JP2019087716A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2019087716A
JP2019087716A JP2018017436A JP2018017436A JP2019087716A JP 2019087716 A JP2019087716 A JP 2019087716A JP 2018017436 A JP2018017436 A JP 2018017436A JP 2018017436 A JP2018017436 A JP 2018017436A JP 2019087716 A JP2019087716 A JP 2019087716A
Authority
JP
Japan
Prior art keywords
heat conductor
heat
semiconductor element
thermal conductivity
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018017436A
Other languages
English (en)
Inventor
昌孝 出口
Masataka Deguchi
昌孝 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to US16/160,295 priority Critical patent/US10483186B2/en
Priority to CN201811316224.8A priority patent/CN109755198A/zh
Publication of JP2019087716A publication Critical patent/JP2019087716A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】放熱性を向上させることができる技術を提供する。【解決手段】第1内側熱伝導体51は、複数の第1グラファイト層511を備えている。第2内側熱伝導体52は、複数の第2グラファイト層521を備えている。複数の第1グラファイト層511は、半導体素子2と第1放熱体5とが並んでいる方向と直交する方向である第1方向に積層されている。複数の第2グラファイト層521は、半導体素子2と第1放熱体5とが並んでいる方向、または、その方向と直交する方向であって第1方向と直交する第2方向に積層されている。【選択図】図2

Description

本明細書に開示する技術は、半導体装置に関する。
特許文献1に開示されている半導体装置は、半導体素子と、半導体素子の表面に接合されている放熱体とを備えている。放熱体は、半導体素子の表面に接合されている金属熱伝導体を備えている。また、放熱体は、金属熱伝導体に接合されている第1熱伝導体と、半導体素子と放熱体とが並んでいる方向において第1熱伝導体に積層されている第2熱伝導体とを備えている。第1熱伝導体は、複数の第1グラファイト層を備えている。複数の第1グラファイト層は、半導体素子と放熱体とが並んでいる方向と直交する方向である第1方向に積層されている。第2熱伝導体は、複数の第2グラファイト層を備えている。複数の第2グラファイト層は、半導体素子と放熱体とが並んでいる方向と直交する方向である第1方向に積層されている。複数の第1グラファイト層と複数の第2グラファイト層とは、同じ第1方向に積層されている。特許文献1の半導体装置では、可撓性を有する熱伝導構造体とするために、複数の第1グラファイト層の積層方向と複数の第2グラファイト層の積層方向とを一致させる必要がある。
特許文献1の半導体装置では、半導体素子が動作すると半導体素子で熱が生じる。半導体素子で生じた熱は、放熱体によって放熱される。放熱体の金属熱伝導体と第1熱伝導体と第2熱伝導体とによって熱が伝導されて放熱される。半導体素子で生じた熱は、まず半導体素子に接合されている金属熱伝導体によって伝導され、続いて金属熱伝導体に接合されている第1熱伝導体によって伝導され、続いて第1熱伝導体に積層されている第2熱伝導体によって伝導される。
第1グラファイト層の熱伝導率は異方性を有している。第1グラファイト層は、複数の第1グラファイト層が積層されている方向には熱をあまり伝導しない。それに対して、第1グラファイト層は、複数の第1グラファイト層が積層されている方向と直交する方向には高い熱伝導率で熱を伝導する。そのため、第1熱伝導体では、半導体素子と放熱体とが並んでいる方向(複数の第1グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。また、第1熱伝導体では、半導体素子と放熱体とが並んでいる方向と直交する方向であって第1方向と直交する第2方向(複数の第1グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。
同様に、第2グラファイト層の熱伝導率は異方性を有している。第2グラファイト層は、複数の第2グラファイト層が積層されている方向には熱をあまり伝導しない。それに対して、第2グラファイト層は、複数の第2グラファイト層が積層されている方向と直交する方向には高い熱伝導率で熱を伝導する。そのため、第2熱伝導体では、半導体素子と放熱体とが並んでいる方向(複数の第2グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。また、第2熱伝導体では、半導体素子と放熱体とが並んでいる方向と直交する方向であって第1方向と直交する第2方向(複数の第2グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。
特開2017−112334号公報
特許文献1の半導体装置では、第1熱伝導体と第2熱伝導体とが、半導体素子と放熱体とが並んでいる方向に高い熱伝導率で熱を伝導する。また、第1熱伝導体と第2熱伝導体とが、半導体素子と放熱体とが並んでいる方向と直交する方向であって第1方向と直交する第2方向に高い熱伝導率で熱を伝導する。第1熱伝導体と第2熱伝導体とは、第1方向(複数の第1グラファイト層および複数の第2グラファイト層が積層されている方向)には熱をあまり伝導しない。そのため、半導体素子で生じた熱を第1方向へあまり放熱することができず、放熱性が低いという問題があった。そこで本明細書は、放熱性を向上させることができる技術を提供する。
本明細書に開示する半導体装置は、半導体素子と、前記半導体素子の第1表面に接合されている第1放熱体と、を備えている。前記第1放熱体は、前記半導体素子の前記第1表面に接合されている金属の第1外側熱伝導体と、前記第1外側熱伝導体の内部に配置されている第1内側熱伝導体と、前記第1外側熱伝導体の内部に配置されており、前記半導体素子と前記第1放熱体とが並んでいる方向において前記第1内側熱伝導体に積層されている第2内側熱伝導体と、を備えている。前記第1内側熱伝導体は、複数の第1グラファイト層を備えている。前記第2内側熱伝導体は、複数の第2グラファイト層を備えている。複数の前記第1グラファイト層は、前記半導体素子と前記第1放熱体とが並んでいる方向と直交する方向である第1方向に積層されている。複数の前記第2グラファイト層は、前記半導体素子と前記第1放熱体とが並んでいる方向、または、その方向と直交する方向であって前記第1方向と直交する第2方向に積層されている。
