JP2019083186A - Electrode catalyst layer - Google Patents

Electrode catalyst layer Download PDF

Info

Publication number
JP2019083186A
JP2019083186A JP2018089513A JP2018089513A JP2019083186A JP 2019083186 A JP2019083186 A JP 2019083186A JP 2018089513 A JP2018089513 A JP 2018089513A JP 2018089513 A JP2018089513 A JP 2018089513A JP 2019083186 A JP2019083186 A JP 2019083186A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode catalyst
electrode
polymer electrolyte
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018089513A
Other languages
Japanese (ja)
Other versions
JP6950617B2 (en
Inventor
克行 岸
Katsuyuki Kishi
克行 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017211041A external-priority patent/JP6332541B1/en
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2018089513A priority Critical patent/JP6950617B2/en
Publication of JP2019083186A publication Critical patent/JP2019083186A/en
Priority to JP2021155857A priority patent/JP7140256B2/en
Application granted granted Critical
Publication of JP6950617B2 publication Critical patent/JP6950617B2/en
Priority to JP2022143253A priority patent/JP7315079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide an electrode catalyst layer for a polymer fuel cell, capable of improving water discharge properties and gas dispersion properties and capable of achieving high output.SOLUTION: Electrode catalyst layers 2, 3 are joined to a polymer electrolyte membrane. The electrode catalyst layers 2, 3 contain a catalyst 13, carbon particles 14, a polymer electrolyte 15, and a fibrous material 16, and have a density of 500 mg/cmor more and 900 mg/cmor less. The polymer electrolyte is a fluorine-based resin.SELECTED DRAWING: Figure 1

Description

本発明は、高分子形燃料電池用の膜電極接合体を構成する電極触媒層に関する。   The present invention relates to an electrode catalyst layer constituting a membrane electrode assembly for a polymer fuel cell.

近年、環境問題やエネルギー問題の有効な解決策として、燃料電池が注目を浴びている。燃料電池は、水素などの燃料を酸素などの酸化剤を用いて酸化し、これに伴う化学エネルギーを電気エネルギーに変換する。
燃料電池は、電解質の種類によって、アルカリ形、リン酸形、高分子形、溶融炭酸塩形、固体酸化物形などに分類される。高分子形燃料電池(PEFC)は、低温作動、高出力密度であり、小型化・軽量化が可能であることから、携帯用電源、家庭用電源、車載用動力源としての応用が期待されている。
In recent years, fuel cells have attracted attention as effective solutions for environmental problems and energy problems. A fuel cell oxidizes a fuel such as hydrogen with an oxidant such as oxygen and converts the chemical energy associated with it into electrical energy.
Fuel cells are classified into alkaline type, phosphoric acid type, polymer type, molten carbonate type, solid oxide type and the like according to the type of electrolyte. Polymeric fuel cells (PEFCs) are expected to find applications as portable power sources, home power sources, and automotive power sources because they are low-temperature operation, high in power density, and can be made smaller and lighter. There is.

高分子形燃料電池(PEFC)は、電解質膜である高分子電解質膜を、燃料極(アノード)と空気極(カソード)からなる一対の電極で挟んだ膜電極接合体を備え、燃料極側に水素を含む燃料ガスを、空気極側に酸素を含む酸化剤ガスを供給することで、下記の電気化学反応により発電する。
アノード:H → 2H+2e・・・(1)
カソード:1/2O+2H+2e → HO・・・(2)
A polymer fuel cell (PEFC) comprises a membrane electrode assembly in which a polymer electrolyte membrane, which is an electrolyte membrane, is sandwiched between a pair of electrodes consisting of a fuel electrode (anode) and an air electrode (cathode). A fuel gas containing hydrogen is generated by the following electrochemical reaction by supplying an oxidant gas containing oxygen to the air electrode side.
Anode: H 2 → 2 H + + 2 e (1)
Cathode: 1/2 O 2 +2 H + + 2 e → H 2 O (2)

アノード及びカソードは、それぞれ電極触媒層とガス拡散層の積層構造からなる。アノード側電極触媒層に供給された燃料ガスは、電極触媒によりプロトンと電子となる(反応1)。プロトンは、アノード側電極触媒層内の高分子電解質、高分子電解質膜を通り、カソードに移動する。電子は、外部回路を通り、カソードに移動する。カソード側の電極触媒層では、プロトンと電子と外部から供給された酸化剤ガスが反応して水を生成する(反応2)。このように、電子が外部回路を通ることにより発電する。   The anode and the cathode each comprise a laminated structure of an electrode catalyst layer and a gas diffusion layer. The fuel gas supplied to the anode side electrode catalyst layer becomes protons and electrons by the electrode catalyst (Reaction 1). Protons move to the cathode through the polymer electrolyte and polymer electrolyte membrane in the anode side electrode catalyst layer. Electrons travel through the external circuit to the cathode. In the electrode catalyst layer on the cathode side, protons, electrons, and an oxidant gas supplied from the outside react to generate water (reaction 2). In this way, electrons are generated by passing through an external circuit.

