L−K6がより好ましく、Penetratin、R8−NHが特に好ましい。なお、これら細胞膜透過性ペプチドを構成するアミノ酸の立体配置は、特に断りのない限りL体であり、D体のアミノ酸から構成される場合は、例えば、D−R8−NHのように立体を明記することとする。D体のアミノ酸から構成される細胞膜透過性ペプチドとしては、D−R8−NHが好ましい。
The number of amino acid residues of the cell membrane permeable peptide contained in the composition of the present invention is not particularly limited, but is preferably 6 to 50, more preferably 6 to 40, and particularly preferably 6 to 30. The peptide is preferably enriched in arginine residues, in particular it may comprise 3 or more, more preferably 4 or more, particularly preferably 5 or more arginine residues in the peptide. A peptide comprising 6 to 50 amino acid residues, of which 3 or more residues are arginine residues is preferred, and a peptide comprising 6 to 40 amino acid residues, 4 or more of which residues are arginine residues More preferred is a peptide comprising 6 to 30 amino acid residues, of which 5 or more residues are arginine residues. The arginines may each independently be L-form or D-form. In addition, cell membrane permeable peptides also include C-terminal and / or N-terminal and / or side chain modified peptides. Specific examples of modification of carboxyl group include amidification (CONH 2 ), amidification such as methyl amidification; esterification such as methyl esterification, ethyl esterification and the like, and specific examples of modification of an amino group are Amidation such as acetylation and formylation; alkylation such as methylation and dimethylation; and the like. Specific examples of modification of hydroxyl group include esterification such as acetylation; phosphorylation and the like; Specific examples of the modification include alkylation such as methylation and the like. Specifically, the cell membrane permeable peptide is R8 (amino acid sequence; RRRRRRRR), SEQ ID NO: 1), R8-NH 2 (amino acid sequence: RRRRRRRR-NH 2 ), SEQ ID NO: 2), HIV-TAT (48-60) (Amino acid sequence; GRKKRRQRRRPPQ, SEQ ID NO: 3), Penetratin RQIKIWFQ NRRM KWKK (SEQ ID NO: 4), HIV-TAT (47-57) YGRKKRRQRRR (SEQ ID NO: 5), pVEC LLIILRRRIRKQAHAHSK (SEQ ID NO: 6)-NH 2 , Transportan (TP10) AGYLLGKINLKALAALAKKIL (SEQ ID NO: 7) -NH 2, Protein transduction domains sequence ARKKAAKA ( SEQ ID NO: 8), HI -1 Rev (34-50) KQAIPVAK (SEQ ID NO: 9) -amide, FHV coat (35-49) RRRRNRTRRNRRRVR (SEQ ID NO: 10)-amide, Oligoarginines (R9-R12) RRRRRRRRR (SEQ ID NO: 11) / RRRRRRRRRRRR (SEQ ID NO: 11) 12), CCMV Gag (7-25) KLTRAQRRAARKNKRNTRGC (SEQ ID NO: 13), Chimeric dermaseptin S4 and SV40 'S413-PV' ALWKTLLKKVLKAPKKKRKVC (SEQ ID NO: 14), Herpes simplex virus transcription factor (267-300) VP22 DAATATRGRSARPTER SRPRRPVE (SEQ ID NO: 15), (Chimeric galanin / mastoparan) Transportan GWTLNS AGYLLGKINLCALAAKKIL (SEQ ID NO: 16)-amide, CPP with protease cleavage side YTA2 YTAIAWVKAFIRKLRK (SEQ ID NO: 17)-amide, Pep-1 Ac-KITKW (SEQ ID NO: 19) -NH-CH2-CH2-SH, MPGβ Ac-GALFLGFLGAGSTMGWS QPKKKRKV (SEQ ID NO: 20)-NH-CH2-CH2-SH, M NH-CH2-CH2-SH, MPGα Ac-GALFLAFLAALSLMGLWSQPKKKRKV (SEQ ID NO: 19) G8β AFLGWLGAWGTM GWSPKKRK (SEQ ID NO: 21)-NH-CH2-CH2-SH, CADY Ac-GLWRALWRLLRSLWRLWKA (SEQ ID NO: 22)-NH-CH2-CH2-SH, Pepfect 6 Stearyl-AGYLLGK (ε-TMQ) INLKALALAKA L (SEQ ID NO: 23), PepFect14 Stearyl-AGYLLGKLOLOAAAOLOLL (SEQ ID NO: 24) -amide, PepFect 15 Stearyl-AGYLLGK (K3QN4) LLOOLAAAALOOLL (SEQ ID NO: 25) -amide, NickFect NF61: Stearyl-AGYLLGINLKALALALK LIL (SEQ ID NO: 26) LKLLLKLW KLLLKLLK (SEQ ID NO: 27), Influenca HA-2 (1-20) KALA sequence WEAK LAKA LKA HLA KAL AK LACE A (SEQ ID NO: 28), KLA sequence Acetyl-KLAL K LALK ALKA AL KLA (SEQ ID NO: 29) pVEC LLIILRRRIRKQAHHASK (SEQ ID NO: 31) -amide, Kaposis sarcoma fibroblast growth factor Kaposi FGF AAVALL PAVLLALLAP (SEQ ID NO: 32), Signal sequence of Ig light chain from Caiiman crocodylus MGLGLHLLVLAALQ QGAMGLGLHLLLAAALQGA (SEQ ID NO: 33), Integrin β3-fragment VTGLAGALAGVGVG (SEQ ID NO: 34), Grb2 (SH2 domain) AAVLLPLVLAAP (SEQ ID NO: 35), Fusion sequence SEQ ID NO: 36), Hepatitis B virus translocation motif PLSSIFSRIGDP (SEQ ID NO: 37), Sperm-egg fusion protein (89-111) SFP23: Ac-KLIAGSISIPPIRALFAAI IP (SEQ ID NO: 38) -amide, Human calcitonin partial sequence 9-32, hCT (9-32)-br, LGTYTQDFNK (X) FHTFPQ TAIGVGAP (SEQ ID NO: 39)-amide X: PKKKRKVEDPGVGFA (SEQ ID NO: 40), hCT (18) -32) -br, Capr-K (X) FHTFPQTAIGVGAP (SEQ ID NO: 41)-amide X: KKRKAPKKKRKFA (SEQ ID NO: 42), Substance P and analogues RPKPQQFGLM (SEQ ID NO: 43)-amide, RGD peptides αvβ3 RGD-Temporin-LA , RGD-Dye RGD-bearing PAMAM dendrimers, RGD pept des αvβ3, αvβ5 Cilengitide: Cyclo [RGDfNmeV], RGD peptide Cyclo (RGDfK); cyclo (RGDyK), RGD peptides α5β1 RGD mimic, AGR (prostata carcinoma) CAGRRSAYC (SEQ ID NO: 44), LyPi-2 CNRRTKAGC (SEQ ID NO: 45), REA (prostata, cervix, breast carcinoma) CREAGRKAC (SEQ ID NO: 46), LSD (melanoma, osteosarcoma) CLSDGKRKC (SEQ ID NO: 47), Mastoparan INLKALALAKAKIL (SEQ ID NO: 48)-amide, Meide Liin GIGAVLKVLTTGLPALISWK RQQ (SEQ ID NO: 49)-Abi, Scorpion toxin MAUROCALC INE with replacement of C by Abu GDA bu L H L Abu Abu KEN K D Abu Abu SK K BU T R K N RU T b, (Sequence No. 50), ma uro uro SEQ ID NO: 52), CPP5 VPTLK, CPP5 KLPVM, Bac7 (1-35) RRIRPRPRLPRPRPFPRPPRGPRPIPLPL PFP (SEQ ID NO: 53), Bac7 (5-35) PRPRLPRPRPRPLPRPPRGPRPIPRPLPFP (SEQ ID NO: 54); MVKSKIGSWILVLFVAMWSDVGLC (SEQ ID NO: 57), Partial sequences 1-30 Bovine PrP 1-30: MVKSKIGSWILVLF VAMWSD VGLCKKRPKP (SEQ ID NO: 58), Histidine-rich CPP HR9: C-HHHHH-RRRRRRRRRR-HHHHH-C (SEQ ID NO: 59), Branched copolymer poly (Lys), poly (Orn), poly [Lys (Glun, Alam)], Sweet arrow peptide (SAP) (VRLPPP (SEQ ID NO: 60) ), 3, Amphipathic negative CPP SAP (E): (VELPPP (SEQ ID NO: 61)) 3, Negative charged polymer Polyglutamic acid, MMP (2, 9)-activatable CPP Suc-(D-Glu) 8- PLGC (Me) AG (SEQ ID NO: 62)-(D-Arg) 9-amide, Thrombin-activatable CPP Suc-(D-Glu) 8 -XPLGLAG (SEQ ID NO: 63)-(D-Arg) 9-DCCy 5 Suc-(D-Glu) 8- Ox-DPRSFL (SEQ ID NO: 64)-(D-Arg) 9-amide, pH-sensitive (Activatable) cell-penetrating peptides pHLIP: AEQNPIYWERYADWLFTTPLLLLALLDVADEGT (SEQ ID NO: 65), KKLADap (Me2) AL Dap (Me2) LLALLWLDap (Me2) LADap (Me2) ALKKA-amide, ε-Lys s : EALAWEAALAEALAEALAEHLAEALAEAL EALEALAA (SEQ ID NO: 66), pH-sensitive R8-construct Stearoyl-RRRRRRRR- (EALA) n, Redox protein azurin 'p18' Azurin Leu 50-Gly 67: LSTAADMQGVVTDMGASG (SEQ ID NO: 67), Redox protein azurin 'p 28' Azurin Leu 50-Asp 77 : LSTAADMQGVVTDMGASGLDKDYLKPD (SEQ ID NO: 68), Influenca HA-2 (1-20) KALA sequence WEAK LAKA LAKA HLA KAL KAL KACEA (SEQ ID NO 69), N
ickFects NF61: Stearyl-AGYLLGOINLKALAAKKIL (SEQ ID NO: 70)-amide, Nonaarginine (R9) RRRRRRRRR, Stearylated arginine-rich peptides Staryl-RRRRR, Amphipathic peptides Td3701 TRYLRI HRSHH IlH IlH Ih, a helhi Human calcitonin partial sequence 9-32, hCT (9-32)-br LGTYTQDFNK (X) FHTF PQTAIGVGAP (SEQ ID NO: 73) -amide X: PKKKRKVEDPGVGFA (SEQ ID NO: 74), Cell-penetrating DNA-binding protein YARVRRRGPRR (SEQ ID NO: 75), (Hph-1) -GAL4 (DNA-binding domain), Simian virus 40 large T -Antigen (NLS) PKKKRK (SEQ ID NO: 76), Stearylated NLS Stearyl-PKKKRKV (SEQ ID NO: 77), Homodimeric NLS (C-terminal) (GYGPKKKRKVGGC (SEQ ID NO: 78)) 2, Nucleoplasmin NLS, bipartite NLS KRPAATKKAGQAKKKK (SEQ ID NO: 79) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Or,,,,,,,,,,,,,,,,,,,,,,,,,, or. PKKKRLKVAKWKTLLKKVLKA (SEQ ID NO: 84) -amide, Nucleolar targeting peptide YKQCHKKGGXKKGSG (SEQ ID NO: 85), Iopoid peptides Dimet hytyrosine-rFKF-NH 2, Mitochondria -penetrating peptides F-r-F-K-F-r-F-K, Mitoparan NLKKLAKL (Aib) KKIL ( SEQ ID NO: 86), Lysosomal sorting sequences L1 YQRLC ( SEQ ID NO: 87), Lysosomal sorting sequences L2 CNPGY (SEQ ID NO: 88), 289-W: RWIKIWFWWRRMKWKK (SEQ ID NO: 89), L17E: IWLTALKLFLGKHAAKHEAKQQLSKL (SEQ ID NO: 90), L-K6: IKILSKIKKLLK (SEQ ID NO: 91), etc., R8, R8- NH 2, Penetratin RQIKIWFQNRRMKWKK, H V-TAT (47-57) YGRKKRRQRRR, HIV-TAT (48-60) GRKKRRQRRRPPQ, pVEC LLIILRRRIRKQAHAHSK-NH 2, Transportan (TP10) AGYLLGKINLKALAALAKKIL-NH 2, Protein transduction domains sequence ARKKAAKA, 289-W, L17E, L-K6 preferably, Penetratin, R8, R8-NH 2, pVEC, 289-W, L17E, more preferably L-K6, Penetratin, R8- NH 2 are especially preferred. In addition, the configuration of the amino acids constituting these cell membrane permeable peptides is L form unless otherwise specified, and when it is composed of D form amino acids, for example, it is steric like D-R8-NH 2 It shall be stated clearly. The cell membrane-permeable peptide consists of D-amino acids, D-R8-NH 2 are preferred.

