JP2019091870A - Sensor - Google Patents

Sensor Download PDF

Info

Publication number
JP2019091870A
JP2019091870A JP2017221655A JP2017221655A JP2019091870A JP 2019091870 A JP2019091870 A JP 2019091870A JP 2017221655 A JP2017221655 A JP 2017221655A JP 2017221655 A JP2017221655 A JP 2017221655A JP 2019091870 A JP2019091870 A JP 2019091870A
Authority
JP
Japan
Prior art keywords
sensor
sensor device
ceramic substrate
metal
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017221655A
Other languages
Japanese (ja)
Inventor
智子 依田
Tomoko Yoda
智子 依田
牛房 信之
Nobuyuki Ushifusa
信之 牛房
笹子 佳孝
Yoshitaka Sasako
佳孝 笹子
礒部 敦
Atsushi Isobe
敦 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017221655A priority Critical patent/JP2019091870A/en
Priority to PCT/JP2018/031524 priority patent/WO2019097801A1/en
Publication of JP2019091870A publication Critical patent/JP2019091870A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Wire Bonding (AREA)

Abstract

To provide a technology for mounting a semiconductor gas sensor device on a ceramic substrate that can withstand high temperature environments.SOLUTION: In a sensor formed by mounting and bonding a sensor device having a gas sensing function formed on a semiconductor substrate on and to a ceramic substrate, a metallization for connection made of Pt is formed on the sensor device, and a stress buffer layer is formed between the insulating film of the sensor device and the metallization, a heater is mounted on the ceramic substrate, and the sensor device is mounted on the ceramic substrate via a noble metal bump in an arrangement straddling the heater.SELECTED DRAWING: Figure 3

Description

本発明は、ガスセンサ、および煤センサなど半導体基板に作成したセンサにおいて、例えばFET(Field Effect Transistor)型ガスセンサ、キャパシタ型ガスセンサおよびダイオード型ガスセンサ、SAW(Surface Acoustic Wave)型煤センサ、PM(Particulate Matter)センサなどの半導体型センサを、貴金属バンプを介してフリップチップ接続してセラミックス基板に搭載した高耐熱なセンサに関する。   The present invention relates to a sensor formed on a semiconductor substrate such as a gas sensor and a soot sensor, for example, a field effect transistor (FET) gas sensor, a capacitor gas sensor and a diode gas sensor, a surface acoustic wave (SAW) soot sensor, a particulate matter sensor (PM) The present invention relates to a highly heat resistant sensor in which a semiconductor type sensor such as a sensor is flip chip connected via a noble metal bump and mounted on a ceramic substrate.

EUの自動車NOx(窒素酸化物)、PM(Particulate Matter)、CO2排出規制の強化{NOx : 0.08g/km(1km走るごとにNOxの排出量を0.08g以下とする)@2015年→0.04g/km@2025年}を背景に、NOxセンサの市場は拡大してきた。現行のNOxセンサはエンジンの故障検知がメインで測定精度は100ppm程度であるが、今後の規制強化に対応するためには高精度な測定結果を用いたエンジン制御、NOx還元触媒制御が必要となる。2020年以降は数ppmの精度でNOxを計測する必要が生じてくると予測される。 EU's NOx (nitrogen oxide), PM (Particulate Matter) and CO 2 emission regulations are strengthened {NOx: 0.08 g / km (NOx emissions less than 0.08 g every 1 km) @ 2015 → 0.04 The market for NOx sensors has expanded with the background of g / km @ 2025}. Current NOx sensors are mainly used for engine failure detection and the measurement accuracy is about 100 ppm, but in order to cope with the intensified regulations in the future, engine control and NOx reduction catalyst control using highly accurate measurement results are required . After 2020, it is expected that NOx needs to be measured with an accuracy of several ppm.

本技術分野の背景技術として、特開2010−266358号公報(特許文献1)には、固体電解質体に層状に構成された電極対と空間からなるセルを複数個形成して、測定するガスのなかのNOx濃度を電流で感知し、その温度を感知する仕組みを有する構成であり、ヒーターの通電周期を30〜80m秒の範囲で制御するしくみと、それよりも短い周期で制御する仕組みをもつことで、急激な温度変化を内蔵されたヒーターで制御するガスセンサが記載されている。   As a background art of this technical field, in Japanese Unexamined Patent Publication No. 2010-266358 (Patent Document 1), a plurality of cells each including an electrode pair and a space configured in layers are formed in a solid electrolyte body, and It has a mechanism that senses the NOx concentration with current and senses its temperature, and has a mechanism to control the heater's energizing cycle in the range of 30 to 80 ms and a mechanism to control in a shorter cycle than that. Thus, a gas sensor that controls a rapid temperature change with a built-in heater is described.

また、特開2013−242271号公報(特許文献2)には、水素ガスの検出に用いられる半導体ガスセンサが開示され、そのゲート構造を、「Si層上にゲート絶縁膜(例えばSiO膜)が形成され、ゲート絶縁膜上に改質TiOx(TiOxナノ結晶)膜が形成されている。さらに改質TiOx膜上にPt膜が形成されている。このPt膜は、複数のPt結晶粒から構成され、複数のPt結晶粒間にある結晶粒界間隙にはTiと酸素(O)が存在し、特に粒界3重点近傍表面を中心にTiOxナノ結晶が形成されている。」と開示している。 Further, Japanese Patent 2013-242271 (Patent Document 2), disclosed is a semiconductor gas sensor used for the detection of hydrogen gas, the gate structure, a gate insulating film on the "Si layer (e.g. SiO 2 film) A modified TiOx (TiOx nanocrystal) film is formed on the gate insulating film, and a Pt film is formed on the modified TiOx film, which is composed of a plurality of Pt crystal grains. Ti and oxygen (O) are present in intergranular gaps between multiple Pt crystal grains, and in particular, TiOx nanocrystals are formed around the surface near triple point of intergranular boundaries. ” There is.

特開2010−266358号公報Unexamined-Japanese-Patent No. 2010-266358 特開2013−242271号公報Unexamined-Japanese-Patent No. 2013-242271

特許文献1が開示する従来のセラミックス積層焼成型センサには、各セラミックス層の厚さを薄くしてセンサを小型化するには限界があった。また、厚いセラミックスのジルコニア膜の内部をOやNOガスを通過させてセンサ信号を得るには電力が必要であった。 The conventional ceramic laminated and sintered sensor disclosed in Patent Document 1 has a limit in reducing the thickness of each ceramic layer to miniaturize the sensor. In addition, power is required to pass the interior of the thick ceramic zirconia film through O 2 or NO x gas to obtain a sensor signal.