現在、燃料電池の低コスト化に向けて、高出力特性を示す燃料電池が望まれている。しかし、燃料電池は、高出力運転においては多くの生成水が発生するため、電極触媒層やガス拡散層に水が溢れ、ガスの供給が妨げられるフッティングが生じる。フッティングが発生した場合には、燃料電池の出力が著しく低下する課題がある。
上記課題に対し、特許文献1、2では、異なる粒子径のカーボン又はカーボン繊維を含む触媒層が提案されている。
At present, a fuel cell exhibiting high output characteristics is desired in order to reduce the cost of the fuel cell. However, in the fuel cell, since a large amount of generated water is generated in the high power operation, the electrode catalyst layer and the gas diffusion layer are flooded with water, which results in footing in which the supply of gas is interrupted. When the footing occurs, there is a problem that the output of the fuel cell is significantly reduced.
With respect to the above-mentioned subject, patent documents 1 and 2 propose a catalyst layer containing carbon or carbon fiber of different particle diameter.

特開平10−241703号公報JP 10-241703 A 特許第5537178号公報Patent No. 5537178 gazette

特許文献1、2では、異なるカーボン材料を含むことにより電極触媒層内に空孔が生じ、排水性やガス拡散性の向上が期待できると記載されている。しかし、カーボン材料の大きさ、形状や含有量についての記載はあるが、触媒層の構造についての記載がなく、その効果については具体的には検証されてはいない。
発明は、このような事情に鑑みてなされたものであって、排水性やガス拡散性が向上でき、高出力が可能な高分子形燃料電池用の電極触媒層を提供することを目的とする。
In Patent Documents 1 and 2, it is described that by containing different carbon materials, pores are generated in the electrode catalyst layer, and improvement in drainage performance and gas diffusivity can be expected. However, although there is a description of the size, shape and content of the carbon material, there is no description of the structure of the catalyst layer, and its effect has not been specifically verified.
The present invention has been made in view of such circumstances, and it is an object of the present invention to provide an electrode catalyst layer for a polymer fuel cell that can improve drainage and gas diffusibility and can achieve high output. .

上記課題を解決するために、本発明の一態様は、高分子電解質膜に接合される電極触媒層であって、触媒、炭素粒子、高分子電解質及び繊維状物質を有し、密度が500mg/cm以上900mg/cm以下であり、上記高分子電解質がフッ素系樹脂であることを特徴とする。 In order to solve the above problems, one aspect of the present invention is an electrode catalyst layer bonded to a polymer electrolyte membrane, which comprises a catalyst, carbon particles, a polymer electrolyte and a fibrous substance, and has a density of 500 mg / It is characterized in that it is cm 3 or more and 900 mg / cm 3 or less, and the polymer electrolyte is a fluorine-based resin.

本発明の一態様によれば、排水性やガス拡散性が向上でき、高出力が可能な高分子形燃料電池用触媒層を提供することができる。   According to one aspect of the present invention, it is possible to provide a polymer fuel cell catalyst layer capable of improving drainage performance and gas diffusivity and capable of achieving high output.

本発明の実施の形態に係る触媒層の構成例を示す分解断面図である。It is a disassembled sectional view showing an example of composition of a catalyst bed concerning an embodiment of the invention. 本発明の実施の形態に係る膜電極接合体の構成例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the structural example of the membrane electrode assembly which concerns on embodiment of this invention. 膜電極接合体を装着した固体高分子型燃料電池の単セルの構成例を示す分解断面図である。FIG. 2 is an exploded cross-sectional view showing a configuration example of a single cell of a polymer electrolyte fuel cell equipped with a membrane electrode assembly.

以下、本発明の実施形態について図面を参照しつつ説明する。
なお、本発明は、以下に記載する各実施の形態に限定されうるものではなく、当業者の知識に基づいて設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The present invention can not be limited to the embodiments described below, and modifications such as changes in design can be added based on the knowledge of those skilled in the art, and such modifications can be added. The embodiments are also included in the scope of the present invention.