この構成によれば、半導体素子が動作すると半導体素子で熱が生じる。半導体素子で生じた熱は、第1放熱体によって放熱される。第1放熱体の第1外側熱伝導体と第1内側熱伝導体と第2内側熱伝導体とによって熱が伝導されて放熱される。半導体素子で生じた熱は、まず半導体素子に接合されている金属の第1外側熱伝導体によって伝導され、続いて第1外側熱伝導体の内部に配置されている第1内側熱伝導体と第2内側熱伝導体とによって伝導され、再び第1外側熱伝導体によって伝導されて外部に放熱される。
第1内側熱伝導体は複数の第1グラファイト層を備えており、第2内側熱伝導体は複数の第2グラファイト層を備えている。グラファイトの熱伝導率は、金属の熱伝導率より高い。そのため、第1放熱体では、複数の第1グラファイト層と複数の第2グラファイト層とを備えることによって、金属のみの場合よりも効率良く熱を伝導することができる。
各第1グラファイト層の熱伝導率は、グラファイトの炭素原子の結合の関係によって異方性を有している。第1グラファイト層は、複数の第1グラファイト層が積層されている方向には熱をあまり伝導しない。それに対して、第1グラファイト層は、複数の第1グラファイト層が積層されている方向と直交する方向には高い熱伝導率で熱を伝導する。複数の第1グラファイト層は、半導体素子と第1放熱体とが並んでいる方向と直交する方向である第1方向に積層されている。そのため、第1内側熱伝導体では、半導体素子と第1放熱体とが並んでいる方向(複数の第1グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。また、第1内側熱伝導体では、第1方向と直交する第2方向(複数の第1グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。
同様に、各第2グラファイト層の熱伝導率は、グラファイトの炭素原子の結合の関係によって異方性を有している。第2グラファイト層は、複数の第2グラファイト層が積層されている方向には熱をあまり伝導しない。それに対して、第2グラファイト層は、複数の第2グラファイト層が積層されている方向と直交する方向には高い熱伝導率で熱を伝導する。ある態様では、複数の第2グラファイト層は、半導体素子と第1放熱体とが並んでいる方向に積層されている。そのため、第2内側熱伝導体では、半導体素子と第1放熱体とが並んでいる方向と直交する方向である第1方向と第2方向(いずれも複数の第2グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。または、他の態様では、複数の第2グラファイト層は、半導体素子と第1放熱体とが並んでいる方向と直交する方向であって第1方向と直交する第2方向に積層されている。そのため、この第2内側熱伝導体では、半導体素子と第1放熱体とが並んでいる方向(複数の第2グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。また、この第2内側熱伝導体では、第2方向と直交する第1方向(複数の第2グラファイト層が積層されている方向と直交する方向)に高い熱伝導率で熱が伝導される。
上記の構成によれば、半導体素子で生じた熱を金属の第1外側熱伝導体によって第1内側熱伝導体と第2内側熱伝導体とに伝導することができる。また、その熱を第1内側熱伝導体と第2内側熱伝導体とによって、半導体素子と第1放熱体とが並んでいる方向と、第1方向と、第2方向とに高い熱伝導率で伝導することができる。また、第1内側熱伝導体と第2内側熱伝導体とによって伝導された熱を第1外側熱伝導体によって多方向に放熱することができる。そのため、上記の構成によれば、半導体素子で生じた熱を第1放熱体の第1外側熱伝導体と第1内側熱伝導体と第2内側熱伝導体とによって効率良く伝導して多方向に放熱することができるので、放熱性を向上させることができる。
第1実施例に係る半導体装置の断面図である。 図1の要部IIの拡大図である。 第1実施例に係る各グラファイト層の斜視図である。 図1の要部IVの拡大図である。 第2実施例に係る半導体装置の断面図である。 第2実施例の変形例に係る半導体装置の断面図である。 他の実施例に係る半導体装置の図2に対応する図である。 第1試験例の測定結果を示す図である。 第2試験例の測定結果を示す図である。
(第1実施例)
実施例に係る半導体装置1について図面を参照して説明する。図1に示すように、実施例に係る半導体装置1は、半導体素子2と、第1放熱体5と、第2放熱体7と、導電板3とを備えている。半導体素子2と、第1放熱体5と、第2放熱体7と、導電板3とは、Z方向に並んでいる。半導体素子2と、第1放熱体5と、第2放熱体7と、導電板3とは、封止樹脂90によって封止されている。封止樹脂90の材料としては、エポキシ樹脂を用いることができる。その他に、封止樹脂90は、硬化剤、応力緩和剤、硬化促進剤、フィラー等を含んでいてもよい。図1に示す半導体装置1は、パワーカードと呼ばれることもある。
半導体素子2は、例えばシリコン(Si)や炭化ケイ素(SiC)等の基板から形成されている。半導体素子2には、例えばIGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の素子構造が形成されている。素子構造が例えばIGBTである場合、半導体素子2には、エミッタ領域、コレクタ領域、ボディ領域、ドリフト領域、ゲート電極などが形成されている(図示省略)。半導体素子2は、半導体装置1の動作時に発熱する。
半導体素子2の表面21には、表面電極が配置されている(図示省略)。表面電極は、半導体素子2の表面21を覆っている。表面電極は、導電性を有している。表面電極は、例えばアルミシリコン合金(AlSi)から形成されている。表面電極は、例えば半導体素子2に形成されているエミッタ領域と導通している。
半導体素子2の裏面22には、裏面電極が形成されている(図示省略)。裏面電極は、半導体素子2の裏面22を覆っている。裏面電極は、導電性を有している。裏面電極は、例えばニッケル(Ni)から形成されている。裏面電極は、例えば半導体素子2に形成されているコレクタ領域と導通している。
半導体素子2の裏面22(第1表面の一例)には、第1放熱体5が接合されている。第1放熱体5は、はんだ91によって半導体素子2の裏面22に接合されている。第1放熱体5は、半導体素子2の裏面22に形成されている裏面電極に接合されている。第1放熱体5は、裏面電極と導通している。はんだ91としては、例えばSn系はんだ、SnCu系はんだ、Zn系はんだ等を用いることができる。
第1放熱体5は、第1外側熱伝導体53と、第1内側熱伝導体51と、第2内側熱伝導体52とを備えている。第1外側熱伝導体53は、半導体素子2の裏面22に接合されている。第1外側熱伝導体53は、はんだ91によって半導体素子2の裏面22に形成されている裏面電極に接合されている。第1外側熱伝導体53は、裏面電極と導通している。
第1外側熱伝導体53は、例えば銅(Cu)から形成されている。第1外側熱伝導体53は、銅(Cu)以外の金属から形成されていてもよい。第1外側熱伝導体53は、導電性を有している。第1外側熱伝導体53は、箱形に形成されている。第1外側熱伝導体53は、直方体状に形成されている。
