JP2019094847A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2019094847A
JP2019094847A JP2017225448A JP2017225448A JP2019094847A JP 2019094847 A JP2019094847 A JP 2019094847A JP 2017225448 A JP2017225448 A JP 2017225448A JP 2017225448 A JP2017225448 A JP 2017225448A JP 2019094847 A JP2019094847 A JP 2019094847A
Authority
JP
Japan
Prior art keywords
flow
sectional area
flow passage
adjustment member
area adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017225448A
Other languages
Japanese (ja)
Other versions
JP7001438B2 (en
Inventor
藤田 豊
Yutaka Fujita
豊 藤田
浩範 本田
Hironori Honda
浩範 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017225448A priority Critical patent/JP7001438B2/en
Publication of JP2019094847A publication Critical patent/JP2019094847A/en
Application granted granted Critical
Publication of JP7001438B2 publication Critical patent/JP7001438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

To provide a compressor enabling both of expansion of an operation region and enhancement of efficiency without requiring external input.SOLUTION: A compressor includes: a casing including therein a main flow passage and an auxiliary flow passage having a bypass passage or a recirculation passage provided to communicate with the main flow passage; a plurality of rotor blades provided in the main flow passage; a flow passage cross sectional area adjustment member configured to be movable from one of an open position or a close position at which a flow passage cross sectional area of the auxiliary flow passage is smaller than that at the open position to the other; and a blade element provided to expose in the main flow passage to receive fluid force and configured to apply driving force caused by the fluid force to the flow passage cross sectional area adjustment member such that the flow passage cross sectional area adjustment member is located at the open position when a flow rate in the main flow passage is a first flow rate and the flow passage cross sectional area adjustment member is located at the close position when the flow rate is a second flow rate larger than the first flow rate.SELECTED DRAWING: Figure 1

Description

本開示は圧縮機に関する。   The present disclosure relates to a compressor.

従来、例えば自動車や船舶用等に用いられるターボチャージャー等の圧縮機にあっては、高効率化と作動領域の拡大とが課題とされている。その対策の一つとして、小流量時に生じるサージの発生限界を低下させるためのバイパス流路を主流路のほかに設ける構成が知られている。例えば、特許文献1には、動翼群の上流側端部よりも上流において主流路の外側に形成された迂回流路を、外部に設けた動作レバーで開閉する構成が開示されている。   2. Description of the Related Art Conventionally, in compressors such as turbochargers used for automobiles, ships and the like, there have been problems with high efficiency and expansion of the operating area. As one of the measures, a configuration is known in which a bypass flow path is provided in addition to the main flow path to lower the generation limit of the surge generated at the time of a small flow rate. For example, Patent Document 1 discloses a configuration in which a bypass channel formed outside the main channel upstream from the upstream end of the moving blade group is opened and closed by an operation lever provided outside.

特開2005−240696号公報JP 2005-240696 A

しかし、上記特許文献1に開示された圧縮機は、迂回流路の開閉を外部から行う必要があるため、エンジン等への搭載性やコスト面においてさらに改善の余地があった。   However, since the compressor disclosed in Patent Document 1 needs to open and close the bypass flow path from the outside, there is room for further improvement in the mountability to an engine or the like and the cost.

上述した問題に鑑み、本発明の少なくとも一実施形態は、外部入力を必要とせずに作動領域の拡大と高効率化とを両立可能な圧縮機を提供することを目的とする。   SUMMARY OF THE INVENTION In view of the above-mentioned problems, at least one embodiment of the present invention aims to provide a compressor that is compatible with the expansion of the operating area and the high efficiency without the need for an external input.

(1)本発明の少なくとも一実施形態に係る圧縮機は、
主流路と、前記主流路に連通するように設けられるバイパス路又は再循環路を含む副流路とを内部に含むケーシングと、
前記主流路内に設けられた複数の動翼と、
開位置、または、該開位置よりも前記副流路の流路断面積が小さい閉位置の一方から他方に移動可能に構成された流路断面積調整部材と、
流体力を受けるように前記主流路内に露出して設けられて、前記主流路の流れが第1流量のときに前記流路断面積調整部材が前記開位置に位置し、前記流れが前記第1流量よりも大きい第2流量のときに前記流路断面積調整部材が前記閉位置に位置するように、前記流体力に起因した駆動力を前記流路断面積調整部材に与えるよう構成された翼素と、
を備える。
(1) A compressor according to at least one embodiment of the present invention is
A casing including therein a main flow path and a sub-flow path including a bypass path or a recirculation path provided to be in communication with the main flow path;
A plurality of moving blades provided in the main flow path;
A channel cross-sectional area adjusting member configured to be movable from an open position or a closed position where the channel cross-sectional area of the sub-channel is smaller than the open position, from the one to the other;
The flow passage cross-sectional area adjustment member is positioned at the open position when the flow of the main flow passage is at a first flow rate so as to be exposed and provided in the main flow passage so as to receive fluid force, and the flow is It is configured to apply a driving force due to the fluid force to the flow passage cross-sectional area adjustment member such that the flow passage cross-sectional area adjustment member is positioned at the closed position when the second flow rate is larger than one flow rate. With wing element,
Equipped with

上記(1)の構成によれば、主流路内が第1流量の際は流路断面積調整部材が開位置に配置されて副流路から主流路内への流れを形成することができる。よって、圧縮機で発生し得るサージを効果的に抑制することができ、作動レンジの下限をより低く設定することができる。一方、第1流量よりも大きい第2流量では、流路断面積調整部材が閉位置に配置されて主流路と副流路との間で流体の流出入が規制される。よって、圧力損失等のロスが少なく高効率な圧縮機を実現することができる。このように、主流路内の流体力により、流路断面積調整部材を副流路に対して閉位置と開位置とに移動できるから、外部からの入力を必要とせずに圧縮機の作動領域の拡大と高効率化とを両立することができる。   According to the configuration of the above (1), when the main flow path is at the first flow rate, the flow path cross-sectional area adjustment member is disposed at the open position, and the flow from the sub flow path to the main flow path can be formed. Therefore, the surge which may be generated in the compressor can be effectively suppressed, and the lower limit of the operation range can be set lower. On the other hand, at the second flow rate larger than the first flow rate, the flow path cross-sectional area adjustment member is disposed at the closed position, and the outflow and inflow of fluid are restricted between the main flow path and the sub flow path. Therefore, a high efficiency compressor with little loss such as pressure loss can be realized. As described above, the fluid cross-sectional area adjustment member can be moved to the closed position and the open position with respect to the sub-passage by the fluid force in the main flow passage, so that the working area of the compressor is unnecessary without requiring external input. Can be compatible with the expansion of the

(2)いくつかの実施形態では、上記(1)に記載の構成において、
前記副流路は、前記動翼の前縁よりも前記主流路における上流側に位置する出口と、前記出口よりも前記主流路における上流側に位置する入口と、を含む前記バイパス路である。
(2) In some embodiments, in the configuration described in (1) above,
The sub-passage is the bypass including an outlet located upstream of the leading edge of the moving blade in the main flow passage and an inlet located upstream of the main flow passage in the main flow passage.

上記(2)の構成によれば、主流路において動翼の前縁よりも上流に配置された出口とさらに上流に配置された入口とを含むバイパス路により構成された副流路を含む圧縮機において、上記(1)で述べた効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路内の流体力でバイパス路を開放し、バイパス路からの流れによってサージの発生を抑制することができる。一方、主流路内が比較的大流量である第2流量の際には外部からの入力によらず主流路内の流体力でバイパス路を閉塞することができ、圧縮効率の低下を抑制することができる。   According to the configuration of the above (2), a compressor including a sub-passage including a bypass including an outlet located upstream of the leading edge of the moving blade in the main flow passage and an inlet located further upstream In the above, the effect described in the above (1) can be enjoyed. That is, at the first flow rate which is a relatively small flow rate, the bypass path can be opened by the fluid force in the main flow path regardless of the input from the outside, and the generation of the surge can be suppressed by the flow from the bypass path . On the other hand, when the second flow rate is a relatively large flow rate in the main flow path, the bypass path can be closed by the fluid force in the main flow path regardless of the external input, and the reduction in the compression efficiency is suppressed. Can.

(3)いくつかの実施形態では、上記(2)に記載の構成において、
前記バイパス路内に配置された予旋回ノズルをさらに備える。
(3) In some embodiments, in the configuration described in (2) above,
It further comprises a pre-swirl nozzle disposed in the bypass.

上記(3)の構成によれば、内部に予旋回ノズルが配置されたバイパス路から主流路内に、動翼の回転方向に沿う旋回流を積極的に付与することができる。つまり、比較的小流量である第1流量の際には流路断面積調整部材が開位置に配置され、上記予旋回ノズルからの旋回流を主流路内に強制的に供給することができるから、圧縮機において小流量の際に発生し得るサージをより効果的に抑制することができる。   According to the configuration of the above (3), it is possible to positively impart a swirling flow along the rotation direction of the moving blade from the bypass passage in which the pre-swirling nozzle is disposed to the inside to the main flow passage. That is, at the time of the first flow rate which is a relatively small flow rate, the flow path cross-sectional area adjustment member is disposed at the open position, and the swirling flow from the pre-swirling nozzle can be forcibly supplied into the main flow path. The surge which may occur at a small flow rate in the compressor can be suppressed more effectively.

(4)いくつかの実施形態では、上記(1)に記載の構成において、
前記副流路は、前記動翼に対向する前記ケーシングの内壁に配置された入口と、前記動翼の前縁よりも前記主流路における上流側に配置された出口と、を含む前記再循環路である。
(4) In some embodiments, in the configuration described in (1) above,
The recirculation passage includes the inlet disposed on the inner wall of the casing facing the moving blade, and the outlet disposed upstream of the main passage with respect to the leading edge of the blade. It is.

上記(4)の構成によれば、主流路において動翼の前縁よりも下流側に配置された入口と上記前縁よりも上流側に配置された出口とを含む再循環路(又は再循環流路)により構成された副流路を含む圧縮機において、上記(1)で述べた効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路内の流体力で再循環路を開放することができる。そして、再循環路からの旋回流でサージの発生を抑制することにより、作動領域の下限を低下させることができる。一方、主流路内が比較的大流量である第2流量の際には外部からの入力によらず主流路内の流体力で再循環路を閉塞し、圧縮効率の低下を抑制することができる。   According to the configuration of the above (4), a recirculation path (or a recirculation path) including an inlet disposed downstream of the leading edge of the blade in the main channel and an outlet disposed upstream of the leading edge In the compressor including the sub flow path configured by the flow path), the effect described in the above (1) can be obtained. That is, at the first flow rate which is a relatively small flow rate, the recirculation path can be opened by the fluid force in the main flow path regardless of the external input. Then, the lower limit of the working area can be lowered by suppressing the generation of the surge by the swirling flow from the recirculation path. On the other hand, in the case of the second flow rate where the main flow path has a relatively large flow rate, the recirculation path can be blocked by the fluid force in the main flow path regardless of the input from the outside, and a reduction in compression efficiency can be suppressed. .