(電極触媒層)
図1に示すように、本発明の実施の形態(以下、本実施形態)に係る高分子形燃料電池用の電極触媒層2,3は、触媒13、触媒13を担持する炭素粒子14、高分子電解質15及び繊維状物質16からなる。
また、本実施形態の電極触媒層2,3は、密度が500mg/cm以上900mg/cm以下に設定されている。繊維状物質16を含むことにより、形成時にクラックが発生せず、また電極触媒層2,3内の空孔を増加させることが可能となる。
(Electrocatalytic layer)
As shown in FIG. 1, the electrode catalyst layers 2 and 3 for polymer fuel cells according to the embodiment of the present invention (hereinafter referred to as the present embodiment) have a catalyst 13 and carbon particles 14 supporting the catalyst 13. It consists of a molecular electrolyte 15 and a fibrous substance 16.
Further, the density of the electrode catalyst layers 2 and 3 of the present embodiment is set to 500 mg / cm 3 or more and 900 mg / cm 3 or less. By including the fibrous substance 16, it is possible to prevent generation of cracks during formation and to increase the number of pores in the electrode catalyst layers 2 and 3.

高分子電解質15としては、イオン伝導性を有するものであればよいが、電極触媒層2,3と高分子電解質膜の密着性を考えると、高分子電解質膜と同質の材料を選択することが好ましい。高分子電解質15には、例えばフッ素系樹脂や炭化水素系樹脂が使用可能できる。例えば、フッ素系樹脂としては、Nafion(デュポン社製、登録商標)、炭化水素系樹脂としては、エンジニアリングプラスチック、又はその共重合体にスルホン酸基を導入したものなどが挙げられる。   The polymer electrolyte 15 may be any one having ion conductivity, but in view of the adhesion between the electrode catalyst layers 2 and 3 and the polymer electrolyte membrane, selecting a material of the same quality as the polymer electrolyte membrane preferable. For the polymer electrolyte 15, for example, a fluorine-based resin or a hydrocarbon-based resin can be used. For example, as the fluorine-based resin, Nafion (manufactured by DuPont Co., Ltd., registered trademark), and as the hydrocarbon-based resin, an engineering plastic or a copolymer of the same into which a sulfonic acid group is introduced can be mentioned.

触媒13としては、白金族元素、金属又はこれらの合金、又は酸化物、複酸化物等が使用できる。白金族元素としては、白金やパラジウム、ルテニウム、イリジウム、ロジウム、オスミウムがある。金属としては、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウムなどが例示できる。その中でも、触媒13としては白金や白金合金が好ましい。また、これらの触媒13の粒径は、大きすぎると触媒13の活性が低下し、小さすぎると触媒13の安定性が低下するため、0.5nm以上20nm以下が好ましい。更に好ましくは、1nm以上5nm以下である。   As the catalyst 13, a platinum group element, a metal or an alloy thereof, an oxide, a double oxide or the like can be used. Platinum group elements include platinum, palladium, ruthenium, iridium, rhodium and osmium. Examples of the metal include iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium and aluminum. Among them, platinum or a platinum alloy is preferable as the catalyst 13. If the particle size of these catalysts 13 is too large, the activity of the catalyst 13 is reduced, and if too small, the stability of the catalyst 13 is reduced, preferably 0.5 nm or more and 20 nm or less. More preferably, it is 1 nm or more and 5 nm or less.

炭素粒子14としては、微粒子状で導電性を有し、触媒13におかされないものであればどのようなものでも構わない。炭素粒子14の粒径は、小さすぎると電子伝導パスが形成されにくくなり、また大きすぎると電極触媒層2,3が厚くなり抵抗が増加することで、出力特性が低下したりするので、10nm以上1000nm以下が好ましい。更に好ましくは、10nm以上100nm以下である。
炭素粒子14には、触媒13が担持されていることが好ましい。高表面積の炭素粒子14に触媒13を担持することで、高密度で触媒13が担持でき、触媒活性を向上させることができる。
The carbon particles 14 may be in any form as long as they are in the form of fine particles and have conductivity and are not used by the catalyst 13. If the particle size of the carbon particles 14 is too small, it is difficult to form an electron conduction path, and if too large, the electrode catalyst layers 2 and 3 become thick and resistance increases, so that the output characteristics deteriorate, so 10 nm The thickness is preferably 1000 nm or less. More preferably, it is 10 nm or more and 100 nm or less.
It is preferable that the carbon particles 14 carry a catalyst 13. By supporting the catalyst 13 on the carbon particles 14 with high surface area, the catalyst 13 can be supported at high density, and the catalytic activity can be improved.