本願出願人は、EUの自動車NOx、PM、CO2排出規制の強化などを視野に入れて、NOxセンサ、及び排気中に含まれる煤の粒子の重量を計測するSAW型煤センサ(PMセンサ)を半導体型センサとして構成する開発を進めている。 The applicant of the present application considers the NOx sensor and the SAW-type soot sensor (PM sensor) that measures the weight of soot particles contained in the exhaust, with a view to strengthening EU NOx, PM and CO 2 emission regulations etc. in the EU. We are developing to construct the sensor as a semiconductor sensor.

ここで開発された半導体型センサを、例えば図2に示すセンサモジュールに実装して、そのセンサモジュールを例えば図1に示す自動車のエンジンの排気ガス煤フィルターの近傍の排気管に接続して、排気ガスに含まれるNOxガスや、煤の粒子を検出する用途に使用する場合を検討した。図2のセンサモジュールの内部に設置されたセラミック基板の先端部に搭載された半導体型センサデバイスは、カバー金属7で保護されているとはいえ、内部に排気ガスが流入してくることから、最高で600℃にまで加熱されることが予測された。   The semiconductor type sensor developed here is mounted on, for example, a sensor module shown in FIG. 2, and the sensor module is connected to an exhaust pipe in the vicinity of an exhaust gas soot filter of an automobile engine shown in FIG. A case was examined where it is used for detecting NOx gas contained in gas and soot particles. Although the semiconductor type sensor device mounted on the tip of the ceramic substrate installed inside the sensor module of FIG. 2 is protected by the cover metal 7, the exhaust gas flows into the inside, It was expected to be heated up to 600 ° C.

本発明の目的は、半導体型センサデバイスをセラミック基板に実装して、600℃の高温に耐えられる接続方法を提供することにある。   An object of the present invention is to provide a connection method capable of withstanding a high temperature of 600 ° C. by mounting a semiconductor type sensor device on a ceramic substrate.

本発明のセンサの好ましい例では、半導体基板に形成されたガスセンシング機能を有するセンサデバイスをセラミック基板に搭載接合したセンサを、前記センサデバイスには、Ptからなる接続用のメタライズが形成され、前記センサデバイスの絶縁膜と前記メタライズとの間に応力緩衝層が形成され、前記セラミック基板には、ヒーターが搭載され、前記センサデバイスは、前記ヒーターを跨ぐ配置に、貴金属バンプを介して前記セラミック基板に搭載されているように構成する。   In a preferable example of the sensor according to the present invention, a sensor in which a sensor device having a gas sensing function formed on a semiconductor substrate is mounted on and joined to a ceramic substrate is formed on the sensor device. Metallization for connection made of Pt is formed on the sensor device. A stress buffer layer is formed between the insulating film of the sensor device and the metallizing, a heater is mounted on the ceramic substrate, and the sensor device is placed over the heater via the noble metal bump and the ceramic substrate Configure as installed in

また、本発明の他の特徴として、前記センサにおいて、前記ガスセンシング機能を有するセンサデバイスに代えて、排気ガス中の煤粒子の重量を検出する機能を有するセンサデバイスをセラミック基板に搭載接合しているように構成する。   Further, as another feature of the present invention, in the sensor, in place of the sensor device having the gas sensing function, a sensor device having a function of detecting the weight of soot particles in exhaust gas is mounted on and joined to a ceramic substrate Configure to

また、本発明の他の特徴として、前記センサにおいて、前記応力緩衝層は、YSZ、Al 、NiO 、Cr、TiO、TiO、またはTiOxのいずれかの材料から選ばれるように構成する。 Further, as another feature of the present invention, in the sensor, the stress buffer layer is selected from any material of YSZ, Al 2 O 3 , NiO, Cr 2 O 3 , TiO, TiO 2 , or TiO x. Configure to

また、本発明の他の特徴として、前記センサにおいて、前記センサデバイスの前記メタライズと前記応力緩衝層の間に更に接着層が形成され、メタライズと接着層に含まれる金属は、それぞれが2元型状態図において全率固溶型を含む金属同士であって、その金属、合金、金属酸化物、もしくは金属化合物のうちのいずれかの膜で形成されるように構成する。   Further, as another feature of the present invention, in the sensor, an adhesion layer is further formed between the metalization of the sensor device and the stress buffer layer, and the metal included in the metalization and the adhesion layer is a binary type. In the phase diagram, it is a metal including a complete solution type, and is formed to be formed of a film of any of the metal, an alloy, a metal oxide, or a metal compound.

セラミックス基板とのハイブリッド構成により安価な半導体ガスセンサを実現できる。
本発明によれば、低コスト、小型、低消費電力を実現でき、機能更新の際もデバイスの変更だけで容易に対応できるセンサを提供することができる。
上記した以外の課題、構成、および効果は、以下の実施の形態の説明により明らかにされる。
An inexpensive semiconductor gas sensor can be realized by the hybrid configuration with the ceramic substrate.
According to the present invention, it is possible to provide a sensor that can realize low cost, small size, and low power consumption, and can easily cope with a function change only by changing the device.
Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