(5)いくつかの実施形態では、上記(1)〜(4)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記副流路の前記出口を開閉するように配置され、
前記翼素は、前記出口よりも前記主流路における下流側、かつ、前記動翼の前縁の上流側において、前記流路断面積調整部材に取り付けられている。
(5) In some embodiments, in the configuration according to any one of (1) to (4) above,
The flow path cross-sectional area adjustment member is disposed to open and close the outlet of the sub flow path,
The blade element is attached to the flow passage cross-sectional area adjustment member on the downstream side of the main flow passage and on the upstream side of the leading edge of the moving blade than the outlet.

上記(5)の構成によれば、流路断面積調整部材によって副流路の出口が開閉されるように構成されたことにより、副流路から主流路への流れの有無を効果的に切り替えることができる。また、流路断面積調整部材の翼素が副流路の出口よりも下流に配置されたことにより、出口からの流れの影響を含めた流体力を効果的に翼素に作用させることができる。   According to the configuration of (5), the outlet of the sub flow path is opened and closed by the flow path cross sectional area adjustment member, thereby effectively switching the presence or absence of the flow from the sub flow path to the main flow path be able to. In addition, since the blade element of the flow passage cross-sectional area adjustment member is disposed downstream of the outlet of the sub flow passage, the fluid force including the influence of the flow from the outlet can be effectively applied to the blade element. .

(6)いくつかの実施形態では、上記(5)に記載の構成において、
前記流路断面積調整部材は、前記開位置に配置された際に、前記主流路の流れ方向における前記翼素の上流側端部と前記出口の下流側端部との距離が、前記流れ方向に沿う前記翼素の長さの20%以上になるように構成される。
(6) In some embodiments, in the configuration described in (5) above,
When the flow passage cross-sectional area adjustment member is disposed at the open position, the distance between the upstream end of the blade element and the downstream end of the outlet in the flow direction of the main flow passage is the flow direction 20% or more of the length of the wing element along the

副流路の出口からは概して動翼の回転方向に沿った旋回成分を有する旋回流が供給され、この旋回流は主流路内に斜めに流入して動翼に作用する。上記(6)の構成によれば、翼素は副流路の出口から該翼素の翼長の20%以上の間隔を隔てて配置されるから、上記出口からの流れを翼素で妨げることなく動翼に作用させることができる。   From the outlet of the sub-flow channel, a swirling flow having a swirling component generally along the rotation direction of the moving blade is supplied, and this swirling flow obliquely flows into the main flow passage and acts on the moving blade. According to the configuration of the above (6), since the blade element is disposed at a distance of 20% or more of the blade length of the blade element from the outlet of the sub flow path, the flow from the outlet is blocked by the blade element Can be made to act on the moving blades.

(7)幾つかの実施形態では、上記(5)又は(6)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記閉位置に配置された際に前記出口の一部のみを閉塞するように構成される。
(7) In some embodiments, in the configuration according to any one of (5) or (6) above,
The flow path cross-sectional area adjustment member is configured to close only a part of the outlet when disposed in the closed position.

上記(7)の構成によれば、流路断面積調整部材が閉位置に配置された状態においても、副流路からの流れの一部を主流路に流入させることができる。よって、比較的大流量である第2流量の際に、動翼に供給される流れに該動翼の回転方向に沿う旋回成分を付与することができるから、さらなる圧縮効率の向上を図ることができる。   According to the configuration of (7), even when the flow passage cross-sectional area adjustment member is disposed at the closed position, part of the flow from the sub flow passage can be caused to flow into the main flow passage. Therefore, at the second flow rate, which is a relatively large flow rate, a swirl component along the rotation direction of the moving blade can be added to the flow supplied to the moving blade, so that the compression efficiency can be further improved. it can.

(8)いくつかの実施形態では、上記(1)〜(7)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記主流路を規定する前記ケーシングの内壁に沿って少なくとも一部が前記主流路の流れ方向に平行な軸を中心とする環状に形成される。
(8) In some embodiments, in the configuration according to any one of the above (1) to (7),
The flow passage cross-sectional area adjustment member is formed in an annular shape centered at an axis parallel to the flow direction of the main flow passage, at least a part along the inner wall of the casing defining the main flow passage.

上記(8)の構成によれば、流路断面積調整部材をケーシングの内壁に沿わせることができるとともに、ケーシングの内壁の周方向にわたって流路断面積調整部材を一体に構成することができる。これにより、閉位置と開位置とを含む移動範囲内において、ケーシングの内壁に沿って流路断面積調整部材を円滑に案内することができる。また、ケーシングの内壁の周方向にわたって複数の副流路が形成された場合、環状に形成された流路断面積調整部材によって複数の副流路を一度に開閉することができる。   According to the configuration of (8), the flow passage cross-sectional area adjustment member can be made to follow the inner wall of the casing, and the flow passage cross-sectional area adjustment member can be integrally formed over the circumferential direction of the inner wall of the casing. Thus, the flow path cross-sectional area adjustment member can be smoothly guided along the inner wall of the casing within the movement range including the closed position and the open position. Further, when the plurality of sub-passages are formed in the circumferential direction of the inner wall of the casing, the plurality of sub-passages can be opened and closed at one time by the flow path cross-sectional area adjusting member formed annularly.

(9)いくつかの実施形態では、上記(1)〜(8)の何れか一つに記載の構成において、
前記ケーシングは、前記主流路における流れ方向に沿って前記閉位置と前記開位置との間で前記流路断面積調整部材が移動するよう、前記流路断面積調整部材を案内するように構成されたガイド部を含む。
(9) In some embodiments, in the configuration according to any one of (1) to (8) above,
The casing is configured to guide the flow passage cross-sectional area adjustment member such that the flow passage cross-sectional area adjustment member moves between the closed position and the open position along the flow direction in the main flow passage. Guide portion.

上記(9)の構成によれば、ガイド部に沿って流路断面積調整部材が閉位置と開位置とに案内される。主流路内が比較的大流量である第2流量の際には、主流路内の流れが順流の状態であるから、該順流に沿って流路断面積調整部材を閉位置に円滑に移動させることができる。また、主流路の流れ方向におけるガイド部の上流側端部及び下流側端部の位置や、流路断面積調整部材の翼素の位置を適切に設定することにより、流路断面積調整部材が作動する流量、すなわち圧縮機の作動レンジを任意に設定することができる。   According to the configuration of (9), the flow passage cross-sectional area adjustment member is guided along the guide portion to the closed position and the open position. At the second flow rate where the main flow path has a relatively large flow rate, the flow in the main flow path is in a forward flow state, so the flow path cross-sectional area adjustment member is smoothly moved to the closed position along the forward flow. be able to. In addition, by appropriately setting the positions of the upstream end and the downstream end of the guide portion in the flow direction of the main flow path, and the positions of the blade elements of the flow path cross-sectional area adjustment member, the flow path cross-sectional area adjustment member The operating flow rate, that is, the operating range of the compressor can be set arbitrarily.

(10)いくつかの実施形態では、上記(1)〜(9)の何れか一つに記載の構成において、
前記翼素は、前記主流路の上流側に面する凸状湾曲面と、前記主流路の下流側かつ前記動翼の回転方向の上流側に面する凹状湾曲面と、を含み、
前記主流路の流れ方向に対して前記翼素の長さが動翼の長さの80%以下に構成される。
(10) In some embodiments, in the configuration according to any one of the above (1) to (9),
The wing element includes a convex curved surface facing the upstream side of the main flow channel, and a concave curved surface facing the downstream side of the main flow channel and the upstream side of the rotating direction of the moving blade,
The length of the blade element is 80% or less of the length of the moving blade with respect to the flow direction of the main flow path.

主流路内が小流量である第1流量の際には、副流路からの流れと動翼の回転とに起因して、動翼の回転軸と交差する周方向への旋回成分を有する旋回流が翼素に作用し得る。この点、上記(10)の構成によれば、翼素の凹状湾曲面が主流路の下流側かつ動翼の回転方向の上流側に面するように構成されるから、凹状湾曲面で受けた旋回流を主流路の上流側に導くことで、流路断面積調整部材を開位置に移動させるための駆動力を得ることができる。一方、主流路の流れが第1流量より大きな第2流量の際には、翼素の凸状湾曲面に主流の動圧が作用して流路断面積調整部材が閉位置に移動される。その際、翼素の凸状湾曲面が主流路の上流側に面することにより、主流路の上流からの流れを下流側に円滑に案内することができる。よって、圧力損失に起因した効率低下を抑制することができる。   In the case of the first flow rate where the flow rate in the main flow path is small, due to the flow from the sub flow path and the rotation of the moving blade, a swirl having a turning component in the circumferential direction intersecting the rotation axis of the moving blade The flow can act on the wing element. In this respect, according to the configuration of the above (10), since the concave curved surface of the wing element is configured to face the downstream side of the main flow path and the upstream side in the rotational direction of the moving blade, the concave curved surface received By guiding the swirling flow to the upstream side of the main flow passage, a driving force for moving the flow passage cross-sectional area adjustment member to the open position can be obtained. On the other hand, when the flow of the main flow path is a second flow rate larger than the first flow rate, the dynamic pressure of the main flow acts on the convex curved surface of the blade element to move the flow path cross-sectional area adjustment member to the closed position. At this time, the convex curved surface of the wing element faces the upstream side of the main flow passage, whereby the flow from the upstream of the main flow passage can be smoothly guided to the downstream side. Therefore, the efficiency drop due to the pressure loss can be suppressed.

(11)いくつかの実施形態では、上記(1)〜(10)の何れか一つに記載の構成において、
前記流路断面積調整部材は、
前記副流路の少なくとも一部を閉塞可能な板部材と、
前記板部材及び前記翼素を、前記翼素の移動に応じて当該移動の方向と異なる向きに前記板部材を移動可能に連結する連結部と、を含む。
(11) In some embodiments, in the configuration according to any one of (1) to (10) above,
The flow path cross-sectional area adjustment member is
A plate member capable of closing at least a part of the sub flow path;
And a connecting portion for movably connecting the plate member and the wing element in a direction different from the direction of the movement according to the movement of the wing element.