繊維状物質16としては、導電性繊維や電解質繊維が使用できる。導電性繊維としては、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、導電性高分子ナノファイバー等が例示できる。特に、導電性や分散性の点でカーボンナノファイバー又はカーボンナノチューブが好ましい。また、電解質繊維は高分子電解質を繊維状に加工したものである。繊維状物質16として電解質繊維を用いることでプロトン伝導性を向上することができる。更に、これらの繊維状物質16は、一種のみを単独で使用してもよいが、二種以上を併用してもよく、導電性繊維と電解質繊維を併せて用いても良い。   As the fibrous material 16, conductive fibers or electrolyte fibers can be used. Examples of conductive fibers include carbon fibers, carbon nanotubes, carbon nanohorns, conductive polymer nanofibers, and the like. In particular, carbon nanofibers or carbon nanotubes are preferable in terms of conductivity and dispersibility. The electrolyte fiber is a polymer electrolyte processed into a fibrous form. By using an electrolyte fiber as the fibrous substance 16, proton conductivity can be improved. Furthermore, although these fibrous materials 16 may be used individually by 1 type, 2 or more types may be used together and you may use together an electroconductive fiber and electrolyte fiber.

繊維状物質16の繊維径としては、0.5nm以上500nm以下が好ましく、10nm以上300nm以下がより好ましい。上記範囲にすることにより、電極触媒層2,3内の空孔を増加させることができ、高出力化が可能になる。
繊維状物質16の繊維長は1μm以上200μm以下が好ましく、1μm以上50μm以下がより好ましい。上記範囲にすることにより、電極触媒層2,3の強度を高めることができ、形成時にクラックが生じることを抑制できる。また、電極触媒層2,3内の空孔を増加させることができ、高出力化が可能になる。
The fiber diameter of the fibrous substance 16 is preferably 0.5 nm or more and 500 nm or less, and more preferably 10 nm or more and 300 nm or less. By setting it as the said range, the void | hole in the electrode catalyst layers 2 and 3 can be increased, and high output-ization is attained.
The fiber length of the fibrous material 16 is preferably 1 μm to 200 μm, and more preferably 1 μm to 50 μm. By setting it as the said range, the intensity | strength of the electrode catalyst layers 2 and 3 can be raised, and it can suppress that a crack arises at the time of formation. In addition, the number of pores in the electrode catalyst layers 2 and 3 can be increased, and high output can be achieved.

電極触媒層2,3の厚さは、30μm以下が好ましく、10μm以下がより好ましい。厚さが30μmより大きいと、電極触媒層2,3の抵抗が大きくなり、出力が低下する。また、厚さが30μmより大きいと、電極触媒層2,3にクラックが生じ易くなるため、好ましくない。
電極触媒層2,3の厚さは5μm以上が好ましい。厚さが5μmよりも薄い場合には、層厚にばらつきが生じ易くなり、内部の触媒13や高分子電解質15が不均一となりやすい。電極触媒層2,3の表面のひび割れや、厚さの不均一性は、燃料電池として使用し、長期に渡り運転した際の耐久性に悪影響を及ぼす可能性が高いため、好ましくない。また、厚さが5μmよりも薄い場合には、電極触媒層内2,3において、発電による生成水濃度が高くなり易く、フラッディングが生じ易く、発電性能が低下するため、好ましくない。
30 micrometers or less are preferable and, as for the thickness of the electrode catalyst layers 2 and 3, 10 micrometers or less are more preferable. When the thickness is more than 30 μm, the resistance of the electrode catalyst layers 2 and 3 is increased, and the output is reduced. If the thickness is more than 30 μm, the electrode catalyst layers 2 and 3 are easily cracked, which is not preferable.
The thickness of the electrode catalyst layers 2 and 3 is preferably 5 μm or more. If the thickness is smaller than 5 μm, the layer thickness tends to be uneven, and the catalyst 13 and the polymer electrolyte 15 inside tend to be nonuniform. Cracks in the surfaces of the electrode catalyst layers 2 and 3 and thickness non-uniformity are not preferable because they are likely to adversely affect the durability when used as a fuel cell and operated for a long period of time. On the other hand, if the thickness is smaller than 5 μm, the concentration of water generated by power generation tends to be high in the electrode catalyst layers 2 and 3 and flooding is likely to occur, which is not preferable because the power generation performance is lowered.