本発明の組成物に含有される細胞膜透過性ペプチドの分子量としては、特に制限はないが、800〜8000が好ましく、900〜6000がより好ましく、1000〜4000が特に好ましい。   The molecular weight of the cell membrane permeable peptide contained in the composition of the present invention is not particularly limited, but is preferably 800 to 8000, more preferably 900 to 6000, and particularly preferably 1000 to 4000.

本発明の組成物に含有される細胞膜透過性ペプチドを構成するアミノ酸は、多くのアルギニン残基を含むことが好ましく、それ以外に特に制限はなく、天然アミノ酸でも非天然アミノ酸でもよい。   The amino acids constituting the cell membrane-permeable peptide contained in the composition of the present invention preferably contain a large number of arginine residues, and are not particularly limited, and may be natural amino acids or non-natural amino acids.

本発明の組成物に含有される細胞膜透過性ペプチドは、細胞膜透過性ペプチドの塩であってもよく、医薬として許容される塩であれば特に制限はない。細胞膜透過性ペプチドの塩としては無機酸との塩、有機酸との塩等が挙げられる。   The cell membrane permeable peptide contained in the composition of the present invention may be a salt of a cell membrane permeable peptide, and is not particularly limited as long as it is a pharmaceutically acceptable salt. Examples of salts of cell membrane permeable peptides include salts with inorganic acids and salts with organic acids.

無機酸との塩の例としては、塩酸、臭化水素酸、ヨウ化水素酸、硝酸、硫酸、リン酸等との塩が挙げられ、塩酸塩が好ましい。   Examples of salts with inorganic acids include salts with hydrochloric acid, hydrobromic acid, hydroiodic acid, nitric acid, sulfuric acid, phosphoric acid and the like, with hydrochloride being preferred.

有機酸との塩の例としては、酢酸、シュウ酸、フマル酸、マレイン酸、コハク酸、リンゴ酸、クエン酸、酒石酸、アジピン酸、グルコン酸、グルコヘプト酸、グルクロン酸、テレフタル酸、メタンスルホン酸、アラニン、乳酸、馬尿酸、1,2−エタンジスルホン酸、イセチオン酸、ラクトビオン酸、オレイン酸、没食子酸、パモ酸、ポリガラクツロン酸、ステアリン酸、タンニン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸、硫酸ラウリル、硫酸メチル、ナフタレンスルホン酸、スルホサリチル酸、トリフルオロ酢酸等との塩が挙げられる。   Examples of salts with organic acids are acetic acid, oxalic acid, fumaric acid, maleic acid, succinic acid, malic acid, citric acid, tartaric acid, tartaric acid, adipic acid, gluconic acid, glucoheptic acid, glucuronic acid, terephthalic acid, methanesulfonic acid Alanine, lactic acid, hippuric acid, 1,2-ethanedisulfonic acid, isethionic acid, lacteionic acid, lactobionic acid, oleic acid, gallic acid, pamoic acid, polygalacturonic acid, stearic acid, tannic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, Examples thereof include salts with p-toluenesulfonic acid, lauryl sulfate, methyl sulfate, naphthalenesulfonic acid, sulfosalicylic acid, trifluoroacetic acid and the like.

本発明の組成物において、細胞膜透過性ペプチド及びその塩は、水和物又は溶媒和物の形態をとってもよい。   In the compositions of the present invention, cell membrane permeable peptides and salts thereof may be in the form of hydrates or solvates.

本発明の組成物において、細胞膜透過性ペプチド又はその塩の含有量は、医薬として許容される量であれば、特に制限されず、その下限が、例えば0.001%(w/v)、好ましくは0.01%(w/v)、より好ましくは0.1%(w/v)、更に好ましくは1%(w/v)、特に好ましくは5%(w/v)であり、その上限が、例えば35%(w/v)、好ましくは30%(w/v)、より好ましくは25%(w/v)、更に好ましくは20%(w/v)、特に好ましくは15%(w/v)である。さらに、それらの上限と下限は適宜組み合わせて使用することができる。例えば、下限の5%(w/v)と上限の35%(w/v)、30%(w/v)、25%(w/v)、20%(w/v)及び15%(w/v)を組み合わせて、5〜35%(w/v)、5〜30%(w/v)、5〜25%(w/v)、5〜20%(w/v)、5〜15%(w/v)のように範囲を設定することができる。より具体的には、本発明の組成物において、細胞膜透過性ペプチド又はその塩の含有量は、例えば、0.001〜35%(w/v)が好ましく、0.01〜30%(w/v)がより好ましく、0.1〜25%(w/v)がさらにより好ましく、1〜20%(w/v)が特に好ましく、5〜15%(w/v)が最も好ましい。   In the composition of the present invention, the content of the cell membrane permeable peptide or a salt thereof is not particularly limited as long as it is a pharmaceutically acceptable amount, and the lower limit thereof is, for example, 0.001% (w / v), preferably Is 0.01% (w / v), more preferably 0.1% (w / v), still more preferably 1% (w / v), particularly preferably 5% (w / v), and the upper limit thereof For example, it is 35% (w / v), preferably 30% (w / v), more preferably 25% (w / v), still more preferably 20% (w / v), particularly preferably 15% (w) / V). Furthermore, those upper limits and lower limits can be used in combination as appropriate. For example, the lower limit 5% (w / v) and the upper limit 35% (w / v), 30% (w / v), 25% (w / v), 20% (w / v) and 15% (w) / V) in combination, 5 to 35% (w / v), 5 to 30% (w / v), 5 to 25% (w / v), 5 to 20% (w / v), 5 to 15 The range can be set as% (w / v). More specifically, in the composition of the present invention, the content of cell membrane-permeable peptide or a salt thereof is, for example, preferably 0.001 to 35% (w / v), and 0.01 to 30% (w / v). v) is more preferred, 0.1 to 25% (w / v) is even more preferred, 1 to 20% (w / v) is particularly preferred, and 5 to 15% (w / v) is most preferred.

本発明の組成物では、細胞透過性ペプチド又はその塩と、薬物とのモル比を自由に設定することができ、細胞透過性ペプチド又はその塩:薬物のモル比は、特に制限されないが、例えば1:1000、1:200、1:100、1:10、1:2、1:1、2:1、10:1、100:1、200:1または1000:1の任意の組合せの間であってよい。具体的には、細胞透過性ペプチド又はその塩と、薬物とのモル比は、例えば、1:1000〜1000:1、1:200〜200:1、1:100〜100:1、1:10〜10:1、1:2〜2:1の範囲内であってよい。別の観点で、細胞透過性ペプチド又はその塩は、薬物に対して当量未満であっても眼組織中への薬物の移行性を改善可能なことから、上記モル比は1:1.1以上であってよい。具体的には、細胞透過性ペプチド又はその塩と、薬物とのモル比は、例えば、1:1000〜1:1.1、1:200〜1:1.1、1:100〜1:1.1、1:10〜1:1.1、1:2〜1:1.1の範囲内であってよい。また、薬物の量が少なくても眼組織へ十分に移行し得るから、上記モル比は1.1以上:1であってよい。具体的には、細胞透過性ペプチド又はその塩と、薬物とのモル比は、例えば、1000:1〜1.1:1、200:1〜1.1:1、100:1〜1.1:1、10:1〜1.1:1、2:1〜1.1:1の範囲内であってよい。   In the composition of the present invention, the molar ratio of the cell permeable peptide or the salt thereof to the drug can be freely set, and the molar ratio of the cell permeable peptide or the salt thereof to the drug is not particularly limited. Between any combination of 1: 1000, 1: 200, 1: 100, 1:10, 1: 2, 1: 1, 2: 1, 10: 1, 100: 1, 200: 1 or 1000: 1 May be there. Specifically, the molar ratio of the cell permeable peptide or the salt thereof to the drug is, for example, 1: 1000 to 1000: 1, 1: 200 to 200: 1, 1: 100 to 100: 1, 1:10. It may be in the range of ̃10: 1, 1: 2 to 2: 1. In another aspect, the above-mentioned molar ratio is at least 1: 1.1, since the cell permeable peptide or the salt thereof can improve the transferability of the drug into the ocular tissue even if it is less than the equivalent to the drug. It may be. Specifically, the molar ratio of the cell penetrating peptide or the salt thereof to the drug is, for example, 1: 1000 to 1: 1.1, 1: 200 to 1: 1.1, 1: 100 to 1: 1. .1, 1:10 to 1: 1.1, 1: 2 to 1: 1.1. In addition, the molar ratio may be 1.1 or more: 1 because the drug can be sufficiently transferred to ocular tissues even with a small amount of drug. Specifically, the molar ratio of the cell penetrating peptide or a salt thereof to the drug is, for example, 1000: 1 to 1.1: 1, 200: 1 to 1.1: 1, 100: 1 to 1.1. It may be in the range of 1: 1, 10: 1 to 1.1: 1, 2: 1 to 1.1: 1.

なお、本発明の組成物において細胞膜透過性ペプチドの塩が含有される場合、これらの値は塩の質量を基準にした含有量である。なお、「%(w/v)」は、本発明の組成物100mL中に含まれる対象成分(ここでは、細胞膜透過性ペプチド)の質量(g)を意味する。対象成分が界面活性剤等の添加剤等である場合も同様であり、またその塩や水和物が含有される場合は、これらの値は塩や水和物の質量を基準にした含有量である。   In addition, when the salt of a cell membrane permeable peptide is contained in the composition of this invention, these values are content based on the mass of a salt. In addition, "% (w / v)" means the mass (g) of the object component (here, cell membrane permeable peptide) contained in 100 mL of the composition of the present invention. The same applies to the case where the target component is an additive such as surfactant, etc. Also, when the salt or hydrate thereof is contained, these values are the content based on the mass of the salt or hydrate It is.