上記(11)の構成によれば、副流路を閉塞する板部材を、軸流方向において翼素と逆向きに移動させることができる。これにより、圧縮機の設計の自由度の向上を図ることができる。   According to the configuration of the above (11), the plate member that closes the sub flow path can be moved in the direction opposite to the blade element in the axial flow direction. As a result, the degree of freedom in the design of the compressor can be improved.

(12)いくつかの実施形態では、上記(1)〜(11)の何れか一つに記載の構成において、
前記流路断面積調整部材は、
前記閉位置において前記副流路の出口に配置される流量規制部と、
前記流量規制部に対して前記開位置に向かう移動方向の上流側に配置された開口部と、を含む。
(12) In some embodiments, in the configuration according to any one of (1) to (11) above,
The flow path cross-sectional area adjustment member is
A flow rate control unit disposed at an outlet of the sub flow passage in the closed position;
And an opening disposed on the upstream side in the moving direction toward the open position with respect to the flow rate regulation unit.

上記(12)の構成によれば、例えば、流路断面積調整部材において開位置または閉位置に向かう移動方向の上流側又は下流側の端部を用いて副流路を開閉する構成に比べて、副流路の出口の幅が開口部よりも大きい場合は該開口部の大きさに規制することができる。したがって、回転機械の設計の自由度の向上が図られる。   According to the configuration of the above (12), for example, compared to the configuration in which the sub flow passage is opened and closed using the upstream or downstream end in the moving direction toward the open position or the closed position in the flow passage cross sectional area adjustment member When the width of the outlet of the sub flow passage is larger than the opening, the size of the opening can be regulated. Therefore, the design freedom of the rotary machine can be improved.

(13)いくつかの実施形態では、上記(12)に記載の構成において、
前記流路断面積調整部材は、前記翼素よりも少数の前記開口部を含む。
(13) In some embodiments, in the configuration described in (12) above,
The flow passage cross-sectional area adjustment member includes a smaller number of the openings than the blade element.

上記(13)の構成によれば、開口部の数を翼素の数より少なく構成することで、各々の開口部を軸流方向周りの周方向においてより大きく確保することができる。これにより、例えば、副流路から動翼に付与する旋回流の効果をより大きく確保することができる。   According to the configuration of (13), by making the number of openings smaller than the number of wing elements, each opening can be secured larger in the circumferential direction around the axial flow direction. As a result, for example, the effect of the swirling flow imparted to the moving blade from the sub-passage can be further largely secured.

(14)いくつかの実施形態では、上記(1)〜(13)の何れか一つに記載の構成において、
前記軸流方向に沿って少なくとも前記動翼の前縁及びその上流を含む領域であって前記主流路を規定する前記ケーシングの内周近傍に、逆流が生じ得る逆流域が分布し、
前記流路断面積調整部材は、少なくとも前記翼素が前記逆流域に配置されるように構成される。
(14) In some embodiments, in the configuration according to any one of (1) to (13) above,
In the region including at least the leading edge of the moving blade and the upstream thereof along the axial flow direction and in the vicinity of the inner periphery of the casing defining the main flow passage, a reverse flow area in which reverse flow may occur is distributed.
The flow path cross-sectional area adjustment member is configured such that at least the blade element is disposed in the reverse flow area.

上記(14)の構成によれば、比較的小流量の第1流量の際には、逆流による流体力を翼素に確実に作用させることができる。よって、流量の変化に対して応答性の高い流路断面積調整部材を得ることができるため、圧縮機の作動領域の拡大と高効率化とをより確実に達成することができる。   According to the configuration of the above (14), in the case of the first flow rate with a relatively small flow rate, the fluid force by the reverse flow can be reliably applied to the blade element. Therefore, since a flow path cross-sectional area adjustment member having high responsiveness to changes in flow rate can be obtained, expansion of the working area of the compressor and higher efficiency can be achieved more reliably.

(15)いくつかの実施形態では、上記(1)〜(14)の何れか一つに記載の構成において、
上記圧縮機はターボチャージャーを含む。
(15) In some embodiments, in the configuration according to any one of (1) to (14) above,
The compressor includes a turbocharger.

上記(15)の構成によれば、自動車用又は船舶用等のターボチャージャーにおいて、上記(1)〜(14)の何れか一つで述べた効果を享受することができる。   According to the configuration of the above (15), the effects described in any one of the above (1) to (14) can be obtained in a turbocharger for an automobile, a ship or the like.

本発明の少なくとも一実施形態によれば、外部入力を必要とせずに圧縮機の作動領域の拡大と高効率化とを両立することができる。   According to at least one embodiment of the present invention, it is possible to achieve both expansion of the working area of the compressor and high efficiency without the need for external input.

一実施形態に係る圧縮機の構成を示す側断面図である。It is a side sectional view showing the composition of the compressor concerning one embodiment. 一実施形態に係る圧縮機の流路断面積調整部材を示す側断面図であり、(a)は開位置に配置された状態、(b)は閉位置に配置された状態を示す。It is a sectional side view which shows the flow-path cross-sectional area adjustment member of the compressor which concerns on one Embodiment, (a) is the state arrange | positioned in the open position, (b) shows the state arrange | positioned in the closed position. 他の実施形態に係る圧縮機の構成例を示す側断面図である。It is a sectional side view which shows the structural example of the compressor concerning other embodiment. 一実施形態における流路断面積調整部材の閉塞状態を示す概略図である。It is the schematic which shows the closed state of the flow-path cross-sectional area adjustment member in one Embodiment. 一実施形態における流路断面積調整部材の軸方向断面図である。It is an axial sectional view of a channel cross-sectional area adjustment member in one embodiment. 一実施形態における翼素に作用する流体力を示す概略図である。FIG. 5 is a schematic view showing fluid force acting on an element in one embodiment. 他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。It is the schematic which shows the structural example of the flow-path cross-sectional area adjustment member in other embodiment, (a) shows an open position, (b) shows a closed position. 他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。It is the schematic which shows the structural example of the flow-path cross-sectional area adjustment member in other embodiment, (a) shows an open position, (b) shows a closed position. 一実施形態における動翼付近の流れ示す概略図であり、(a)は順流の第1状態、(b)は逆流が生じる第2状態を示す。It is the schematic which shows the flow of the rotor blade vicinity in one Embodiment, (a) is a 1st state of a forward flow, (b) shows the 2nd state which a backflow produces.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as the embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely illustrative. Absent.
For example, a representation representing a relative or absolute arrangement such as “in a direction”, “along a direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial” is strictly Not only does it represent such an arrangement, but also represents a state of relative displacement with an angle or distance that allows the same function to be obtained.
For example, expressions that indicate that things such as "identical", "equal" and "homogeneous" are equal states not only represent strictly equal states, but also have tolerances or differences with which the same function can be obtained. It also represents the existing state.
For example, expressions representing shapes such as quadrilateral shapes and cylindrical shapes not only represent shapes such as rectangular shapes and cylindrical shapes in a geometrically strict sense, but also uneven portions and chamfers within the range where the same effect can be obtained. The shape including a part etc. shall also be expressed.
On the other hand, the expressions "comprising", "having", "having", "including" or "having" one component are not exclusive expressions excluding the presence of other components.

図1は、一実施形態に係る圧縮機の構成を示す概略図である。図2は、一実施形態に係る圧縮機の流路断面積調整部材を示す側断面図であり、(a)は開位置に配置された状態、(b)は閉位置に配置された状態を示す。
図1及び図2に示すように、本発明の少なくとも一実施形態に係る圧縮機1は、例えば内燃機関に圧縮空気を送り込むための装置(遠心圧縮機)であり、主流路14と、該主流路14に連通するように設けられるバイパス路20A又は再循環路(又は再循環流路)20Bを含む副流路20とを内部に含むケーシング2と、主流路14内に設けられた複数の動翼6と、開位置P1、または、該開位置P1よりも副流路20の流路断面積が小さい閉位置P2の一方から他方に移動可能に構成された流路断面積調整部材30と、流体力を受けるように主流路14内に露出して設けられて、主流路14の流れが第1流量のときに流路断面積調整部材30が開位置P1に位置し、流れが第1流量よりも大きい第2流量のときに流路断面積調整部材30が閉位置に位置するように、流体力に起因した駆動力を流路断面積調整部材30に与えるよう構成された翼素38と、を備えている。
FIG. 1 is a schematic view showing a configuration of a compressor according to an embodiment. FIG. 2 is a side cross-sectional view showing the flow passage cross-sectional area adjustment member of the compressor according to one embodiment, in which (a) is in the open position and (b) is in the closed position. Show.
As shown in FIGS. 1 and 2, the compressor 1 according to at least one embodiment of the present invention is, for example, a device (centrifugal compressor) for feeding compressed air into an internal combustion engine, and includes a main flow path 14 and the main flow path. A casing 2 including therein a bypass passage 20A provided in communication with the passage 14 or a sub-flow passage 20 including a recirculation passage (or recirculation passage) 20B, and a plurality of motions provided in the main flow passage 14 A flow path cross-sectional area adjustment member 30 configured to be movable from the wing 6 and the open position P1 or one of the closed positions P2 where the flow cross-sectional area of the sub flow path 20 is smaller than the open position P1; The flow passage cross-sectional area adjustment member 30 is positioned at the open position P1 when the flow of the main flow passage 14 is at the first flow rate so as to receive the fluid force and the flow is the first flow rate The channel cross-sectional area adjustment member 30 So as to be positioned at a position, and a blade element 38 that is configured to provide a driving force caused by the fluid force in the flow path cross-sectional area adjustment member 30.