(膜電極接合体)
本実施形態の高分子形燃料電池用の膜電極接合体12は、例えば図2に示すよう断面図のような構造体となっている。この膜電極接合体12は、高分子電解質膜1と、高分子電解質膜1の一方の面に形成されたカソード側電極触媒層2と、高分子電解質膜1の他方の面に形成されたアノード側電極触媒層3と、を備えた構造となっている。本発明の電極触媒層は、カソード側電極触媒層2及びアノード側電極触媒層3の一方若しくは両方に該当する。
(Membrane electrode assembly)
The membrane electrode assembly 12 for polymer fuel cells of this embodiment has a structure as shown in, for example, FIG. The membrane electrode assembly 12 includes a polymer electrolyte membrane 1, a cathode side electrode catalyst layer 2 formed on one side of the polymer electrolyte membrane 1, and an anode formed on the other side of the polymer electrolyte membrane 1. And a side electrode catalyst layer 3. The electrode catalyst layer of the present invention corresponds to one or both of the cathode electrode catalyst layer 2 and the anode electrode catalyst layer 3.

(固体高分子型燃料電池)
本実施形態の固体高分子型燃料電池は、図3に示すように、膜電極接合体12のカソード側電極触媒層2及びアノード側電極触媒層3と対向して、空気極側ガス拡散層4及び燃料極側ガス拡散層5がそれぞれ配置されている。これにより、カソード側電極触媒層2と空気極側ガス拡散層4とから空気極6が構成されると共に、アノード側電極触媒層3と燃料極側ガス拡散層5とで燃料極7が構成される。そして、空気極6及び燃料極7を一組のセパレータ10により挟持することで、単セルの固体高分子型燃料電池11が構成される。一組のセパレータ10は、導電性でかつガス不透過性の材料からなり、空気極側ガス拡散層4又は燃料極側ガス拡散層5に面して配置された反応ガス流通用のガス流路8と、ガス流路8と相対する主面に配置された冷却水流通用の冷却水流路9とを備える。
(Polymer electrolyte fuel cell)
In the polymer electrolyte fuel cell of the present embodiment, as shown in FIG. 3, the cathode side gas diffusion layer 4 is opposed to the cathode side electrode catalyst layer 2 and the anode side electrode catalyst layer 3 of the membrane electrode assembly 12. The fuel electrode side gas diffusion layer 5 is disposed. Thus, the air electrode 6 is composed of the cathode side electrode catalyst layer 2 and the air electrode side gas diffusion layer 4, and the fuel electrode 7 is composed of the anode side electrode catalyst layer 3 and the fuel electrode side gas diffusion layer 5. Ru. Then, by sandwiching the air electrode 6 and the fuel electrode 7 with a pair of separators 10, a single cell solid polymer electrolyte fuel cell 11 is formed. One set of separators 10 is made of an electrically conductive and gas impermeable material, and a gas flow path for reaction gas flow disposed facing the air electrode side gas diffusion layer 4 or the fuel electrode side gas diffusion layer 5 And a cooling water passage 9 for circulating the cooling water disposed on the main surface opposite to the gas passage 8.

この固体高分子型燃料電池11は、一方のセパレータ10のガス流路8を通って空気や酸素などの酸化剤が空気極6に供給され、他方のセパレータ10のガス流路8を通って水素を含む燃料ガス若しくは有機物燃料が燃料極7に供給されることによって、発電するようになっている。   In the polymer electrolyte fuel cell 11, an oxidant such as air or oxygen is supplied to the air electrode 6 through the gas passage 8 of one of the separators 10, and hydrogen is passed through the gas passage 8 of the other separator 10. Is generated by supplying a fuel gas or an organic fuel containing the above to the fuel electrode 7.