センサモジュールをエンジンの排気ガスフィルター前後に取り付けした一例を示す概念図である。It is a conceptual diagram showing an example which attached a sensor module in front and back of an exhaust gas filter of an engine. センサモジュール全体概観を示す概念図である。It is a conceptual diagram which shows a sensor module whole view. 実施例1におけるFET型センサデバイスをセラミック基板に実装する構成の一例を示す。(a)は実施例1によるガスセンサ用基板にヒーターが備えられた構成にセンサデバイスが貴金属バンプで接続され搭載された部分の一例を示す上面図であり、(b)はセンシング空間を有する構成であり上面図に対応した断面図であり、(c)はセラミック基板にキャビティを設けることはせずにセンサデバイスを搭載した断面図である。An example of a structure which mounts the FET type | mold sensor device in Example 1 in a ceramic substrate is shown. (A) is a top view which shows an example of the part in which the sensor device was connected by noble metal bump and mounted in the structure by which the heater was provided in the gas sensor substrate by Example 1, (b) is a structure which has a sensing space. FIG. 6C is a cross-sectional view corresponding to the top view, and FIG. 7C is a cross-sectional view in which the sensor device is mounted without providing a cavity in the ceramic substrate. 実施例1におけるSAW型センサデバイスをセラミック基板に実装する構成の一例を示す。(a)は実施例1によるガスセンサ用基板にヒーターが備えられた構成にセンサデバイスが貴金属バンプで接続され搭載された部分の一例を示す上面図であり、(b)はセンシング空間を有する構成であり上面図に対応した断面図である。An example of the structure which mounts the SAW-type sensor device in Example 1 on a ceramic substrate is shown. (A) is a top view which shows an example of the part in which the sensor device was connected by noble metal bump and mounted in the structure by which the heater was provided in the gas sensor substrate by Example 1, (b) is a structure which has a sensing space. FIG. 6 is a cross-sectional view corresponding to a top view. 実施例1によるガスセンサデバイスが常温の、電極と基板電極、これらを接続した貴金属バンプで構成されるセンサを示す断面模式図である。It is a cross-sectional schematic diagram which shows the sensor comprised by the electrode and board | substrate electrode which connected the gas sensor device by Example 1 at normal temperature, and the noble metal bump which connected these. 実施例1によるガスセンサデバイスが高温で稼動している時の、電極と基板電極、これらを接続した貴金属バンプで構成されるセンサであって、半導体基材とセラミックス基材の熱膨張差によるバンプ伸びの一例を示す断面模式図である。A sensor comprising an electrode and a substrate electrode, and a noble metal bump connecting them when the gas sensor device according to Example 1 is operating at high temperature, wherein the bump elongation is caused by the thermal expansion difference between the semiconductor substrate and the ceramic substrate It is a cross-sectional schematic diagram which shows an example of. 実施例1によるガスセンサデバイスの、化合物半導体基材の上に複数の層で構成される、絶縁膜とその上に形成された応力緩衝層と表面電極で構成される断面拡大図である。FIG. 7 is an enlarged cross-sectional view of the gas sensor device according to Example 1, which is composed of a plurality of layers on a compound semiconductor substrate, an insulating film, a stress buffer layer formed thereon, and a surface electrode. 図7に示す、応力緩衝層の下に配線金属層と接着層2が形成された表面電極で構成される断面拡大図である。It is a cross-sectional enlarged view comprised from the surface electrode by which the wiring metal layer and the contact bonding layer 2 were formed under the stress buffer layer shown in FIG. 図8に示す電極とセラミック基板を接合用金属バンプで接合した構造を示す断面図である。It is sectional drawing which shows the structure which joined the electrode and ceramic substrate which are shown in FIG. 8 by the metal bump for joining. センサデバイスと、セラミック基板を接合用金属バンプで接合するプロセスにおいて、(a)は、デバイス側に接合金属を形成して接合する場合、(b)は、セラミック基板側に接合金属を形成して接合する場合、(c)は、デバイス側およびセラミック基板側の両方に接合金属を形成して接合する場合を示している。In the process of bonding the sensor device and the ceramic substrate with the bonding metal bump, (a) forms the bonding metal on the device side and bonds it in (b) forms the bonding metal on the ceramic substrate side In the case of bonding, (c) shows the case of bonding by forming a bonding metal on both the device side and the ceramic substrate side. SAW型センサデバイスの外形の対角線上に配置された接合用の貴金属バンプを示す上面図である。It is a top view which shows the noble metal bump for joining arrange | positioned on the diagonal of the external shape of SAW type | mold sensor device. 実施例1によるガスセンサデバイスとヒーターの位置構成の一例を示す上面図である。FIG. 5 is a top view showing an example of the positional configuration of the gas sensor device and the heater according to the first embodiment.

以下、実施例を図面を用いて説明する。   Examples will be described below with reference to the drawings.

高温環境下における半導体デバイスの実装方法として、例えばパワーデバイスの実装のように、デバイス面の温度が高々200〜250℃程度に上がるデバイスについては、デバイスを上の面に向けた背面をはんだで基板に接続するのが主流である。それは、(セラミック)基板と半導体基板の熱膨脹係数が異なった場合にも、最高250℃でも信頼性よく接合できるはんだ材により接続が可能となっている。   As a method of mounting semiconductor devices in a high temperature environment, for example, for devices whose temperature on the device surface rises to at most about 200 to 250 ° C., such as mounting of power devices, the back side with the device facing up is soldered It is the mainstream to connect to. Even when the thermal expansion coefficients of the (ceramic) substrate and the semiconductor substrate are different, it is possible to connect using a solder material which can be joined with good reliability even at a maximum temperature of 250 ° C.

しかし、はんだ材による接続は300〜400℃程度までが限界であり、それ以上高い温度だと、破断したり、基板のそりによってデバイスが破壊したりといった課題があって、はんだ材による接続を使うことができない。   However, the connection by the solder material is limited to about 300 to 400 ° C, and if the temperature is higher than that, there are problems such as breakage or breakage of the substrate due to warping of the substrate, and the connection by the solder material is used I can not do it.

そのため、本発明では、フリップチップ接続にすることにより、そのバンプにより基板材料の伸び縮みの差により生ずる応力を吸収する接合構造を提供する。   Therefore, in the present invention, the flip chip connection provides a bonding structure that absorbs the stress caused by the difference in expansion and contraction of the substrate material by the bumps.

<用語定義>
基板:基板材料と、配線と、配線を物理的に固定可能な基材と、他の部品と接続をとる電極から構成される。セラミックス基板には信号配線と電流を流す電源配線とグランド配線などがある。なお、同様に半導体基材の上に形成される半導体ガス検出部(センサ部)配線の一部の領域が電極と接触する。
<Term definition>
Substrate: A substrate material, a wiring, a base capable of physically fixing the wiring, and an electrode for connecting to other components. The ceramic substrate includes signal wiring, power supply wiring for flowing current, and ground wiring. Similarly, a partial region of the semiconductor gas detection unit (sensor unit) wiring formed on the semiconductor base material contacts the electrode.

実施例1におけるガスセンサの実装構造について、図1〜図12を用いて説明する。
図1は本実施例のガスセンサ1を、自動車のエンジンの排気ガス煤フィルター51の排気ガス流入口配管50、及び排気ガス流出口配管52の2箇所に取り付けした一例を示す概念図である。
The mounting structure of the gas sensor in the first embodiment will be described with reference to FIGS. 1 to 12.
FIG. 1 is a conceptual view showing an example in which the gas sensor 1 of the present embodiment is attached to two places of an exhaust gas inlet pipe 50 and an exhaust gas outlet pipe 52 of an exhaust gas soot filter 51 of an automobile engine.

図2はガスセンサモジュール2の全体概観と、ガスセンサ1内部のセラミック基板4上にセンサデバイス3が実装される状態を、金属カバー7を取り払って示す概観図である。このように、センサデバイス3は、例えば図2に示すガスセンサ1の中央に配置される。この時、センサデバイス3はセラミック基板4の先端部分に配置され、二重以上になったSUS材やインコネル材からなる金属カバー7で保護されていて、ケーブル9を介して制御用基板10に接続されている。   FIG. 2 is an overview of the gas sensor module 2 and a state in which the sensor device 3 is mounted on the ceramic substrate 4 inside the gas sensor 1 with the metal cover 7 removed. Thus, the sensor device 3 is disposed, for example, at the center of the gas sensor 1 shown in FIG. At this time, the sensor device 3 is disposed at the tip of the ceramic substrate 4 and protected by the metal cover 7 made of double or more SUS material or inconel material, and connected to the control substrate 10 via the cable 9. It is done.