第1外側熱伝導体53は、上面536と下面537と側面538とを備えている。第1外側熱伝導体53の上面536は、Z方向において半導体素子2側を向いている。下面537は、Z方向において半導体素子2側と反対側を向いている。第1外側熱伝導体53の下面537は、冷却器201に接触している。冷却器201は、第1放熱体5を冷却する。第1外側熱伝導体53の側面538は、上面536と下面537との間に位置している。側面538は、X方向とY方向とにおいて外側を向いている(Y方向の側面538は図示省略)。
図2に示すように、第1外側熱伝導体53は、第1金属体531と第2金属体532とを備えている。なお、図2では封止樹脂90を省略して示している。第1金属体531は、半導体素子2に接合されている。第1金属体531は、半導体素子2と第2金属体532との間に配置されている。第1金属体531は、第2金属体532の半導体素子2側の面に接合されている。第2金属体532は、第1金属体531に接合されている。第2金属体532は、第1金属体531の半導体素子2側と反対側の面に接合されている。
第1外側熱伝導体53の第1金属体531と第2金属体532との境界部56は、第1外側熱伝導体53の上面536と下面537に存在していない。第1金属体531と第2金属体532との境界部56は、第1外側熱伝導体53の側面538に存在している。
第1外側熱伝導体53は、第1内側熱伝導体51と第2内側熱伝導体52とを収容している。第1外側熱伝導体53は、第1内側熱伝導体51と第2内側熱伝導体52とを囲んでいる。第1外側熱伝導体53は、収容空間54を備えている。収容空間54は、第1外側熱伝導体53の内部に形成されている。
第1内側熱伝導体51は、第1外側熱伝導体53の内部に配置されている。第1内側熱伝導体51は、第1外側熱伝導体53の収容空間54に配置されている。第1内側熱伝導体51は、第2内側熱伝導体52よりも半導体素子2に近い側に配置されている。
第1内側熱伝導体51は、複数の第1グラファイト層511を備えている。複数の第1グラファイト層511は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交する方向である第1方向(X方向)に積層されている。各第1グラファイト層511は、グラファイトから形成されている。各第1グラファイト層511は、複数のグラフェン(図示省略)が積層されることによって形成されている。グラファイトの熱伝導率は、高熱伝導率方向では金属の熱伝導率より高い。銅(Cu)の熱伝導率は、約390W/mKである。また、銀(Ag)の熱伝導率は、約420W/mKである。
第1グラファイト層511の熱伝導率は、炭素原子の結合の関係によって異方性を有している。熱伝導率が比較的高い方向と、熱伝導率が比較的高い方向とが存在している。図3に示すように、第1グラファイト層511の面内方向(第1高熱伝導率方向D1及び第2高熱伝導率方向D2)における熱伝導率が、面外方向(低熱伝導率方向D3)における熱伝導率より高い。第1高熱伝導率方向D1及び第2高熱伝導率方向D2における熱伝導率は、約800〜1900W/mKである。低熱伝導率方向D3における熱伝導率は、約3〜10W/mKである。第1高熱伝導率方向D1と第2高熱伝導率方向D2と低熱伝導率方向D3とは互いに直交している。第1グラファイト層511の面外方向(低熱伝導率方向D3)は、第1グラファイト層511の厚み方向である。
図2に示すように、各第1グラファイト層511は、その第1高熱伝導率方向D1が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と一致するように配置されている。各第1グラファイト層511は、その低熱伝導率方向D3が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交するように配置されている。各第1グラファイト層511は、Z方向に高い熱伝導率で熱を伝導する。各第1グラファイト層511は、Z方向と直交する方向において、複数の第1グラファイト層511が積層されている方向である第1方向(X方向)には熱をあまり伝達しない。各第1グラファイト層511は、Z方向と直交する方向であって、第1方向(X方向)と直交する第2方向(Y方向)に高い熱伝導率で熱を伝導する。
第2内側熱伝導体52は、第1外側熱伝導体53の内部に配置されている。第2内側熱伝導体52は、第1外側熱伝導体53の収容空間54に配置されている。第2内側熱伝導体52は、第1内側熱伝導体51よりも半導体素子2から遠い側に配置されている。
第2内側熱伝導体52は、複数の第2グラファイト層521を備えている。複数の第2グラファイト層521は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)に積層されている。各第2グラファイト層521は、グラファイトから形成されている。各第2グラファイト層521は、複数のグラフェン(図示省略)が積層されることによって形成されている。
第2グラファイト層521の熱伝導率は、炭素原子の結合の関係によって異方性を有している。熱伝導率が比較的高い方向と、熱伝導率が比較的高い方向とが存在している。図3に示すように、第2グラファイト層521の面内方向(第1高熱伝導率方向D1及び第2高熱伝導率方向D2)における熱伝導率が、面外方向(低熱伝導率方向D3)における熱伝導率より高い。第1高熱伝導率方向D1及び第2高熱伝導率方向D2における熱伝導率は、約800〜1900W/mKである。低熱伝導率方向D3における熱伝導率は、約3〜10W/mKである。第1高熱伝導率方向D1と第2高熱伝導率方向D2と低熱伝導率方向D3とは互いに直交している。第2グラファイト層521の面外方向(低熱伝導率方向D3)は、第2グラファイト層521の厚み方向である。
図2に示すように、各第2グラファイト層521は、その第1高熱伝導率方向D1が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交するように配置されている。各第2グラファイト層521は、その低熱伝導率方向D3が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と一致するように配置されている。各第2グラファイト層521は、Z方向には熱をあまり伝達しない。各第1グラファイト層511は、Z方向と直交する方向である第1方向(X方向)と第2方向(Y方向)に高い熱伝導率で熱を伝導する。
第1内側熱伝導体51と第2内側熱伝導体52とは、Z方向に積層されている。第1外側熱伝導体53と第1内側熱伝導体51との間には、ろう材96が配置されている。第1内側熱伝導体51と第2内側熱伝導体52との間には、ろう材97が配置されている。第1外側熱伝導体53と第2内側熱伝導体52との間には、ろう材98が配置されている。第1内側熱伝導体51と第2内側熱伝導体52とは、ろう材97によって接合されている。第1外側熱伝導体53と第1内側熱伝導体51とは、ろう材96によって接合されている。第1外側熱伝導体53と第2内側熱伝導体52とは、ろう材98によって接合されている。