本発明の組成物は、必要に応じて添加剤を含有することができる。添加剤の例としては、界面活性剤、緩衝化剤、等張化剤、安定化剤、防腐剤、抗酸化剤、粘稠化剤、pH調整剤等が挙げられる。   The composition of the present invention can optionally contain an additive. Examples of additives include surfactants, buffering agents, tonicity agents, stabilizers, preservatives, antioxidants, thickening agents, pH adjusters and the like.

本発明の組成物には、医薬品の添加物として使用可能な界面活性剤を適宜配合することができる。ただし、本発明では細胞膜透過性ペプチドによって薬の眼組織への移行性が向上しているため、界面活性剤の使用は必須ではない。この観点で、組成物中の界面活性剤の含有量は、好ましくは0.2%(w/v)未満、より好ましくは0.1%(w/v)未満、さらに好ましくは0.01%(w/v)未満、最も好ましくは0.001%(w/v)未満である。   In the composition of the present invention, a surfactant which can be used as an additive of a pharmaceutical can be appropriately blended. However, in the present invention, the use of a surfactant is not essential since the transferability of the drug to ocular tissues is improved by the cell membrane permeable peptide. In this respect, the content of surfactant in the composition is preferably less than 0.2% (w / v), more preferably less than 0.1% (w / v), still more preferably 0.01% Less than (w / v), most preferably less than 0.001% (w / v).

本発明の組成物には、医薬品の添加物として使用可能な緩衝剤を配合することができる。緩衝剤の例としては、リン酸又はその塩、或いはそれらの水和物等が挙げられる。   The composition of the present invention can be incorporated with a buffer that can be used as an additive for pharmaceutical products. Examples of the buffer include phosphoric acid or a salt thereof, or a hydrate thereof.

本発明の組成物は、1つ又は複数の、好ましくは1〜3つの、より好ましくは1つ又は2つの薬物を含有することができる。薬物としては、フルオレセイン、6−カルボキシフルオレセイン、FD(FITC−dextran)4、FD10、リン酸ブレドニゾロン、ペミロラスト、ホスミドマイシン、リン酸ベタメサゾン、ジクロフェナク、リン酸ヒドロコルチゾン、ローダミン、ブリンゾラミド、ドルゾラミド塩酸塩、オロパタジン塩酸塩、プロプラノロール塩酸塩、チモロールマレイン酸塩、ブリモニジン酒石酸塩等の低分子医薬のほか、核酸医薬、抗体医薬、タンパク質医薬等の高分子医薬が挙げられる。好ましい薬物の具体的な例としては、分子内にカルボキシル基(COH)、スルホン酸基(SOH)、リン酸基(OPOH)及び水酸基(OH)からなる群より選択される置換基を1又は複数個、好ましくは1〜20個、より好ましくは1〜10個有する薬物が挙げられ、分子内にカルボキシル基及び水酸基からなる群より選択される置換基を1又は複数個、好ましくは1〜20個、より好ましくは1〜10個有する薬物がより好ましく、分子内にカルボキシル基及びフェノール性水酸基からなる群より選択される置換基を1又は複数個、好ましくは1〜20個、より好ましくは1〜10個有する薬物が特に好ましい。 The compositions of the invention may contain one or more, preferably one to three, more preferably one or two drugs. As the drug, fluorescein, 6-carboxyfluorescein, FD (FITC-dextran) 4, FD10, bredonizolone phosphate, pemirolast, phosmidomycin, betamethasone phosphate, diclofenac, hydrocortisone phosphate, rhodamine, brinzolamide, dorzolamide hydrochloride, olopatadine In addition to low molecular weight drugs such as hydrochloride, propranolol hydrochloride, timolol maleate and brimonidine tartrate, high molecular weight drugs such as nucleic acid drugs, antibody drugs and protein drugs can be mentioned. Specific examples of preferred drugs are selected from the group consisting of carboxyl group (CO 2 H), sulfonic acid group (SO 3 H), phosphoric acid group (OPO 3 H) and hydroxyl group (OH) in the molecule. And drugs having one or more, preferably 1 to 20, more preferably 1 to 10, substituents, and one or more substituents selected from the group consisting of a carboxyl group and a hydroxyl group in the molecule, The drug preferably has 1 to 20, more preferably 1 to 10, and one or more, preferably 1 to 20, substituents selected from the group consisting of a carboxyl group and a phenolic hydroxyl group in the molecule. Particularly preferred is a drug having 1 to 10, more preferably 1 to 10.

また、表面プラズモン共鳴(SPR;Surface Plasmon Resonance)を利用して細胞膜透過性ペプチドと薬物の間の相互作用を測定する評価系により、本発明の組成物に含まれる好ましい薬物を、使用する細胞膜透過性ペプチドに応じて選択することができる。   In addition, cell membrane permeation using a preferred drug contained in the composition of the present invention according to an evaluation system that measures the interaction between cell membrane permeable peptide and the drug using surface plasmon resonance (SPR; Surface Plasmon Resonance) It can be selected according to the sex peptide.

表面プラズモン共鳴(SPR;Surface Plasmon Resonance)測定を利用した評価系は、表面プラズモン共鳴分析装置、好ましくは、例えばBiacoreT200(GEヘルスケア)を使用して、レゾナンスユニット(RU)値を測定することにより細胞膜透過性ペプチドと薬物の相互作用の強度を評価する系である。細胞膜透過性ペプチドは、センサーチップにアミド結合やジスルフィド結合を介して直接固定化されてもよいし、ビオチン−アビジン相互作用を介して固定化されてもよく、例えば細胞膜透過性ペプチドをビオチンと共有結合させた分子をアビジンを介してセンサーチップ(例えば、Series S Sensor Chip SA/GEヘルスケア)に固定化させるのが好ましい。細胞膜透過性ペプチドをセンサーチップに固定化した後、薬物を0.0001〜1%(w/v)、好ましくは0.0005〜0.1%(w/v)、より好ましくは0.001〜0.01%(w/v)含有する溶液を0.5〜10分間、好ましくは1〜7分間、より好ましくは2〜5分間かけてインジェクトする。この時、移動相(バッファー)は、好ましくはHBS−P、HBS−N、PBS、HBS−EPなどが用いられ、5〜50μL/分、好ましくは10〜40μL/分、より好ましくは20〜30μL/分の流速で流すとよい。薬物のインジェクション開始前のRU値とインジェクション終了1〜10分後、好ましくは3〜7分後、より好ましくは5分後のRU値の差(ΔRU)を求めることにより、本発明の組成物に含まれる好ましい薬物を、使用する細胞膜透過性ペプチドに応じて選択することができる。   The evaluation system using surface plasmon resonance (SPR) measurement is performed by measuring the resonance unit (RU) value using a surface plasmon resonance analyzer, preferably, for example, Biacore T200 (GE Healthcare). It is a system to evaluate the strength of the interaction between cell membrane permeable peptide and drug. The cell membrane permeable peptide may be directly immobilized on the sensor chip via an amide bond or disulfide bond, or may be immobilized via a biotin-avidin interaction, for example, the cell membrane permeable peptide is shared with biotin It is preferable to immobilize the bound molecule via avidin on a sensor chip (eg, Series S Sensor Chip SA / GE Healthcare). After immobilizing the cell membrane permeable peptide on the sensor chip, the drug is preferably 0.0001 to 1% (w / v), preferably 0.0005 to 0.1% (w / v), more preferably 0.001 to 1%. The solution containing 0.01% (w / v) is injected for 0.5 to 10 minutes, preferably 1 to 7 minutes, more preferably 2 to 5 minutes. At this time, the mobile phase (buffer) is preferably HBS-P, HBS-N, PBS, HBS-EP, etc., and is 5 to 50 μL / min, preferably 10 to 40 μL / min, more preferably 20 to 30 μL. It is good to flow at a flow rate of / min. The composition of the present invention can be obtained by determining the difference (ΔRU) between the RU value before the start of injection of the drug and the RU value 1 to 10 minutes after the end of injection, preferably 3 to 7 minutes, more preferably 5 minutes. Preferred drugs to be included can be selected depending on the cell membrane permeable peptide used.

本発明の組成物に含まれる好ましい薬物は、表面プラズモン共鳴分析試験を利用した評価系において測定に用いた薬物を含有する溶液の薬物濃度によっても異なるが、ΔRU×100/Mw(ここで、Mwは薬物の分子量(Da))の値が0.01以上、好ましくは0.1以上、より好ましくは0.2以上、特に好ましくは0.4以上である薬物である。本発明の組成物に含まれる好ましい薬物として、ΔRU×100/Mwの上限に特に制限はないが、好ましくは300以下、より好ましくは200以下、特に好ましくは150以下、最も好ましくは100以下である。本発明の組成物に含まれる好ましい薬物は、ΔRU×100/Mwが0.01〜300、より好ましくは0.1〜200、特に好ましくは0.2〜150、最も好ましくは0.4〜100である薬物である。これらΔRUは、使用する細胞膜透過性ペプチド毎に測定できる。   Although the preferable drug contained in the composition of the present invention varies depending on the drug concentration of the solution containing the drug used for measurement in the evaluation system using surface plasmon resonance analysis test, ΔRU × 100 / Mw (where, Mw Is a drug having a molecular weight (Da) value of 0.01 or more, preferably 0.1 or more, more preferably 0.2 or more, particularly preferably 0.4 or more. The preferred drug contained in the composition of the present invention is not particularly limited to the upper limit of ΔRU × 100 / Mw, but is preferably 300 or less, more preferably 200 or less, particularly preferably 150 or less, most preferably 100 or less . The preferred drug contained in the composition of the present invention has a ΔRU × 100 / Mw of 0.01 to 300, more preferably 0.1 to 200, particularly preferably 0.2 to 150, most preferably 0.4 to 100 Is a drug. These ΔRU can be measured for each cell membrane permeable peptide used.

本発明の組成物に薬物を配合する場合、その含有量は、薬物の種類等により適宜調整することができ、0.00001〜10%(w/v)が好ましく、0.0005〜5%(w/v)がより好ましく、0.001〜3%(w/v)がさらに好ましく、0.001〜2%(w/v)が最も好ましい。   When a drug is added to the composition of the present invention, the content thereof can be appropriately adjusted according to the type of drug etc., and 0.00001 to 10% (w / v) is preferable, 0.0005 to 5% (w / v) w / v) is more preferable, 0.001 to 3% (w / v) is more preferable, and 0.001 to 2% (w / v) is the most preferable.

本発明の医薬組成物は、例えば、溶液のほか懸濁剤、エマルジョン、リポソーム、マイクロスフェア、デポ剤などであってもよく、溶媒又は分散媒は水であることが好ましく、水溶液であることが最も好ましい。   The pharmaceutical composition of the present invention may be, for example, a solution, a suspension, an emulsion, a liposome, a microsphere, a depot and the like, and the solvent or dispersion medium is preferably water, and an aqueous solution. Most preferred.