金属カバー7は、外部の水滴が入らぬようガス流入穴が設計されている。ねじ切り部と取り付けねじ8により、ガスセンサ1の先端部分が排気ガス管内にねじ込まれて、センシングに使われる。取り付けねじ8の部分はガラス系接着剤で固定されている。   The metal cover 7 is designed to have a gas inflow hole so that external water droplets do not enter. The tip portion of the gas sensor 1 is screwed into the exhaust gas pipe by the threaded portion and the mounting screw 8 and used for sensing. The portion of the mounting screw 8 is fixed by a glass adhesive.

センサデバイス搭載セラミック基板4は、金属カバー7、取り付けねじ8に熱を逃がす構造をとっているため、外の排気ガス温度に比べて低い温度である。   Since the sensor device mounting ceramic substrate 4 has a structure in which heat is dissipated to the metal cover 7 and the mounting screw 8, the temperature is lower than the temperature of the external exhaust gas.

センサデバイス3は、その性能が最適に発揮されるように350〜550℃に加熱されている。   The sensor device 3 is heated to 350 to 550 ° C. so that its performance is optimally exhibited.

ガスセンサ1は耐熱ケーブル9で制御ICが搭載されている制御用基板10に接続され、制御用基板10は外部端子11を含む構造である。図1に示すように、排気ガス(セラミック)煤フィルター51の前後に配管内部に搭載されガス濃度をセンシングする。   The gas sensor 1 is connected to a control substrate 10 on which a control IC is mounted by a heat resistant cable 9, and the control substrate 10 has a structure including an external terminal 11. As shown in FIG. 1, the exhaust gas (ceramic) filter 51 is mounted in front of and behind the filter 51 to sense gas concentration.

図3は実施例1におけるFET型センサデバイス18をセラミック基板4に実装する構成の一例を示す。   FIG. 3 shows an example of the configuration in which the FET type sensor device 18 in the first embodiment is mounted on the ceramic substrate 4.

図3(a)は、FET型センシング部19の機能を最大に発揮させるために加熱用のヒーター5を、セラミック基板4表面に設けたキャビティ6内に設置して、その上部にFET型センサデバイス18が接合用の貴金属バンプ15でセラミック基板4上に実装された一例を示す上面図である。   In FIG. 3A, a heater 5 for heating is disposed in a cavity 6 provided on the surface of the ceramic substrate 4 in order to maximize the function of the FET type sensing unit 19, and the FET type sensor device is provided on the top FIG. 18 is a top view showing an example mounted on a ceramic substrate 4 with noble metal bumps 15 for bonding.

図3(b)は、図3(a)に示す切断線AA’で切断した断面図である。FET型センサデバイス18を、FET型センシング部19を下面に向けてセラミック基板4上に貴金属、例えば金や白金を用いたフリップチップ接続して実装してある。FET型センシング部19とヒーター5との間には適当なセンシング空間を設けている。   FIG.3 (b) is sectional drawing cut | disconnected by cutting-plane line AA 'shown to Fig.3 (a). The FET type sensor device 18 is mounted on the ceramic substrate 4 by flip chip connection using a noble metal such as gold or platinum with the FET type sensing portion 19 facing downward. An appropriate sensing space is provided between the FET sensing unit 19 and the heater 5.

図3(c)は、図3(b)と同じ位置の断面図であるが、この場合にはセラミック基板4にキャビティを設けることはせずに、セラミック基板4表面にヒーター5を設置して、FET型センサデバイス18を、FET型センシング部19を下面に向けて、接合用の貴金属2段バンプ20でセラミック基板4上にフリップチップ接続して実装した例である。FET型センサデバイス18はセンシング空間をそれ程必要としないため、FET型センシング部19とヒーター5が近接する本実施例も可能である。   FIG. 3C is a cross-sectional view at the same position as FIG. 3B, but in this case, the heater 5 is installed on the surface of the ceramic substrate 4 without providing a cavity in the ceramic substrate 4. This is an example in which the FET type sensor device 18 is flip chip connected and mounted on the ceramic substrate 4 with the noble metal two-step bump 20 for bonding, with the FET type sensing portion 19 facing downward. Since the FET type sensor device 18 does not require much sensing space, this embodiment is also possible in which the FET type sensing unit 19 and the heater 5 are close to each other.

図4は実施例1におけるSAW型センサデバイス14をセラミック基板4に実装する構成の一例を示す。   FIG. 4 shows an example of the configuration for mounting the SAW sensor device 14 in the first embodiment on the ceramic substrate 4.

図4(a)は、SAW型センシング部17の機能を最大に発揮させるために加熱用のヒーター5を、セラミック基板4表面に設けたキャビティ6内に設置して、さらに煤粒子を検出するSAW型センシング部17のPM素子面に煤粒子を呼び込むセンシング空間を設けるように、SAW型センサデバイス14が接合用の貴金属バンプ15でセラミック基板4上に実装された一例を示す上面図である。   In FIG. 4A, a heater 5 for heating is disposed in a cavity 6 provided on the surface of the ceramic substrate 4 in order to maximize the function of the SAW type sensing unit 17 and SAW which further detects soot particles FIG. 10 is a top view showing an example in which the SAW sensor device 14 is mounted on the ceramic substrate 4 by a noble metal bump 15 for bonding so as to provide a sensing space for bringing in soot particles to the PM element surface of the mold sensing unit 17;

図4(b)は、図4(a)に示す切断線AA’で切断した断面図である。SAW型センサデバイス14を、SAW型センシング部17を下面に向けてセラミック基板4上にフリップチップ接続して実装してある。SAW型センシング部とヒーター5との間には適当なセンシング空間を設けている。   FIG. 4B is a cross-sectional view cut along a cutting line AA ′ shown in FIG. The SAW sensor device 14 is mounted on the ceramic substrate 4 by flip chip connection with the SAW sensing unit 17 facing downward. An appropriate sensing space is provided between the SAW sensing unit and the heater 5.

また、FET型センサデバイスおよびSAW型センサデバイスは別々に実装して一つの機能であってもよいし、マルチタイプであってもよい。   Also, the FET type sensor device and the SAW type sensor device may be separately mounted to be one function or may be of multiple types.