各ろう材96、97、98としては、例えばAg系ろう材等を用いることができる。各ろう材96、97、98は、チタン(Ti)を含有している。各ろう材96、97、98のチタン(Ti)の含有率は、例えば5wt%以下である。チタン(Ti)の含有率は、3〜5wt%であってもよい。また、チタン(Ti)の含有率は、3wt%以下であってもよい。各ろう材96、97、98のZ方向の厚みは、例えば50μmである。Z方向の厚みは、50μm以下であってもよい。また、Z方向の厚みは、25μm以下であってもよい。
図1に示すように、半導体素子2の表面21(第2表面の一例)には、導電板3が接合されている。半導体素子2の表面21は裏面22と反対側の面である。導電板3は、はんだ92によって半導体素子2の表面21に接合されている。導電板3は、半導体素子2の表面21に形成されている表面電極に接合されている。
導電板3は、板状に形成されている。導電板3は、例えば銅(Cu)から形成されている。導電板3は、導電性および熱伝導性を有している。導電板3は、半導体素子2と第2放熱体7の間に配置されており、両者の間のスペーサーとしての機能を有している。
導電板3には、第2放熱体7が接合されている。第2放熱体7は、はんだ93によって導電板3に接合されている。第2放熱体7は、はんだ92、93と導電板3を介して半導体素子2の表面21に接合されている。第2放熱体7は、半導体素子2の表面21に形成されている表面電極に接合されている。第2放熱体7は、表面電極と導通している。はんだ92、93としては、例えばSn系はんだ、SnCu系はんだ、Zn系はんだ等を用いることができる。
第2放熱体7は、第2外側熱伝導体73と、第3内側熱伝導体71と、第4内側熱伝導体72とを備えている。第2外側熱伝導体73は、はんだ92、93と導電板3を介して半導体素子2の表面21に接合されている。第2外側熱伝導体73は、はんだ92、93と導電板3を介して半導体素子2の表面21に形成されている表面電極に接合されている。第2外側熱伝導体73は、表面電極と導通している。
第2外側熱伝導体73は、例えば銅(Cu)から形成されている。第2外側熱伝導体73は、銅(Cu)以外の金属から形成されていてもよい。第2外側熱伝導体73は、導電性を有している。第2外側熱伝導体73は、箱形に形成されている。第2外側熱伝導体73は、直方体状に形成されている。
第2外側熱伝導体73は、下面736と上面737と側面738とを備えている。第2外側熱伝導体73の下面736は、Z方向において半導体素子2側を向いている。上面737は、Z方向において半導体素子2側と反対側を向いている。第2外側熱伝導体73の上面737は、冷却器202に接触している。冷却器202は、第2放熱体7を冷却する。第2外側熱伝導体73の側面738は、下面736と上面737との間に位置している。側面738は、X方向とY方向とにおいて外側を向いている(Y方向の側面738は図示省略)。
図4に示すように、第2外側熱伝導体73は、第1金属体731と第2金属体732とを備えている。なお、図4では封止樹脂90を省略して示している。第1金属体731は、はんだ92、93と導電板3を介して半導体素子2に接合されている。第1金属体731は、導電板3と第2金属体732との間に配置されている。第1金属体731は、第2金属体732の導電板3側の面に接合されている。第2金属体732は、第1金属体731に接合されている。第2金属体732は、第1金属体731の導電板3側と反対側の面に接合されている。
第2外側熱伝導体73の第1金属体731と第2金属体732との境界部76は、第2外側熱伝導体73の下面736と上面737に存在していない。第1金属体731と第2金属体732との境界部76は、第2外側熱伝導体73の側面738に存在している。
第2外側熱伝導体73は、第3内側熱伝導体71と第4内側熱伝導体72とを収容している。第2外側熱伝導体73は、第3内側熱伝導体71と第4内側熱伝導体72とを囲んでいる。第2外側熱伝導体73は、収容空間74を備えている。収容空間74は、第2外側熱伝導体73の内部に形成されている。
第3内側熱伝導体71は、第2外側熱伝導体73の内部に配置されている。第3内側熱伝導体71は、第2外側熱伝導体73の収容空間74に配置されている。第3内側熱伝導体71は、第4内側熱伝導体72よりも半導体素子2に近い側に配置されている。
第3内側熱伝導体71は、複数の第3グラファイト層711を備えている。複数の第3グラファイト層711は、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と直交する方向である第1方向(X方向)に積層されている。各第3グラファイト層711は、グラファイトから形成されている。各第3グラファイト層711は、複数のグラフェン(図示省略)が積層されることによって形成されている。
第3グラファイト層711の熱伝導率は、炭素原子の結合の関係によって異方性を有している。熱伝導率が比較的高い方向と、熱伝導率が比較的高い方向とが存在している。図3に示すように、第3グラファイト層711の面内方向(第1高熱伝導率方向D1及び第2高熱伝導率方向D2)における熱伝導率が、面外方向(低熱伝導率方向D3)における熱伝導率より高い。第1高熱伝導率方向D1及び第2高熱伝導率方向D2における熱伝導率は、約800〜1900W/mKである。低熱伝導率方向D3における熱伝導率は、約3〜10W/mKである。第1高熱伝導率方向D1と第2高熱伝導率方向D2と低熱伝導率方向D3とは互いに直交している。第3グラファイト層711の面外方向(低熱伝導率方向D3)は、第3グラファイト層711の厚み方向である。
図4に示すように、各第3グラファイト層711は、その第1高熱伝導率方向D1が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と一致するように配置されている。各第3グラファイト層711は、その低熱伝導率方向D3が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と直交するように配置されている。各第3グラファイト層711は、Z方向に高い熱伝導率で熱を伝導する。各第3グラファイト層711は、Z方向と直交する方向において、複数の第3グラファイト層711が積層されている方向である第1方向(X方向)には熱をあまり伝達しない。各第3グラファイト層711は、Z方向と直交する方向であって、第1方向(X方向)と直交する第2方向(Y方向)に高い熱伝導率で熱を伝導する。
第4内側熱伝導体72は、第2外側熱伝導体73の内部に配置されている。第4内側熱伝導体72は、第2外側熱伝導体73の収容空間74に配置されている。第4内側熱伝導体72は、第3内側熱伝導体71よりも半導体素子2から遠い側に配置されている。
第4内側熱伝導体72は、複数の第4グラファイト層721を備えている。複数の第4グラファイト層721は、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)に積層されている。各第4グラファイト層721は、グラファイトから形成されている。各第4グラファイト層721は、複数のグラフェン(図示省略)が積層されることによって形成されている。