本発明の組成物の剤形は、眼科用医薬品として使用可能なものであれば特に制限されないが、例えば、点眼剤、眼軟膏、注射剤が挙げられ、点眼剤が好ましい。注射剤としては、硝子体内投与、前房内投与、結膜嚢内投与、前房内投与、結膜下投与又はテノン嚢下投与用の注射剤が挙げられる。これらの剤形は、当該技術分野における通常の方法に従って製造することができる。   The dosage form of the composition of the present invention is not particularly limited as long as it can be used as an ophthalmic drug, and examples include eye drops, eye ointments, and injections, and eye drops are preferable. Injections include injections for intravitreal administration, administration in the anterior chamber, administration in the conjunctival sac, administration in the anterior chamber, administration under the conjunctiva, or subtenon administration. These dosage forms can be manufactured according to a method conventional in the art.

本発明の組成物は、薬物の眼組織への移行性に優れる。薬物が移行される眼組織は、角膜のほか、結膜、ブドウ膜、眼瞼、前房、毛様体、虹彩、水晶体、硝子体、網膜、脈絡膜等が挙げられる。   The composition of the present invention is excellent in transferability of the drug to ocular tissues. Eye tissues to which a drug is transferred include conjunctiva, uvea, eyelid, anterior chamber, ciliary body, iris, lens, vitreous body, retina, choroid, etc. in addition to cornea.

上記の本発明の組成物の詳細な説明は、本発明のドラッグデリバリーシステム、薬物の眼組織への移行性を向上させる方法にも適用される。   The above detailed description of the composition of the present invention also applies to the drug delivery system of the present invention, a method of improving the transferability of a drug to ocular tissue.

本発明のドラッグデリバリーシステムは、細胞膜透過性ペプチド又はその塩を含有し、送達対象の薬物と共有結合させずに用いられる眼科用ドラッグデリバリーシステムである。   The drug delivery system of the present invention is an ophthalmic drug delivery system containing a cell membrane permeable peptide or a salt thereof and used without being covalently linked to a drug to be delivered.

本発明の薬物の眼組織への移行性を向上させる方法は、眼科用医薬組成物に細胞膜透過性ペプチド又はその塩を薬物と共有結合させずに含有させることを含む。   The method for improving the transferability of the drug of the present invention to ocular tissues comprises the inclusion of a cell membrane permeable peptide or a salt thereof in the ophthalmic pharmaceutical composition without being covalently linked to the drug.

本発明の方法によれば、薬物の眼組織への移行性が向上し、より低用量の薬物で薬効を発揮することができる。   According to the method of the present invention, the transferability of the drug to ocular tissues is improved, and the drug effect can be exerted with a lower dose of drug.

以下に製剤例、薬物透過性試験、安全性試験及び表面プラズモン共鳴分析試験の結果を示すが、これらは本発明をより良く理解するためのものであり、本発明の範囲を限定するものではない。   The following shows the results of formulation examples, drug permeability tests, safety tests and surface plasmon resonance analysis tests, but these are for the purpose of better understanding the present invention and do not limit the scope of the present invention. .

製剤例
以下に本発明の代表的な製剤例を示す。なお、下記製剤例において各成分の配合量は製剤1mL中の含量である。
Formulation Examples Representative formulation examples of the present invention are shown below. In addition, the compounding quantity of each component is a content in 1 mL of formulation in the following formulation example.

製剤例1
R8−NH 10mg
リン酸緩衝液 適量
精製水 適量
Formulation example 1
R8-NH 2 10mg
Phosphate buffer solution appropriate amount Purified water appropriate amount

製剤例2
R8 10mg
リン酸緩衝液 適量
精製水 適量
Formulation example 2
R8 10 mg
Phosphate buffer solution appropriate amount Purified water appropriate amount

製剤例3
HIV−TAT (48−60) 10mg
リン酸緩衝液 適量
精製水 適量
Formulation example 3
HIV-TAT (48-60) 10 mg
Phosphate buffer solution appropriate amount Purified water appropriate amount

なお、前記製剤例1〜3における細胞膜透過性ペプチド及び添加剤の種類や配合量、並びに、pHを適宜調整し所望の組成物を得ることができる。   In addition, the kind and compounding quantity of the cell membrane permeable peptide in the said preparation examples 1-3, and a compounding quantity, and pH can be adjusted suitably, and a desired composition can be obtained.

1.薬物移行性試験1
1−1.被験製剤の調製
R8−NH・9TFA塩(9.09mg)を0.96%PBS溶液に溶解し、1000μMの溶液を調製した(溶液A)。6−カルボキシフルオレセイン(6−FAM)(7.52mg)を0.96%PBS溶液に溶解し、2000μMの溶液を調製した(溶液B)。
溶液Bを0.96%PBS溶液で希釈して、1000μMの6−FAM溶液を調製し比較例1とした。
溶液Bと0.96%PBS溶液で50倍希釈した溶液Aを1:1で混合したものを実施例1とした。溶液Aと溶液Bを1:1で混合したものを実施例2とした。
1. Drug transferability test 1
1-1. Preparation of Test Preparation The R8-NH 2 · 9 TFA salt (9.09 mg) was dissolved in 0.96% PBS solution to prepare a solution of 1000 μM (solution A). 6-Carboxyfluorescein (6-FAM) (7.52 mg) was dissolved in 0.96% PBS solution to prepare a 2000 μM solution (solution B).
Solution B was diluted with a 0.96% PBS solution to prepare a 1000 μM 6-FAM solution, which was referred to as Comparative Example 1.
A mixture of solution B and solution A diluted 50-fold with a 0.96% PBS solution at 1: 1 was used as Example 1. A mixture of solution A and solution B at 1: 1 was designated as Example 2.

1−2.試験方法
ヒト3次元角膜上皮(LabCyte CORNEA−MODEL,J−TEC社製)を付属の培地中でCO2インキュベータ内にて1時間培養後、各ウェルの培地を除去し上記サンプルを50μLずつ添加し、CO2インキュベータ内で5分間暴露した。上清を除去し、細胞表面にPBSを500uLずつ添加し、吸引除去する操作を3回繰り返した。PBSを50uLずつ添加し、蛍光顕微鏡(BZ−X700)で各ウェルのフルオレセインの蛍光顕微鏡写真を撮影した(露光時間;50ms)。顕微鏡写真は画像解析ソフトImageJのAnalyzeメニューのMeasureモードを用いて解析した。
1-2. Test method After culturing human three-dimensional corneal epithelium (LabCyte CORNEA-MODEL, manufactured by J-TEC Co., Ltd.) for 1 hour in a CO 2 incubator in the attached medium, the medium in each well is removed and 50 μL of the above sample is added, Exposed for 5 minutes in a CO2 incubator. The supernatant was removed, and 500 uL each of PBS was added to the cell surface, and the operation of aspiration and removal was repeated three times. 50 uL of PBS was added, and a fluorescence micrograph of fluorescein in each well was taken with a fluorescence microscope (BZ-X700) (exposure time; 50 ms). Photomicrographs were analyzed using the Measure mode of the Analyze menu of the image analysis software ImageJ.

1−3.試験結果及び考察
試験結果を図1に示す。図1から分かるように、R8−NH非共存下に比べて、R8−NH共存下で6−FAMの角膜上皮細胞への移行率が向上した。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、薬物の眼組織への移行性を向上させることが分かった。
1-3. Test Results and Discussion The test results are shown in FIG. As it can be seen from Figure 1, compared to the R8-NH 2 non coexistence, and improved transfer rate to the corneal epithelial cells of 6-FAM at 2 coexistence R8-NH. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof improves the transferability of the drug to ocular tissues.

2.薬物移行性試験2
2−1.被験製剤の調製
R8−NH・9TFA塩(4.54mg)を0.96%PBS溶液に溶解させ、1000μMの溶液を調製した(溶液C)。フルオレセイン(3.34g)を0.96%PBS溶液に溶解させ、500μMの溶液を調製した(溶液D)。
溶液Dを0.96%PBS溶液で希釈して、250μMの フルオレセイン溶液を調製し比較例2とした。
また、溶液Cと溶液Dを1:1で混合したものを実施例3とした。
2. Drug transferability test 2
2-1. Preparation of Test Preparation The R8-NH 2 · 9 TFA salt (4.54 mg) was dissolved in 0.96% PBS solution to prepare a solution of 1000 μM (solution C). Fluorescein (3.34 g) was dissolved in 0.96% PBS solution to prepare a 500 μM solution (solution D).
Solution D was diluted with a 0.96% PBS solution to prepare a 250 μM fluorescein solution, which was referred to as Comparative Example 2.
Moreover, what mixed the solution C and the solution D by 1: 1 was made into Example 3.

2−2.試験方法
薬物移行性試験1と同様の方法により試験を行った。蛍光顕微鏡写真の撮影の露光時間は10msとした。
2-2. Test Method A test was conducted in the same manner as in the drug transferability test 1. The exposure time for taking a fluorescence micrograph was 10 ms.

2−3.試験結果及び考察
試験結果を図2に示す。図2から分かるように、R8−NH非共存下に比べて、R8−NH共存下でフルオレセインの角膜上皮細胞への移行率が向上した。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、薬物の眼組織への移行性を向上させることが分かった。
2-3. Test Results and Discussion The test results are shown in FIG. As can be seen from Figure 2, as compared with R8-NH 2 non coexistence, migration rates of fluorescein to the corneal epithelial cells was improved in two coexistence R8-NH. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof improves the transferability of the drug to ocular tissues.

3.薬物移行性試験3
3−1.被験製剤の調製
penetratin−NH・7TFA塩(0.3mg)を0.96%PBS溶液に溶解させ、1000μMの溶液を調製した(溶液E)。
溶液Bと溶液Eを1:1で混合したものを実施例4とした。
3. Drug transferability test 3
3-1. Preparation of test preparation The penetratin-NH 2 · 7 TFA salt (0.3 mg) was dissolved in a 0.96% PBS solution to prepare a 1000 μM solution (solution E).
A mixture of solution B and solution E at 1: 1 was named Example 4.

3−2.試験方法
薬物移行性試験1と同様の方法により試験を行った。蛍光顕微鏡写真の撮影の露光時間は50msとした。
3-2. Test Method A test was conducted in the same manner as in the drug transferability test 1. The exposure time for taking a fluorescence micrograph was 50 ms.

3−3.試験結果及び考察
試験結果を図3に示す。図3から分かるように、penetrtin−NH非共存下に比べて、penetratin−NH共存下で6−カルボキシフルレセイン(6FAM)の角膜上皮細胞への移行率が向上した。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、薬物の眼組織への移行性を向上させることが分かった。
3-3. Test Results and Discussion The test results are shown in FIG. As can be seen from FIG. 3, the rate of transfer of 6-carboxyflurescein (6FAM) to corneal epithelial cells was improved in the presence of penetratin-NH 2 as compared to the absence of penetrtin-NH 2 . From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof improves the transferability of the drug to ocular tissues.

4.安全性試験1
4−1.被験製剤の調製
R8−NH・9TFA塩(9.09mg)を0.96%PBS溶液に溶解させ、500μMの溶液を調製した(溶液F)。溶液Fを0.96%PBS溶液で希釈して、10μM、100μM、500μMの溶液を調製し、それぞれ実施例5、実施例6、実施例7とした。
4. Safety test 1
4-1. Preparation of Test Preparation The R8-NH 2 · 9 TFA salt (9.09 mg) was dissolved in 0.96% PBS solution to prepare a 500 μM solution (solution F). The solution F was diluted with a 0.96% PBS solution to prepare solutions of 10 μM, 100 μM, and 500 μM, respectively, which were referred to as Example 5, Example 6, and Example 7, respectively.