ケーシング2は、略円筒状の内部空間を有しており、該円筒の中心軸10の一端の開口から流入した空気を、他端に配置されたインペラ(羽根車)4の回転により径方向に圧縮し、該インペラ4の接線方向に配置された圧縮室12に空気を送るための流路(主流路14)を規定する。ケーシング2の内部には、例えば環状部材3を配置することで副流路20を形成してもよい。この場合は上記開口から環状部材3の内側を通ってインペラ4に向かう主流50の通過経路が主流路14であり、環状部材3とケーシング2との間が副流路20としてのバイパス路20A(その内部を通過する流れが副流56)である。
インペラ4は、中心軸10と同軸の図示しない回転軸を中心に回転可能に設けられる。インペラ4には周方向に沿って複数の動翼6(羽根)が設けられている。
動翼6は、軸方向の上流から流入した空気を下流側において接線方向(或いは径方向)に送出するように形成されている。
流路断面積調整部材30は、主流路14において動翼6の最上流側の端部である前縁8よりも上流側に配置されており、開位置P1と閉位置P2との間で往復移動可能に設けられている。なお、説明の便宜上、図1の上半分は流路断面積調整部材30が開位置P1に配置された状態を示しており、図1の下半分は流路断面積調整部材30が閉位置P2に配置された状態を示している。
翼素38は、主流路14内の流れ(例えば空気流)に基づく流体力を受けて駆動される。例えば、翼素38は、主流路14内を上流側から下流側に流れる順流や、下流側から上流側に向かう逆流、或いは、中心軸周りに流れる旋回流から駆動力を得ることにより、上流から下流、下流から上流、或いは、中心軸10周りの周方向に向かう駆動力を流路断面積調整部材30に付与することができる。
The casing 2 has a substantially cylindrical internal space, and the air introduced from the opening at one end of the central axis 10 of the cylinder is radially moved by rotation of the impeller (impeller) 4 disposed at the other end. A flow path (main flow path 14) for compressing and sending air to a compression chamber 12 disposed tangentially to the impeller 4 is defined. For example, by arranging the annular member 3 inside the casing 2, the sub flow passage 20 may be formed. In this case, the main passage 14 is the passage for the main flow 50 from the opening to the impeller 4 through the inside of the annular member 3, and the bypass passage 20A (second passage 20) is between the annular member 3 and the casing 2. The flow passing therethrough is the side stream 56).
The impeller 4 is provided rotatably about a rotation axis (not shown) coaxial with the central axis 10. The impeller 4 is provided with a plurality of moving blades 6 (blades) along the circumferential direction.
The moving blades 6 are formed so as to send out the air flowing in from the upstream in the axial direction in the tangential direction (or radial direction) on the downstream side.
The channel cross-sectional area adjusting member 30 is disposed upstream of the leading edge 8 which is the most upstream end of the moving blade 6 in the main channel 14, and reciprocates between the open position P1 and the closed position P2. It is provided movably. The upper half of FIG. 1 shows a state in which the flow path cross-sectional area adjustment member 30 is disposed at the open position P1 for the convenience of description, and the lower half of FIG. It shows the state of being placed in.
The wing element 38 is driven by receiving a fluid force based on the flow (for example, the air flow) in the main flow passage 14. For example, the wing element 38 can be driven from the upstream side by obtaining a driving force from a forward flow flowing from the upstream side to the downstream side in the main flow passage 14, a reverse flow from the downstream side to the upstream side, or a swirling flow flowing around the central axis. Driving force toward the circumferential direction around the central axis 10 can be applied to the flow path cross-sectional area adjustment member 30 from the downstream side, from the downstream side to the upstream side, or around the central axis 10.

上記の構成によれば、主流路14内が第1流量の際は流路断面積調整部材30が開位置P1に配置されて副流路20から主流路14内への流れを形成することができる。よって、圧縮機1で発生し得るサージを効果的に抑制することができるから、作動レンジの下限をより低く設定することができる。なお、第1流量は、主流路14内の流れが比較的低速であって、中心軸10周りの旋回流や逆流が発生し得るような流量に設定され得る。一方、第1流量よりも大きい第2流量では、流路断面積調整部材30が閉位置P2に配置されて主流路14と副流路20との間で流体の流出入が規制される。よって、圧力損失等のロスが少なく高効率な圧縮機1を実現することができる。このように、主流路14内の流体力により、流路断面積調整部材30を副流路20に対して閉位置P2と開位置P1とに移動できるから、外部からの入力を必要とせずに圧縮機1の作動領域の拡大と高効率化とを両立することができるのである。   According to the above configuration, when the main flow passage 14 is at the first flow rate, the flow passage cross-sectional area adjustment member 30 is disposed at the open position P1 to form a flow from the sub flow passage 20 into the main flow passage 14 it can. Therefore, since the surge which may generate | occur | produce in the compressor 1 can be suppressed effectively, the lower limit of an operating range can be set lower. The first flow rate may be set to a flow rate at which the flow in the main flow path 14 is relatively low, and a swirling flow or a reverse flow around the central axis 10 may occur. On the other hand, at the second flow rate larger than the first flow rate, the flow path cross-sectional area adjustment member 30 is disposed at the closed position P2, and the outflow and inflow of fluid are restricted between the main flow path 14 and the sub flow path 20. Therefore, loss with pressure loss etc. can implement | achieve a highly efficient compressor 1. As described above, the flow path cross-sectional area adjustment member 30 can be moved to the closed position P2 and the open position P1 with respect to the sub flow path 20 by the fluid force in the main flow path 14, so that external input is not necessary. It is possible to achieve both the expansion of the working area of the compressor 1 and the high efficiency.

いくつかの実施形態では、上記構成において、副流路20は、動翼6の前縁8よりも主流路14における上流側に位置する出口24と、該出口24よりも主流路14における上流側に位置する入口22と、を含むバイパス路20Aであってもよい(例えば図1、図2及び図8参照)。このようにすれば、主流路14において動翼6の前縁8よりも上流側に配置された出口24とさらに上流側に配置された入口22とを含むバイパス路20Aにより構成された副流路20を含む圧縮機1において、上述した効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路14内の流体力でバイパス路20Aを開放することができる。一般に、バイパス路20Aの出口24から主流路14には、インペラ4(又は動翼6)の回転に沿った旋回成分を有する流れが供給される。このように、インペラ4に流入する流れに予めインペラ4の回転と同方向の旋回成分を付与することにより、動翼6への流入角を該動翼6のコード方向に沿わせることができるため、剥離が抑制されてサージが抑制される。よって、バイパス路20Aからの流れによってサージの発生を抑制することができる。一方、主流路14内が比較的大流量である第2流量の際には外部からの入力によらず主流路14内の流体力でバイパス路20Aを閉塞することができるので、圧縮効率の低下を抑制することができる。   In some embodiments, in the above configuration, the sub-channel 20 is an outlet 24 located upstream of the leading edge 8 of the rotor blade 6 in the main channel 14 and an upstream side of the main channel 14 rather than the outlet 24. And the inlet 22 located at the side of the bypass passage 20A (see, for example, FIG. 1, FIG. 2 and FIG. 8). In this way, the sub-passage formed by the bypass passage 20A including the outlet 24 disposed upstream of the front edge 8 of the moving blade 6 in the main flow passage 14 and the inlet 22 disposed further upstream. In the compressor 1 including 20, the above-described effect can be enjoyed. That is, in the case of the first flow rate, which is a relatively small flow rate, the bypass path 20A can be opened by the fluid force in the main flow path 14 regardless of the external input. Generally, from the outlet 24 of the bypass passage 20A to the main flow passage 14, a flow having a pivoting component along the rotation of the impeller 4 (or the moving blade 6) is supplied. As described above, the inflow angle to the moving blade 6 can be made to be along the cord direction of the moving blade 6 by previously imparting a swirl component in the same direction as the rotation of the impeller 4 to the flow flowing into the impeller 4 in advance. Peeling is suppressed and surge is suppressed. Therefore, the generation of a surge can be suppressed by the flow from the bypass 20A. On the other hand, at the second flow rate where the main flow path 14 has a relatively large flow rate, the bypass path 20A can be closed by the fluid force in the main flow path 14 regardless of the external input, so the compression efficiency is reduced. Can be suppressed.

いくつかの実施形態において、圧縮機1は、バイパス路20A内に配置された予旋回ノズル26をさらに備えていてもよい(例えば図2参照)。
予旋回ノズル26は、インペラ4に流入する流れに、該インペラ4の回転と同方向の旋回成分を予め強制的に付与することにより、インペラ4の回転効率の低下を抑制して圧縮効率の向上を図るものである。このように予旋回ノズル26を備えた構成とすれば、内部に予旋回ノズル26が配置されたバイパス路20Aから主流路14内に、動翼6の回転方向に沿う旋回流58を積極的に付与することができる。つまり、比較的小流量である第1流量の際には流路断面積調整部材30が開位置P1に配置され、上記予旋回ノズル26からの旋回流58を主流路14内に強制的に供給することができるから、圧縮機1において小流量の際に発生し得るサージをより効果的に抑制することができる。
In some embodiments, the compressor 1 may further include a pre-swirl nozzle 26 disposed in the bypass passage 20A (see, for example, FIG. 2).
The pre-swirling nozzle 26 forcibly applies, in advance, a swirl component in the same direction as the rotation of the impeller 4 to the flow flowing into the impeller 4 to suppress the decrease in the rotation efficiency of the impeller 4 and improve the compression efficiency. The If the pre-swirling nozzle 26 is provided as described above, the swirling flow 58 along the rotational direction of the moving blade 6 is actively made in the main flow passage 14 from the bypass passage 20A in which the pre-swirling nozzle 26 is disposed. It can be granted. That is, at the first flow rate which is a relatively small flow rate, the flow path cross-sectional area adjustment member 30 is disposed at the open position P1, and the swirling flow 58 from the pre-swirling nozzle 26 is forcibly supplied into the main flow passage 14 Therefore, it is possible to more effectively suppress the surge that may occur at a small flow rate in the compressor 1.