第4グラファイト層721の熱伝導率は、炭素原子の結合の関係によって異方性を有している。熱伝導率が比較的高い方向と、熱伝導率が比較的高い方向とが存在している。図3に示すように、第4グラファイト層721の面内方向(第1高熱伝導率方向D1及び第2高熱伝導率方向D2)における熱伝導率が、面外方向(低熱伝導率方向D3)における熱伝導率より高い。第1高熱伝導率方向D1及び第2高熱伝導率方向D2における熱伝導率は、約800〜1900W/mKである。低熱伝導率方向D3における熱伝導率は、約3〜10W/mKである。第1高熱伝導率方向D1と第2高熱伝導率方向D2と低熱伝導率方向D3とは互いに直交している。第4グラファイト層721の面外方向(低熱伝導率方向D3)は、第4グラファイト層721の厚み方向である。
図4に示すように、各第4グラファイト層721は、その第1高熱伝導率方向D1が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と直交するように配置されている。各第4グラファイト層721は、その低熱伝導率方向D3が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と一致するように配置されている。各第4グラファイト層721は、Z方向には熱をあまり伝達しない。各第3グラファイト層711は、Z方向と直交する方向である第1方向(X方向)と第2方向(Y方向)に高い熱伝導率で熱を伝導する。
第3内側熱伝導体71と第4内側熱伝導体72とは、Z方向に積層されている。第2外側熱伝導体73と第3内側熱伝導体71との間には、ろう材86が配置されている。第3内側熱伝導体71と第4内側熱伝導体72との間には、ろう材87が配置されている。第2外側熱伝導体73と第4内側熱伝導体72との間には、ろう材88が配置されている。ろう材86、87、88としては、例えばAg系ろう材等を用いることができる。第3内側熱伝導体71と第4内側熱伝導体72とは、ろう材87によって接合されている。第2外側熱伝導体73と第3内側熱伝導体71とは、ろう材86によって接合されている。第2外側熱伝導体73と第4内側熱伝導体72とは、ろう材88によって接合されている。
以上、第1実施例に係る半導体装置1について説明した。上述の説明から明らかなように、半導体装置1では、第1放熱体5が、半導体素子2の裏面22に接合されている金属の第1外側熱伝導体53と、第1外側熱伝導体53の内部に配置されている第1内側熱伝導体51及び第2内側熱伝導体52とを備えている。第1内側熱伝導体51と第2内側熱伝導体52とは、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)において積層されている。第1内側熱伝導体51は、複数の第1グラファイト層511を備えている。複数の第1グラファイト層511は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交する方向である第1方向(X方向)に積層されている。第2内側熱伝導体52は、複数の第2グラファイト層521を備えている。複数の第2グラファイト層521は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)に積層されている。
この構成によれば、半導体素子2が動作することによって生じた熱が第1放熱体5によって放熱される。半導体素子2で生じた熱は、半導体素子2に接合されている第1外側熱伝導体53に伝導され、続いて第1外側熱伝導体53の内部に配置されている第1内側熱伝導体51及び第2内側熱伝導体52に伝導され、再び第1外側熱伝導体53に伝導されて外部に放熱される。
グラファイトの熱伝導率は、金属の熱伝導率より高い。第1放熱体5では、複数の第1グラファイト層511と複数の第2グラファイト層521とを備えることによって、金属のみの場合よりも効率良く熱を伝導することができる。
第1内側熱伝導体51を構成する複数の第1グラファイト層511は、熱伝導率において異方性を有している。各第1グラファイト層511は、複数の第1グラファイト層511が積層されている第1方向(X方向)には熱をあまり伝導しない。それに対して、各第1グラファイト層511は、複数の第1グラファイト層511が積層されている第1方向(X方向)と直交する方向(Y方向とZ方向)には高い熱伝導率で熱を伝導する。そのため、第1内側熱伝導体51では、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)に高い熱伝導率で熱が伝導される。また、第1内側熱伝導体51では、Z方向に直交する方向であって、第1方向(X方向)に直交する第2方向(Y方向)に高い熱伝導率で熱が伝導される。
同様に、第2内側熱伝導体52を構成する複数の第2グラファイト層521は、熱伝導率において異方性を有している。各第2グラファイト層521は、複数の第2グラファイト層521が積層されている方向(Z方向)には熱をあまり伝導しない。それに対して、各第2グラファイト層521は、複数の第2グラファイト層521が積層されている方向(Z方向)と直交する方向(X方向とY方向)には高い熱伝導率で熱を伝導する。そのため、第2内側熱伝導体52では、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交する方向である第1方向(X方向)と第2方向(Y方向)とに高い熱伝導率で熱が伝導される。
上記の構成によれば、半導体素子2で生じた熱を金属の第1外側熱伝導体53によって第1内側熱伝導体51と第2内側熱伝導体52とに伝導することができる。また、その熱を第1内側熱伝導体51と第2内側熱伝導体52とによって、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と、第1方向(X方向)と、第2方向(Y方向)とに高い熱伝導率で伝導することができる。また、第1内側熱伝導体51と第2内側熱伝導体52とによって伝導された熱を第1外側熱伝導体53によって多方向に放熱することができる。そのため、上記の構成によれば、半導体素子2で生じた熱を第1放熱体5の第1外側熱伝導体53と第1内側熱伝導体51と第2内側熱伝導体52とによって効率良く伝導して多方向に放熱することができるので、放熱性を向上させることができる。なお、複数の第1グラファイト層511の積層方向と複数の第2グラファイト層521の積層方向とが一致していると、熱を伝導する方向が一致してしまうので多方向に放熱することができなくなる。
また、半導体装置1は、半導体素子2の表面21に接合されている第2放熱体7を備えている。第2放熱体7は、第1放熱体5と同様の構成を備えている。そのため、半導体素子2の裏面22側だけではなく、それとは反対側の表面21側においても放熱性を向上させることができる。
以上、一実施例について説明したが、具体的な態様は上記実施例に限定されるものではない。以下の説明において、上述の説明における構成と同様の構成については、同一の符号を付して説明を省略する。
(第2実施例)