図5は、実施例1におけるSAW型センサデバイス14の電極とセラミック基板電極を複数の貴金属バンプで接続した構成の一例を示す断面図である。   FIG. 5 is a cross-sectional view showing an example of a configuration in which the electrode of the SAW sensor device 14 and the ceramic substrate electrode in Example 1 are connected by a plurality of noble metal bumps.

SAW型センサデバイス14は、SiC基板、絶縁層12、SAW型センシング部17、デバイス表面絶縁層上の配線・メタライズの積層部13からなり、セラミック基板4には、センサ信号を制御部に伝えるための配線21や、ヒーター5に電力供給するヒーター電源配線22、グランド配線23などが形成されている。   The SAW-type sensor device 14 comprises a SiC substrate, an insulating layer 12, a SAW-type sensing portion 17, and a wiring / metallizing laminated portion 13 on the device surface insulating layer, and the ceramic substrate 4 transmits a sensor signal to the control portion. The wiring 21, the heater power supply wiring 22 for supplying power to the heater 5, the ground wiring 23, and the like are formed.

図5は、実施例1におけるSAW型センサデバイス14の電極とセラミック基板電極を貴金属バンプ15で接続した構成のセラミック基板配線と接続用バンプの関係を、例えば常温で非稼動時の一例を示す断面模式図である。   FIG. 5 is a cross-sectional view showing an example of the relationship between the ceramic substrate wiring and the connection bump in the configuration in which the electrode of the SAW sensor device 14 and the ceramic substrate electrode in Example 1 are connected by the noble metal bump 15. It is a schematic diagram.

図6は、実施例1におけるガスセンサデバイスが高温で稼動している時24の、ガスセンサデバイスの電極とセラミック基板電極、これらを接続した貴金属バンプ26で構成されるガスセンサであって、半導体基材とセラミックス基材の熱膨張差によるバンプ伸びの一例を示す断面模式図である。   FIG. 6 shows a gas sensor comprising an electrode of the gas sensor device, a ceramic substrate electrode, and a noble metal bump 26 connecting these when the gas sensor device in Example 1 is operating at a high temperature, comprising a semiconductor substrate It is a cross-sectional schematic diagram which shows an example of bump elongation by the thermal expansion difference of a ceramic base material.

図2に示すガスセンサ1内に実装されるセンサデバイス3が、稼動時に達する最高温度は600℃と想定される。   The maximum temperature reached by the sensor device 3 mounted in the gas sensor 1 shown in FIG. 2 during operation is assumed to be 600.degree.

第一の基板であるセンサデバイス3のSiC半導体基材と第二の基板であるセラミックス基材では、熱膨張係数がそれぞれα(SiC)=4[10−6/K]、α(Al)=7〜8.5[10−6/K]と異なる。例えばデバイスのサイズが3×6mmの場合、このデバイス外形の対角線長さは約6.54mmである。したがって対角線の交差する中心から角までは約3.27mmで、対角線中心から接続用貴金属バンプ15のうち最も遠い距離にあるバンプの円(例えばスタッドバンプφ0.03mmなどであるが)の中心までの距離が3mmの場合で考える。そのため高温時と低温時の差が600℃あると仮定すると、二つの材料の間には最大で2.4mmの伸びの差が生じる。 In the SiC semiconductor base material of the sensor device 3 which is the first substrate and the ceramic base material which is the second substrate, the thermal expansion coefficient is α (SiC) = 4 [10 −6 / K], α (Al 2 O) 3 ) different from 7 to 8.5 [10 -6 / K]. For example, if the size of the device is 3 × 6 mm, the diagonal length of the device outline is about 6.54 mm. Therefore, the distance from the diagonal intersection center to the corner is about 3.27 mm, and the distance from the diagonal center to the center of the circle of the most distant bump of connecting noble metal bumps 15 (such as stud bump φ0.03 mm) I think in the case of 3mm. Therefore, assuming that the difference between high temperature and low temperature is 600 ° C., an elongation difference of at most 2.4 mm occurs between the two materials.

図5、図6に示す構成のSAW型センサデバイス14をセラミック基板4上に実装したガスセンサを、例えば、排気ガス環境の高温に加熱したのち、非稼働の温度にもどす繰り返しの熱衝撃試験を実施した。   For example, after the gas sensor in which the SAW sensor device 14 configured as shown in FIGS. 5 and 6 is mounted on the ceramic substrate 4 is heated to a high temperature in the exhaust gas environment, for example, repeated thermal shock tests are performed to restore the nonoperating temperature. did.

その結果、一連の変形で貴金属バンプ15自体と、その上の第一の基板である半導体基材側のメタライズ13や、第二の基板であるセラミック基材側のメタライズ、などの破壊や剥離が発生することが判明した。   As a result, destruction and peeling of the noble metal bump 15 itself, metalization 13 on the semiconductor base material side as the first substrate thereon and metalization on the ceramic base material side as the second substrate are caused by a series of deformations. It turned out to occur.

これを回避するため、本実施例では、第一の基板(半導体基材)と、そのメタライズの間に好適な絶縁層/応力緩衝層を形成した。
層構成の拡大図を図7に示すように、例えばFET型センサデバイスのSiC基板18の構成は、SiC基板側から層間絶縁膜12、応力緩衝層29、接着層28、表面金属層27(電極)で構成されている。
例えば、層間絶縁膜12はSiO、応力緩衝層29はYSZ(イットリア強化型ジルコニア、イットリア安定化ジルコニアなどと呼ばれる。その組成の一つはY(3 mol%)−ZrO(97 mol%)を用いる。イットリアY(3 mol%)がZrOの結晶粒界に存在している。その構造上加熱による膨張に膜を構成する結晶同志が粒界ですべって変形することが可能であり応力緩衝能力が高い。)、Al 、NiO 、Cr、TiO、TiO、TiOx(TiとOからなるチタン酸化物、TiとOの元素比率が1:2ではない物質)、接着層28はNiO、表面金属層27はPt(電極)、保護膜30はSiNで構成することが好ましい。
In order to avoid this, in the present embodiment, a suitable insulating layer / stress buffer layer was formed between the first substrate (semiconductor base material) and the metallization thereof.
As an enlarged view of the layer configuration is shown in FIG. 7, for example, the configuration of the SiC substrate 18 of the FET type sensor device is the interlayer insulating film 12, the stress buffer layer 29, the adhesive layer 28, the surface metal layer 27 (electrode It consists of).
For example, the interlayer insulating film 12 is called SiO 2 , the stress buffer layer 29 is called YSZ (yttria reinforced zirconia, yttria stabilized zirconia, etc.) One of the compositions is Y 2 O 3 (3 mol%)-ZrO 2 (97 Yttria Y 2 O 3 (3 mol%) is present at the grain boundaries of ZrO 2 because of its structure, the crystals constituting the film slip and deform at the grain boundaries due to expansion due to heating. Possible) and Al 2 O 3 , NiO, Cr 2 O 3 , TiO, TiO 2 , TiO x (a titanium oxide composed of Ti and O, and an elemental ratio of Ti to O: 1: Preferably, the adhesive layer 28 is made of NiO, the surface metal layer 27 is made of Pt (electrode), and the protective film 30 is made of SiN.