図3は、他の実施形態に係る圧縮機の構成例を示す側断面図である。
図3に非限定的に例示するように、いくつかの実施形態において、副流路20は、動翼6に対向するケーシング2の内壁に配置された入口22と、動翼6の前縁8よりも主流路14における上流側に配置された出口24と、を含む再循環路20Bであってもよい。
すなわち再循環路20Bは、動翼6の前縁8よりも主流路14における下流側に配置された入口22と、動翼6の前縁8よりも主流路14における上流側に配置された出口24とを含む還流路であってもよい。
圧縮機1内に上記のような再循環路20Bを設けた場合、回転するインペラ4の外周側に配置された入口22から、該インペラ4の回転に伴う旋回成分を有する流れ(副流56)が上流側に送られ、出口24から主流50に戻される。このため、主流路14内では見かけ流量が増加されて流速が増加する。これにより、回転する動翼6への流入角を該動翼6のコード方向に沿わせることができるため、剥離が抑制されてサージが抑制されるのである。
上記の構成によれば、主流路14において動翼6の前縁8よりも下流側に配置された入口22と前縁8よりも上流側に配置された出口24とを含む再循環路20Bである副流路20を含む圧縮機1において、上述した効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路14内の流体力で再循環路20Bを開放することができる。そして、再循環路20Bからの旋回流58でサージの発生を抑制することにより、作動領域の下限を低下させることができる。一方、主流路14内が比較的大流量である第2流量の際には外部からの入力によらず主流路14内の流体力で再循環路20Bを閉塞し、圧縮効率の低下を抑制することができる。
FIG. 3 is a side sectional view showing a configuration example of a compressor according to another embodiment.
As illustrated in a non-limiting manner in FIG. 3, in some embodiments, the sub-channel 20 is provided with an inlet 22 disposed on the inner wall of the casing 2 facing the blade 6 and a leading edge 8 of the blade 6. And the outlet 24 disposed on the upstream side of the main flow passage 14 may be a recirculation passage 20B.
That is, the recirculation passage 20 B has an inlet 22 disposed downstream of the leading edge 8 of the bucket 6 in the main flow passage 14 and an outlet disposed upstream of the leading edge 8 of the bucket 6 in the main passage 14. And the like.
In the case where the above-described recirculation path 20B is provided in the compressor 1, the flow having the swirl component accompanying the rotation of the impeller 4 from the inlet 22 disposed on the outer peripheral side of the rotating impeller 4 (substream 56) Are sent upstream and returned to the main flow 50 from the outlet 24. For this reason, the apparent flow rate is increased in the main flow path 14 to increase the flow rate. Thereby, since the inflow angle to the rotating moving blade 6 can be made to be along the cord direction of the moving blade 6, peeling is suppressed and the surge is suppressed.
According to the above configuration, in the main flow passage 14, the recirculation passage 20 B includes the inlet 22 disposed downstream of the front edge 8 of the moving blade 6 and the outlet 24 disposed upstream of the front edge 8. In the compressor 1 including a certain sub flow passage 20, the above-described effect can be obtained. That is, in the case of the first flow rate which is a relatively small flow rate, the recirculation path 20B can be opened by the fluid force in the main flow path 14 regardless of the input from the outside. Then, the lower limit of the working area can be lowered by suppressing the generation of the surge by the swirling flow 58 from the recirculation path 20B. On the other hand, at the second flow rate where the flow path in the main flow path 14 has a relatively large flow rate, the fluid flow in the main flow path 14 blocks the recirculation path 20B regardless of the input from the outside to suppress the reduction in compression efficiency. be able to.

いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、副流路20の出口24を開閉するように配置されてもよい(例えば図1〜3及び図8参照)。また、翼素38は、出口24よりも主流路14における下流側、かつ、動翼6の前縁8の上流側において、流路断面積調整部材30に取り付けられていてもよい(例えば図1〜3参照)。このように構成すれば、流路断面積調整部材30によって副流路20の出口24が開閉されるように構成されたことにより、副流路20から主流路14への流れの有無を効果的に切り替えることができる。また、流路断面積調整部材30の翼素38が副流路20の出口24よりも下流に配置されたことにより、出口24からの流れの影響を含めた流体力を効果的に翼素38に作用させることができる。
なお、他の実施形態では、例えば、副流路20の入口22を流路断面積調整部材30で開閉するように構成してもよい。このような構成によっても、流路断面積調整部材30で出口24を開閉する構成と同様の効果を得ることができる。さらに、他の実施形態では、流路断面積調整部材30により副流路20の入口22と出口24の両方を開閉するように構成してもよい。
In some embodiments, in the configuration described in any of the above, the channel cross-sectional area adjustment member 30 may be arranged to open and close the outlet 24 of the sub-channel 20 (e.g. See Figure 8). Alternatively, the wing element 38 may be attached to the flow passage cross-sectional area adjustment member 30 at the downstream side of the main flow passage 14 and the upstream side of the front edge 8 of the moving blade 6 than the outlet 24 (for example, FIG. 1) ~ 3). According to this structure, the outlet 24 of the sub flow passage 20 is opened and closed by the flow passage cross-sectional area adjustment member 30, so that the presence or absence of the flow from the sub flow passage 20 to the main flow passage 14 is effectively achieved. Can be switched to Further, since the blade element 38 of the flow passage cross-sectional area adjustment member 30 is disposed downstream of the outlet 24 of the sub flow passage 20, the fluid force including the influence of the flow from the outlet 24 can be effectively reduced. Can act on.
In another embodiment, for example, the inlet 22 of the sub flow passage 20 may be configured to be opened and closed by the flow passage cross-sectional area adjustment member 30. According to such a configuration, the same effect as the configuration in which the outlet 24 is opened and closed by the flow passage cross-sectional area adjustment member 30 can be obtained. Furthermore, in another embodiment, both the inlet 22 and the outlet 24 of the sub flow passage 20 may be opened and closed by the flow passage cross sectional area adjustment member 30.

いくつかの実施形態において、流路断面積調整部材30は、例えば図2(a)及び図2(b)に非限定的に例示するように、開位置P1に配置された際に、主流路14の流れ方向における翼素38の上流側端部38A(図2(b)参照)と出口24の下流側端部24B(図2(a)参照)との距離L1が、流れ方向に沿う翼素38の長さ(翼素長)L2の20%以上になるように構成されてもよい。
副流路20の出口24からは概して動翼6の回転方向に沿った旋回成分を有する旋回流58(図4参照)が供給され、この旋回流58は主流路14内に斜めに流入さて動翼6に作用する。したがって、副流路20の出口24から該翼素38の翼長L2の20%以上の間隔を隔てて下流側に翼素38を配置することにより、上記出口24からの流れを翼素38で妨げることなく動翼6に作用させることができる。
In some embodiments, the flow path cross-sectional area adjustment member 30 may be a main flow path when disposed at the open position P1, for example as illustrated non-limitingly in FIGS. 2 (a) and 2 (b). The distance L1 between the upstream end 38A (see FIG. 2 (b)) of the wing element 38 and the downstream end 24B (see FIG. 2 (a)) of the outlet 24 in the flow direction of 14 It may be configured to be 20% or more of the length 38 (prime length) L2 of the element 38.
A swirling flow 58 (see FIG. 4) having a swirling component generally along the rotation direction of the moving blade 6 is supplied from the outlet 24 of the sub flow passage 20, and this swirling flow 58 obliquely flows into the main flow passage 14 to move. Act on wings 6 Therefore, by arranging the wing element 38 at a distance of 20% or more of the blade length L2 of the wing element 38 from the outlet 24 of the sub flow passage 20, the flow from the outlet 24 can be It can be made to act on the moving blade 6 without hindrance.

図4は、一実施形態における流路断面積調整部材の閉塞状態を示す概略図である。
図4に非限定的に例示するように、幾つかの実施形態では、上記の何れか一つに記載の構成において、流路断面積調整部材30は、閉位置P2に配置された際に出口24の一部のみを閉塞するように構成されてもよい。このように構成すれば、流路断面積調整部材30が閉位置P2に配置された状態においても、副流路20からの流れの一部を主流路14に流入させることができる。よって、比較的大流量である第2流量の際に、動翼6に供給される流れに該動翼6の回転方向に沿う旋回成分を付与することができるから、さらなる圧縮効率の向上を図ることができる。
FIG. 4 is a schematic view showing the closed state of the flow passage cross-sectional area adjustment member in one embodiment.
As illustrated in a non-limiting manner in FIG. 4, in some embodiments, in the configuration described in any one of the above, the flow path cross-sectional area adjustment member 30 is an outlet when disposed in the closed position P2. It may be configured to close only a part of 24. According to this structure, even when the flow passage cross-sectional area adjustment member 30 is disposed at the closed position P2, part of the flow from the sub flow passage 20 can be caused to flow into the main flow passage 14. Therefore, at the second flow rate, which is a relatively large flow rate, a swirl component along the rotation direction of the moving blade 6 can be added to the flow supplied to the moving blade 6, thereby further improving the compression efficiency. be able to.

図5は、一実施形態における流路断面積調整部材の軸方向断面図である。
図5に非限定的に例示するように、いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、主流路14を規定するケーシング2の内壁に沿って少なくとも一部が主流路14の流れ方向に平行な軸を中心とする環状に形成された環状部34を含んでいてもよい。このように構成すれば、流路断面積調整部材30をケーシング2の内壁に沿わせることができるとともに、ケーシング2の内壁の周方向にわたって流路断面積調整部材30を一体に構成することができる。これにより、閉位置P2と開位置P1とを含む移動範囲内において、ケーシング2の内壁に沿って流路断面積調整部材30を円滑に案内することができる。また、ケーシング2の内壁の周方向にわたって複数の副流路20が形成された場合、環状に形成された流路断面積調整部材30によって複数の副流路20を一度に開閉することができる。
なお、流路断面積調整部材30は、軸方向視にて完全な環状でなく弧状に形成されていてもよい。
FIG. 5 is an axial cross-sectional view of the flow passage cross-sectional area adjustment member in one embodiment.
As illustrated in a non-limiting manner in FIG. 5, in some embodiments, in the configuration described in any of the above, the flow path cross-sectional area adjustment member 30 is along the inner wall of the casing 2 defining the main flow path 14. It may include an annular portion 34 formed in an annular shape centered on an axis at least a part of which is parallel to the flow direction of the main flow passage 14. According to this structure, the flow passage cross-sectional area adjustment member 30 can be made to follow the inner wall of the casing 2 and the flow passage cross-sectional area adjustment member 30 can be integrally formed over the circumferential direction of the inner wall of the casing 2 . Thereby, the flow path cross-sectional area adjustment member 30 can be smoothly guided along the inner wall of the casing 2 within the movement range including the closed position P2 and the open position P1. Further, when the plurality of sub flow channels 20 are formed in the circumferential direction of the inner wall of the casing 2, the plurality of sub flow channels 20 can be opened and closed at one time by the flow path cross-sectional area adjustment member 30 formed annularly.
In addition, the flow-path cross-sectional area adjustment member 30 may be formed not in a perfect ring shape but in an arc shape in the axial direction.