4−2.試験方法
MTT試薬(6.74mg)を13.48mlのアッセイ培地で希釈して調製したMTT培地を0.5mLずつ新たな24穴プレートに分注し、0.96%PBS溶液(陰性対照)、実施例5、実施例6または実施例7に2時間暴露したヒト3次元角膜上皮(LabCyte CORNEA−MODEL,J−TEC社製)の入ったウェルを上述のプレートに設置した。CO2インキュベータ内で3時間静置し、各ウェルを取り外し、細胞部分を切り取った。切り取った細胞を1.5mLのPPチューブに入れ300 uLのイソプロパノールに2時間以上浸漬した。このイソプロパノールを96ウェルプレートに200μLずつ注入し、吸光度(540nm−655nmの吸光度の差を使用)をプレートリーダーで測定し以下の計算式で生細胞率を算出した。
4-2. Test method 0.5 ml of MTT medium prepared by diluting MTT reagent (6.74 mg) in 13.48 ml of assay medium is aliquoted into fresh 24-well plates, 0.96% PBS solution (negative control), Wells containing human three-dimensional corneal epithelium (LabCyte CORNEA-MODEL, manufactured by J-TEC Co., Ltd.) exposed to Example 5, Example 6, or Example 2 for 2 hours were placed in the above-mentioned plate. After standing for 3 hours in a CO2 incubator, each well was removed and the cell portion was cut off. The cut cells were placed in a 1.5 mL PP tube and immersed in 300 uL of isopropanol for 2 hours or more. 200 μL each of this isopropanol was injected into a 96-well plate, the absorbance (using the difference in absorbance at 540 nm-655 nm) was measured with a plate reader, and the viable cell rate was calculated according to the following formula.

4−3.試験結果及び考察
試験結果を図4に示す。図4から分かるように、10〜500μMのR8−NHを2時間暴露しても角膜細胞に対して細胞障害性を示さなかった。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、眼科適用できる安全性を示すことが分かった。
4-3. Test Results and Discussion The test results are shown in FIG. As can be seen from FIG. 4, exposure to 10 to 500 μM of R8-NH 2 for 2 hours did not show any cytotoxicity on corneal cells. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof exhibits ophthalmologically applicable safety.

5.安全性試験2
5−1.被験製剤の調製
上記1−1.で調製した比較例1及び3−1.で調製した実施例4を用いた。
5. Safety test 2
5-1. Preparation of test preparation 1-1. Comparative Examples 1 and 3-1 prepared by Example 4 prepared in the above was used.

5−2.試験方法
MTT試薬(6.74mg)を13.48mlのアッセイ培地で希釈して調製したMTT培地を0.5mLずつ新たな24穴プレートに分注し、0.96%PBS溶液(陰性対照)、実施例4または比較例1に5分間暴露したヒト3次元角膜上皮(LabCyte CORNEA−MODEL,J−TEC社製)の入ったウェルを上述のプレートに設置した。CO2インキュベータ内で2時間静置し、各ウェルを取り外し、細胞部分を切り取った。切り取った細胞を1.5mLのPPチューブに入れ300 uLのイソプロパノールに2時間以上浸漬した。このイソプロパノールを96ウェルプレートに200μLずつ注入し、吸光度(540nm−655nmの吸光度の差を使用)をプレートリーダーで測定し「数1」の計算式で生細胞率を算出した。
5-2. Test method 0.5 ml of MTT medium prepared by diluting MTT reagent (6.74 mg) in 13.48 ml of assay medium is aliquoted into fresh 24-well plates, 0.96% PBS solution (negative control), A well containing human three-dimensional corneal epithelium (LabCyte CORNEA-MODEL, manufactured by J-TEC) exposed for 5 minutes to Example 4 or Comparative Example 1 was placed on the above-mentioned plate. After standing for 2 hours in a CO2 incubator, each well was removed and the cell portion was cut off. The cut cells were placed in a 1.5 mL PP tube and immersed in 300 uL of isopropanol for 2 hours or more. 200 μL each of this isopropanol was injected into a 96-well plate, and the absorbance (using the difference in absorbance at 540 nm-655 nm) was measured with a plate reader, and the viable cell rate was calculated by the formula of "Number 1."

5−3.試験結果及び考察
試験結果を図5に示す。図5から分かるように、500μMのpenetratin−NH・7TFA塩も角膜細胞に対して細胞障害性を示さなかった。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、眼科適用できる安全性を示すことが分かった。
5-3. Test Results and Discussion The test results are shown in FIG. As can be seen from FIG. 5, 500 μM of penetratin-NH 2 · 7 TFA salt also showed no cytotoxicity to corneal cells. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof exhibits ophthalmologically applicable safety.

6.表面プラズモン共鳴分析試験
6−1 ビオチン化細胞膜透過性ペプチドの合成
Fmoc−L−アルギニンとRink amide PEGA resin(Merck Millipore,Novabiochem(登録商標))を用いて固相合成したFmoc−R8−レジン(0.124mmol)を20% Piperidine/DMF8ml中で1時間常温で撹拌し脱Fmocを行った。
レジンをDMF、ジクロロメタン、メタノールで洗浄後、ビオチン(biotin) 91.3 mg,縮合剤(HBTU)142.4 mg,ジイソプロピルエチルアミン 64.5 μL,DMF 11mlを加え終夜室温で撹拌した。反応後、レジンを洗浄し乾燥した。
6. Surface Plasmon Resonance Analysis Test 6-1 Synthesis of Biotinylated Cell Membrane Permeable Peptide Fmoc-R8-Resin (0) solid phase synthesized using Fmoc-L-arginine and Rinkamide PEGA resin (Merck Millipore, Novabiochem®) .24 mmol) was stirred in 8 ml of 20% Piperidine / DMF for 1 hour at room temperature to remove Fmoc.
After washing the resin with DMF, dichloromethane and methanol, 91.3 mg of biotin (biotin), 142.4 mg of condensing agent (HBTU), 64.5 μL of diisopropylethylamine and 11 ml of DMF were added and stirred overnight at room temperature. After the reaction, the resin was washed and dried.

ビオチン化R8−レジン(764.3 mg)をTFA、フェノール、チオアニソール、水、エタンジチオール(83:6.3:4.3:4.3:2.1)混合溶液を用いて室温で4時間撹拌した。反応後レジンを濾過にて除去した。濾液を減圧濃縮し溶媒を留去したのち分取HPLC(0.1%TFA/アセトニトリル系)により精製を行い、目的のビオチン化R8−NH・8TFA塩を得た(46.7mg)。また、ビオチン化Penetratin−NH、ビオチン化D−R8−NH、ビオチン化ARKKAAKA−NHビオチン化TAT(47−57)−NH、ビオチン化HIV−TAT (48−60)−NHは、ビオチン化R8−NHと同様の方法により合成した。 Biotinylated R8-Resin (764.3 mg) in TFA, phenol, thioanisole, water, ethanedithiol (83: 6.3: 4.3: 4.3: 2.1) mixed solution 4 at room temperature Stir for hours. After the reaction, the resin was removed by filtration. The filtrate was purified by preparative HPLC Chi was distilled off and the solvent was concentrated under reduced pressure (0.1% TFA / acetonitrile system) to obtain biotinylated R8-NH 2 · 8TFA salt of target (46.7 mg). Furthermore, biotinylated Penetratin-NH 2, biotinylated D-R8-NH 2, biotinylated ARKKAAKA-NH 2 biotinylated TAT (47-57) -NH 2, biotinylated HIV-TAT (48-60) -NH 2 has It was synthesized in the same manner as biotinylated R8-NH 2.

6−2.ビオチン化細胞膜透過性ペプチド溶液の調製
ビオチン化R8−NH・8TFA塩(1.49mg)を4.9mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlの溶液を調製した。
6-2. Preparation of biotinylated cell membrane permeable peptide solution Biotinylated R8-NH 2 · 8 TFA salt (1.49 mg) is dissolved in 4.9 ml of buffer (HBS-EP buffer / GE Healthcare) and diluted 10 times and centrifuged ( 12000 rpm, 10 minutes) and a solution of 30 μg / ml was prepared.

また、同様にビオチン化Penetratin−NH・7TFA塩(1.33mg)を4.4mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlのビオチン化Penetratin−NH・7TFA塩溶液を調製した。
同様にビオチン化D−R8−NH・8TFA塩(2.13mg)を7.1mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlの溶液を調製した。
ビオチン化ARKKAAKA−NH・4TFA塩(0.4mg)を1.3mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlの溶液を調製した。
ビオチン化TAT(47−57)−NH・8TFA塩(1.6mg)を5.4mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlの溶液を調製した。
ビオチン化HIV−TAT (48−60)−NH・8TFA塩(4.2mg)を13.9mlのバッファー(HBS−EP buffer /GEヘルスケア) に溶解させ10倍希釈後、遠心分離(12000 rpm,10分)し30μg/mlの溶液を調製した。
Similarly, biotinylated Penetratin-NH 2 · 7 TFA salt (1.33 mg) is dissolved in 4.4 ml of buffer (HBS-EP buffer / GE healthcare) and diluted 10-fold, and centrifuged (12000 rpm, 10 minutes) ) 30 μg / ml of biotinylated Penetratin-NH 2 · 7 TFA salt solution was prepared.
Similarly 10-fold diluted dissolved biotinylated D-R8-NH 2 · 8TFA salt (2.13 mg) in a buffer (HBS-EP buffer / GE Healthcare) in 7.1 ml, centrifuged (12000 rpm, 10 minutes ) A solution of 30 μg / ml was prepared.
Biotinylated ARKKAAKA-NH 2 · 4TFA salt (0.4 mg) and post-buffer 10x dissolved in (HBS-EP buffer / GE Healthcare) diluted in 1.3 ml, centrifuged (12000 rpm, 10 minutes) and 30 [mu] g / A solution of ml was prepared.
Biotinylated TAT (47-57) -NH 2 · 8 TFA salt (1.6 mg) is dissolved in 5.4 ml of buffer (HBS-EP buffer / GE Healthcare) and diluted 10-fold and centrifuged (12000 rpm, 10) The solution was prepared at 30 μg / ml.
Biotinylated HIV-TAT (48-60) -NH 2 · 8TFA salt (4.2 mg) is dissolved in 13.9 ml of buffer (HBS-EP buffer / GE healthcare) and diluted 10-fold and centrifuged (12000 rpm) , 10 minutes) and a solution of 30 μg / ml was prepared.

