JP2019095190A - Direct water heat collective type solar heat utilization system - Google Patents

Direct water heat collective type solar heat utilization system Download PDF

Info

Publication number
JP2019095190A
JP2019095190A JP2019029582A JP2019029582A JP2019095190A JP 2019095190 A JP2019095190 A JP 2019095190A JP 2019029582 A JP2019029582 A JP 2019029582A JP 2019029582 A JP2019029582 A JP 2019029582A JP 2019095190 A JP2019095190 A JP 2019095190A
Authority
JP
Japan
Prior art keywords
water
valve
hot water
heat
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019029582A
Other languages
Japanese (ja)
Inventor
勝郎 黒保
Katsuro Kuroyasu
勝郎 黒保
尚夫 小泉
Hisao Koizumi
尚夫 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ENETECS KK
TOYO SOLAR SYSTEM KENKYUSHO KK
Original Assignee
ENETECS KK
TOYO SOLAR SYSTEM KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ENETECS KK, TOYO SOLAR SYSTEM KENKYUSHO KK filed Critical ENETECS KK
Publication of JP2019095190A publication Critical patent/JP2019095190A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a solar heat utilization system capable of discharging freezing preventive water even if a certain level difference is present in heat collective pipes.SOLUTION: This invention relates to a direct water heat collective type solar heat utilization system having a device capable of discharging water in a solar energy collector and water in a solar energy collector pipe and preventing freezing of water. By providing an automatic discharging valve also opened when a loss of an electric power supply occurs and a device for forcedly sucking and draining by a blower residual water in the solar energy collector and the solar energy collector pipe that could not be fully removed through natural gravitational dropping after opening of the drain valve, it is possible to drain water without leaving any water. An air water separation tank is installed in front of the suction port of the blower in order to prevent the blower from being damaged upon suction of water into the blower.SELECTED DRAWING: Figure 6

Description

低コストで、集熱性能の良い太陽熱利用システムは集熱器に直接水を流して集熱する方式であると考えられるが、集熱器の中の水の凍結によって、集熱器が破損することを防ぐため、集熱器には不凍液を流して集熱する方式が広く用いられ、そのためコスト上昇と、集熱効率の低下を招いているが、本発明は集熱器の中および集熱配管の中の水を排水して、凍結防止をすることができる装置を備えた直接水集熱式太陽熱利用システムに関する。   A low cost solar collection system with good heat collection performance is considered to be a method of collecting water by directly flowing water to the heat collector, but the water collector in the collector will be damaged due to the water freezing. In order to prevent the problem, the method of collecting the heat by flowing the antifreeze liquid is widely used for the heat collector, which causes the cost increase and the decrease of the heat collection efficiency, but the present invention relates to the inside of the heat collector and the heat collecting pipe The present invention relates to a direct water collecting type solar heat utilization system equipped with a device capable of draining water in the container to prevent freezing.

再生可能エネルギー利用の中で太陽熱利用給湯および太陽熱利用暖房システムは比較的低温度のエネルギー利用であり、年間を通して利用される用途なので太陽熱が容易にまた経済性にも適う利用ができるものと期待され、各種の公的助成なども行われてきた。しかし、我が国では1983年ころをピークにその後、太陽熱利用システムの年間販売数は現在に至るまでほぼ減少傾向をたどっている。その原因の一つは太陽集熱の方式が太陽集熱器に直接水を流して集熱する最も単純で、低コストと考えられたシステムが実際に販売施工すると凍結破損事故を無くすることが困難と考えられて、不凍液集熱方式が一般化してコストと性能の両面で不利になったことがあげられる。凍結防止の一般的な方法は凍結しそうな温度条件になったら凍結の恐れのある集熱器および集熱配管の中の水を排水して、凍結破損を防ぐ方法である。温度条件により自動的に排水弁が開く自動凍結防止弁が弁のメーカーで各種のものが開発され、用いられたこともある。しかし、水が完全に抜けるためには排水弁に向かって配管が下り勾配になっていなければならず配管施工管理が行き届かず、凍結破損事故が後を絶たず結局不凍液集熱式が一般化したという歴史がある。   Among renewable energy applications, solar water heating systems and solar heating systems are relatively low temperature energy applications, and it is expected that solar heat can be used easily and economically, as it is used throughout the year And various public subsidies. However, after peaking in around 1983 in Japan, the number of annual sales of solar thermal utilization systems has been on a downward trend until today. One of the reasons is that the method of solar collection is the simplest method of collecting water by flowing water directly to the solar collector, and if the system considered to be low cost is actually sold and installed, there is no freezing damage accident It is considered to be difficult, and the antifreeze liquid collection system has become generalized and disadvantageous in terms of both cost and performance. A common method of freeze protection is to drain the water in the collector and collector piping which may freeze when temperature conditions are likely to freeze to prevent freeze damage. Various types have been developed and used by manufacturers of automatic antifreeze valves that automatically open drain valves according to temperature conditions. However, in order to completely drain water, the piping must be sloped down toward the drainage valve, and the piping construction management can not be reached, and the freeze damage accident will not stop after all, and the antifreeze liquid heat collection type becomes general after all Has a history of

しかし太陽熱システムのメーカーが直接水集熱方式をみんな簡単にあきらめて不凍液方式に移行したわけではなく、直接水集熱方式で凍結破損しないものを何とか作ろうといろいろの試みがなされている。図1は集熱器の中で水が凍結しても破損しない集熱器として開発された集熱板である。薄いステンレス板2枚をシーム溶接で貼りあわせて、そのステンレス板はプレスで絞って通水用の溝が作られており2枚はり合わせて周囲および、通水路の間を1列おきにシーム溶接すると通水路の中で水が凍結膨張しても通水路は薄いステンレスなので通水路が膨れて破損することはない。しかし通水路が膨張して凍結しても破損しないということは水圧が大きい場合は通水路が膨張して破損する恐れがある。つまり水圧がほとんどかからないようなシステムの場合は使えるが一般的な水道圧が作用するようなシステムでは利用できない。したがって、集熱器と同じ高さに解放状態の貯湯槽を設置する自然循環式の温水システムに主に用いられ、集熱器を屋根上に、貯湯槽を地上に置いて、貯湯タンクはタンク下部から水道直結の水圧がかかる強制循環システムには使うことができなかった。   However, the manufacturers of solar thermal systems did not simply give up directly to the water collection system and shifted to the antifreeze system, and various attempts have been made to manage the direct water collection system to prevent freezing and breakage. FIG. 1 shows a heat collection plate developed as a heat collector which is not broken even if water is frozen in the heat collector. Two thin stainless steel plates are bonded by seam welding, and the stainless steel plate is squeezed with a press to form a water passage groove, and the two plates are bonded together and seam welded every other row between the periphery and the water passage Then, even if water freezes and expands in the water passage, the water passage is thin stainless steel so that the water passage does not expand and break. However, the fact that the water passage does not break even if it expands and freezes may cause the water passage to expand and be damaged if the water pressure is large. In other words, it can be used for systems where little water pressure is applied, but it can not be used for systems where general water pressure acts. Therefore, it is mainly used for a natural circulation type hot water system in which the open hot water storage tank is installed at the same height as the heat collector, and the hot water storage tank is a tank with the hot water storage tank on the roof and the hot water tank on the ground. It could not be used for a forced circulation system that requires water pressure directly connected to the water supply from the bottom.

直接水集熱太陽熱温水システムの他の一例を図2に示す。これは貯湯タンクが無圧解放型で、上部に設置されている集熱器にポンプで水を押し上げて集熱器に水を満たし、集熱器内で日射により十分に温度が上昇すると電動3方弁が開き、集熱器内のお湯が落差によって貯湯タンクの上部に落下回収される。この動作を繰り返して集熱する方式である。この方式では集熱器まで、水を押し上げる吐出圧力、並びに流量も大きいポンプが必要であること、およびお湯を出す場合にも出力の大きい出湯ポンプが必要であるなどの欠点が多い。また集熱器への配管が貯湯タンクに向かって完全に下り勾配になっていなくて途中にたるみなどがあると配管のその部分に水が残り凍結する恐れがあるなどの問題もある。   Another example of a direct water collection solar water heating system is shown in FIG. This is a non-pressure release type hot water storage tank, the pump is pushed up water in the collector installed in the upper part to fill the collector with water, and when the temperature rises sufficiently by the solar radiation in the collector, the electric 3 The directional valve opens, and the hot water in the heat collector drops and is collected at the top of the hot water storage tank by a drop. This operation is repeated to collect heat. In this method, there are many drawbacks such as the need for a pump having a large discharge pressure for pushing up water and a large flow rate, and the need for a pump having a large output even when hot water is output. In addition, there is also a problem that water may remain in that portion of the piping if the piping to the heat collector is not completely inclined downward toward the hot water storage tank and there is slack on the way or the like, which may cause freezing.