図5に示すように、第2実施例に係る半導体装置1では、第1放熱体5の第1外側熱伝導体53が、外側に突出している突出部55を付加的に備えていてもよい。突出部55は、例えば銅(Cu)から形成されている。突出部55は、銅(Cu)以外の金属から形成されていてもよい。突出部55は、第1外側熱伝導体53の第1金属体531に固定されている。突出部55は、第1外側熱伝導体53の第1金属体531と一体または別体で形成されている。突出部55は、封止樹脂90によって封止されている。突出部55は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交する第1方向(X方向)に突出している。突出部55は、第1方向(X方向)と直交する第2方向(Y方向)にも突出している(図示省略)。
同様に、第2放熱体7の第2外側熱伝導体73が、外側に突出している突出部75を付加的に備えていてもよい。突出部75は、例えば銅(Cu)から形成されている。突出部75は、銅(Cu)以外の金属から形成されていてもよい。突出部75は、第2外側熱伝導体73の第1金属体731に固定されている。突出部75は、第2外側熱伝導体73の第1金属体731と一体または別体で形成されている。突出部75は、封止樹脂90によって封止されている。突出部75は、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と直交する第1方向(X方向)に突出している。突出部75は、第1方向(X方向)と直交する第2方向(Y方向)にも突出している(図示省略)。
また、図6に示すように、第1放熱体5における突出部55は、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)に突出していてもよい。同様に、第2放熱体7における突出部75は、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)に突出していてもよい。
グラファイトの熱容量は金属の熱容量より小さい。そのため、第1放熱体5が複数の第1グラファイト層511と複数の第2グラファイト層521とを備えている構成では、第1放熱体5が金属のみで構成されている場合よりも、第1放熱体5の熱容量が小さくなる。上記の構成によれば、第1外側熱伝導体53が金属の突出部55を備えているので、第1放熱体5の熱容量を向上させることができる。そのため、半導体素子2で生じた熱が第1放熱体5に伝導される際に、第1放熱体5の温度が急激に上昇することを抑制することができる。第2放熱体7についても同様である。
また、上記の半導体装置1では、第1外側熱伝導体53の第1金属体531と第2金属体532との境界部56が、第1外側熱伝導体53の上面536と下面537に存在していない。第1金属体531と第2金属体532との境界部56は、第1外側熱伝導体53の側面538に存在している。そのため、第1外側熱伝導体53の上面536と下面537を均一な面にすることができる。第2外側熱伝導体73についても同様である。
(その他の実施例)
上記の実施例では、第1内側熱伝導体51が、第2内側熱伝導体52よりも半導体素子2に近い側に配置されていたが、この構成に限定されるものではない。いくつかの実施例では、それとは逆に、第2内側熱伝導体52が、第1内側熱伝導体51よりも半導体素子2に近い側に配置されていてもよい。
同様に、上記の実施例では、第3内側熱伝導体71が、第4内側熱伝導体72よりも半導体素子2に近い側に配置されていたが、この構成に限定されるものではない。いくつかの実施例では、それとは逆に、第4内側熱伝導体72が、第3内側熱伝導体71よりも半導体素子2に近い側に配置されていてもよい。
上記の実施例では、複数の第2グラファイト層521が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)に積層されていたが、この構成に限定されるものではない。いくつかの実施例では、複数の第2グラファイト層521が、半導体素子2と第1放熱体5とが並んでいる方向(Z方向)と直交する方向であって、第1方向(X方向)と直交する第2方向(Y方向)に積層されていてもよい。複数の第1グラファイト層511が積層されている第1方向(X方向)と、複数の第2グラファイト層521が積層されている第2方向(Y方向)とは直交している。
各第2グラファイト層521は、複数の第2グラファイト層521が積層されている方向(Y方向)には熱をあまり伝導しない。それに対して、各第2グラファイト層521は、複数の第2グラファイト層521が積層されている方向(Y方向)と直交する方向(X方向とZ方向)には高い熱伝導率で熱を伝導する。そのため、第2内側熱伝導体52では、Z方向とX方向に高い熱伝導率で熱を伝導することができる。第1内側熱伝導体51と第2内側熱伝導体52とによって、X方向とY方向とZ方向とに高い熱伝導率で熱を伝導することができる。特にZ方向に効率良く熱を伝導することができる。
同様に、上記の実施例では、複数の第4グラファイト層721が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)に積層されていたが、この構成に限定されるものではない。いくつかの実施例では、複数の第4グラファイト層721が、半導体素子2と第2放熱体7とが並んでいる方向(Z方向)と直交する方向であって、第1方向(X方向)と直交する第2方向(Y方向)に積層されていてもよい。複数の第3グラファイト層711が積層されている第1方向(X方向)と、複数の第4グラファイト層721が積層されている第2方向(Y方向)とは直交している。この構成によれば、上記と同様に、第3内側熱伝導体71と第4内側熱伝導体72とによって、X方向とY方向とZ方向とに高い熱伝導率で熱を伝導することができる。特にZ方向に効率良く熱を伝導することができる。
上記の実施例では、第1外側熱伝導体53の第1金属体531と第2金属体532との境界部56が、第1外側熱伝導体53の下面537に存在していない構成であったが、この構成に限定されるものではない。いくつかの実施例では、第1金属体531と第2金属体532との境界部56が、第1外側熱伝導体53の下面537に存在していてもよい。
同様に、上記の実施例では、第2外側熱伝導体73の第1金属体731と第2金属体732との境界部76が、第2外側熱伝導体73の上面737に存在していない構成であったが、この構成に限定されるものではない。いくつかの実施例では、第1金属体731と第2金属体732との境界部76が、第2外側熱伝導体73の上面737に存在していてもよい。
上記の半導体装置1を製造する場合は、半導体素子2に第1放熱体5を接合する前または接合した後に、第1放熱体5の第1外側熱伝導体53の下面537を工作機械によって削ることがある。そのため、第1外側熱伝導体53の下面537側に削り代を設けておいてもよい。
図7に示すように、第1外側熱伝導体53は、第1金属体531と第2金属体532と第3金属体533とを備えていてもよい。第1金属体531と第2金属体532と第3金属体533とは、半導体素子2に近い側から遠い側に向けてZ方向に並んでいる。なお、図7では封止樹脂90を省略して示している。第1金属体531は、半導体素子2に接合されている。第1金属体531は、半導体素子2と第2金属体532との間に配置されている。第1金属体531は、第2金属体532の半導体素子2側の面に接合されている。第2金属体532は、第1金属体531に接合されている。第2金属体532は、第1金属体531と第3金属体533との間に配置されている。第2金属体532は、第1金属体531の半導体素子2側と反対側の面に接合されている。また、第2金属体532は、第3金属体533の半導体素子2側の面に接合されている。第3金属体533は、第2金属体532に接合されている。第3金属体533は、第2金属体532の半導体素子2側と反対側の面に接合されている。