6−3.被験溶液の調製
6−カルボキシフルオレセイン(6−FAM)(3.75mg)を10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液1とした。
ローダミン123(1.95mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解させ遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液2とした。
フルオレセイン(3.32mg)を 20mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解させ遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液3とした。
FD4(8.19mg)を 2mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液4とした。
FD10(19.63mg)を 2mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液5とした。
リン酸プレドニゾロン(4.84mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製被験溶液6とした。
ペミロラストカリウム(2.67mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液7とした。
ホスミドマイシン(1.10mg)を 2mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液8とした。
リン酸ベタメサゾン(1.8mg)を 3.5mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液9とした。
ジクロフェナクナトリウム(1.1mg)を 3.5mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液10とした。
リン酸ヒドロコルチゾン(0.5mg)を 1.2mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し500μMの溶液を調製し被験溶液11とした。
ブリンゾラミド(3.8mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、1000μMの溶液を調製した。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液12とした。
ドルゾラミド塩酸塩(3.6mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、遠心分離(12000 rpm,10分)し1000μMの溶液を調製した。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液13とした。
オロパタジン塩酸塩(3.7mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、1000μMの溶液を調製した。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液14とした。
プロプラノロール塩酸塩(3.0mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、1000μMの溶液を調製した(溶液D)。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液15とした。
チモロールマレイン酸塩(4.3mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、1000μMの溶液を調製した。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液16とした。
ブリモニジン酒石酸塩(4.4mg)を 10mlのバッファー(HBS−EP buffer /GEヘルスケア)に溶解し、1000μMの溶液を調製した(溶液G)。本溶液をさらにバッファー(HBS−EP buffer /GEヘルスケア)で500μMに希釈後、遠心分離(12000 rpm,10分)し、被験溶液17とした。
6-3. Preparation of test solution 6-Carboxyfluorescein (6-FAM) (3.75 mg) is dissolved in 10 ml of buffer (HBS-EP buffer / GE Healthcare), centrifuged (12000 rpm, 10 minutes) and 500 μM solution It was prepared as a test solution 1.
Rhodamine 123 (1.95 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was designated as test solution 2.
Fluorescein (3.32 mg) was dissolved in 20 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was designated as test solution 3.
FD4 (8.19 mg) was dissolved in 2 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was designated as test solution 4.
FD10 (19.63 mg) was dissolved in 2 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was designated as test solution 5.
Prednisolone phosphate (4.84 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution as prepared test solution 6.
Pemirolast potassium (2.67 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was used as test solution 7.
Phosmidomycin (1.10 mg) was dissolved in 2 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was designated as test solution 8.
Betamethasone phosphate (1.8 mg) was dissolved in 3.5 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was used as a test solution 9.
Diclofenac sodium (1.1 mg) was dissolved in 3.5 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was used as a test solution 10.
Hydrocortisone phosphate (0.5 mg) was dissolved in 1.2 ml of buffer (HBS-EP buffer / GE Healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 500 μM solution, which was used as a test solution 11.
Brinzolamide (3.8 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE Healthcare) to prepare a 1000 μM solution. This solution was further diluted to 500 μM with buffer (HBS-EP buffer / GE healthcare), and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 12.
Dorzolamide hydrochloride (3.6 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) and centrifuged (12000 rpm, 10 minutes) to prepare a 1000 μM solution. The solution was further diluted with buffer (HBS-EP buffer / GE healthcare) to 500 μM and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 13.
Olopatadine hydrochloride (3.7 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) to prepare a 1000 μM solution. The solution was further diluted with buffer (HBS-EP buffer / GE healthcare) to 500 μM and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 14.
Propranolol hydrochloride (3.0 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE healthcare) to prepare a solution of 1000 μM (solution D). The solution was further diluted with buffer (HBS-EP buffer / GE healthcare) to 500 μM and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 15.
Timolol maleate (4.3 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE Healthcare) to prepare a 1000 μM solution. The solution was further diluted with buffer (HBS-EP buffer / GE healthcare) to 500 μM and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 16.
Brimonidine tartrate (4.4 mg) was dissolved in 10 ml of buffer (HBS-EP buffer / GE Healthcare) to prepare a solution of 1000 μM (solution G). The solution was further diluted with buffer (HBS-EP buffer / GE healthcare) to 500 μM and centrifuged (12000 rpm, 10 minutes) to obtain a test solution 17.

6−4.試験方法
表面プラズモン共鳴分析装置(BiacoreT200/GEヘルスケア)を用いて、ビオチン化R8−NH溶液又はビオチン化Penetratin−NH、ビオチン化D−R8−NH、ビオチン化ARKKAAKA−NH、ビオチン化TAT(47−57)−NH、ビオチン化HIV−TAT (48−60)−NHをそれぞれセンサーチップ(Series S Sensor Chip SA/GEヘルスケア)に固定化(flow rate : 5 μL/min、injection time:5min)した後、被験溶液を100μL注入した(flow rate : 20μL/min、injection time:5min)。バッファーは(HBS−EP buffer /GEヘルスケア)を用いた。被験溶液のインジェクション開始前のRU値(baseline)とインジェクション5分後のRU値(binding)を測定してその差(ΔRU)を求め、ΔRU×100/Mw(ここで、Mwは薬物の分子量(Da))を相互作用の指標とした。なお、被験溶液のインジェクション前後のRU値は、2流路使用により、R8−NH センサーチップ固定化面のRU値からセンサーチップの非固定化面のRU値をブランクとして引いた値を測定した。また、次の被験溶液を注入する前には、1MNaCl水溶液を30秒流しセンサーチップを再生した。
6-4. Test method Biotinylated R8-NH 2 solution or biotinylated Penetratin-NH 2 , biotinylated D-R8-NH 2 , biotinylated ARKKAAKA-NH 2 , biotin using a surface plasmon resonance analyzer (Biacore T200 / GE healthcare) Immobilized TAT (47-57) -NH 2 and biotinylated HIV-TAT (48-60) -NH 2 on the sensor chip (Series S Sensor Chip SA / GE Healthcare) (flow rate: 5 μL / min) , Injection time: 5 min), 100 μL of test solution was injected (flow rate: 20 μL / min, injection time: 5 min). The buffer used was (HBS-EP buffer / GE healthcare). Measure the RU value (baseline) before the start of injection of the test solution and the RU value (binding) after 5 minutes of injection to determine the difference (ΔRU), ΔRU × 100 / Mw (where Mw is the molecular weight of the drug ( Da)) was used as an indicator of interaction. The RU value before and after injection of the test solution was determined by subtracting the RU value of the non-immobilized surface of the sensor chip from the RU value of the R8-NH 2 sensor chip-immobilized surface as a blank by using two channels. . In addition, before injecting the next test solution, the sensor chip was regenerated by flowing 1 M NaCl aqueous solution for 30 seconds.

6−5.試験結果及び考察
試験結果を図6から図13に示す。R8−NHの共存により角膜上皮細胞への移行率の向上が確認された6−カルボキシフルオレセイン(6−FAM)及びフルオレセインは、表面プラズモン共鳴分析試験においてR8−NHへの高いアフィニティを示している(図6)。この事実は、細胞膜透過性ペプチドと薬物のアフィニティが、細胞膜透過性ペプチドを、眼組織への移行を促進すべき薬物の種類に応じて選択する際の指標となりうることを示唆している。
6-5. Test Results and Discussion The test results are shown in FIGS. R8-NH transfer rate improvement in the coexistence of the two corneal epithelial cells was confirmed 6-carboxyfluorescein (6-FAM) and fluorescein, show high affinity to R8-NH 2 in the surface plasmon resonance analysis test (Figure 6). This fact suggests that the affinity between the cell membrane permeable peptide and the drug can be an index in selecting the cell membrane permeable peptide depending on the type of drug to be promoted to the ocular tissue.

7.角膜上皮細胞による細胞膜透過性ペプチドの移行性試験1
7−1.6−FAM結合細胞膜透過性ペプチドの合成
Fmoc−L−アルギニンとRink amide PEGA resin(Merck Millipore,Novabiochem(登録商標))を用いて固相合成したFmoc−R8−レジン(0.140mmol)を20% Piperidine/DMF8ml中で1時間常温で撹拌し脱Fmocを行った。
レジンをDMF、ジクロロメタン、メタノールで洗浄後、6−カルボキシフルオレセイン(6−FAM)105mg,縮合剤(HBTU)160.0 mg,ジイソプロピルエチルアミン 73.0 μL,DMF 10mlを加え終夜室温で撹拌した。反応後、レジンを洗浄し乾燥した。
7. Transferability test of cell membrane permeable peptide by corneal epithelial cells 1
Synthesis of 7-1.6-FAM coupled cell membrane permeable peptide Fmoc-R8-resin (0.140 mmol) solid phase synthesized using Fmoc-L-arginine and Rink amide PEGA resin (Merck Millipore, Novabiochem (R)) ) Was stirred at room temperature for 1 hour in 8 ml of 20% Piperidine / DMF to carry out removal of Fmoc.
The resin was washed with DMF, dichloromethane, and methanol, then, 105 mg of 6-carboxyfluorescein (6-FAM), 160.0 mg of condensing agent (HBTU), 73.0 μL of diisopropylethylamine, and 10 ml of DMF were added and stirred overnight at room temperature. After the reaction, the resin was washed and dried.

6−FAM−R8−レジン(600.0 mg)をTFA、トリイソプロピルシラン、水、(95:2.5:2.5)混合溶液を用いて室温で6時間撹拌した。反応後レジンを濾過にて除去した。濾液を減圧濃縮し溶媒を留去したのち分取HPLC(0.1%TFA/アセトニトリル系)により精製を行い、目的の6−FAM−R8−NH・8TFA塩を得た(30.0mg)。また、6−FAM−Penetratin−NH・7TFA塩、6−FAM−TAT(47−57)−NH・8TFA塩、6−FAM−HIV−TAT (48−60)−NH・8TFA塩、6−FAM−pVec−NH・6TFA塩は、6−FAM−R8−NH・8TFA塩と同様の方法により合成した。 The 6-FAM-R8-resin (600.0 mg) was stirred at room temperature for 6 hours using a mixed solution of TFA, triisopropylsilane, water and (95: 2.5: 2.5). After the reaction, the resin was removed by filtration. The filtrate was purified by preparative HPLC Chi was distilled off and the solvent was concentrated under reduced pressure (0.1% TFA / acetonitrile system), to give the 6-FAM-R8-NH 2 · 8TFA salt of target (30.0 mg) . Also, 6-FAM-Penetratin-NH 2 · 7 TFA salt, 6-FAM-TAT (47-57) -NH 2 · 8 TFA salt, 6-FAM-HIV-TAT (48-60) -NH 2 · 8 TFA salt, 6-FAM-pVec-NH 2 · 6 TFA salt was synthesized by the same method as 6-FAM-R 8 -NH 2 · 8 TFA salt.