特許5535554号公報Patent No. 5535554 特許2662938号公報Patent No. 2662938

太陽熱利用システムにおける集熱システムは最も単純な水を集熱器に流して集熱する方式は前述のように集熱器内での凍結防止が以外に難しく、現在は集熱媒体として不凍液を用い、温水を作るときは不凍液から熱交換する図3に示すような貯湯槽の中に熱交換器を入れたシステムが多く用いられている。図3に示す従来の一般的な不凍液集熱方式の太陽熱温水システムでは朝、日射が強くなって太陽集熱が始まっても貯湯槽の湯温はすぐには上がってこないので、高い温度のお湯を沸かせるだけの日射強度があるにかかわらず太陽集熱で沸かしたお湯が使えないという不都合がある。この様な不具合がなく朝に集熱が始まるとすぐに太陽熱で温められたお湯が使えるシステムを図4に示す。図4において1は太陽集熱器、2は貯湯槽を示し、8は集熱板に取り付けたサーミスタなどの温度センサーで、集熱器に日射が当たり、集熱板温度が上がってセンサー8が所定温度、例えば45℃以上になると5で示す循環ポンプが起動して、貯湯槽の水が貯湯槽底部から循環ポンプ5を経て集熱器に入り、集熱器で暖められたお湯が貯湯槽上部に戻る仕組みになっている。循環ポンプ5はセンサー8からの信号で回転数が制御できる回転数可変のポンプであり、貯湯槽上部に戻るお湯の温度は常に所定温度以上、例えば45℃以上になるようにポンプ回転数が制御され、45℃に達しないときは集熱が停止する。この様なポンプ回転数制御をして集熱すると20℃や30℃の水が貯湯槽上部に戻って来て、お湯の層を撹拌して冷やしてしまうことが起こらないので、貯湯槽上部にお湯を層状に溜めることができる。したがって集熱が始まって短時間のうちにお湯を使うことができる。   The heat collection system in a solar thermal system uses the simplest method of collecting water by passing it through a collector, as described above, in which it is difficult to prevent freezing in the collector. Currently, antifreeze is used as a heat collection medium When making warm water, a system is widely used in which a heat exchanger is placed in a hot water storage tank as shown in FIG. 3 for exchanging heat from antifreeze liquid. In the conventional general antifreeze liquid solar thermal water heating system shown in FIG. 3, the hot water temperature of the water storage tank does not immediately rise even if the solar radiation gets stronger in the morning due to strong solar radiation, so high temperature hot water There is a disadvantage that the boiling water can not be used by solar heat collection despite the solar radiation intensity to boil. FIG. 4 shows a system that can use solar-heated water as soon as heat collection starts in the morning without such a defect. In FIG. 4, 1 indicates a solar heat collector, 2 indicates a hot water storage tank, 8 indicates a temperature sensor such as a thermistor attached to a heat collecting plate, solar radiation hits the heat collecting plate, the temperature of the heat collecting plate rises, and the sensor 8 When the temperature reaches 45 ° C, for example, the circulating pump shown at 5 starts and the water in the hot water storage tank enters the heat collector from the bottom of the hot water storage tank through the circulating pump 5, and the hot water warmed by the heat collector is a hot water storage tank It is a mechanism to return to the top. The circulation pump 5 is a variable rotation speed pump whose rotation speed can be controlled by a signal from the sensor 8, and the pump rotation speed is controlled so that the temperature of the hot water returned to the upper part of the hot water tank is always above a predetermined temperature, for example 45 ° C. When it does not reach 45 ° C, heat collection stops. When collecting heat with such pump speed control, water at 20 ° C or 30 ° C comes back to the upper part of the hot water storage tank, and it does not happen that the layer of hot water is stirred and cooled. Hot water can be accumulated in layers. Therefore, hot water can be used within a short time after collecting heat.

水直接集熱式において、集熱器における凍結防止のための図1や図2に示すような方式を、図4のシステムのような利点のあるシステムに適用できるかどうかは別の問題である。図4のシステムにおいては集熱器と集熱配管内の凍結防止水抜きのために集熱器への送水管と集熱器からの温水戻り管に排水用電磁弁23が設置され、集熱器の温度が凍結温度に近づいた場合に排水用電磁弁を開くと集熱器と配管から水が排出され、空気抜き弁10から空気が吸入され水と置換されていく。貯湯槽内の水は電磁弁17が閉じており、またタンク上部の配管には逆止弁または電力動作の弁23があるので水は遮断されて貯湯槽の水は排水されない。しかし停電や電気のブレーカが落ちていて電源が遮断されていると凍結温度に達したら排水弁が開かず凍結破損に至る不安は残る。また集熱器への配管が排水弁に向かって完全に下り勾配に配管されているなら配管内の水は完全に排水されるが、逆勾配の箇所があると水が配管内に残って凍結の恐れが排除できない。   In the direct water collection system, it is another matter whether it is possible to apply the system as shown in FIG. 1 or 2 for preventing freezing in the collector to an advantageous system such as the system of FIG. . In the system of FIG. 4, a solenoid valve 23 for drainage is installed in the water collecting pipe and the hot water return pipe from the heat collecting pipe to the heat collecting pipe to remove the antifreeze in the heat collecting pipe and the heat collecting pipe. When the temperature of the container approaches the freezing temperature, when the drainage solenoid valve is opened, water is drained from the heat collector and the piping, air is sucked from the air vent valve 10, and is replaced with water. The water in the hot water storage tank is closed by the solenoid valve 17 and there is a check valve or a power operation valve 23 in the piping at the top of the tank, so the water is shut off and the water in the hot water storage tank is not drained. However, if the power supply is cut off due to a power failure or an electrical breaker being shut off, the drainage valve does not open when the freezing temperature is reached, and there remains concern about freezing damage. Also, if the piping to the collector is completely inclined toward the drainage valve, the water in the piping will be completely drained, but if there is a reverse gradient, water will remain in the piping and freeze The fear of can not be excluded.

前述のように太陽熱直接水集熱システムにおいて、凍結の恐れのないシステムを実現のために種々の試みがなされてきたが、実現は容易ではないことが分かって、不凍液集熱方式が一般化した経緯がある。しかし太陽熱利用の普及のためには性能とコスト両面から考えて直接水集熱方式の利点はやはり大きく、その実現を再検討しなければならない。先ず図4のシステムの電磁排水弁23に代わり、電動モーターで弁が閉じ、電気を遮断するとスプリングで弁が開くようなスプリングリターン電動弁14を用いると電源喪失の時にも弁が開き、万一にも凍結の不安のないシステムにすることができる。ただし、スプリングリターン電動弁は電磁弁よりコストは上がるので、図4に示すような2個の弁を使用せずに図5に示すようにスプリングリターン電動排水弁14は1個だけにして、排水弁側への流れだけを許容する逆止弁22(又は後述する電磁弁または電動弁(以下、同旨))を1個入れて、このスプリングリターン電動弁14を開くと集熱器への水の供給側配管6の水は直接に電動排水弁14から排出され、集熱器からの戻り側配管7内の水は逆止弁22を経て電動排水弁14から排出される。つまり1個のスプリングリターン電動排水弁14によって両側の配管の排水ができる。集熱運転中はポンプに近い集熱器への供給側配管6内の水圧の方が戻り側配管7より高いので、逆止弁を通る流れは遮断され、集熱運転は逆止弁の設置によって不都合が起きることはない。   As mentioned above, various attempts have been made to realize a system that does not have the possibility of freezing in a solar direct water collection system, but it turned out that the realization is not easy, and the antifreeze liquid collection system has become generalized There is a history. However, in order to spread solar heat utilization, the advantages of the direct water collection system are still significant considering both performance and cost, and its realization must be reconsidered. First, in place of the solenoid drain valve 23 in the system of FIG. 4, when the valve is closed by the electric motor and the spring is opened when the electricity is cut off, the spring opens the valve. Even a system with no fear of freezing can be made. However, since the cost of the spring return motor valve is higher than that of the solenoid valve, only one spring return motor drain valve 14 is used as shown in FIG. 5 without using two valves as shown in FIG. Insert one check valve 22 (or a solenoid valve or motor-operated valve (hereinafter referred to as the same) described later) that allows only flow to the valve side, and open this spring return motor-operated valve 14 to open the water collector. The water on the supply side pipe 6 is directly drained from the electric drain valve 14, and the water in the return side pipe 7 from the heat collector is drained from the electric drain valve 14 via the check valve 22. That is, drainage of piping on both sides can be performed by one spring return electric drainage valve 14. During the heat collecting operation, the water pressure in the supply side pipe 6 to the heat collector close to the pump is higher than that of the return side pipe 7, so the flow through the check valve is shut off and the heat collecting operation is installed with the check valve Does not cause any inconvenience.