これは一例であり、これらの間にTiなどの密着層があってもよい。各層は、単層、複合層、単一金属層、化合物層でも良いし、これらの組み合わせで良いし、限定するものではない。   This is an example, and an adhesion layer such as Ti may be provided between them. Each layer may be a single layer, a composite layer, a single metal layer, a compound layer, or a combination thereof, and is not limited.

すなわち、表面金属層27と接着層28に含まれる金属は、それぞれが2元型状態図において全率固溶型を含む金属同士であって、その金属、合金、金属酸化物、もしくは金属化合物のうちのいずれかの膜で形成される。
表面金属層27と接着層28に含まれる金属は、それぞれの結晶構造が立方晶系の金属、合金、金属酸化物、もしくは金属化合物のうちのいずれかの膜で形成される。
That is, the metals contained in the surface metal layer 27 and the adhesive layer 28 are metals each including a solid solution type in a binary phase diagram, and the metals, alloys, metal oxides, or metal compounds thereof are It is formed of any one of the films.
The metal contained in the surface metal layer 27 and the adhesive layer 28 is formed of a film of any of cubic metals, alloys, metal oxides, or metal compounds in respective crystal structures.

応力緩衝層29は、結晶粒を有する、金属、合金、金属酸化物、金属化合物、もしくは、無機化合物組成のうちのいずれかの膜で形成される。   The stress buffer layer 29 is formed of a film of metal, an alloy, a metal oxide, a metal compound, or an inorganic compound composition having crystal grains.

図8には、配線金属層と電極との接続の例を示し、層間絶縁膜12の上に、NiOなどの接着層2(32)を介して、PtもしくはPtを含む金属で構成される配線金属層31を形成して、配線金属層31に接続して応力緩衝層29を形成することが好ましい。   FIG. 8 shows an example of connection between a wiring metal layer and an electrode, and on the interlayer insulating film 12, a wiring composed of Pt or a metal containing Pt via an adhesive layer 2 (32) such as NiO. Preferably, the metal layer 31 is formed and connected to the wiring metal layer 31 to form the stress buffer layer 29.

図9には、図8に示した半導体基材上にセンサデバイスを形成した第一の基板の電極に、スタッドバンプを形成して、セラミック基板4(第二の基板)上に形成された電極に対して、第一の基板をフェースダウンさせて、フリップチッププロセスにて一括接続させた際の、第一の基板と第二の基板間の一対の電極間接続を表している。   In FIG. 9, a stud bump is formed on the electrode of the first substrate in which the sensor device is formed on the semiconductor substrate shown in FIG. 8, and an electrode formed on the ceramic substrate 4 (second substrate) On the other hand, a pair of interelectrode connections between the first substrate and the second substrate when the first substrates are face down and collectively connected by the flip chip process are shown.

両電極は接合用の貴金属バンプ15を介して接合されている。接合用の貴金属バンプ15としては、例えばPtスタッドバンプ、Auスタッドバンプ、Pt印刷バンプ、Au印刷バンプ、Ptめっきバンプ、Auめっきバンプ、これらをデバイス側と基板側に形成した併用型が用いられる。   Both electrodes are joined via a noble metal bump 15 for joining. As the noble metal bumps 15 for bonding, for example, Pt stud bumps, Au stud bumps, Pt printing bumps, Au printing bumps, Pt plating bumps, Au plating bumps, or a combination of these formed on the device side and the substrate side are used.

また、セラミック基板4(第二の基板)上に形成された電極は、例えば焼結導体34は、HTCC(High Temperature Co-Fired Ceramic)と呼ばれるアルミナ、ムライト、窒化ケイ素基板では、WタングステンやMoモリブデン、Pt白金、Pdパラジウムの焼結導体、印刷導体が用いられる。LTCC(Low Temperature Co-Fired Ceramic)と呼ばれる基板の場合、Ag銀、Cu銅などの焼結導体、Pt白金、Pdパラジウムなどの印刷導体が用いられる。   Also, for the electrode formed on the ceramic substrate 4 (second substrate), for example, the sintered conductor 34 is an alumina called HTCC (High Temperature Co-Fired Ceramic), mullite, a silicon nitride substrate, W tungsten or Mo A sintered conductor of molybdenum, Pt platinum, Pd palladium, or a printed conductor is used. In the case of a substrate called low temperature co-fired ceramic (LTCC), a sintered conductor such as Ag silver or Cu copper, or a printed conductor such as Pt platinum or Pd palladium is used.

また、表面金属層2(33)には、例えばNi:ニッケルめっき、Au:金めっき、Pt:白金めっき、Pd:パラジウムめっき、Cu:銅めっき、これら金属の合金めっき、これらめっきを層に重ねたものでよい。
例えば、表面金属層27、表面金属層2,33 焼結導体34がすべてPt白金で統一されている、金属接合部に局部電池が形成されない腐食に強い構造が用いられる。
In addition, for the surface metal layer 2 (33), for example, Ni: nickel plating, Au: gold plating, Pt: platinum plating, Pd: palladium plating, Cu: copper plating, alloy plating of these metals, these platings are layered on a layer It is good.
For example, a structure resistant to corrosion where a local cell is not formed in a metal joint, in which the surface metal layer 27 and the surface metal layers 2 and 33 and the sintered conductor 34 are all unified with Pt platinum, is used.

図10には、半導体基材上にセンサデバイスを形成した第一の基板の電極と、セラミック基板4(第二の基板)上に形成された電極とを、フリップチッププロセスにより一括接続させる方法として、(a)は、センサデバイス側(第一の基板)の電極に接合金属(接合用の貴金属バンプ15)を形成して一括接合する場合、(b)は、セラミック基板側(第二の基板)の電極に接合金属(接合用の貴金属バンプ15)を形成して一括接合する場合、(c)は、センサデバイス側(第一の基板)およびセラミック基板側(第二の基板)の両方に接合金属(接合用の貴金属バンプ15)を形成して一括接合する場合を示している。   In FIG. 10, as a method of collectively connecting electrodes of a first substrate on which a sensor device is formed on a semiconductor substrate and electrodes formed on a ceramic substrate 4 (second substrate) by a flip chip process When (b) forms a bonding metal (precious metal bump 15 for bonding) on the electrode on the sensor device side (first substrate) and performs collective bonding, (b) corresponds to the ceramic substrate side (second substrate) (C) is formed on both the sensor device side (first substrate) and the ceramic substrate side (second substrate) when forming a bonding metal (precious metal bump 15 for bonding) on the electrode of b) and collectively bonding The case of forming a bonding metal (precious metal bump 15 for bonding) and collectively bonding is shown.