7−2.被験製剤の調製
6−FAM−R8−NH・8TFA塩(1.26mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−FAM−R8−NH・8TFA塩 溶液を調製し、実施例8とした。
6−FAM−penetratin−NH・7TFA塩(3.39mg)を0.96%PBS溶液に溶解し、100μMの溶液を調製し、実施例13とした。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−FAM−penetratin−NH・7TFA 塩溶液を調製し、実施例9とした。
6−FAM−HIV−TAT(47−57)−NH・8TFA塩(1.43mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−FAM−HIV−TAT(47−57)−NH・8TFA塩 溶液を調製し、実施例10とした。
6−FAM−HIV−TAT(48−60)−NH・8TFA塩(1.45mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−FAM−HIV−TAT(48−60)−NH・8TFA塩 溶液を調製し、実施例11とした。
6−FAM−pVec−NH・6TFA塩(1.32mg) を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−FAM−pVec−NH・6TFA塩 溶液を調製し、実施例12とした。
6−カルボキシフルレセイン(6FAM)(1.89mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、10μMの6−カルボキシフルレセイン(6FAM)溶液を調製し、比較例3とした。
6−カルボキシフルレセイン(6FAM)(3.76mg)を0.96%PBS溶液に溶解し、100μMの溶液に調製し、比較例4とした。
7-2. Preparation of test formulation 6-FAM-R8-NH 2 · 8TFA salt (1.26 mg) was dissolved in 0.96% PBS solution was prepared in a solution of 50 [mu] M. This solution was further diluted with a 0.96% PBS solution to prepare 10 μM of 6-FAM-R8-NH 2 · 8 TFA salt solution, which was named Example 8.
6-FAM-penetratin-NH 2 · 7 TFA salt (3.39 mg) was dissolved in 0.96% PBS solution to prepare a 100 μM solution, which is referred to as Example 13. This solution was further diluted with a 0.96% PBS solution to prepare 10 μM of 6-FAM-penetratin-NH 2 · 7TFA salt solution, which was named Example 9.
6-FAM-HIV-TAT (47-57) -NH 2 · 8 TFA salt (1.43 mg) was dissolved in 0.96% PBS solution to prepare a 50 μM solution. This solution was further diluted with 0.96% PBS solution to prepare 10 μM of 6-FAM-HIV-TAT (47-57) -NH 2 · 8 TFA salt solution, which was named Example 10.
6-FAM-HIV-TAT ( 48-60) -NH 2 · 8TFA salt (1.45 mg) was dissolved in 0.96% PBS solution was prepared in a solution of 50 [mu] M. This solution was further diluted with a 0.96% PBS solution to prepare 10 μM of 6-FAM-HIV-TAT (48-60) -NH 2 · 8 TFA solution, which was named Example 11.
6-FAM-pVec-NH 2 · 6 TFA salt (1.32 mg) was dissolved in 0.96% PBS solution to prepare a 50 μM solution. This solution was further diluted with 0.96% PBS solution to prepare 10 μM of 6-FAM-pVec-NH 2 .6TFA salt solution, which was named Example 12.
6-Carboxyflurescein (6FAM) (1.89 mg) was dissolved in 0.96% PBS solution to prepare a 50 μM solution. This solution was further diluted with a 0.96% PBS solution to prepare a 10 μM solution of 6-carboxyflurescein (6FAM), which was referred to as Comparative Example 3.
6-Carboxyflurescein (6FAM) (3.76 mg) was dissolved in 0.96% PBS solution to prepare a 100 μM solution, which was referred to as Comparative Example 4.

7−3.試験方法
ヒト3次元角膜上皮(LabCyte CORNEA−MODEL,J−TEC社製)を付属の培地中でCO2インキュベータ内にて1時間培養後、各ウェルの培地を除去し上記サンプルを50μLずつ添加し、CO2インキュベータ内で2時間暴露した。上清を除去し、細胞表面にPBS溶液を500uLずつ添加し、吸引除去する操作を3回繰り返した。PBS溶液を50uLずつ添加し、蛍光顕微鏡(BZ−X700)で各ウェルのフルオレセインの蛍光顕微鏡写真を撮影した(露光時間;50ms)。顕微鏡写真は画像解析ソフトImageJのAnalyzeメニューのMeasureモードを用いて解析した。
7-3. Test method After culturing human three-dimensional corneal epithelium (LabCyte CORNEA-MODEL, manufactured by J-TEC Co., Ltd.) for 1 hour in a CO 2 incubator in the attached medium, the medium in each well is removed and 50 μL of the above sample is added, It was exposed for 2 hours in a CO2 incubator. The supernatant was removed, and 500 μL each of PBS solution was added to the cell surface, and the operation of removing by suction was repeated three times. 50 uL of PBS solution was added, and a fluorescence micrograph of fluorescein in each well was taken with a fluorescence microscope (BZ-X700) (exposure time; 50 ms). Photomicrographs were analyzed using the Measure mode of the Analyze menu of the image analysis software ImageJ.

7−4.試験結果及び考察
試験結果を図14及び図15に示す。図14及び図15から分かるように、Penetratin、R8−NH、HIV−TAT (47−57)、HIV−TAT (48−60)及びpVECから誘導した蛍光性分子による蛍光が観測された。以上の結果により、細胞膜透過性ペプチド又はその塩は、角膜移行性を示すことが分かった。
7-4. Test Results and Discussion The test results are shown in FIG. 14 and FIG. As it can be seen from FIGS. 14 and 15, Penetratin, R8-NH 2 , HIV-TAT (47-57), fluorescence was observed by fluorescent molecules derived from HIV-TAT (48-60) and pVEC. From the above results, it was found that the cell membrane permeable peptide or a salt thereof exhibits corneal migration.

8.角膜上皮細胞による細胞膜透過性ペプチドの移行性試験2
8−1.6−FAM結合細胞膜透過性ペプチドの合成
上記7−1.と同様の手法により、目的の6−FAM−L17E−NH・10TFA塩、6−FAM−289−W−NH・7TFA塩、6−FAM−L−K6−NH・8TFA塩を得た。
8. Transferability test of cell membrane permeable peptide by corneal epithelial cells 2
Synthesis of 8-1.6-FAM linked cell membrane permeable peptide 7-1 above. In the same manner as to give 6-FAM-L17E-NH 2 · 10TFA salts purposes, 6-FAM-289-W -NH 2 · 7TFA salt, a 6-FAM-L-K6- NH 2 · 8TFA salt .

8−2.被験製剤の調製
6−FAM−L17E−NH・10TFA塩(1.58mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、100μMの6−FAM−L17E−NH・10TFA塩 溶液を調製し、実施例14とした。
6−FAM−289−W−NH・7TFA塩(0.36mg)を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、100μMの6−FAM−289−W−NH・7TFA塩 溶液を調製し、実施例15とした。
6−FAM−L−K6−NH・8TFA塩(2.51mg) を0.96%PBS溶液に溶解し、50μMの溶液に調製した。この溶液をさらに0.96%PBS溶液で希釈して、100μMの6−FAM−L−K6−NH・8TFA塩 溶液を調製し、実施例16とした。
8-2. Preparation of test formulation 6-FAM-L17E-NH 2 · 10TFA salt (1.58 mg) was dissolved in 0.96% PBS solution was prepared in a solution of 50 [mu] M. This solution was further diluted with a 0.96% PBS solution to prepare a 100 μM 6-FAM-L17E-NH 2 · 10 TFA salt solution, which was named Example 14.
6-FAM-289-W-NH 2 · 7 TFA salt (0.36 mg) was dissolved in 0.96% PBS solution to prepare a 50 μM solution. This solution was further diluted with 0.96% PBS solution to prepare 100 μM of 6-FAM-289-W-NH 2 · 7TFA salt solution, which was named Example 15.
6-FAM-L-K6-NH 2. 8TFA salt (2.51 mg) was dissolved in 0.96% PBS solution to make a 50 μM solution. This solution was further diluted with 0.96% PBS solution to prepare 100 μM of 6-FAM-L-K6-NH 2 · 8TFA salt solution, which was named Example 16.

8−3.試験方法
ヒト3次元角膜上皮(LabCyte CORNEA−MODEL,J−TEC社製)を付属の培地中でCO2インキュベータ内にて1時間培養後、各ウェルの培地を除去し上記サンプルを50μLずつ添加し、CO2インキュベータ内で2時間暴露した。上清を除去し、細胞表面にPBS溶液を500uLずつ添加し、吸引除去する操作を3回繰り返した。PBS溶液を50uLずつ添加し、蛍光顕微鏡(BZ−X700)で各ウェルのフルオレセインの蛍光顕微鏡写真を撮影した(露光時間;10ms)。顕微鏡写真は画像解析ソフトImageJのAnalyzeメニューのMeasureモードを用いて解析した。
8-3. Test method After culturing human three-dimensional corneal epithelium (LabCyte CORNEA-MODEL, manufactured by J-TEC Co., Ltd.) for 1 hour in a CO 2 incubator in the attached medium, the medium in each well is removed and 50 μL of the above sample is added, It was exposed for 2 hours in a CO2 incubator. The supernatant was removed, and 500 μL each of PBS solution was added to the cell surface, and the operation of removing by suction was repeated three times. 50 uL of PBS solution was added, and a fluorescence micrograph of fluorescein in each well was taken with a fluorescence microscope (BZ-X700) (exposure time; 10 ms). Photomicrographs were analyzed using the Measure mode of the Analyze menu of the image analysis software ImageJ.

8−4.試験結果及び考察
試験結果を図16に示す。図16から分かるように、Penetratin、L17E、289−W及びL−K6から誘導した蛍光性分子による蛍光が観測された。以上の結果により、細胞膜透過性ペプチド又はその塩は、角膜移行性を示すことが分かった。
8-4. Test Results and Discussion The test results are shown in FIG. As can be seen from FIG. 16, fluorescence by fluorescent molecules derived from Penetratin, L17E, 289-W and L-K6 was observed. From the above results, it was found that the cell membrane permeable peptide or a salt thereof exhibits corneal migration.

9.摘出眼球による細胞膜透過性ペプチドの移行性試験1
9−1.被験製剤の調製
上記7−2.と同様の方法で調製した、10μMの6−FAM−R8−NH2・8TFA塩 溶液(実施例8)、10μMの6−FAM−penetratin−NH2・7TFA 塩溶液(実施例9)及び10μMの6−FAM−HIV−TAT(47−57)−NH2・8TFA塩 溶液(実施例10)を用いた。
9. Transferability test of cell membrane permeable peptide by isolated eye 1
9-1. Preparation of test preparation: 7-2. Prepared in the same manner as above, 10 μM 6-FAM-R8-NH2 • TFA salt solution (Example 8), 10 μM 6-FAM-Penetratin-NH2 · 7 TFA salt solution (Example 9) and 10 μM 6- FAM-HIV-TAT (47-57) -NH2 8 TFA solution (Example 10) was used.

9−2.試験方法
12ウェルプレートの各ウェルの上記サンプルを2mlずつ添加したのち、日本白色家兎の摘出眼球を角膜が下になるように各ウェル中のサンプル溶液に浸漬させ、1時間および4時間暴露した。暴露後、各眼球内の房水をシリンジで採取し、蛍光プレートリーダーで房水の蛍光強度を測定した。また、各眼球の角膜を切除し、プレパラート上にのせ、蛍光顕微鏡で各角膜の蛍光顕微鏡写真を撮影した。撮影した顕微鏡写真は画像解析ソフトImageJのAnalyzeメニューのMeasureモードを用いて解析した。
9-2. Test method 2 ml of the above sample from each well of the 12-well plate was added, and then the excised eye of a Japanese white rabbit was immersed in the sample solution in each well with the cornea facing down, and exposed for 1 hour and 4 hours . After exposure, the aqueous humor in each eye was collected by a syringe and the fluorescence intensity of the aqueous humor was measured with a fluorescence plate reader. In addition, the cornea of each eyeball was excised, placed on a slide, and a fluorescence microscope photograph of each cornea was taken with a fluorescence microscope. The photomicrographs taken were analyzed using the Measure mode of the Analyze menu of the image analysis software ImageJ.