(電極触媒層の製造方法)
電極触媒層は、触媒層用スラリーを作製し、作製した触媒層用スラリーを基材などに塗工・乾燥することで製造できる。
触媒層用スラリーは、触媒13、炭素粒子14、高分子電解質15、繊維状物質16及び溶媒からなる。溶媒としては、特に限定しないが、高分子電解質15を分散又は溶解できるものが良い。一般的に用いられる溶媒としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール等のアルコール類、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルブチルケトン、メチルイゾブチルケトン、メチルアミルケトン、ペンタノン、へプタノン、シクロヘキサノン、メチルシクロヘキサノン、アセトニルアセトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトンなどのケトン類、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、ジエチレングリコールジメチルエーテル、アニソール、メトキシトルエン、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル等のエーテル類、イソプロピルアミン、ブチルアミン、イソブチルアミン、シクロヘキシルアミン、ジエチルアミン、アニリンなどのアミン類、蟻酸プロピル、蟻酸イソブチル、蟻酸アミル、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチルなどのエステル類、その他酢酸、プロピオン酸、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を用いてもよい。また、グリコール、グリコールエーテル系溶媒としては、エチレングリコール、ジエチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジアセトンアルコール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノールなどが挙げられる。
(Method of manufacturing electrode catalyst layer)
The electrode catalyst layer can be manufactured by preparing a catalyst layer slurry and coating and drying the prepared catalyst layer slurry on a substrate or the like.
The catalyst layer slurry comprises the catalyst 13, the carbon particles 14, the polymer electrolyte 15, the fibrous substance 16 and a solvent. The solvent is not particularly limited, but it is preferable that the polymer electrolyte 15 can be dispersed or dissolved. Commonly used solvents include water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, alcohols such as isobutyl alcohol and tert-butyl alcohol, acetone, methyl ethyl ketone and methyl propyl ketone , Methyl butyl ketone, methyl isobutyl ketone, methyl amyl ketone, pentanone, heptanone, cyclohexanone, cyclohexanone, methylcyclohexanone, acetonylacetone, diethyl ketone, diethyl ketone, dipropyl ketone, ketones such as diisobutyl ketone, tetrahydrofuran, tetrahydropyran, dioxane, diethylene glycol Ethers such as dimethylether, anisole, methoxytoluene, diethylether, dipropylether, dibutylether, isopropyl Minamine, butylamine, isobutylamine, cyclohexylamine, diethylamine, amines such as aniline, propyl formate, isobutyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, butyl acetate, isobutyl acetate, pentyl acetate, isopentyl acetate, propionic acid Esters such as methyl, ethyl propionate and butyl propionate, other acetic acid, propionic acid, dimethylformamide, dimethylacetamide, N-methylpyrrolidone and the like may be used. Also, as glycol and glycol ether solvents, ethylene glycol, diethylene glycol, propylene glycol, ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diacetone alcohol, 1-methoxy-2-propanol, 1-ethoxy-2 -Propanol etc. are mentioned.

触媒層用スラリーの塗工方法としては、ドクターブレード法、ダイコーティング法、ディッピング法、スクリーン印刷法、ラミネータロールコーティング法、スプレー法などが挙げられるが、特に限定しない。
触媒層用スラリーの乾燥方法としては、温風乾燥、IR乾燥などが挙げられる。乾燥温度は、40℃以上200℃以下、好ましくは40℃以上120℃以下である。乾燥時間は、0.5分以上1時間以下、好ましくは1以上30分以下である。
The method for applying the slurry for the catalyst layer includes, but is not particularly limited to, doctor blade method, die coating method, dipping method, screen printing method, laminator roll coating method, spray method and the like.
Examples of the method for drying the catalyst layer slurry include hot air drying and IR drying. The drying temperature is 40 ° C. or more and 200 ° C. or less, preferably 40 ° C. or more and 120 ° C. or less. The drying time is 0.5 minutes to 1 hour, preferably 1 to 30 minutes.

ここで、電極触媒層は、密度が500mg/cm以上900mg/cmに設定するには、繊維状物質の添加量や繊維長、乾燥のための加熱温度、温度勾配、電極触媒層が乾燥されるまでに付与される膜厚方向の加圧などの条件を調整することで実現することが可能である。 Here, in order to set the density of the electrode catalyst layer to 500 mg / cm 3 or more and 900 mg / cm 3 , the addition amount of the fibrous material, the fiber length, the heating temperature for drying, the temperature gradient, and the electrode catalyst layer are dried. It is possible to realize by adjusting the conditions such as pressurization in the film thickness direction to be applied until it is performed.

(膜電極接合体の製造方法)
膜電極接合体の製造方法としては、転写基材又はガス拡散層に電極触媒層を形成し、高分子電解質膜に熱圧着で電極触媒層を形成する方法や高分子電解質膜に直接触媒層を形成する方法が挙げられる。高分子電解質膜に直接触媒層を形成する方法は、高分子電解質膜と触媒層との密着性が高く、触媒層が潰れる恐れがないため、好ましい。
(Method of manufacturing membrane electrode assembly)
As a method for producing a membrane electrode assembly, a method of forming an electrode catalyst layer on a transfer substrate or gas diffusion layer and forming an electrode catalyst layer on a polymer electrolyte membrane by thermocompression bonding, or directly forming a catalyst layer on a polymer electrolyte membrane The method to form is mentioned. The method of directly forming the catalyst layer on the polymer electrolyte membrane is preferable because the adhesion between the polymer electrolyte membrane and the catalyst layer is high and there is no risk of the catalyst layer being crushed.