集熱配管6,7が排水弁に向かって完全に下り勾配に配管されているなら、集熱器と集熱配管6,7の内部の水は完全に排出されるが、逆勾配の箇所が少しでもあれば水が配管内に残る可能性が生ずる。集熱配管6,7が排水弁に向かって完全に下り勾配に配管するように工事管理することは、住宅用のシステムのように規模が小さいシステムがたくさんある場合は工事管理を徹底することが困難で、凍結破損の不安をなくすことが難しい。そのような不安をなくするものとして本提案は配管に多少の逆勾配の箇所が生じても排水ができる方法として、機械的に吸引排水する仕組みを提案するものである。集熱器は日当たりのよい位置に設置しなければならないということから通常は屋根上など比較的高い位置に設置され、貯湯槽は水を蓄える重量が重いものであるから地上に設置することが望ましく、したがって貯湯槽の近くに設置される排水弁に向かって集熱配管はほぼ下り勾配に設置されるわけである。しかし、逆勾配の箇所を完全になくするということになればこれは難しい場合も想定され、排水弁を開いただけでは、配管内に残水が生ずることが懸念される。そこで、配管内の水がほぼ出切るころに 図5に示すように排水弁の先に空気吸引ブロアー15を設置して機械的に吸引排水するものである。排水弁を開いて自然落水の後の配管内は一般的にわずかな残水と大部分は空気が満たされている状態になっている。空気を吸引するブロアーによる気流によって配管内の残水は吸引排水されることになる。ただブロアーは空気を流す機械であり水を吸い込むと壊れる恐れがあるため、水を吸い込まないように排水弁14とブロアー15の間に水を分離するための気水分離タンク16を設けて、ブロアーに水を吸い込まないような対策が必要になる。気水分離タンクに溜まった水はブロアーを停止すると気水分離タンクの底部に設けた排水口から逆止弁18を通って排水される。ブロアー運転中は気水分離タンクの中は大気圧より負圧になっているので逆止弁は閉じて、排水口から空気を吸い込む恐れはない。   If the heat collecting pipes 6 and 7 are plumbed down completely toward the drain valve, the water inside the heat collectors and the heat collecting pipes 6 and 7 is completely drained, but the point of the reverse slope is Even small amounts of water can leave the piping. Managing the construction so that the heat collection pipes 6 and 7 are completely down sloped toward the drainage valve may ensure thorough construction management when there are many small-scale systems such as a system for housing. It is difficult and it is difficult to eliminate the fear of freeze damage. In order to eliminate such fears, the present proposal proposes a mechanism for mechanically sucking and discharging water as a method for draining even if there is a portion with a slight reverse slope in the piping. The collector is usually installed at a relatively high position, such as on a roof, because it must be installed in a sunny position, and the storage tank is preferably installed on the ground because the weight for storing water is heavy. Therefore, the heat collection pipe is installed in a downward slope toward the drainage valve installed near the hot water storage tank. However, if it comes to completely eliminating the location of the reverse slope, this is assumed to be difficult, and it is feared that residual water will be generated in the piping only by opening the drainage valve. Therefore, as shown in FIG. 5, the air suction blower 15 is installed at the end of the drain valve to mechanically suck and drain the water when the water in the piping is almost exhausted. The drainage valve is opened and the piping after natural drainage is generally in a state where little residual water and most of the air are filled. The remaining water in the piping is sucked and drained by the air flow from the blower which sucks in air. However, since the blower is a machine that allows air to flow and may be broken if it absorbs water, an air-water separation tank 16 for separating water is provided between the drainage valve 14 and the blower 15 so that the water is not absorbed. It is necessary to take measures to prevent water intake. When the blower is stopped, the water accumulated in the air-water separation tank is drained through the non-return valve 18 from the outlet provided at the bottom of the air-water separation tank. During the blower operation, the pressure in the air-water separation tank is lower than atmospheric pressure, so the check valve is closed and there is no risk of drawing air from the drainage port.

配管が排水弁の方向に対して逆勾配になっているか所に残っている水を空気流によって吸引して水を押し流そうとする場合はコップの中の飲み物をストローで吸い上げる場合のように配管が十分に細ければ空気の吸引により水は容易に吸い上げられて排水される。したがって水の吸引排水には配管が十分に細いことが重要である。太陽熱温水システムでは図4に示すように集熱したお湯を貯湯槽上部から層状に溜めるようにすることが太陽熱利用率を高かめるために重要であり、つまり集熱流量は水の1回の集熱器通過で例えば45℃以上に昇温されるように流量が小さいことが望ましいので、配管は必然的に細いものでよく、吸引排水には好都合である。   If you want to flush the water by drawing the remaining water in a place where the piping is reverse slope to the direction of the drainage valve by the air flow, as in the case of sucking up the drink in the glass with a straw If the piping is sufficiently thin, the water is easily drawn up and drained by the suction of air. Therefore, it is important that the piping be sufficiently thin for suction and drainage of water. In the solar water heating system, it is important to collect the collected hot water in layers from the top of the hot water storage tank as shown in Fig. 4 in order to increase the solar heat utilization rate, that is, the heat collection flow rate is a single collection of water. The piping is necessarily thin because it is desirable to have a low flow rate so as to be raised to, for example, 45 ° C. or more by passing through the heater, which is convenient for suction and drainage.

本発明の太陽熱システムでは集熱性能が良く、コストの低い水直接集熱方式で集熱器凍結破損の不安がないシステムが提供される。しかも貯湯槽には水道が直結される加圧タンクが利用でき、出湯ポンプを用いなくても出湯ができる方式でも集熱器および集熱配管から凍結防止水抜きが可能である。地球環境問題の重要性が一般にも広く認識されている我が国において、容易に自然エネルギー利用が可能である太陽熱給湯が最近伸び悩みというよりむしろ減少傾向にある。以前は諸外国に比べ太陽熱給湯が最も普及していた我が国の最近の減少傾向の要因は高度に自動化された家庭電化製品が受け入れられている我が国においては、使い勝手の良くない太陽熱温水システムでは受け入れられないということである。本発明は水道直結型の非常に単純構成の太陽熱温水システムを可能にするものであり、また集熱器への循環水量を日射強度に応じて制御して貯湯タンクにお湯を層状に溜めるような仕組みもできる。そうすると日射の少ない日の代替熱源としてヒートポンプと組み合わせたシステムにおけるヒートポンプの成績係数を落とすことがなく合理的な組み合わせが可能であり、非常に使い勝手の良い温水システムが提供され、我が国の太陽熱温水システムの普及をふたたび諸外国に負けない水準に押し上げる効果が期待される。   The solar thermal system of the present invention provides a system with good heat collection performance, low cost water direct collection system, and no worry about collector freeze failure. In addition, a pressurized tank to which the water supply is directly connected can be used as the storage tank, and even if it is possible to pour hot water without using a hot water discharge pump, it is possible to remove antifreeze water from the heat collector and the heat collecting pipe. In Japan, where the importance of global environmental problems is widely recognized in general, solar water heating, which can easily use natural energy, is decreasing rather than growing. The factor behind Japan's recent downtrend, where solar water heating was the most widespread compared to other countries, is accepted in Japan, where highly automated household appliances are accepted, for solar water systems that are not easy to use There is no such thing. The present invention enables a solar water heating system with a very simple configuration directly connected to a water supply type, and also controls the amount of circulating water to the heat collector according to the intensity of solar radiation to accumulate hot water in a layer in a hot water storage tank. It also works. In this way, a rational combination is possible without lowering the coefficient of performance of the heat pump in the system combined with the heat pump as a heat source as a substitute heat source for a day with little solar radiation, and a very easy-to-use warm water system is provided. The effect is expected to push the spread back to a level that can not be defeated by other countries again.

従来の凍結しても破損しない集熱板の構成図Configuration diagram of conventional heat-collecting plate not damaged even by freezing 落水式のシステムの太陽熱給湯システム説明図Solar heat water supply system explanatory drawing of the drainage system 従来の不凍液集熱式太陽熱給湯システム説明図Conventional antifreeze liquid collecting type solar water heating system explanatory drawing 本発明の凍結防止排水システムの説明図Explanatory drawing of antifreeze drainage system of the present invention 本発明の集熱器および集熱配管から強制吸引排水システム構成図Forced suction and drainage system configuration diagram from the heat collector and heat collecting pipe of the present invention 本発明の一実施例のシステム構成図System configuration diagram of one embodiment of the present invention 本発明の集熱器および集熱配管の残水強制吸引ブロアーの一例の構成図The block diagram of an example of the residual water forced suction blower of the heat collector and heat collection piping of this invention 本発明のブロアーに水を吸い込むことを防ぐ気水分離タンクの一例の断面図Cross-sectional view of an example of an air-water separation tank that prevents the blower of the present invention from sucking water 本発明の別の実施例のヒートポンプ給湯器と一体化したシステムの構成図Block diagram of a system integrated with a heat pump water heater according to another embodiment of the present invention

以下図面を以って発明の実施の形態を説明する。   Embodiments of the invention will be described below with reference to the drawings.