9−3.試験結果及び考察(角膜移行性)
試験結果を図17(1時間暴露)及び図18(4時間暴露)に示す。図17及び図18から分かるように、Penetratin、R8−NH及びHIV−TAT (47−57)から誘導した蛍光性分子による蛍光が観測された。以上の結果により、細胞膜透過性ペプチド又はその塩は、摘出眼球においても角膜移行性を示すことが分かった。
9-3. Test results and discussion (corneal migration)
The test results are shown in FIG. 17 (1 hour exposure) and FIG. 18 (4 hour exposure). As it can be seen from FIGS. 17 and 18, fluorescence by fluorescent molecules derived from Penetratin, R8-NH 2 and HIV-TAT (47-57) was observed. From the above results, it was found that the cell membrane permeable peptide or a salt thereof exhibits corneal migration even in the isolated eye.

9−4.試験結果及び考察(房水移行性)
試験結果を表4に示す。
9-4. Test results and discussion (transferability to aqueous humor)
The test results are shown in Table 4.

表4から分かるように、Penetratin、R8−NH及びHIV−TAT (47−57)から誘導した蛍光性分子は、いずれも房水中への移行が確認された。特に、Penetratinから誘導した蛍光性分子は、投与4時間後において、高い房水移行を示した。以上の結果により、細胞膜透過性ペプチド又はその塩は、摘出眼球においても房水移行性を示すことが分かった。 As can be seen from Table 4, a fluorescent molecule derived from Penetratin, R8-NH 2 and HIV-TAT (47-57) are both transition to aqueous humor was confirmed. In particular, fluorescent molecules derived from Penetratin showed high aqueous humor transfer 4 hours after administration. From the above results, it was found that the cell membrane permeable peptide or a salt thereof exhibits aqueous humor transferability also in the isolated eye.

10.安全性試験3
10−1.被験製剤の調製
上記7−2.で調製した実施例8、実施例9、実施例10、実施例11、実施例12及び実施例13を用いた。
10. Safety test 3
10-1. Preparation of test preparation: 7-2. Example 8, Example 9, Example 10, Example 11, Example 12, and Example 13 which were prepared by this were used.

10−2.試験方法
上記3−1.と同様の方法により、角膜上皮の生細胞率を算出した。
10−3.試験結果及び考察
試験結果を図19及び図20に示す。図19及び図20から分かるように、6−FAM−R8−NH・8TFA塩のほか6−FAM−penetratin−NH・7TFA塩、6−FAM−HIV−TAT (47−57)−NH・8TFA塩、6−FAM−HIV−TAT (48−60)−NH・8TFA塩及び6−FAM−pVEC−NH・6TFA塩も角膜細胞に対して細胞障害性を示さなかった。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、眼科適用できる安全性を示すことが分かった。
10-2. Test method 3-1 above. The viable cell rate of the corneal epithelium was calculated by the same method as in.
10-3. Test Results and Discussion The test results are shown in FIG. 19 and FIG. As can be seen from FIG. 19 and FIG. 20, in addition to the 6-FAM-R8-NH 2. 8TFA salt, 6-FAM-penetratin-NH 2 7TFA salt, 6-FAM-HIV-TAT (47-57) -NH 2 The 8TFA salt, 6-FAM-HIV-TAT (48-60) -NH 2 · 8TFA salt and 6-FAM-pVEC-NH 2 · 6TFA salt also showed no cytotoxicity on corneal cells. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof exhibits ophthalmologically applicable safety.

11.安全性試験4
11−1.被験製剤の調製
上記7−2.で調製した比較例3及び実施例4、並びに、上記8−2.で調製した実施例14、実施例15及び実施例16を用いた。
11. Safety test 4
11-1. Preparation of test preparation: 7-2. Comparative Example 3 and Example 4 prepared in the above, and 8-2. Example 14, Example 15, and Example 16 which were prepared by this were used.

11−2.試験方法
上記4−2.と同様の方法により、角膜上皮の生細胞率を算出した。
11-2. Test method 4-2. The viable cell rate of the corneal epithelium was calculated by the same method as in.

11−3.試験結果及び考察
試験結果を図21に示す。図21から分かるように、6−FAM−penetratin−NH・7TFA塩のほか6−FAM−L17E−NH・10TFA塩、6−FAM−289−W−NH・7TFA塩及び6−FAM−L−K6−NH・8TFA塩も角膜細胞に対して細胞障害性を示さなかった。以上の結果より、細胞膜透過性ペプチド又はその塩を含有する医薬組成物は、眼科適用できる安全性を示すことが分かった。
11-3. Test Results and Discussion The test results are shown in FIG. As can be seen from FIG. 21, 6-FAM-Penetratin-NH 2 · 7 TFA salt and 6-FAM-L 17 E-NH 2 · 10 TFA salt, 6-FAM-289-W-NH 2 · 7 TFA salt and 6-FAM- L-K6-NH 2 · 8 TFA salt also showed no cytotoxicity to corneal cells. From the above results, it has been found that a pharmaceutical composition containing a cell membrane permeable peptide or a salt thereof exhibits ophthalmologically applicable safety.

Claims (6)

薬物と、前記薬物と共有結合せずに存在する細胞膜透過性ペプチド又はその塩とを含有する眼科用医薬組成物。   An ophthalmic pharmaceutical composition comprising a drug and a cell membrane-permeable peptide or a salt thereof present without being covalently linked to the drug. 細胞膜透過性ペプチドがR8、R8−NH、Penetratin RQIKIWFQNRRMKWKK、HIV−TAT (47−57) YGRKKRRQRRR、HIV−TAT (48−60) GRKKRRQRRRPPQ、pVEC LLIILRRRIRKQAHAHSK−NH、 Transportan (TP10) AGYLLGKINLKALAALAKKIL−NH、Protein transduction domains sequence ARKKAAKA、289−W RWIKIWFWWRRMKWKK、L17E IWLTALKFLGKHAAKHEAKQQLSKL、及びL−K6 IKILSKIKKLLKからなる群より選択される一又は複数の細胞膜透過性ペプチドである、請求項1に記載の組成物。 Cell membrane permeable peptide is R8, R8-NH 2, Penetratin RQIKIWFQNRRMKWKK, HIV-TAT (47-57) YGRKKRRQRRR, HIV-TAT (48-60) GRKKRRQRRRPPQ, pVEC LLIILRRRIRKQAHAHSK-NH 2, Transportan (TP10) AGYLLGKINLKALAALAKKIL-NH 2, The set according to claim 1, which is one or more cell membrane-permeable peptides selected from the group consisting of Protein transduction domains sequence ARKKAAKA, 289-W RWI KIWF WWRRM KWKK, L17E IWLTALKFLG HAAKHE AKQ QLSKL, and L-K6 IKILS KIKKLLK. Affair. 細胞膜透過性ペプチド又はその塩を0.00001〜10%(w/v)含有する、請求項1又は2に記載の組成物。   The composition according to claim 1 or 2, containing 0.00001 to 10% (w / v) of cell membrane permeable peptide or a salt thereof. 細胞透過性ペプチド又はその塩と、薬物とのモル比が、1000:1〜1:1000である、請求項1〜3のいずれかに記載の組成物。   The composition according to any one of claims 1 to 3, wherein the molar ratio of the cell permeable peptide or the salt thereof to the drug is 1000: 1 to 1: 1000. 細胞膜透過性ペプチド又はその塩を含有し、送達対象の薬物と共有結合させずに用いられる眼科用ドラッグデリバリーシステム。   An ophthalmic drug delivery system containing a cell membrane permeable peptide or a salt thereof and used without being covalently linked to a drug to be delivered. 眼科用医薬組成物に細胞膜透過性ペプチド又はその塩を薬物と共有結合させずに含有させることによる、前記薬物の眼組織への移行性を向上させる方法。   A method for improving the transferability of a drug into ocular tissue by including a cell membrane permeable peptide or a salt thereof in a pharmaceutical composition for ophthalmic use without covalently binding the drug to the drug.
JP2018227946A 2017-12-06 2018-12-05 Ophthalmic pharmaceutical composition containing cell membrane-permeable peptide Pending JP2019099578A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017234651 2017-12-06
JP2017234651 2017-12-06

Publications (1)

Publication Number Publication Date
JP2019099578A true JP2019099578A (en) 2019-06-24

Family

ID=66975908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018227946A Pending JP2019099578A (en) 2017-12-06 2018-12-05 Ophthalmic pharmaceutical composition containing cell membrane-permeable peptide

Country Status (1)

Country Link
JP (1) JP2019099578A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099692A (en) * 2021-11-30 2022-03-01 西南大学 Antibacterial peptide-cell membrane compound, preparation method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134537A1 (en) * 2009-05-20 2010-11-25 東レ株式会社 Cell membrane-permeable peptides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010134537A1 (en) * 2009-05-20 2010-11-25 東レ株式会社 Cell membrane-permeable peptides

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EUR. J. NANOMED., vol. Vol.5(3), JPN6022030701, 2013, pages 141 - 158, ISSN: 0004976677 *
F. DE COGAN ET AL.: "Topical Delivery of Anti-VEGF Drugs to the Ocular Posterior Segment Using Cell-Penetratin", IOVS, vol. 58 (5), JPN7022003481, May 2017 (2017-05-01), pages 2578 - 2590, ISSN: 0004833722 *
梶原直樹ら: "細胞膜透過性ペプチド", 日薬理誌, vol. 141, JPN7022003482, 2013, pages 220 - 221, ISSN: 0004833723 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114099692A (en) * 2021-11-30 2022-03-01 西南大学 Antibacterial peptide-cell membrane compound, preparation method and application

Similar Documents

Publication Publication Date Title
Pescina et al. Cell penetrating peptides in ocular drug delivery: State of the art
JP5653214B2 (en) Cell membrane permeable peptide
ES2784551T3 (en) New JNK inhibitory molecules for the treatment of various diseases
TWI776821B (en) Alpha-v beta-6 integrin ligands
CN101490081A (en) Fusion peptide for inhibiting interaction of neuronal NMDA receptor (NMDAR) and NMDAR interacting proteins
KR20190062496A (en) Dosage regimen for controlled-release PTH compound
JP2024513391A (en) Conjugated hepcidin mimetics
US10632187B2 (en) Hemagglutinin-binding peptide
EP3263582B1 (en) Polymer compound which has membrane-permeable peptide in side chain
JP2019099578A (en) Ophthalmic pharmaceutical composition containing cell membrane-permeable peptide
JP2013504519A (en) Lacritin partial peptide
JP6583411B2 (en) Drug complex
US11357863B2 (en) Peptide conjugates
EP3237434A1 (en) Cell penetrating peptides
US6664040B2 (en) Compositions and methods for delivery of a molecule into a cell
TW202216204A (en) VEGF-binding peptide
Morofuji et al. Exploring Cell-Penetrating Peptides as Penetration Enhancers in Eye Drop Formulations Using a Reconstructed Human Corneal Epithelial Model
JP2022115683A (en) Suspension, drug delivery system, and method for improving transmission of poorly water-soluble drugs to tissues
Shinga et al. L17ER4: A cell-permeable attenuated cationic amphiphilic lytic peptide
WO2021040022A1 (en) Cell-penetrating peptide and use thereof
US20190177370A1 (en) Peptide or pharmaceutically acceptable salt thereof, or prodrug thereof
JP2021514183A (en) Modified immunomodulatory peptide
WO2023190675A1 (en) Peptide complex having trkb binding activity
JP2023119399A (en) Ophthalmologic pharmaceutical composition, method for promoting drug delivery into eye, fatty acid penetratin, and method for producing ophthalmologic pharmaceutical composition
WO2022202761A1 (en) C-met protein-binding peptide complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131