以上説明したように、本実施形態の電極触媒層は、触媒13、炭素粒子14、高分子電解質15及び繊維状物質16からなり、密度が500mg/cm以上、900mg/cm以下となっている。
この構成によれば、排水性やガス拡散性が向上でき、高出力が可能な高分子形燃料電池用の電極触媒層を提供することができる。
そして、本実施形態の電極触媒層は、例えば、固体高分子型燃料電池に適用して極めて好適である。
As described above, the electrode catalyst layer of the present embodiment is composed of the catalyst 13, the carbon particles 14, the polymer electrolyte 15, and the fibrous substance 16 and has a density of 500 mg / cm 3 or more and 900 mg / cm 3 or less. There is.
According to this configuration, it is possible to provide an electrode catalyst layer for a polymer fuel cell that can improve drainage and gas diffusivity and can achieve high output.
The electrode catalyst layer of the present embodiment is very suitably applied to, for example, a polymer electrolyte fuel cell.

なお、本実施形態では触媒13を炭素粒子14に担持させた場合について説明したが、触媒13を繊維状物質16に担持させてもよく、さらに炭素粒子14および繊維状物質16のいずれにも担持させてもよい。繊維状物質16で形成された空隙は発電による生成水の排出経路とすることができる。ここで、繊維状物質16に触媒13を担持させた場合は、生成水の排出経路内で電極反応も起こる。一方で、触媒13を炭素粒子14に担持させることで、炭素粒子14と触媒13とガスとに起因する三相界面による反応点と、繊維状物質16により形成された空間による生成水の排出経路とを区別でき、触媒電極層の排水性を向上することができるため好ましい。   Although the case where the catalyst 13 is supported on the carbon particles 14 has been described in the present embodiment, the catalyst 13 may be supported on the fibrous material 16 and further supported on any of the carbon particles 14 and the fibrous material 16. You may The void formed by the fibrous material 16 can be a discharge path of water generated by power generation. Here, in the case where the fibrous substance 16 supports the catalyst 13, an electrode reaction also occurs in the generated water discharge path. On the other hand, by causing the catalyst 13 to be supported on the carbon particles 14, the reaction point by the three-phase interface caused by the carbon particles 14, the catalyst 13 and the gas, and the discharge route of generated water by the space formed by the fibrous material 16. And the drainage property of the catalyst electrode layer can be improved.

次に、本発明に基づく実施例について説明する。
[密度の算出]
密度は、電極触媒層の質量と厚さから求めた。質量は、触媒層用スラリー塗工量から求めた質量又は乾燥質量を用いた。厚さは、走査電子顕微鏡(倍率:2000倍)で断面を観察より求めた。
Next, an embodiment based on the present invention will be described.
[Calculation of density]
The density was determined from the mass and thickness of the electrode catalyst layer. Mass used the mass calculated from the slurry coating amount for catalyst layers, or the dry mass. The thickness was determined by observing the cross section with a scanning electron microscope (magnification: 2000 ×).

[発電特性の評価]
電極触媒層の外側にガス拡散層(SIGRACET(登録商標)35BC、SGL社製)を配置して、市販のJARI標準セルを用いて発電特性の評価を行った。セル温度は、80℃として、アノードに水素(100%RH)、カソードに空気(100%RH)を供給した。
[Evaluation of power generation characteristics]
A gas diffusion layer (SIGRACET (registered trademark) 35BC, manufactured by SGL) was disposed outside the electrode catalyst layer, and power generation characteristics were evaluated using a commercially available JARI standard cell. The cell temperature was 80 ° C., and hydrogen (100% RH) was supplied to the anode and air (100% RH) was supplied to the cathode.

[実施例1]
白金担持カーボン(TEC10E50E、田中貴金属社製)20gを容器にとり、水を加えて混合後、1−プロパノール、電解質(Nafion(登録商標)分散液、和光純薬工業)と繊維状物質としてカーボンナノファイバー(昭和電工社製、商品名「VGCF」、繊維径約150nm、繊維長約10μm)10gを加えて撹拌して、触媒層用スラリーを得た。
得られた触媒層用スラリーを高分子電解質膜(デュポン社製、Nafion212)にダイコーティング法で塗工し、80℃の炉内で乾燥することで実施例1の電極触媒層を有した膜電極接合体を得た。
Example 1
20 g of platinum-supporting carbon (TEC 10 E 50 E, manufactured by Tanaka Kikinzoku Co., Ltd.) is taken in a container, water is added and mixed, 1-propanol, electrolyte (Nafion (registered trademark) dispersion, Wako Pure Chemical Industries) and carbon nanofiber as fibrous material 10 g (manufactured by Showa Denko, trade name "VGCF", fiber diameter about 150 nm, fiber length about 10 μm) was added and stirred to obtain a slurry for a catalyst layer.
The obtained slurry for catalyst layer was applied to a polymer electrolyte membrane (Nafion 212, manufactured by DuPont) by a die coating method, and dried in an oven at 80 ° C. to obtain a membrane electrode having the electrode catalyst layer of Example 1 A conjugate was obtained.