図6は本発明の一実施例のシステム構成図である。記号1〜10は図1と同様である。図6において1の集熱器に日射が当たって集熱板の温度センサー8が45℃以上になると集熱開始となり電磁弁17と19が開き、貯湯槽の水圧で、水路を構成する送水管6と戻り管7を通って水が集熱器に入り、10の空気抜き弁から空気が排出されて、集熱器が水で満たされると電磁弁19は閉じて集熱ポンプ5が運転されて集熱が開始される。集熱動作は貯湯槽底部から集熱ポンプで水が吐出され、開いている電磁弁17を経て水が集熱器に送られ、集熱器からのお湯は戻り管7を通り、電磁弁19は閉じているので、逆止弁20を経て貯湯槽の上部から貯湯槽にお湯が戻り、上部から層状にお湯が溜まってくる。なお、逆止弁20は逆止弁ではなく、電力で開閉する電磁弁または電動弁でもよく、その場合は集熱ポンプの運転が開始されると同時に弁20が開くように制御される。また、電源喪失時の排水動作を考えると、弁20に電磁弁または電動弁を用いる場合には、電源喪失時に弁が閉となるもの(電動弁の場合は例えばスプリングリターン電動弁)を用いることが望ましい。
集熱ポンプ5は回転数が可変で集熱センサー8からの信号により、集熱湯温が45℃以上になるように回転数が制御される。集熱センサー8が45℃未満又は貯湯槽下部の水温以下の温度になった場合は集熱が停止し、電磁弁17が閉じ、集熱ポンプ5が停止する。この様に貯湯槽2の中は層状性が保たれるので集熱開始するとすぐにお湯を出すことができ、太陽熱利用率が高く、湯温が45℃に達しないときは集熱しないことによる集熱効率の低下分をカバーして余りあると考えられる。
FIG. 6 is a system configuration diagram of an embodiment of the present invention. The symbols 1 to 10 are the same as in FIG. In FIG. 6, when solar radiation strikes the heat collector 1 and the temperature sensor 8 of the heat collecting plate becomes 45 ° C. or higher, heat collection starts and the solenoid valves 17 and 19 are opened, and the water pressure of the hot water storage tank constitutes a water channel constituting a water channel Water enters the heat collector through 6 and the return pipe 7, air is discharged from the air vent valve 10, and when the heat collector is filled with water, the solenoid valve 19 is closed and the heat collection pump 5 is operated. Heat collection is started. In the heat collecting operation, water is discharged from the bottom of the hot water storage tank by the heat collecting pump, the water is sent to the heat collector through the open solenoid valve 17, the hot water from the heat collector passes through the return pipe 7, the solenoid valve 19 Since it is closed, hot water is returned to the hot water storage tank from the upper part of the hot water storage tank through the check valve 20, and hot water is accumulated in layers from the upper part. The check valve 20 may not be a check valve, but may be an electromagnetic valve or an electric valve that opens and closes by electric power. In this case, the valve 20 is controlled to open at the same time as the operation of the heat collecting pump is started. Also, considering the drainage operation at the time of power loss, when using a solenoid valve or a motor-operated valve as the valve 20, use a valve (for example, a spring return motor-operated valve in the case of a motor-operated valve) Is desirable.
The rotational speed of the heat collecting pump 5 is variable, and the rotational speed is controlled by the signal from the heat collecting sensor 8 so that the temperature of the heat collecting water is 45 ° C. or higher. When the temperature of the heat collection sensor 8 becomes lower than 45 ° C. or lower than the water temperature of the lower portion of the hot water storage tank, the heat collection is stopped, the electromagnetic valve 17 is closed, and the heat collection pump 5 is stopped. In this way, the stratification is maintained in the hot water storage tank 2, so hot water can be released as soon as heat collection starts, and the solar heat utilization rate is high, and when the hot water temperature does not reach 45 ° C, no heat is collected It is considered to be more than covering the decrease in heat collection efficiency.

しかし、たとえば後述する図9に示す太陽熱給湯システムと代替熱源のヒートポンプ給湯器を一体化したシステム等において、炭酸ガス熱媒ヒートポンプ給湯器においてはヒートポンプで沸かす湯温はたとえば80℃ぐらいに沸き上げるのが一般的であるから、たとえば45℃程度の集熱したお湯をタンク最上部から注いで、ヒートポンプで沸かした80℃程度のお湯と混ざるのは有効エネルギーの損失になる。それを改善する方法として図6のタンクへの戻り管路の弁20の下に点線で図6に記入してあるタンク中間部につながる分岐管路を設けその分岐管路には電力で開閉する弁20'が設けられており、集熱湯温がたとえば60℃より低い場合は弁20が閉じて弁20'を開いてタンク中間部に集熱したお湯を注ぐようにするとタンク上部に残っていた高温のお湯に温度があまり高くない集熱したお湯を注いで有効エネルギーの損失を招くことがないようにすることができる。これにより、よりきめ細やかに貯湯槽2の中の層状性が保つことができることになる。集熱湯温がたとえば60℃以上の場合は弁20を開き弁20'は閉じてタンク最上部から集熱したお湯が注がれる。
このようなヒートポンプ給湯器とともにタンク中間部につながる分岐管路を設ける構成は、図4のような2個の弁を用いた構成において適用してもよいことは、言うまでもない。
However, in a carbon dioxide heat medium heat pump water heater such as a system in which a solar heat hot water supply system shown in FIG. 9 described later and a heat pump water heater as an alternative heat source are integrated, for example, the hot water boiling temperature is raised to about 80.degree. For example, it is a loss of effective energy to pour hot water collected at about 45 ° C. from the top of the tank and mix it with hot water boiled at about 80 ° C. by heat pump. As a way to improve it, a branch line leading to the tank middle part described in FIG. 6 with a dotted line is provided under the valve 20 of the return line to the tank in FIG. 6 and the branch line is opened and closed by electric power. The valve 20 'is provided, and if the temperature of the collected water is lower than 60 ° C., for example, the valve 20 is closed and the valve 20' is opened so that the collected hot water is poured into the middle of the tank and remains at the top of the tank It is possible to pour the collected hot water whose temperature is not so high into the hot water so as not to cause the loss of effective energy. Thereby, the stratification in the hot water storage tank 2 can be maintained more finely. When the temperature of the collected water is, for example, 60 ° C. or more, the valve 20 is opened and the valve 20 ′ is closed so that the collected hot water is poured from the top of the tank.
It is needless to say that the configuration in which such a heat pump water heater and a branch conduit leading to the tank middle portion are provided may be applied in a configuration using two valves as shown in FIG. 4.

冬期に集熱器内の水が凍結して集熱器が破損するのを防ぐ仕組みは集熱板の温度センサー8によって集熱板の温度が凍結温度に近い温度になったことが検知される(すなわち、排水動作が必要であることが検知される)とスプリングリターン電動排水弁14の電流が遮断されて弁が開き、集熱板から水が送水管6を通って下に落下して排水される。そのとき集熱器の上の空気抜き弁10より空気が集熱板の中に流入する。貯湯槽の水は弁20および弁20'により止められているので排出されない。戻り管7の中の水も同時に抜けるように戻り管7から逆止弁22を通って排水弁14に接続されている。この様な送水管6と戻り管7をつなぐ管路があっても逆止弁22があるので集熱ポンプが運転されている集熱中は送水管6内の水圧が戻り管7の水圧より高いので、逆止弁22は閉じており、送水管6から集熱器に送水され戻り管7から貯湯槽上部または中間部に戻る正常な流れが維持される。電動排水弁14から出た水は気水分離タンクに入り、気水分離タンクの底に開いた穴24から逆止弁18を通って排出される。電動排水弁14が開いてから集熱器および集熱配管内の水が重力による自然落水によってほぼ出切る時間が経過の後に、気水分離タンク16の上部から配管接続されているブロアー15が運転開始され、気水分離タンクから空気がブロアーに吸引される。吸引過程では空気と一緒に水を吸引させるためブロアーは比較的発生圧力が高く、例えば10KPa〜30KPaぐらいの負圧が必要であり、また風量は送水管6や戻り管7内の風速が2〜5m/sec以上得られることが望ましい。そのような性能が得られるブロアーにはいろいろの形式のものが考えられるが、図7にその一例として、ゴム製のダイヤフラムを交流電磁石で電磁振動させて空気を送り出すエアポンプ形式のブロアーの構成図を示す。その他の形式のブロアーとしては真空掃除機に使われているような遠心羽根車による遠心ブロアーや、住宅用井戸ポンプなどに使われているウェスコポンプを送風用にしたウェスコポンプ型のブロアーなどが考えられる。ブロアーの運転開始により負圧になった気水分離タンクに接続されている電動排水弁14を通して集熱器および集熱配管内の空気が吸引され、それらの中の残水が空気と一緒に気水分離タンクに吸引される。気水分離タンクの中で水と空気が分離され、水はタンク内に残り、空気はブロアーに吸引されて排出される。   The mechanism to prevent the water in the collector from freezing and damaging the collector in winter is detected by the temperature sensor 8 of the collector plate that the temperature of the collector plate has become close to the freezing temperature (Ie, it is detected that the drainage operation is necessary) and the current of the spring return electric drainage valve 14 is cut off, the valve is opened, and the water from the heat collecting plate falls down through the water pipe 6 and the drainage Be done. At that time, air flows into the heat collecting plate from the air vent valve 10 on the heat collector. The water in the hot water tank is not discharged since it is stopped by the valve 20 and the valve 20 '. The water in the return pipe 7 is also connected to the drain valve 14 from the return pipe 7 through the check valve 22 so as to simultaneously drain. Even if there is a pipe line connecting the water pipe 6 and the return pipe 7 like this, there is the check valve 22 so that the water pressure in the water pipe 6 is higher than the water pressure of the return pipe 7 during heat collection. Because the check valve 22 is closed, water is supplied from the water pipe 6 to the heat collector, and a normal flow from the return pipe 7 back to the upper or middle part of the water storage tank is maintained. The water from the motorized drain valve 14 enters the air-water separation tank and is discharged through the check valve 18 from the hole 24 opened in the bottom of the air-water separation tank. The blower 15 connected from the top of the air / water separation tank 16 starts operation after a time when the water in the heat collector and the heat collection pipe is nearly drained due to natural runoff due to gravity after the electric drain valve 14 is opened. The air from the air / water separation tank is sucked into the blower. In the suction process, the blower generates a relatively high pressure, for example, a negative pressure of about 10 KPa to 30 KPa, because the water is sucked with the air, and the air volume is 2 to 2 for the wind speed in the water pipe 6 and the return pipe 7 It is desirable to obtain 5 m / sec or more. Various types of blowers can be considered as such blower performance can be obtained. As an example, Fig. 7 shows a block diagram of an air pump type blower that delivers air by electromagnetically vibrating a rubber diaphragm with an AC electromagnet. Show. Other types of blowers may be centrifugal blowers using centrifugal impellers, such as those used for vacuum cleaners, or Wesco pump type blowers using a Wesco pump used for housing well pumps, etc. Be The air in the heat collector and the heat collection piping is drawn through the electric drainage valve 14 connected to the air-water separation tank that has become negative pressure by the start of the blower operation, and the residual water in them is aired with the air. It is sucked into the water separation tank. Water and air are separated in the air-water separation tank, the water remains in the tank, and the air is sucked by the blower and discharged.