第1外側熱伝導体53の第1金属体531と第2金属体532との境界部56は、第1外側熱伝導体53の上面536と下面537に存在していない。第1金属体531と第2金属体532との境界部56は、第1外側熱伝導体53の側面538に存在している。
第1外側熱伝導体53の第2金属体532と第3金属体533との境界部57は、第1外側熱伝導体53の上面536と下面537に存在していない。第2金属体532と第3金属体533との境界部57は、第1外側熱伝導体53の側面538に存在している。
上記の実施例では、第2放熱体7が、第2外側熱伝導体73と、第3内側熱伝導体71と、第4内側熱伝導体72とを備えている構成であったが、この構成に限定されるものではない。他の実施例では、第2放熱体7が、これらの構成を備えておらず、金属のみから形成されていてもよい。第2放熱体7は中実の金属体であり、その内部に第3内側熱伝導体71と第4内側熱伝導体72が配置されていない。第2放熱体7を構成する金属は、例えば銅(Cu)やアルミニウム(Al)である。この第2放熱体7は、はんだ92、93と導電板3を介して半導体素子2の表面21に接合されている。第2放熱体7は、半導体素子2の表面21に形成されている表面電極に接合されている。第2放熱体7は、表面電極と導通している。この構成によれば、第2放熱体7が中実の金属体であるので、例えば超音波やX線を用いて半導体装置1を検査するときに第2放熱体7を明確に確認することができる。また、第2放熱体7にグラファイトが用いられないので、半導体装置1のコストを低減することができる。
上記の実施例では、半導体素子2と第2放熱体7の間に導電板3がスペーサーとして配置されていたが、この構成に限定されるものではなく、導電板3を設けなくてもよい。この場合、第2放熱体7は、はんだ93と導電板3を介さずに、はんだ92によって半導体素子2の表面21に接合されている。この構成によれば、半導体素子2と第2放熱体7の間に導電板3が介在しないので、半導体素子2と第2放熱体7の接触面積を拡大することができる。そのため、半導体素子2で生じた熱を放熱するときの放熱面積を拡大することができ、放熱性を向上させることができる。また、半導体装置1のZ方向の厚みを薄くすることができる。
(第1試験例)
上記の半導体装置1における第1放熱体5の熱伝導率について試験を行った。第1試験例では、第1放熱体5における各ろう材96、97、98のチタン(Ti)の含有率を3〜5wt%とした。また、各ろう材96、97、98のZ方向の厚みを50μmとした。この場合に、第1放熱体5におけるグラファイトの割合を変えて第1放熱体5の熱伝導率を測定した。測定結果を図8に示す。図8に示すように、第1放熱体5におけるグラファイトの割合が85wt%以上である場合は、85wt%未満である場合よりも、第1放熱体5の熱伝導率が顕著に高いことが確認された。また、第1放熱体5におけるグラファイトの割合が87wt%以上である場合は、87wt%未満である場合よりも、第1放熱体5の熱伝導率が更に高いことが確認された。また、第1放熱体5におけるグラファイトの割合が93wt%以上である場合は、93wt%未満である場合よりも、第1放熱体5の熱伝導率が更に高いことが確認された。
(第2試験例)
第2試験例では、第1放熱体5における各ろう材96、97、98のチタン(Ti)の含有率を3wt%以下とした。また、各ろう材96、97、98のZ方向の厚みを25μm以下とした。この場合に、第1放熱体5におけるグラファイトの割合を変えて第1放熱体5の熱伝導率を測定した。測定結果を図9に示す。図9に示すように、第1放熱体5におけるグラファイトの割合が60wt%以上である場合は、上記の第1試験例における86wt%以上の場合と同程度の熱伝導率になることが確認された。また、第1放熱体5におけるグラファイトの割合が68wt%以上である場合は、68wt%未満である場合よりも、第1放熱体5の熱伝導率が更に高いことが確認された。また、第1放熱体5におけるグラファイトの割合が74wt%以上である場合は、74wt%未満である場合よりも、第1放熱体5の熱伝導率が更に高いことが確認された。
本明細書が開示する技術要素について、以下に列記する。なお、以下の各技術要素は、それぞれ独立して有用なものである。
半導体装置は、半導体素子の第1表面と反対側の第2表面に接合されている第2放熱体を更に備えていてもよい。第2放熱体は、半導体素子の第2表面に接合されている金属の第2外側熱伝導体と、第2外側熱伝導体の内部に配置されている第3内側熱伝導体と、第2外側熱伝導体の内部に配置されており、半導体素子と第2放熱体とが並んでいる方向において第3内側熱伝導体に積層されている第4内側熱伝導体と、を備えていてもよい。第3内側熱伝導体は、複数の第3グラファイト層を備えていてもよい。第4内側熱伝導体は、複数の第4グラファイト層を備えていてもよい。複数の第3グラファイト層は、半導体素子と第2放熱体とが並んでいる方向と直交する方向である第3方向に積層されていてもよい。複数の第4グラファイト層は、半導体素子と第2放熱体とが並んでいる方向、または、その方向と直交する方向であって第3方向と直交する第4方向に積層されていてもよい。
この構成によれば、半導体素子の第1表面側だけではなく、それとは反対側の第2表面側においても放熱性を向上させることができる。
半導体素子と第1放熱体と第2放熱体とが封止樹脂によって封止されていてもよい。
第1外側熱伝導体は、外側に突出している突出部を備えていてもよい。
この構成によれば、第1放熱体の熱容量を向上させることができる。そのため、半導体素子で生じた熱が第1放熱体に伝導される際に、第1放熱体の温度が急激に上昇することを抑制することができる。
半導体装置は、半導体素子の第1表面と反対側の第2表面に接合されている第2放熱体を更に備えていてもよい。第2放熱体は、中実の金属体であってもよい。
この構成によれば、例えば超音波やX線を用いて半導体装置を検査するときに第2放熱体を明確に確認することができる。
なお、上記の実施例におけるX方向とY方向とZ方向は説明のための便宜的な方向であり、互いに変更可能である。
以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
1 :半導体装置
2 :半導体素子
5 :第1放熱体
7 :第2放熱体
21 :表面
22 :裏面
51 :第1内側熱伝導体
52 :第2内側熱伝導体
53 :第1外側熱伝導体
55 :突出部
71 :第3内側熱伝導体
72 :第4内側熱伝導体
73 :第2外側熱伝導体
75 :突出部
90 :封止樹脂
511 :第1グラファイト層
521 :第2グラファイト層
711 :第3グラファイト層
721 :第4グラファイト層

Claims (5)

  1. 半導体素子と、
    前記半導体素子の第1表面に接合されている第1放熱体と、を備えており、
    前記第1放熱体は、
    前記半導体素子の前記第1表面に接合されている金属の第1外側熱伝導体と、