両基板のフリップチッププロセスとしては、例えば、センサデバイス側(第一の基板)のPt電極に接合用の貴金属バンプ15が形成されている場合は、それを、熱圧着、超音波接合、Auペーストによる加熱溶融接合で、セラミック基板側(第二の基板)の電極メタライズに接合する。貴金属バンプ15はPtも好ましい。Ptバンプ15のばあいは、Ptペーストを用いて加熱溶融させる。   As a flip chip process of both substrates, for example, when the noble metal bump 15 for bonding is formed on the Pt electrode on the sensor device side (first substrate), it is thermocompression bonded, ultrasonic bonding, Au paste Bonding to electrode metallization on the ceramic substrate side (second substrate) by heat melting bonding according to The noble metal bump 15 is also preferably Pt. In the case of the Pt bump 15, it is heated and melted using Pt paste.

図11は、SAW型センサデバイス14を実装した際の、SAW型センサデバイスの電極35と接合用バンプとヒーター5の位置構成の一例を示す上面図である。電極35の配置は、図11に示すように、センサデバイスの外形の対角線上に配置されている例である。   FIG. 11 is a top view showing an example of the position configuration of the electrode 35 of the SAW sensor device, the bonding bump, and the heater 5 when the SAW sensor device 14 is mounted. The arrangement of the electrodes 35 is an example arranged on a diagonal of the outline of the sensor device as shown in FIG.

図12は、FET型センサデバイス18の外形よりも小さい外形のヒーター36をFET型センサデバイス18の下部に配置している例を示す。   FIG. 12 shows an example in which the heater 36 having an outer shape smaller than the outer shape of the FET sensor device 18 is disposed below the FET sensor device 18.

1 ガスセンサ
2 ガスセンサモジュール
3 センサデバイス
4 セラミック基板
5 ヒーター
6 キャビティ
7 金属カバー
8 取り付けねじ
9 ケーブル
10 制御用基板
11 外部端子
12 デバイス表面の絶縁層
13 デバイス表面絶縁層上の配線・メタライズの積層部
14 SAW型センサデバイス
15 接合用の貴金属バンプ
16 ヒーターと基板の接続材
17 SAW型センシング部
18 FET型センサデバイス
19 FET型センシング部
20 接合用の貴金属2段バンプ
21 セラミック基板センサ信号配線
22 ヒーター電源配線
23 グランド配線
24 高温時に熱膨張したセンサデバイス
25 高温時に熱膨張したセラミック基板
26 高温時に24と25の熱膨張差による材料ののび差で変形した貴金属バンプ
27 表面金属層
28 接着層
29 応力緩衝層
30 保護膜
31 配線金属層
32 接着層2
33 表面金属層2
34 焼結導体
35 SAW型センサデバイスの外形の対角線上に配置された接合用の貴金属バンプ
36 FET型センサデバイスの外形よりも小さい外形のヒーターの例
50 排気ガス流入口配管
51 排気ガスすすフィルター
52 排気ガス流出口配管
Reference Signs List 1 gas sensor 2 gas sensor module 3 sensor device 4 ceramic substrate 5 heater 6 cavity 7 metal cover 8 attachment screw 9 cable 10 control substrate 11 external terminal 12 insulating layer on device surface 13 laminated portion of wiring / metallizing on device surface insulating layer 14 SAW type sensor device 15 Precious metal bump 16 for bonding 17 Connecting material of heater and substrate 17 SAW type sensing unit 18 FET type sensor device 19 FET type sensing unit 20 2 steps precious metal bump for bonding 21 ceramic substrate sensor signal wiring 22 heater power supply wiring 23 Ground wiring 24 Thermally expanded sensor device 25 at high temperature Thermally expanded ceramic substrate 26 at high temperature Noble metal bump 27 deformed due to material difference due to difference in thermal expansion between 24 and 25 at high temperature Surface metal layer 28 Bonding layer 29 Stress衝層 30 protective film 31 wiring metal layer 32 adhesive layer 2
33 Surface metal layer 2
34. Sintered conductor 35. Precious metal bump for bonding disposed on the diagonal of the outline of the SAW sensor device 36. An example of a heater having an outline smaller than the outline of the FET sensor device 50. Exhaust gas inlet piping 51. Exhaust gas soot filter 52 Exhaust gas outlet piping

Claims (9)