図8に気水分離タンクの一例の水平断面を示す。25で示す円形気水分離タンクの接線方向への流入口からタンク内に流入する水空気混合流体は断面が円形のタンク内で回転流れを起こす。比重の大きい水は遠心力で外側に集まり、比重の小さい気体は中心部に来ることによって気液が分離し、タンク上部の円の中心に設けられているパイプからブロアーに気体だけが吸引される。吸引を継続するうちに気水分離タンク内に水が一杯になり、ブロアーに水が吸い込まれる恐れが生ずるので、吸引を一定時間継続したら、ブロアーを一旦停止すると、気水分離タンク内の負圧は大気圧に戻り、気水分離タンクの水は底部の排水口24から逆止弁18を水の重力で押し開けて排水される。タンク内の水が全部排水されるぐらいの時間経過の後に再びブロアーを運転して集熱器および集熱配管内の空気を吸引する動作を何度か繰り返すと、水はほとんど吸引排水され凍結の不安はなくなる。   FIG. 8 shows a horizontal cross section of an example of the air-water separation tank. The water-air mixture fluid flowing into the tank from the tangential inlet of the circular air-water separation tank shown at 25 causes rotational flow in the tank of circular cross section. Water with high specific gravity gathers on the outside by centrifugal force, and gas with low specific gravity comes to the center to separate gas and liquid, and only gas is drawn into the blower from the pipe provided at the center of the circle at the top of the tank . There is a risk that water will be full in the air-water separation tank while continuing suction, and if suction is continued for a certain period of time, once the blower is stopped, the negative pressure in the air-water separation tank Is returned to atmospheric pressure, and the water in the steam-water separation tank is drained by pushing the check valve 18 from the bottom outlet 24 by the gravity of the water. After the time has passed so that all the water in the tank is drained, the blower is operated again to repeat the operation of sucking the air in the heat collector and the heat collecting pipe several times, and most of the water is sucked and drained and frozen Anxiety disappears.

ブロアーによる吸引排水では吸引される空気流量に相当する空気を集熱器上部の空気抜き弁10から吸引できなければならない。しかし市販の空気抜き弁の空気だけを排出させる構造は、空気の分離のために設けた小さな容器の中に水より比重の軽い浮き子を入れた構造で、空気が溜まって液面が下がることにより浮き子も下がって空気口が開くものであり、高い水圧が作用している状態でも空気口が開くには、圧力に打ち勝って空気口を開く重さの大きい浮き子でなくては十分な空気流量が得られない。そのような大きな空気抜き弁の設置は問題があるので、対策として高圧下での空気排出はできないが負圧状態では十分な空気吸入量が得られる空気吸入弁を空気抜き弁と併設することによって、空気吸入量は大きくでき、吸引排水が有効になされる。   In the suction and drainage by the blower, air corresponding to the flow rate of air to be sucked must be able to be sucked from the air vent valve 10 at the top of the heat collector. However, the structure for discharging only air of a commercially available air vent valve is a structure in which a float with a lighter specific gravity than water is put in a small container provided for air separation, and the air is accumulated and the liquid level is lowered. The float also lowers to open the air port, and it is necessary to overcome the pressure to open the air port in order for the air port to open even if high water pressure is applied, if the air port has to be large enough to open the air port. Flow rate can not be obtained. As there is a problem with the installation of such a large air vent valve, air can not be discharged under high pressure as a countermeasure, but by providing an air intake valve that can obtain a sufficient amount of air intake under negative pressure, The amount of inhalation can be large and suction drainage can be made effective.

太陽熱利用システムの太陽熱利用率を高くするためには前述のように、貯湯タンクにお湯を上部から層状に溜めるように集熱器への循環水量を日射強度に応じて制御して1度の集熱器通過で集熱器から出てくるお湯の温度を例えば45℃以上になるようにすることである。そのようなシステムでは集熱器への循環水量は小さくてよく、循環ポンプの圧力も流量も小さく、消費動力も小さくて効率が良い。しかし循環ポンプの圧力が小さいと集熱配管の戻り側配管7に空気が入ると空気の浮力とポンプの送水力が拮抗して水が流れなくなるいわゆるエアロック現象が生ずる恐れがある。エアロック現象は高低差のある配管に水を流す場合に一般に知られた現象で、それを解消するために空気の浮力に負けない大きさの送水圧のポンプを使えばよいわけであるが、それでは無駄に大きいポンプ動力を消費することになり好ましくない。そこで、図6のシステムではエアロック現象が起きたらそれを検知してエアロックを解消することができるようになっている。エアロックを解消する方法は、エアロックを起こして集熱器への水の循環が止ると集熱器からの戻り管7にお湯が来なくなって戻り管7の温度が下がるので、戻り管7に図示しない温度センサーを取り付け集熱センサー8の温度との温度差が一定値以上の値に達して継続した場合はエアロックと判断して、エアロック解消の動作をさせるものである。エアロック解消の動作は一旦ポンプを停止して電磁弁19を開き、電磁弁17も継続して開いておくと、配管7の中の空気は上昇して集熱器上部についている空気抜き弁10より排出される。空気が抜けるぐらいの時間経過の後に電磁弁19を閉じて循環ポンプを起動することによりエアロックを解消できる。   As described above, in order to increase the solar heat utilization rate of the solar heat utilization system, the amount of circulating water to the heat collector is controlled according to the solar radiation intensity so that hot water is accumulated in layers from the top in the hot water storage tank. The temperature of the hot water coming out of the heat collector through the heater is, for example, 45 ° C. or more. In such a system, the amount of circulating water to the heat collector may be small, the pressure and flow rate of the circulating pump may be small, and the power consumption may be small and efficient. However, when the pressure of the circulation pump is small, if air enters the return side pipe 7 of the heat collecting pipe, the buoyancy of the air and the water feeding capacity of the pump may antagonize and a so-called air lock phenomenon may occur. The air lock phenomenon is a generally known phenomenon when water flows in piping with a difference in elevation, and it is sufficient to use a water pressure pump with a size that can withstand the buoyancy of air to eliminate it. This is not preferable because it wastes a large amount of pump power. Therefore, in the system of FIG. 6, if an air lock phenomenon occurs, it can be detected to cancel the air lock. As a method of canceling the air lock, when the air lock is generated and the water circulation to the heat collector stops, the hot water does not come to the return pipe 7 from the heat collector, and the temperature of the return pipe 7 decreases. If a temperature sensor (not shown) is attached and the temperature difference with the temperature of the heat collection sensor 8 reaches a certain value or more and continues, it is determined that the air lock is present and the air lock is removed. In the air lock release operation, once the pump is stopped and the solenoid valve 19 is opened, and the solenoid valve 17 is also kept open, the air in the piping 7 rises and it is from the air vent valve 10 at the top of the heat collector Exhausted. The air lock can be canceled by closing the solenoid valve 19 and activating the circulation pump after a lapse of time until the air is released.