いくつかの実施形態において、ケーシング2は、主流路14における流れ方向に沿って閉位置P2と開位置P1との間で流路断面積調整部材30が移動するよう、流路断面積調整部材30を案内するように構成されたガイド部40を含んでいてもよい(例えば図2及び図5参照)。このようなガイド部40は、例えば、ケーシング2の内壁と、これに対向する流路断面積調整部材30の対向面との何れか一方に形成された溝状の凹部と、何れか他方に形成され、上記凹部に摺動(スライド移動)可能に係合する凸状の係合部とで構成されてもよい。このようにガイド部40を含む構成とすれば、ガイド部40に沿って流路断面積調整部材30が閉位置P2と開位置P1とに案内される。例えば、主流路14内が比較的大流量である第2流量の際には、主流路14内の流れが順流の状態であるから、該順流に沿って流路断面積調整部材30を閉位置P2に円滑に移動させることができる。また、主流路14の流れ方向におけるガイド部40の上流側端部40A(図2(b)参照)及び下流側端部40B(図2(a)参照)の位置や、流路断面積調整部材30の翼素38の位置を適切に設定することにより、流路断面積調整部材30が作動する流量、すなわち圧縮機1の作動レンジを任意に設定することができる。
なお、ガイド部40による流路断面積調整部材30の移動方向は、主流路14内の流れ方向に限定されず、主流路14内の流れを受けた翼素38によって生成される駆動力に応じた方向であってもよい。例えば、図4に非限定的に例示するように、主流路14内で上流側から下流側に流れる主流50や副流路20からの旋回流58を受けて、主流50と交差する方向に対して翼素38が駆動力を生成する構成であってもよい。すなわち、例えば、主流50の流れ方向又は中心軸10に直交する方向や(中心軸10の周方向)であってもよいし、主流50の流れ方向や中心軸10に対して斜め方向に駆動力を生成する構成であってもよい。
In some embodiments, the casing 2 has a flow passage cross-sectional area adjustment member 30 so that the flow passage cross-sectional area adjustment member 30 moves along the flow direction in the main flow passage 14 between the closed position P2 and the open position P1. The guide 40 may be configured to guide the user (see, for example, FIGS. 2 and 5). Such a guide portion 40 is formed, for example, in a groove-shaped recess formed in either one of the inner wall of the casing 2 and the opposite surface of the flow passage cross-sectional area adjustment member 30 opposite thereto. And may be configured with a convex engaging portion that slidably engages with the recess. As described above, when the guide portion 40 is included, the flow path cross-sectional area adjustment member 30 is guided along the guide portion 40 to the closed position P2 and the open position P1. For example, at the second flow rate where the main flow path 14 has a relatively large flow rate, the flow in the main flow path 14 is in the forward flow state, so the flow path cross-sectional area adjustment member 30 is closed along the forward flow. It can be moved smoothly to P2. Further, the positions of the upstream end 40A (see FIG. 2B) and the downstream end 40B (see FIG. 2A) of the guide portion 40 in the flow direction of the main flow passage 14, the flow passage cross-sectional area adjustment member By appropriately setting the positions of the 30 blade elements 38, the flow rate at which the flow passage cross-sectional area adjustment member 30 operates, that is, the operation range of the compressor 1 can be arbitrarily set.
The moving direction of the flow passage cross-sectional area adjustment member 30 by the guide portion 40 is not limited to the flow direction in the main flow passage 14, but according to the driving force generated by the wing element 38 receiving the flow in the main flow passage 14. It may be the other direction. For example, as illustrated in FIG. 4 in a non-limiting manner, the swirl flow 58 from the main flow 50 flowing from the upstream side to the downstream in the main flow path 14 or the swirl flow 58 from the sub flow path 20 The wing element 38 may be configured to generate a driving force. That is, for example, it may be the flow direction of the main flow 50 or a direction orthogonal to the central axis 10 (peripheral direction of the central axis 10), or the driving force in the oblique direction with respect to the flow direction of the main flow 50 or the central axis 10 May be generated.

図6は、一実施形態における翼素に作用する流体力を示す概略図である。
図6に非限定的に例示するように、いくつかの実施形態において、翼素38は、主流路14の上流側に面する凸状湾曲面38Bと、主流路14の下流側かつ動翼6の回転方向の上流側に面する凹状湾曲面38Cと、を含み、主流路14の流れ方向(中心軸10に沿って上流側から下流側に向かう方向)に対して翼素38の長さが動翼6の長さの80%以下に構成されてもよい。
主流路14内が小流量である第1流量の際には、副流路20からの流れと動翼6の回転とに起因して、中心軸10と交差する周方向への旋回成分を有する旋回流58(図4参照)が翼素38に作用し得る。この点、上記のように構成すれば、翼素38の凹状湾曲面38Cが主流路14の下流側かつ動翼6の回転方向の上流側に面するように構成されるから、凹状湾曲面38Cで受けた旋回流58を主流路14の上流側に導くことで、流路断面積調整部材30を開位置P1に移動させるための駆動力を得ることができる。一方、主流路14の流れが第1流量より大きな第2流量の際には、翼素38の凸状湾曲面38Bに主流(順流)50の動圧が作用して流路断面積調整部材30が閉位置P2に移動される。その際、翼素38の凸状湾曲面38Bが主流路14の上流側に面することにより、主流路14における上流からの流れを下流側に円滑に案内することができる。よって、圧力損失に起因した効率低下を抑制することができる。
FIG. 6 is a schematic view showing fluid force acting on a wing element in one embodiment.
As illustrated in a non-limiting manner in FIG. 6, in some embodiments, the wing element 38 has a convex curved surface 38 </ b> B facing the upstream side of the main flow passage 14, and a blade 6 downstream of the main flow passage 14. A concave curved surface 38C facing the upstream side in the direction of rotation of the blade, and the length of the wing element 38 with respect to the flow direction of the main channel 14 (the direction from the upstream side to the downstream side along the central axis 10) The length may be 80% or less of the length of the moving blade 6.
In the case of the first flow rate where the flow rate in the main flow path 14 is a small flow rate, due to the flow from the sub flow path 20 and the rotation of the moving blade 6, it has a swirling component in the circumferential direction intersecting the central axis 10. A swirling flow 58 (see FIG. 4) may act on the wing element 38. In this respect, when configured as described above, since the concave curved surface 38C of the wing element 38 is configured to face the downstream side of the main flow path 14 and the upstream side in the rotational direction of the moving blade 6, the concave curved surface 38C By guiding the swirling flow 58 received in the above to the upstream side of the main flow passage 14, a driving force for moving the flow passage cross-sectional area adjustment member 30 to the open position P1 can be obtained. On the other hand, when the flow of the main flow passage 14 is the second flow rate larger than the first flow rate, the dynamic pressure of the main flow (forward flow) 50 acts on the convex curved surface 38B of the wing element 38, and the flow passage cross-sectional area adjustment member 30 Is moved to the closed position P2. At that time, the convex curved surface 38B of the wing element 38 faces the upstream side of the main flow passage 14, whereby the flow from the upstream in the main flow passage 14 can be smoothly guided to the downstream side. Therefore, the efficiency drop due to the pressure loss can be suppressed.

図7はいくつかの実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。図8は他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。
図7及び図8に非限定的に例示するように、いくつかの実施形態において、流路断面積調整部材30は、副流路20の少なくとも一部を閉塞可能な板部材32と、該板部材32及び翼素38を、翼素38の移動に応じて当該移動の方向と異なる向きに板部材32を移動可能に連結する連結部44と、を含んでいてもよい。
「翼素38の移動方向と異なる向き」は、例えば、翼素38の移動方向に対して斜め方向であってもよいし、翼素38の移動方向と真逆の向きであってもよい。
例えば図7に非限定的に例示するように、連結部44としてのワイヤ45と該ワイヤ45の支持部46とを介して板部材32と翼素38とを連結してもよい。この場合、例えば主流路14内が第1流量の際に逆流52の流体力を受けて翼素38が主流路14の下流側から上流側に移動すると、ワイヤ45及び支持部46を介して板部材32が逆向きに、すなわち下流側に引かれて駆動され、流路断面積調整部材30が開位置P1に配置される(図7(a)参照)。一方、第2流量の際には翼素38が下流側に駆動され、板部材32は上流側に駆動されて閉位置P2に配置される(図7(b)参照)。幾つかの実施形態では、このような板部材32を閉位置P2側に付勢するための弾性部材(例えばバネ等)を設けてもよい。
また、図8に非限定的に示すように、連結部44として、板部材32と翼素38とを逆向きに案内するリンク機構47を採用してもよい。この場合は、板部材32及び翼素38にそれぞれ一端が連結されたリンクの他端同士を回動自在に連結し、各節が所定の軌道に沿って移動するように構成することで翼素38と板部材32とを異なる方向に移動させることができる。また、各リンクの長さを適切に設定することで、翼素38の移動に伴う該翼素38の移動距離と板部材32の移動距離とが異なるように構成することができる。
このように連結部44を含む構成によれば、副流路20を閉塞する板部材32を、翼素38の移動方向と異なる向きに移動させることができる。これにより、圧縮機1の設計の自由度の向上を図ることができる。
FIG. 7 is a schematic view showing a configuration example of the flow path cross-sectional area adjustment member in some embodiments, where (a) shows an open position and (b) shows a closed position. FIG. 8 is a schematic view showing a configuration example of a flow path cross-sectional area adjustment member in another embodiment, in which (a) shows an open position and (b) shows a closed position.
As illustrated in a non-limiting manner in FIGS. 7 and 8, in some embodiments, the flow passage cross-sectional area adjustment member 30 is a plate member 32 capable of closing at least a part of the sub flow passage 20; The member 32 and the wing element 38 may include a connecting portion 44 which movably connects the plate member 32 in a direction different from the direction of the movement according to the movement of the wing element 38.
The “direction different from the moving direction of the wing element 38” may be, for example, an oblique direction with respect to the moving direction of the wing element 38, or may be an opposite direction to the moving direction of the wing element 38.
For example, as illustrated in a non-limiting example in FIG. 7, the plate member 32 and the wing element 38 may be coupled via the wire 45 as the coupling portion 44 and the support portion 46 of the wire 45. In this case, for example, when the wing element 38 is moved from the downstream side to the upstream side of the main flow channel 14 by receiving the fluid force of the back flow 52 when the main flow channel 14 is at the first flow rate, the plate via the wire 45 and the support portion 46 The member 32 is driven in the reverse direction, that is, pulled downstream, and the channel cross-sectional area adjustment member 30 is disposed at the open position P1 (see FIG. 7A). On the other hand, at the time of the second flow rate, the wing element 38 is driven to the downstream side, and the plate member 32 is driven to the upstream side and disposed at the closed position P2 (see FIG. 7B). In some embodiments, an elastic member (for example, a spring or the like) may be provided to bias such a plate member 32 toward the closed position P2.
Further, as shown in a non-limiting manner in FIG. 8, a link mechanism 47 that guides the plate member 32 and the wing element 38 in the opposite direction may be adopted as the connection portion 44. In this case, the other ends of the links whose one ends are respectively connected to the plate member 32 and the wing element 38 are rotatably connected, and each node is configured to move along a predetermined track. 38 and plate member 32 can be moved in different directions. Further, by setting the length of each link appropriately, the moving distance of the wing element 38 along with the movement of the wing element 38 can be configured to be different from the moving distance of the plate member 32.
Thus, according to the configuration including the connecting portion 44, the plate member 32 that closes the sub flow passage 20 can be moved in a direction different from the moving direction of the wing element 38. Thereby, the degree of freedom in design of the compressor 1 can be improved.

いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、閉位置P2において副流路20の出口24に配置される流量規制部32Aと、該流量規制部32Aに対して開位置P1に向かう移動方向の上流側に配置された開口部36と、を含んでもよい(例えば図2及び図3参照)。
このように流路断面積調整部材30が開口部36を含む構成によれば、例えば、流路断面積調整部材30において開位置P1または閉位置P2に向かう移動方向の上流側又は下流側の端部を用いて副流路20を開閉する構成(例えば図1、図4及び図7参照)に比べて、例えば、副流路20の出口24の幅が開口部36よりも大きい場合は該開口部の大きさに規制することができる。したがって、圧縮機1の設計の自由度の向上が図られる。
なお、開口部36の開口面積は副流路20の出口24の断面積より大きくてもよい。また、このような開口部36や、上記翼素38、インペラ4の動翼6は、中心軸10の周方向に亘って各々が等間隔に配置されていてもよい。
In some embodiments, in the configuration described in any of the above, the flow passage cross-sectional area adjustment member 30 is a flow rate regulation unit 32A disposed at the outlet 24 of the sub flow passage 20 at the closed position P2; And the opening 36 disposed on the upstream side in the moving direction toward the open position P1 with respect to the portion 32A (see, for example, FIGS. 2 and 3).
Thus, according to the configuration in which the flow passage cross-sectional area adjustment member 30 includes the opening 36, for example, the upstream or downstream end in the movement direction toward the open position P1 or the closed position P2 in the flow passage cross-sectional area adjustment member 30 For example, when the width of the outlet 24 of the sub flow passage 20 is larger than the opening 36 as compared with the configuration in which the sub flow passage 20 is opened and closed using a part (for example, see FIG. 1, FIG. 4 and FIG. It can be restricted to the size of the department. Therefore, the design freedom of the compressor 1 can be improved.
The opening area of the opening 36 may be larger than the cross-sectional area of the outlet 24 of the sub flow passage 20. In addition, the openings 36, the blade element 38, and the moving blades 6 of the impeller 4 may be arranged at equal intervals in the circumferential direction of the central axis 10.

いくつかの実施形態において、流路断面積調整部材30は、翼素38よりも少数の開口部36を含んでいてもよい。このように開口部36の数を翼素38の数より少なく構成することで、各々の開口部36を動翼6の回転軸周りの周方向においてより大きく確保することができる。これにより、例えば、副流路20から動翼6に付与する旋回流58の効果をより大きく確保することができる。   In some embodiments, the channel cross-sectional area adjustment member 30 may include a smaller number of openings 36 than the wing element 38. By configuring the number of openings 36 to be smaller than the number of wing elements 38 in this manner, each opening 36 can be secured larger in the circumferential direction around the rotation axis of the moving blade 6. Thereby, for example, the effect of the swirling flow 58 applied to the moving blade 6 from the sub flow passage 20 can be secured larger.

図9は一実施形態における動翼付近の流れ示す概略図であり、(a)は順流の第1状態、(b)は逆流が生じる第2状態を示す。
いくつかの実施形態では、動翼6の回転による軸流方向に沿って少なくとも動翼6の前縁8及びその上流を含む領域であって主流路14を規定するケーシング2の内周近傍に、逆流52が生じ得る逆流域54が分布し(図9(b)参照)、流路断面積調整部材30は、少なくとも翼素38が逆流域54に配置されるように構成されてもよい。このように構成すれば、比較的小流量の第1流量の際には、逆流による流体力を翼素38に確実に作用させることができる。よって、流量の変化に対して応答性の高い流路断面積調整部材30を得ることができるため、圧縮機1の作動領域の拡大と高効率化とをより確実に達成することができる。
FIG. 9 is a schematic view showing the flow in the vicinity of a moving blade in one embodiment, in which (a) shows a first state of forward flow and (b) shows a second state in which reverse flow occurs.
In some embodiments, a region including at least the leading edge 8 of the moving blade 6 and the upstream thereof along the axial flow direction by the rotation of the moving blade 6 and near the inner periphery of the casing 2 defining the main flow path 14 The reverse flow area 54 in which the reverse flow 52 may occur is distributed (see FIG. 9B), and the flow passage cross-sectional area adjustment member 30 may be configured such that at least the wing element 38 is disposed in the reverse flow area 54. According to this structure, it is possible to reliably cause the wing element 38 to exert the fluid force by the reverse flow at the first flow rate with a relatively small flow rate. Therefore, since the flow path cross-sectional area adjustment member 30 having high responsiveness to changes in the flow rate can be obtained, expansion of the operation area of the compressor 1 and high efficiency can be achieved more reliably.

いくつかの実施形態において、圧縮機1はターボチャージャーを含んでもよい。すなわち、圧縮機1は、内燃機関の吸気側に配置され、該内燃機関の排気エネルギーを用いて回転する排気タービンと共通の回転軸によってインペラ4を回転するターボチャージャーのコンプレッサであってもよい。このようにすれば、自動車用又は船舶用等のターボチャージャーにおいて、上記何れかで述べた効果を享受することができる。   In some embodiments, compressor 1 may include a turbocharger. That is, the compressor 1 may be a compressor of a turbocharger which is disposed on the intake side of the internal combustion engine and rotates the impeller 4 by a common rotation shaft with an exhaust turbine that rotates using exhaust energy of the internal combustion engine. In this way, in the turbocharger for vehicles or for ships, etc., the effects described in any of the above can be enjoyed.

本発明の少なくとも一実施形態によれば、外部入力を必要とせずに圧縮機1の作動領域の拡大と高効率化とを両立することができる。また、外部からの入力を必要としないことにより、例えば、エンジン等への搭載性の向上を図ることができるとともに、構成の簡素化及び低コスト化を図ることができる。   According to at least one embodiment of the present invention, it is possible to achieve both the expansion of the working area of the compressor 1 and the high efficiency without the need for an external input. In addition, by not requiring input from the outside, for example, it is possible to improve the mountability to an engine or the like, and simplify the configuration and reduce the cost.

本発明は上述した幾つかの実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。   The present invention is not limited to the above-described embodiments, and includes embodiments in which the above-described embodiments are modified, and embodiments in which these embodiments are appropriately combined.

1 圧縮機(ターボチャージャー)
2 ケーシング
3 環状部材
4 インペラ
6 動翼
8 前縁
10 回転軸
12 圧縮室
14 主流路
20 副流路
20A バイパス路
20B 再循環路
22 入口
24 出口
24B 下流側端部
26 予旋回ノズル
30 流路断面積調整部材
32 板部材
32A 流量規制部
34 環状部
36 開口部
38 翼素
38A 上流側端部
38B 凸状湾曲面
38C 凹状湾曲面
40 ガイド部
40A 上流側端部
40B 下流側端部
42 係合部(凸部)
44 連結部
45 ワイヤ
46 支持部
47 リンク機構
50 順流
52 逆流
54 逆流域
56 副流
58 旋回流
P1 開位置
P2 閉位置
L1 出口の下流側端部と翼素の上流側端部との距離(開位置)
L2 翼素長
1 Compressor (Turbocharger)
Reference Signs List 2 casing 3 annular member 4 impeller 6 moving blade 8 front edge 10 rotating shaft 12 compression chamber 14 main flow passage 20 sub flow passage 20A bypass passage 20B recirculation passage 22 inlet 24 outlet 24 B downstream end 26 pre-swirl nozzle 30 passage disconnection Area adjusting member 32 plate member 32A flow regulating portion 34 annular portion 36 opening 38 wing element 38A upstream end 38B convex curved surface 38C concave curved surface 40 guide portion 40A upstream end 40B downstream end 42 engaging portion (Convex part)
44 connection portion 45 wire 46 support portion 47 link mechanism 50 forward flow 52 reverse flow 54 reverse flow area 56 side flow 58 swirl flow P1 open position P2 closed position L1 distance between the downstream end of the outlet and the upstream end of the wing element (open position)
L2 Wing Prime

Claims (15)