    前記第1外側熱伝導体の内部に配置されている第1内側熱伝導体と、
    前記第1外側熱伝導体の内部に配置されており、前記半導体素子と前記第1放熱体とが並んでいる方向において前記第1内側熱伝導体に積層されている第2内側熱伝導体と、を備えており、
    前記第1内側熱伝導体は、複数の第1グラファイト層を備えており、
    前記第2内側熱伝導体は、複数の第2グラファイト層を備えており、
    複数の前記第1グラファイト層は、前記半導体素子と前記第1放熱体とが並んでいる方向と直交する方向である第1方向に積層されており、
    複数の前記第2グラファイト層は、前記半導体素子と前記第1放熱体とが並んでいる方向、または、その方向と直交する方向であって前記第1方向と直交する第2方向に積層されている、半導体装置。
  2. 前記半導体素子の前記第1表面と反対側の第2表面に接合されている第2放熱体を更に備えており、
    前記第2放熱体は、
    前記半導体素子の前記第2表面に接合されている金属の第2外側熱伝導体と、
    前記第2外側熱伝導体の内部に配置されている第3内側熱伝導体と、
    前記第2外側熱伝導体の内部に配置されており、前記半導体素子と前記第2放熱体とが並んでいる方向において前記第3内側熱伝導体に積層されている第4内側熱伝導体と、を備えており、
    前記第3内側熱伝導体は、複数の第3グラファイト層を備えており、
    前記第4内側熱伝導体は、複数の第4グラファイト層を備えており、
    複数の前記第3グラファイト層は、前記半導体素子と前記第2放熱体とが並んでいる方向と直交する方向である第3方向に積層されており、
    複数の前記第4グラファイト層は、前記半導体素子と前記第2放熱体とが並んでいる方向、または、その方向と直交する方向であって前記第3方向と直交する第4方向に積層されている、請求項1に記載の半導体装置。
  3. 前記半導体素子の前記第1表面と反対側の第2表面に接合されている第2放熱体を更に備えており、
    前記第2放熱体は、中実の金属体である、請求項1に記載の半導体装置。
  4. 前記半導体素子と前記第1放熱体と前記第2放熱体とが封止樹脂によって封止されている、請求項2または3に記載の半導体装置。
  5. 前記第1外側熱伝導体は、外側に突出している突出部を備えている、請求項1から4のいずれか一項に記載の半導体装置。
JP2018017436A 2017-11-08 2018-02-02 半導体装置 Pending JP2019087716A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/160,295 US10483186B2 (en) 2017-11-08 2018-10-15 Semiconductor device with heat radiator
CN201811316224.8A CN109755198A (zh) 2017-11-08 2018-11-07 半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017215725 2017-11-08
JP2017215725 2017-11-08

Publications (1)

Publication Number Publication Date
JP2019087716A true JP2019087716A (ja) 2019-06-06

Family

ID=66763417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017436A Pending JP2019087716A (ja) 2017-11-08 2018-02-02 半導体装置

Country Status (1)

Country Link
JP (1) JP2019087716A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028520A (ja) * 2010-07-22 2012-02-09 Denso Corp 半導体冷却装置
JP2014022479A (ja) * 2012-07-16 2014-02-03 Nippon Soken Inc 熱拡散装置
JP2017130494A (ja) * 2016-01-18 2017-07-27 株式会社豊田中央研究所 ヒートスプレッダ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028520A (ja) * 2010-07-22 2012-02-09 Denso Corp 半導体冷却装置
JP2014022479A (ja) * 2012-07-16 2014-02-03 Nippon Soken Inc 熱拡散装置
JP2017130494A (ja) * 2016-01-18 2017-07-27 株式会社豊田中央研究所 ヒートスプレッダ

Similar Documents

Publication Publication Date Title
US9997432B2 (en) Semiconductor device and electronic component using the same
US9287193B2 (en) Semiconductor device
US11133271B2 (en) Semiconductor device
CN109637983B (zh) 芯片封装
JP5965687B2 (ja) パワー半導体モジュール
JP6707634B2 (ja) 半導体装置
JP2015088649A (ja) チップ支持基板の配線部裏面に放熱器設置の面領域を設定する方法およびチップ支持基板並びにチップ実装構造体
US20210175148A1 (en) Semiconductor device and semiconductor device manufacturing method
JPWO2017130370A1 (ja) 半導体装置
JP2017028105A (ja) 半導体装置
JP5957866B2 (ja) 半導体装置
JP7070661B2 (ja) 半導体装置
US10483186B2 (en) Semiconductor device with heat radiator
JP2019087716A (ja) 半導体装置
JP2016174034A (ja) 半導体パワーモジュール
JP6528730B2 (ja) 半導体装置
JP2019096731A (ja) 半導体装置
CN110098153B (zh) 电力电子模块及制造电力电子模块的方法
JP5724415B2 (ja) 半導体モジュール
JP2021082804A (ja) 半導体モジュール
JP2010178523A (ja) インバータ装置
JP6690458B2 (ja) 半導体装置
JP5807801B2 (ja) 半導体モジュール
US20210183726A1 (en) Semiconductor device
JP2016046499A (ja) 冷却部材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220208