図9は本発明の他の実施例で図6に示す太陽熱給湯システムと代替熱源のヒートポンプ給湯器を一体化したシステムの構成図である。本発明の水直接集熱式の太陽熱給湯システムは貯湯槽に太陽集熱したお湯をタンク上部から層状に溜めていくシステムであり、ヒートポンプの成績係数を低下させることがない。
すなわち、集熱器1に日射が当たって集熱板の図示しない温度センサーが、例えば45℃以上になると集熱開始となり電磁弁17等が開き、貯湯槽2の水圧で送水管と戻り管を通って水が集熱器に入り、空気抜き弁10から空気が排出されて、集熱器1が水で満たされると電磁弁19は閉じて集熱ポンプ5が運転して集熱が開始される。集熱動作は貯湯槽2の底部から集熱ポンプ5で水が吐出され、開いている電磁弁17を経て水が集熱器1に送られ、集熱器1からのお湯は戻り管7を通り、電磁弁19は閉じているので、貯湯槽2の上部から貯湯槽2にお湯が戻り、上部から層状にお湯が溜まってくる。集熱ポンプ5は回転数が可変であり、上述した集熱板の図示しない温度センサーからの信号により、集熱湯温が45度以上になるように回転数が制御される。この温度センサー8が45℃未満又は貯湯槽下部の水温以下の温度になった場合は集熱が停止し、電磁弁17が閉じ、集熱ポンプ5が停止する。この様に貯湯槽2の中は層状性が保たれるので集熱開始するとすぐにお湯を出すことができ、太陽熱利用率が高く、湯温が45℃に達しないときは集熱しないことによる集熱効率の低下分をカバーして余りあると考えられる。
なお、図9には図示しないが、図6に示したように、貯湯槽2の中間部につながる分岐管路を設けてかかる分岐管路に弁20'を設け、集熱湯温がたとえば60℃より低い場合は弁20'を開いてタンク中間部に集熱したお湯を注ぎ、一方、集熱湯温がたとえば60℃以上の場合には弁20'を閉じてタンク最上部から集熱したお湯を注ぐようにしてもよい。
また、天気が悪く、集熱湯量が不足の場合はヒートポンプユニット26(ヒートポンプの水加熱熱交換器28、ヒートポンプの膨張弁29、ヒートポンプの蒸発熱交換器30及びヒートポンプの圧縮機31からなる)によりお湯を作ることができる。ヒートポンプユニット26では、水が適宜な温度まで昇温され、貯湯槽上部から層状にお湯が溜まっていくことになる。このため、貯湯槽2にお湯がなくなっても短時間で貯湯槽上部にお湯が溜まるので短時間後に出湯が可能になる。この様にヒートポンプによる給湯加熱においても貯湯槽内の温度の成層性がよく保たれるので、貯湯槽全部を温めるのではなく、入浴に必要な湯量に達したらヒートポンプを停止して省エネルギー化を図ることができる。また湯量が不足しそうになったら、ヒートポンプユニット26を再起動して追加湯沸かしが容易にできる。
そして、冬期に集熱器1内の水が凍結して集熱器1が破損するのを防ぐ仕組みは、集熱板の温度センサー8ないし図示しない温度センサーによって集熱板の温度が凍結温度に近い温度になったこと(すなわち、排水動作が必要であること)が検知されると、集熱板内部の水がブロアー15により吸引排水されて凍結が防止される。すなわち、各所の電動弁が開くことにより集熱板から水は送水管を通り、また戻り管の中の水も含めて、電動排水弁14を通して、ブロアー15により吸引排水される。この際、集熱器1の上の空気抜き弁10より空気が集熱板の中に流入し、この空気が、送水管及び戻り管を抜けるようになる。またこの場合、貯湯槽2の水が上部または底部から排出されないように、各所の弁を適宜に制御しておけば足りる。
FIG. 9 is a block diagram of a system in which the solar water heating system shown in FIG. 6 and a heat pump water heater as an alternative heat source are integrated as another embodiment of the present invention. The solar thermal hot water supply system of the present invention for directly collecting water is a system for collecting solar collected hot water in a hot water storage tank from the upper portion of the tank in layers, and does not lower the coefficient of performance of the heat pump.
That is, when solar radiation strikes the collector 1 and the temperature sensor (not shown) of the collector plate becomes, for example, 45 ° C. or higher, heat collection starts and the solenoid valve 17 etc. open and the water pressure of the water storage tank 2 opens the water pipe and return pipe Water passes into the heat collector, air is discharged from the air vent valve 10, and when the heat collector 1 is filled with water, the solenoid valve 19 is closed and the heat collection pump 5 is operated to start heat collection. . In the heat collecting operation, water is discharged from the bottom of the hot water storage tank 2 by the heat collecting pump 5, and water is sent to the heat collector 1 through the open solenoid valve 17, and hot water from the heat collector 1 is returned As the solenoid valve 19 is closed, the hot water returns from the upper part of the hot water storage tank 2 to the hot water storage tank 2 and the hot water accumulates in layers from the upper part. The heat collecting pump 5 has a variable rotational speed, and the rotational speed is controlled so that the temperature of the heat collecting hot water becomes 45 degrees or more by the signal from the temperature sensor (not shown) of the heat collecting plate described above. When the temperature sensor 8 becomes lower than 45 ° C. or lower than the water temperature below the water storage tank, the heat collection is stopped, the electromagnetic valve 17 is closed, and the heat collecting pump 5 is stopped. In this way, the stratification is maintained in the hot water storage tank 2, so hot water can be released as soon as heat collection starts, and the solar heat utilization rate is high, and when the hot water temperature does not reach 45 ° C, no heat is collected It is considered to be more than covering the decrease in heat collection efficiency.
Although not shown in FIG. 9, as shown in FIG. 6, a branch pipe connected to the middle portion of the hot water storage tank 2 is provided, a valve 20 ′ is provided in the branch pipe, and the temperature of collected water is 60 ° C., for example. If lower, open the valve 20 'and pour the collected hot water into the middle of the tank, while if the collected water temperature is 60 ° C or higher, for example, close the valve 20' and collect the collected hot water from the top of the tank You may pour it.
Also, if the weather is bad and the amount of collected water is insufficient, the heat pump unit 26 (made of the heat pump water heating heat exchanger 28, the heat pump expansion valve 29, the heat pump evaporation heat exchanger 30 and the heat pump compressor 31) You can make hot water. In the heat pump unit 26, the water is heated to an appropriate temperature, and hot water is accumulated in layers from the upper portion of the hot water storage tank. For this reason, even if hot water disappears in the hot water storage tank 2, since hot water is accumulated in the upper part of the hot water storage tank in a short time, it is possible to tap water after a short time. As described above, the stratification of the temperature in the hot water storage tank is well maintained even in the hot water supply heating by the heat pump, so the heat pump is stopped to save energy when the amount of hot water necessary for bathing is reached instead of heating the entire hot water storage tank. be able to. When the amount of hot water is likely to be insufficient, the heat pump unit 26 can be restarted to facilitate additional boiling.
And the mechanism to prevent the water in the collector 1 from freezing and damaging the collector 1 in winter, the temperature of the collector plate is the freezing temperature by the temperature sensor 8 of the collector plate or the temperature sensor (not shown) When it is detected that the temperature is close (that is, the drainage operation is required), the water inside the heat collection plate is sucked and drained by the blower 15 to prevent freezing. That is, when the motor-operated valves at various places are opened, water is sucked and drained from the heat collection plate through the water pipe and through the motorized drain valve 14 including the water in the return pipe by the blower 15. At this time, air flows into the heat collecting plate from the air vent valve 10 on the heat collector 1, and this air comes out of the water pipe and the return pipe. Further, in this case, it is sufficient to appropriately control the valves at various places so that the water in the hot water storage tank 2 is not discharged from the top or the bottom.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。
たとえば、実施形態では、貯水槽2からの水の吐出を貯水槽2の底部から行うとして説明してきたが、必ずしも厳密に、貯水槽2の底部から水の吐出を行わなくてもよく、貯水槽2の中から昇温すべき水を取り出せる位置から水の吐出を行えば足りる。通常であれば、貯水槽2の下部付近から水の吐出を行えば足りる。
同様に、昇温したお湯の注ぎ口(分岐管路を設けない場合)についても、図4〜6、9においては、貯水槽2の最上部からお湯を注ぐような記載となっているが、必ずしも厳密に、貯水槽2の最上部から注入しなくてもよく、貯湯槽内の温度の成層性が実現できる程度の位置であれば足りる。通常であれば、貯水槽2の上部付近からお湯の注入を行えば足りる。
また、実施形態では、凍結温度の検知を集熱板の温度センサー8により検知するものとして説明してきたが、これに限られず、図4〜6、9のシステムのいずれかの地点において、また別途温度センサーを設け、又は集熱板の温度センサー8のような既存の温度センサーを流用し、凍結温度を検知すれば足りる。要するに、図4〜6、9のシステムのいずれかの地点での水の凍結(又は凍結のおそれ)を検知し、排水動作のトリガーを与えることができれば足りる。
さらに、実施形態では、ブロアー15により吸引排水する構成を示したが、ブロアー15に代え、又はブロアー15とともに、空気抜き弁10の側から管路に空気を送り込む構成を設けてもよい。要するに、管路を吸引するか、管路に空気を送り込むかを問わず、排水動作の場合に、空気抜き弁10の側から電動排水弁14の側に向けて、送水管及び戻り管を抜けるような空気の流れを発生させれば足りる。
Although the preferred embodiments of the present invention have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples.
For example, in the embodiment, the discharge of water from the water storage tank 2 has been described as being performed from the bottom of the water storage tank 2. However, it is not always necessary to discharge water from the bottom of the water storage tank 2 strictly It is sufficient to discharge the water from the position where it is possible to take out the water to be heated from among 2. Generally, it is sufficient to discharge the water from near the lower part of the water storage tank 2.
Similarly, with regard to the heated hot water spout (in the case where the branch conduit is not provided), in FIGS. 4 to 6, it is described that the hot water is poured from the top of the water storage tank 2 Strictly speaking, it is not necessary to inject from the top of the water storage tank 2, and it is sufficient if it is a position at which the stratification of the temperature in the hot water storage tank can be realized. Usually, it is sufficient to inject hot water from the vicinity of the upper portion of the water storage tank 2.
In the embodiment, the detection of the freezing temperature has been described as the detection by the temperature sensor 8 of the heat collecting plate, but the invention is not limited thereto. In any of the points in the system of FIGS. It is sufficient if a temperature sensor is provided or an existing temperature sensor such as the temperature sensor 8 of the heat collecting plate is used to detect the freezing temperature. In short, it is sufficient if it is possible to detect freezing (or the possibility of freezing) of water at any point of the system of FIGS.
Furthermore, in the embodiment, a configuration in which suction and drainage are performed by the blower 15 is shown. However, instead of the blower 15 or together with the blower 15, a configuration may be provided in which air is supplied to the pipe from the air vent valve 10 side. In short, regardless of whether the pipe line is suctioned or air is fed into the pipe line, in the case of the drainage operation, the water pipe and the return pipe are pulled out from the side of the air vent valve 10 to the side of the electric drain valve 14 It is sufficient if it generates an air flow of