半導体基板に形成されたガスセンシング機能を有するセンサデバイスをセラミック基板に搭載接合したセンサであって、
前記センサデバイスには、Ptからなる接続用のメタライズが形成され、
前記センサデバイスの絶縁膜と前記メタライズとの間に応力緩衝層が形成され、
前記セラミック基板には、ヒーターが搭載され、
前記センサデバイスは、前記ヒーターを跨ぐ配置に、貴金属バンプを介して前記セラミック基板に搭載されていることを特徴とするセンサ。
A sensor, in which a sensor device having a gas sensing function formed on a semiconductor substrate is mounted on and joined to a ceramic substrate,
The sensor device is formed with metallizing for connection made of Pt,
A stress buffer layer is formed between the insulating film of the sensor device and the metallization;
A heater is mounted on the ceramic substrate,
A sensor characterized in that the sensor device is mounted on the ceramic substrate via a noble metal bump in an arrangement straddling the heater.
前記ガスセンシング機能を有するセンサデバイスに代えて、排気ガス中の煤粒子の重量を検出する機能を有するセンサデバイスをセラミック基板に搭載接合していることを特徴とする請求項1に記載のセンサ。   The sensor according to claim 1, wherein a sensor device having a function of detecting the weight of soot particles in exhaust gas is mounted on and joined to a ceramic substrate, instead of the sensor device having the gas sensing function. セラミック基板に前記センサデバイスをフリップチップ接合した構造において、前記センサデバイスの素子面とセラミック基板の間を排気ガスが通過するためのギャップを有することを特徴とする請求項2に記載のセンサ。   3. The sensor according to claim 2, wherein the sensor device is flip-chip bonded to the ceramic substrate, and a gap is provided for exhaust gas to pass between the element surface of the sensor device and the ceramic substrate. 前記応力緩衝層は、YSZ、Al 、NiO 、Cr、TiO、TiO、またはTiOxのいずれかの材料から選ばれることを特徴とする請求項1に記載のセンサ。 The sensor of claim 1 wherein the stress buffer layer, the YSZ, Al 2 O 3, NiO , Cr 2 O 3, TiO, characterized in that it is selected from any of the materials TiO 2, or TiOx,. 前記貴金属バンプの材料は、PtまたはAuであることを特徴とする請求項1に記載のセンサ。   The sensor according to claim 1, wherein a material of the noble metal bump is Pt or Au. 前記セラミック基板表面にキャビティ領域が形成され、
前記ヒーターがキャビティ領域底面に搭載され、
前記センサデバイスのガス検知部とヒーターとの間に距離xを保ち、ヒーターの放熱エリアよりも、前記センサデバイスのガス検知部の面積が小さい領域であることを特徴とする請求項1に記載のセンサ。
A cavity region is formed on the surface of the ceramic substrate,
The heater is mounted on the bottom of the cavity area,
The distance x is maintained between the gas detection unit of the sensor device and the heater, and the area of the gas detection unit of the sensor device is smaller than the heat radiation area of the heater. Sensor.
前記センサデバイスの前記メタライズと前記応力緩衝層の間に更に接着層が形成され、
メタライズと接着層に含まれる金属は、それぞれが2元型状態図において全率固溶型を含む金属同士であって、その金属、合金、金属酸化物、もしくは金属化合物のうちのいずれかの膜で形成されることを特徴とする請求項1に記載のセンサ。
An adhesion layer is further formed between the metallization of the sensor device and the stress buffer layer,
Metals contained in the metallizing and adhesion layers are metals each including a complete solid solution type in a binary phase diagram, and any film of the metal, an alloy, a metal oxide, or a metal compound The sensor of claim 1, wherein the sensor is formed of
前記センサデバイスの前記メタライズと前記応力緩衝層の間に更に接着層が形成され、
メタライズと接着層に含まれる金属は、それぞれの結晶構造が立方晶系の金属、合金、金属酸化物、もしくは金属化合物のうちのいずれかの膜で形成されることを特徴とする請求項1に記載のセンサ。
An adhesion layer is further formed between the metallization of the sensor device and the stress buffer layer,
The metal contained in the metallizing and adhesion layers is characterized in that each crystal structure is formed of a film of any of cubic metals, alloys, metal oxides, or metal compounds. Sensor described.
前記応力緩衝層は、結晶粒を有する、金属、合金、金属酸化物、金属化合物、もしくは、無機化合物組成のうちのいずれかの膜で形成されることを特徴とする請求項1に記載のセンサ。   The sensor according to claim 1, wherein the stress buffer layer is formed of a film of any of a metal, an alloy, a metal oxide, a metal compound, or an inorganic compound composition having crystal grains. .
JP2017221655A 2017-11-17 2017-11-17 Sensor Withdrawn JP2019091870A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017221655A JP2019091870A (en) 2017-11-17 2017-11-17 Sensor
PCT/JP2018/031524 WO2019097801A1 (en) 2017-11-17 2018-08-27 Sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221655A JP2019091870A (en) 2017-11-17 2017-11-17 Sensor

Publications (1)

Publication Number Publication Date
JP2019091870A true JP2019091870A (en) 2019-06-13

Family

ID=66540294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221655A Withdrawn JP2019091870A (en) 2017-11-17 2017-11-17 Sensor

Country Status (2)

Country Link
JP (1) JP2019091870A (en)
WO (1) WO2019097801A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049094A1 (en) * 2019-09-11 2021-03-18 日本碍子株式会社 Honeycomb structure and exhaust gas purification device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111044576B (en) * 2019-12-27 2020-07-31 安徽芯淮电子有限公司 MEMS (micro electro mechanical System) integrated gas sensor and manufacturing method thereof
CN111624237B (en) * 2020-07-01 2023-03-07 湖北大学 Nickel oxide/titanium dioxide nanorod composite structure gas sensor and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138153A (en) * 1984-12-11 1986-06-25 Fujitsu Ltd Method for measuring thermal fatigue of joining material
JP4504595B2 (en) * 2000-06-30 2010-07-14 日本特殊陶業株式会社 Connection structure between board and lead
WO2010115434A1 (en) * 2009-04-06 2010-10-14 Sensic Ab Gas sensor
JP6462408B2 (en) * 2015-02-25 2019-01-30 京セラ株式会社 Sensor substrate and detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021049094A1 (en) * 2019-09-11 2021-03-18 日本碍子株式会社 Honeycomb structure and exhaust gas purification device
CN114302764A (en) * 2019-09-11 2022-04-08 日本碍子株式会社 Honeycomb structure and exhaust gas purifying device
CN114302764B (en) * 2019-09-11 2023-12-26 日本碍子株式会社 Honeycomb structure and exhaust gas purifying device

Also Published As

Publication number Publication date
WO2019097801A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
WO2019097801A1 (en) Sensor
US7208736B2 (en) Infrared sensor device and its manufacturing method
JP3918858B2 (en) Light-emitting element mounting member and semiconductor device using the same
EP3101400B1 (en) Mechanical quantity measuring device and sensor unit
US8278567B2 (en) Electronic device and method of manufacturing the same
KR100426939B1 (en) Gas sensor
JP6842600B2 (en) A device equipped with a temperature sensor and a temperature sensor
JP7394214B2 (en) Sensor element and method for manufacturing sensor element
EP1315949A1 (en) Robust fluid flow and property microsensor made of optimal material
JP6208543B2 (en) Package and electronic equipment
JP2016111326A (en) Thermoelectric conversion module and thermoelectric conversion system
JP2007123371A (en) Electronic device in multiple pattern and its manufacturing method
US11011439B2 (en) Pre-molded substrate, method of manufacturing pre-molded substrate, and hollow type semiconductor device
JP6129980B2 (en) Mechanical quantity measuring apparatus and manufacturing method thereof
JP5705491B2 (en) Electronic component mounting package and electronic device using the same
JPH0968512A (en) Gas sensor
JP2014146756A (en) Electronic component mounting package and electronic device using the same
JP2003007882A (en) Hermetically sealed package of optical semiconductor and optical semiconductor module using the same
JP2004207539A (en) Container for housing electronic component, and electronic device
JPH11295254A (en) Gas sensor
KR20230126540A (en) Pressure sensor and complex sensor including the same
JP2023124671A (en) Metal member with insulation film, physical quantity sensor, and pressure sensor
JPH0669364A (en) Package for accommodation of semiconductor element
JP2008034580A (en) Submount, electronic apparatus, and mounting method of electronic element
JP2007123563A (en) Package for housing electronic part and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20210524