主流路と、前記主流路に連通するように設けられるバイパス路又は再循環路を含む副流路とを内部に含むケーシングと、
前記主流路内に設けられた複数の動翼と、
開位置、または、該開位置よりも前記副流路の流路断面積が小さい閉位置の一方から他方に移動可能に構成された流路断面積調整部材と、
流体力を受けるように前記主流路内に露出して設けられて、前記主流路の流れが第1流量のときに前記流路断面積調整部材が前記開位置に位置し、前記流れが前記第1流量よりも大きい第2流量のときに前記流路断面積調整部材が前記閉位置に位置するように、前記流体力に起因した駆動力を前記流路断面積調整部材に与えるよう構成された翼素と、
を備える
ことを特徴とする圧縮機。
A casing including therein a main flow path and a sub-flow path including a bypass path or a recirculation path provided to be in communication with the main flow path;
A plurality of moving blades provided in the main flow path;
A channel cross-sectional area adjusting member configured to be movable from an open position or a closed position where the channel cross-sectional area of the sub-channel is smaller than the open position, from the one to the other;
The flow passage cross-sectional area adjustment member is positioned at the open position when the flow of the main flow passage is at a first flow rate so as to be exposed and provided in the main flow passage so as to receive fluid force, and the flow is It is configured to apply a driving force due to the fluid force to the flow passage cross-sectional area adjustment member such that the flow passage cross-sectional area adjustment member is positioned at the closed position when the second flow rate is larger than one flow rate. With wing element,
A compressor comprising:
前記副流路は、前記動翼の前縁よりも前記主流路における上流側に位置する出口と、前記出口よりも前記主流路における上流側に位置する入口と、を含む前記バイパス路である
ことを特徴とする請求項1に記載の圧縮機。
The bypass passage is the bypass passage including an outlet positioned upstream of the main flow passage with respect to the leading edge of the moving blade and an inlet positioned upstream of the main flow passage relative to the outlet. The compressor according to claim 1, characterized in that
前記バイパス路内に配置された予旋回ノズルをさらに備える
ことを特徴とする請求項2に記載の圧縮機。
The compressor according to claim 2, further comprising a pre-swirl nozzle disposed in the bypass path.
前記副流路は、前記動翼に対向する前記ケーシングの内壁に配置された入口と、前記動翼の前縁よりも前記主流路における上流側に配置された出口と、を含む前記再循環路である
ことを特徴とする請求項1に記載の圧縮機。
The recirculation passage includes the inlet disposed on the inner wall of the casing facing the moving blade, and the outlet disposed upstream of the main passage with respect to the leading edge of the blade. The compressor according to claim 1, characterized in that:
前記流路断面積調整部材は、前記副流路の出口を開閉するように配置され、
前記翼素は、前記出口よりも前記主流路における下流側、かつ、前記動翼の前縁の上流側において、前記流路断面積調整部材に取り付けられている
ことを特徴とする請求項1〜4の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjustment member is disposed to open and close an outlet of the sub flow path,
The said wing element is attached to the said flow-path cross-sectional-area adjustment member in the downstream of the said main flow path rather than the said exit, and the upstream of the front edge of the said moving blade. The compressor according to any one of 4.
前記流路断面積調整部材は、前記開位置に配置された際に、前記主流路の流れ方向における前記翼素の上流側端部と前記出口の下流側端部との距離が、前記流れ方向に沿う前記翼素の長さの20%以上になるように構成されている
ことを特徴とする請求項5に記載の圧縮機。
When the flow passage cross-sectional area adjustment member is disposed at the open position, the distance between the upstream end of the blade element and the downstream end of the outlet in the flow direction of the main flow passage is the flow direction The compressor according to claim 5, characterized in that it is configured to be 20% or more of the length of the wing element along the.
前記流路断面積調整部材は、前記閉位置に配置された際に前記出口の一部のみを閉塞するように構成される
ことを特徴とする請求項5又は6の何れか一項に記載の圧縮機。
The said flow-path cross-sectional-area adjustment member is comprised so that it may obstruct | occlude only a part of said outlet, when it arrange | positions in the said closed position. Compressor.
前記流路断面積調整部材は、前記主流路を規定する前記ケーシングの内壁に沿って少なくとも一部が前記主流路の流れ方向に平行な軸を中心とする環状に形成されている
ことを特徴とする請求項1〜7の何れか一項に記載の圧縮機。
The flow passage cross-sectional area adjustment member is characterized in that at least a part thereof is formed in an annular shape centered on an axis parallel to the flow direction of the main flow passage along the inner wall of the casing defining the main flow passage. The compressor according to any one of claims 1 to 7.
前記ケーシングは、前記主流路における流れ方向に沿って前記閉位置と前記開位置との間で前記流路断面積調整部材が移動するよう、前記流路断面積調整部材を案内するように構成されたガイド部を含む
ことを特徴とする請求項1〜8の何れか一項に記載の圧縮機。
The casing is configured to guide the flow passage cross-sectional area adjustment member such that the flow passage cross-sectional area adjustment member moves between the closed position and the open position along the flow direction in the main flow passage. The compressor according to any one of claims 1 to 8, further comprising a guide portion.
前記翼素は、前記主流路の上流側に面する凸状湾曲面と、前記主流路の下流側かつ前記動翼の回転方向の上流側に面する凹状湾曲面と、を含み、
前記主流路の流れ方向に対して前記翼素の長さが動翼の長さの80%以下に構成される
ことを特徴とする請求項1〜9の何れか一項に記載の圧縮機。
The wing element includes a convex curved surface facing the upstream side of the main flow channel, and a concave curved surface facing the downstream side of the main flow channel and the upstream side of the rotating direction of the moving blade,
The compressor according to any one of claims 1 to 9, wherein the length of the blade element is 80% or less of the length of the moving blade with respect to the flow direction of the main flow path.
前記流路断面積調整部材は、
前記副流路の少なくとも一部を閉塞可能な板部材と、
前記板部材及び前記翼素を、前記翼素の移動に応じて当該移動の方向と異なる向きに前記板部材を移動可能に連結する連結部と、を含む
ことを特徴とする請求項1〜10の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjustment member is
A plate member capable of closing at least a part of the sub flow path;
The connector according to any one of claims 1 to 10, further comprising: a connecting portion movably connecting the plate member and the wing element in a direction different from the direction of the movement according to the movement of the wing element. A compressor according to any one of the preceding claims.
前記流路断面積調整部材は、
前記閉位置において前記副流路の出口に配置される流量規制部と、
前記流量規制部に対して前記開位置に向かう移動方向の上流側に配置された開口部と、を含む
ことを特徴とする請求項1〜11の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjustment member is
A flow rate control unit disposed at an outlet of the sub flow passage in the closed position;
The compressor according to any one of claims 1 to 11, further comprising: an opening disposed on the upstream side in the moving direction toward the open position with respect to the flow rate regulation unit.
前記流路断面積調整部材は、前記翼素よりも少数の前記開口部を含む
ことを特徴とする請求項12に記載の圧縮機。
The compressor according to claim 12, wherein the flow passage cross-sectional area adjustment member includes a smaller number of the openings than the blade element.
前記軸流方向に沿って少なくとも前記動翼の前縁及びその上流を含む領域であって前記主流路を規定する前記ケーシングの内周近傍に、前記逆流が生じ得る逆流域が分布し、
前記流路断面積調整部材は、少なくとも前記翼素が前記逆流域に配置されるように構成される
ことを特徴とする請求項1〜13の何れか一項に記載の圧縮機。
A reverse flow area in which the reverse flow can occur is distributed in a region including at least the leading edge of the moving blade and the upstream thereof along the axial flow direction, in the vicinity of the inner periphery of the casing defining the main flow path;
The compressor according to any one of claims 1 to 13, wherein the flow passage cross-sectional area adjustment member is configured such that at least the blade element is disposed in the reverse flow area.
前記圧縮機はターボチャージャーを含む
ことを特徴とする請求項1〜14の何れか一項に記載の圧縮機。
The compressor according to any one of the preceding claims, wherein the compressor comprises a turbocharger.
JP2017225448A 2017-11-24 2017-11-24 Compressor Active JP7001438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225448A JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225448A JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Publications (2)

Publication Number Publication Date
JP2019094847A true JP2019094847A (en) 2019-06-20
JP7001438B2 JP7001438B2 (en) 2022-01-19

Family

ID=66971344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225448A Active JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Country Status (1)

Country Link
JP (1) JP7001438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217469A (en) * 2020-02-06 2021-08-06 三菱重工业株式会社 Compressor housing, compressor provided with same, and turbocharger provided with same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188600A (en) * 2000-12-18 2002-07-05 Hitachi Ltd Rotor blade control type axial blower
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2003106293A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2006002650A (en) * 2004-06-17 2006-01-05 Toyota Motor Corp Centrifugal compressor interlocking inlet vane with bypass control valve
JP2012177311A (en) * 2011-02-25 2012-09-13 Ihi Corp Centrifugal compressor
JP2013087623A (en) * 2011-10-13 2013-05-13 Hitachi Plant Technologies Ltd Axial flow type fluid machinery
US20140093354A1 (en) * 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger
DE102013020656A1 (en) * 2013-12-12 2014-07-31 Daimler Ag Radial compressor for radial-flow turbine of internal combustion engine for e.g. passenger car, has locking element moved between recirculation channel and open position and releasing open position relative to walls of housing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188600A (en) * 2000-12-18 2002-07-05 Hitachi Ltd Rotor blade control type axial blower
JP2003106299A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2003106293A (en) * 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2006002650A (en) * 2004-06-17 2006-01-05 Toyota Motor Corp Centrifugal compressor interlocking inlet vane with bypass control valve
JP2012177311A (en) * 2011-02-25 2012-09-13 Ihi Corp Centrifugal compressor
US20140093354A1 (en) * 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger
JP2013087623A (en) * 2011-10-13 2013-05-13 Hitachi Plant Technologies Ltd Axial flow type fluid machinery
DE102013020656A1 (en) * 2013-12-12 2014-07-31 Daimler Ag Radial compressor for radial-flow turbine of internal combustion engine for e.g. passenger car, has locking element moved between recirculation channel and open position and releasing open position relative to walls of housing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113217469A (en) * 2020-02-06 2021-08-06 三菱重工业株式会社 Compressor housing, compressor provided with same, and turbocharger provided with same
EP3862575A1 (en) * 2020-02-06 2021-08-11 Mitsubishi Heavy Industries, Ltd. Compressor housing with a recirculation structure, compressor including said compressor housing, and turbocharger including said compressor
JP2021124069A (en) * 2020-02-06 2021-08-30 三菱重工業株式会社 Compressor housing, compressor with compressor housing, and turbocharger with compressor
US11530708B2 (en) 2020-02-06 2022-12-20 Mitsubishi Heavy Industries, Ltd. Compressor housing, compressor including the compressor housing, and turbocharger including the compressor

Also Published As

Publication number Publication date
JP7001438B2 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
CN107816440B (en) Centrifugal compressor
JP5314661B2 (en) High performance small turbocharger
US8281588B2 (en) Turbomachine system and turbine therefor
JP6067095B2 (en) Centrifugal compressor
JP4944717B2 (en) Variable turbine
US9771942B2 (en) Exhaust gas turbocharger having guiding screen rings that are rotatable relative to each other
CN109996943B (en) Pressure booster
JP5947393B2 (en) A fluid energy machine in which a rotatable guide member used in an exhaust gas turbocharger is disposed obliquely
US20200208570A1 (en) Compressor for a charging device of an internal combustion engine, and charging device for an internal combustion engine
JP6265353B2 (en) On-off valve device and rotating machine
KR102215296B1 (en) Compressor
JP4632076B2 (en) Exhaust turbine turbocharger
CN103899362A (en) Assembly for a turbocharger
JP2019094847A (en) Compressor
JP2013015034A (en) Variable capacity radial turbine and turbocharger having the same
JP4885949B2 (en) Variable vane turbine
JP2000120442A (en) Variable capacity type turbo-charger
JP6200350B2 (en) Radial turbine or mixed flow turbine
KR20190113648A (en) Turbine with adjusting ring
JP2021516745A (en) Intake flow section and exhaust gas supercharger for exhaust gas supercharger
CN115087796B (en) Variable nozzle device, turbine, and turbocharger
JP7123029B2 (en) centrifugal compressor
SE2100114A1 (en) Variable inlet trim system for a centrifugal compressor
JP2023000817A (en) turbocharger
WO2022263823A1 (en) Nozzle ring for a variable geometry turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150