本発明は、一般住宅用太陽熱利用給湯システム、業務用の大形給湯システムをはじめ、太陽熱利用暖房システムなどの各種太陽熱利用システムの集熱システムとして、広く好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be widely and suitably used as a heat collection system of various solar thermal utilization systems such as a solar thermal water heating system for general residential use and a large-scale hot water supply system for business use.

1・・・太陽集熱器
2・・・貯湯槽
3・・・不凍液から給湯への熱交換器
4・・・不凍液タンク
5・・・集熱循環ポンプ
6・・・集熱器への送水管
7・・・集熱器からの温水戻り管
8・・・集熱温度センサー
9・・・センサーからポンプへの信号導線
10・・・空気抜き弁
11・・・貯湯槽への給水の整流板
12・・・出湯弁
13・・・貯湯槽への給水弁
14・・・スプリングリターン電動排水弁
15・・・空気吸引ブロアー
16・・・気水分離タンク
17・・・太陽集熱器への管路の電磁弁
18・・・気水分離タンクからの排水用逆止弁
19・・・電磁弁
20・・・電力による開閉弁または逆止弁
20'・・・電力による開閉弁または逆止弁
21・・・気水分離タンクの空気吸引口
22・・・凍結防止排水逆止弁
23・・・凍結防止排水弁
24・・・気水分離タンクの排水口
25・・・貯湯タンクユニット
26・・・ヒートポンプユニット
27・・・ヒートポンプの水加熱熱交換器への循環ポンプ
28・・・ヒートポンプの水加熱熱交換器
29・・・ヒートポンプの膨張弁
30・・・ヒートポンプの蒸発熱交換器
31・・・ヒートポンプの圧縮機
32・・・循環ポンプ
33・・・水―水熱交換器
34・・・混合弁
35・・・逃し弁
DESCRIPTION OF SYMBOLS 1 ... solar collector 2 ... hot water storage tank 3 ... heat exchanger 4 from antifreeze to hot water supply 4 ... antifreeze liquid tank 5 ... heat collection circulation pump 6 ... delivery to a heat collector Water pipe 7 ··· Hot water return pipe 8 from the heat collector ··· Heat collecting temperature sensor 9 ··· Signal from sensor to pump 10 ··· Air vent valve 11 ····· 12 · · · Hot water supply valve 13 · · · Water supply valve to the storage tank 14 · · · Spring return electric drainage valve 15 · · · air suction blower 16 · · · air water separation tank 17 · · · to the solar collector Solenoid valve 18 in the pipeline ... Check valve 19 for drainage from air and water separation tank ... Solenoid valve 20 ... On-off valve with electric power or check valve 20 '... On-off valve with electric power or check Valve 21 ··· Air suction port of air / water separation tank 22 · · · Antifreeze drain check valve 23 · · · Antifreeze drain valve 2 4 ・ ・ ・ Drain port of air / water separation tank 25 ・ ・ ・ Hot water storage tank unit 26 ・ ・ ・ Heat pump unit 27 ・ ・ ・ Recirculation pump to water heating heat exchanger of heat pump 28 ・ ・ ・ Water heating heat exchanger of heat pump 29 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · heat pump expansion valve 30 · · · heat pump evaporation heat exchanger 31 · · · heat pump compressor .. Relief valve

Claims (5)

水を熱媒とする太陽熱集熱器とその太陽熱集熱器で得られる温水を蓄える貯湯槽を備え、その貯湯槽底部から集熱器へ水を供給する送水管には循環ポンプと電力により開閉される自動開閉弁が設けられており、その送水管には前記自動開閉弁と集熱器との間に分岐管路が設けられており、その分岐管路に電源喪失時にも開く自動排水弁が設けられており、集熱器で生成された温水を貯湯槽へ戻す温水戻り管路には集熱器から貯湯槽へ向かう流れのみを許容する逆止弁または電力により開閉される自動開閉弁が設けられており、その戻り管路の前記弁と集熱器の間の管路部に分岐があり、その分岐管路には分岐点より向こう側に流れる流れのみを許容する逆止弁が設けられており、その逆止弁から先の管路は前記自動排水弁に繋がっており、排水弁から先の管路には空気と水が分離できるように管断面積が広がった気水分離のタンク状の部分が接続されており、その気水分離タンクの底部には排水用の口が開いており、その排水口につながる排水管には気水分離タンクから先に流れる方向の流れのみを許容する逆止弁が設けられ、前記気水分離タンクの上部には空気の排出管路が設けられており、その空気排出管路から空気を吸引するためのブロアーが設置されており、前記気水分離タンク上部の空気吸込み口と前記ブロアーの空気吸い込み口が接続されており、前記集熱管路の高い位置には空気吸入弁が設けられており、この太陽熱利用システムの設置環境が集熱器の中の水が凍結する温度に近づいた場合には前記排水弁が開いて、集熱器および集熱管内の水が前記空気吸入弁より入る空気と置換されて、排水弁より排出され、さらに集熱器および集熱管内に排出されずに残った水がブロアーの運転によって気水分離タンクに吸引されて排水され、集熱器および集熱管内の水が凍結して破損することが防がれることを特徴とする直接水集熱式太陽熱利用システム。   A solar heat collector using water as a heat transfer medium and a hot water storage tank for storing hot water obtained by the solar heat collector, the water pipe for supplying water from the bottom of the hot water storage tank to the heat collector is opened and closed by a circulation pump and electric power An automatic on-off valve is provided, and a water pipe is provided with a branch line between the automatic on-off valve and the heat collector, and the automatic drain valve is also opened in the branch line when power is lost Is provided, and the hot water return pipe line for returning the hot water generated by the heat collector to the hot water storage tank is a check valve that allows only the flow from the heat collector to the hot water storage tank or an automatic on-off valve opened and closed by electric power Is provided, and there is a bifurcation in the pipeline portion between the valve and the heat collector in the return pipeline, and the bifurcated pipeline has a check valve that allows only the flow flowing beyond the bifurcation point. The pipeline from the check valve is connected to the automatic drain valve, and Connected to the pipe from the valve is a tank-like part of steam / water separation with an expanded cross-sectional area so that air and water can be separated, and a drainage port is provided at the bottom of the steam / water separation tank. The drainage pipe which is open and connected to the drainage port is provided with a non-return valve which allows only the flow in the direction flowing from the air-water separation tank, and the upper part of the air-water separation tank is an air discharge pipe. A blower is provided for suctioning air from the air discharge pipeline, and an air suction port at the upper portion of the air-water separation tank and an air suction port of the blower are connected, and the heat collection pipe is provided. An air intake valve is provided at a high position of the road, and when the installation environment of the solar heat utilization system approaches the temperature at which the water in the heat collector freezes, the drainage valve opens and the heat collector is opened. And water in the collector tube from the air intake valve The water that has been replaced by the air, drained from the drainage valve, and remaining without being drained into the collector and collector tube is sucked into the air-water separation tank and drained by the operation of the blower, and the collector and collector are collected. A direct water collection solar heat utilization system characterized in that water in a heat pipe is prevented from freezing and breaking. 前記集熱器から貯湯タンクへの戻り管路に電力により開閉される自動開閉弁が設置されており、その開閉弁の集熱器側手前に貯湯タンク中間部につながる分岐管が設けられ、その分岐と貯湯タンク中間部への管路の途中にも電力により開閉される自動開閉弁が設置されており、集熱湯温が設定の温度より高いときは貯湯タンク上部につながっている開閉弁が開き、集熱湯温が設定の温度より低いときは貯湯タンク中間部につながっている開閉弁が開くことにより、有効エネルギー効率が高くなるように制御されることを特徴とする請求項1記載の太陽熱給湯システム。   An automatic on-off valve opened and closed by electric power is installed in the return pipe from the heat collector to the hot water storage tank, and a branch pipe connected to the hot water storage tank intermediate portion is provided in front of the heat collector side of the on-off valve An automatic on-off valve that is opened and closed by electric power is also installed in the middle of the branch and the hot water storage tank middle part, and the open and close valve connected to the upper part of the hot water storage tank opens when the heat collecting hot water temperature is higher than the set temperature. The solar thermal hot water supply system according to claim 1, characterized in that when the temperature of the heat collecting water is lower than the set temperature, the on-off valve connected to the hot water storage tank intermediate portion is opened to control the effective energy efficiency to be high. system. 太陽集熱器と、貯湯槽と、
前記貯湯槽の下部側と前記太陽集熱器との間の水路の全部または一部に含まれる第一管路と、
一端が前記第一管路の一端と導通し、他端が少なくとも排水動作の場合に前記第一管路の他端と導通し、前記太陽集熱器と前記貯湯槽の上部側との間の水路の全部または一部に含まれる第二管路と、を備え、
集熱動作の場合に、前記貯湯槽の下部側から前記第一管路の他端を経由して前記太陽集熱器へ水を送り、前記太陽集熱器から前記第二管路の一端を経由して前記貯湯槽の上部側に水を送り、
排水動作の場合に、前記第一管路の一端側から前記第一管路の他端側へ向けて空気を流し、前記第二管路の一端側から前記第二管路の他端側へ向けて空気を流す、
ことを特徴とする太陽熱給湯システム。
A solar collector, a hot water tank,
A first pipeline included in all or part of a water channel between the lower side of the hot water storage tank and the solar collector;
One end is conducted to one end of the first pipe line, and the other end is conducted to the other end of the first pipe line at least in the case of drainage operation, and between the solar heat collector and the upper side of the hot water storage tank And a second conduit included in all or part of the water channel,
In the case of heat collecting operation, water is sent from the lower side of the hot water storage tank to the solar collector via the other end of the first pipeline, and one end of the second pipeline from the solar collector Send water to the upper side of the hot water storage tank via
In the case of the drainage operation, air flows from one end of the first pipeline toward the other end of the first pipeline, and from one end of the second pipeline to the other end of the second pipeline Direct the air,
Solar heat water supply system characterized by
前記排水動作の場合に前記第一管路の一端側及び前記第二管路の一端側から外気を流入させるための弁と、
前記排水動作の場合に前記第一管路の他端側及び前記第二管路の他端側からの吸引を行うための吸引手段と、
を備えたことを特徴とする請求項3記載の太陽熱給湯システム。
In the case of the drainage operation, a valve for introducing outside air from one end side of the first conduit and one end side of the second conduit;
A suction means for performing suction from the other end side of the first pipeline and the other end side of the second pipeline in the case of the drainage operation;
The solar water heating system according to claim 3, comprising:
前記第一管路の他端及び前記第二管路の他端に電源喪失時に開となる弁を設けたことを特徴とする請求項3又は請求項4記載の太陽熱給湯システム。   The solar heat hot water supply system according to claim 3 or 4, wherein a valve which is opened at the time of power loss is provided at the other end of the first conduit and the other end of the second conduit.
JP2019029582A 2014-10-17 2019-02-21 Direct water heat collective type solar heat utilization system Pending JP2019095190A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014212206 2014-10-17
JP2014212206 2014-10-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015216101A Division JP6482451B2 (en) 2014-10-17 2015-10-16 Direct water collection solar heat utilization system

Publications (1)

Publication Number Publication Date
JP2019095190A true JP2019095190A (en) 2019-06-20

Family

ID=55972027

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015216101A Active JP6482451B2 (en) 2014-10-17 2015-10-16 Direct water collection solar heat utilization system
JP2019029582A Pending JP2019095190A (en) 2014-10-17 2019-02-21 Direct water heat collective type solar heat utilization system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015216101A Active JP6482451B2 (en) 2014-10-17 2015-10-16 Direct water collection solar heat utilization system

Country Status (1)

Country Link
JP (2) JP6482451B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6738766B2 (en) * 2017-04-20 2020-08-12 エナテックス株式会社 Water supply/drainage unit and solar heat utilization system
JP6738765B2 (en) * 2017-04-20 2020-08-12 エナテックス株式会社 Heat collector and solar hot water supply system
CN108562056B (en) * 2018-07-03 2023-10-27 江苏省华扬太阳能有限公司 Automatic pressurization water supply device and solar water heating system comprising same
WO2020145106A1 (en) * 2019-01-07 2020-07-16 株式会社Ihi Vapor supply device and drying system
CN109780740A (en) * 2019-03-13 2019-05-21 孔宇庭 A kind of automatic compensation conduit of medium and solar energy heat conducting pipeline
JP7295528B2 (en) * 2019-05-15 2023-06-21 国立大学法人電気通信大学 Freeze valves, nuclear reactors, and solar power plants
JP7012118B2 (en) * 2020-05-15 2022-01-27 エナテックス株式会社 Solar heat utilization system and control method of solar heat utilization system
CN111595036B (en) * 2020-05-29 2021-04-13 南通大学 Intelligent solar water heater system
CN112594938A (en) * 2020-12-17 2021-04-02 云南鼎热新能源科技有限公司 Solar water heater capable of performing anti-freezing protection on water pipe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142160A (en) * 1982-02-18 1983-08-23 Sanyo Electric Co Ltd Solar heat utilizing system
JP2001248188A (en) * 2000-03-02 2001-09-14 Hikari Gokin Seisakusho:Kk Anti-freezing device for city water line
JP2003279136A (en) * 2002-03-19 2003-10-02 Toto Ltd Heat pump water heater
JP2011047582A (en) * 2009-08-27 2011-03-10 Enetecs Kk Solar heat hot water supply system including heat pump backup heat source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142160A (en) * 1982-02-18 1983-08-23 Sanyo Electric Co Ltd Solar heat utilizing system
JP2001248188A (en) * 2000-03-02 2001-09-14 Hikari Gokin Seisakusho:Kk Anti-freezing device for city water line
JP2003279136A (en) * 2002-03-19 2003-10-02 Toto Ltd Heat pump water heater
JP2011047582A (en) * 2009-08-27 2011-03-10 Enetecs Kk Solar heat hot water supply system including heat pump backup heat source

Also Published As

Publication number Publication date
JP6482451B2 (en) 2019-03-13
JP2016085030A (en) 2016-05-19

Similar Documents

Publication Publication Date Title
JP2019095190A (en) Direct water heat collective type solar heat utilization system
US20110017201A1 (en) Simple design to make solar water heating affordable and compatible with conventional water heaters
KR100906199B1 (en) One pump hot water supply system using solar heat
CN101915471B (en) Hydraulic pressure type hot water recovery unit
KR100956063B1 (en) Hot-water supply system using solar heat
CN101666547B (en) Anti-freezing cyclic solar heat collecting system with small flow
US20110094498A1 (en) Drainback Solar Water Heater
CN201043809Y (en) Primary circulation solar water heater
CN209840247U (en) Outdoor solar energy and heat pump combined heating automatic drainage anti-freezing system
CN209991628U (en) Solar heat collecting device with automatic anti-freezing function
CN201293470Y (en) Freeze proof solar thermal collection system
CN202361653U (en) Anti-freezing intelligentized instant heating type solar water heater
CN208222879U (en) A kind of antifreezing solar energy work station
US20150128928A1 (en) Method and system for positive evacuation of solar collector
CN201392015Y (en) Anti-freezing structure of outdoor hot water apparatus
KR200473707Y1 (en) Solar heat collector device installed fronzen protect function
CN109798681B (en) Solar heat collecting device with automatic antifreezing function and heat collecting antifreezing method
CN205825473U (en) Solar thermal collection system
CN205403194U (en) Automatic mend dull and stereotyped solar water heater of drainage
CN209840246U (en) Automatic drainage anti-freezing system for heating of outdoor solar energy and electric heat accumulator
CN210086359U (en) Automatic drainage anti-freezing system for outdoor solar heating
CN202675641U (en) Three-proofing solar water heater
CN201885447U (en) Freezing-resistant anti-overheating solar water heater
CN212612790U (en) Normal pressure water supply anti-freezing device
CN2669090Y (en) Dual-circuit water medium solar water-heating device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201007