[実施例2]
繊維状物質としてカーボンナノチューブ(繊維径約1nm、繊維長約1μm)を用いた以外は、実施例1と同様の手順で実施例2の電極触媒層を有した膜電極接合体を得た。
[実施例3]
乾燥温度を高くした以外は、実施例1と同様の手順で実施例3の電極触媒層を有した膜電極接合体を得た。
[実施例4]
繊維状物質の量を増加させた以外は、実施例1と同様の手順で実施例4の電極触媒層を有した膜電極接合体を得た。
Example 2
A membrane / electrode assembly having the electrode catalyst layer of Example 2 was obtained in the same manner as Example 1, except that carbon nanotubes (fiber diameter of about 1 nm, fiber length of about 1 μm) were used as the fibrous substance.
[Example 3]
A membrane / electrode assembly having the electrode catalyst layer of Example 3 was obtained in the same manner as in Example 1 except that the drying temperature was increased.
Example 4
A membrane / electrode assembly having the electrode catalyst layer of Example 4 was obtained in the same manner as in Example 1 except that the amount of fibrous material was increased.

[比較例1]
電極触媒層の厚さを5μm未満になるようにスラリーの構成・塗工量を調整して塗工した以外は、実施例1と同様の手順で比較例1の電極触媒層を有した膜電極接合体を得た。
[比較例2]
電極触媒層の厚さを30μm超過になるようにスラリーの構成・塗工量を調整して塗工した以外は、実施例1と同様の手順で比較例2の電極触媒層を有した膜電極接合体を得た。
Comparative Example 1
A membrane electrode having an electrode catalyst layer of Comparative Example 1 in the same procedure as Example 1, except that the composition and amount of the slurry were adjusted and coated so that the thickness of the electrode catalyst layer was less than 5 μm. A conjugate was obtained.
Comparative Example 2
A membrane electrode having an electrode catalyst layer of Comparative Example 2 in the same procedure as Example 1, except that the composition and amount of the slurry were adjusted and coated so that the thickness of the electrode catalyst layer would be more than 30 μm. A conjugate was obtained.

[比較例3]
PET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例1と同様の手順で比較例3の電極触媒層を有した膜電極接合体を得た。
[比較例4]
繊維状物質を加えないこと以外は、実施例1と同様の手順で比較例4の電極触媒層を有した膜電極接合体を得た。
Comparative Example 3
A membrane / electrode assembly having the electrode catalyst layer of Comparative Example 3 was obtained in the same manner as in Example 1 except that the coating was applied to a PET substrate and transferred to an electrolyte membrane by thermocompression bonding.
Comparative Example 4
A membrane / electrode assembly having the electrode catalyst layer of Comparative Example 4 was obtained in the same manner as in Example 1 except that the fibrous substance was not added.

[比較例5]
繊維状物質を加えず、またPET基材に塗工し、熱圧着により電解質膜に転写した以外は、実施例1と同様の手順で比較例5の電極触媒層を有した膜電極接合体を得た。
実施例1〜4,比較例1〜5の触媒層について、顕微鏡(倍率:200倍)で観察して10μm以上クラックの有無について評価した。その評価結果を表1に示す。
Comparative Example 5
A membrane / electrode assembly having an electrode catalyst layer of Comparative Example 5 in the same manner as in Example 1 except that the fibrous substance was not added, and was coated on a PET substrate and transferred to an electrolyte membrane by thermocompression bonding. Obtained.
The catalyst layers of Examples 1 to 4 and Comparative Examples 1 to 5 were observed with a microscope (magnification: 200 times) and evaluated for the presence or absence of cracks of 10 μm or more. The evaluation results are shown in Table 1.

Figure 2019083186
Figure 2019083186

表1に示す通り、繊維状物質を加えない場合(比較例4)は、PETフィルムにクラックなしで塗工できたが、高分子電解質膜でクラックが多く発生した。これに対して、実施例1〜4及び比較例1〜3のように繊維状物質を加えた場合は、クラックがない触媒層であった。
また実施例1〜4,比較例1〜5の電極触媒層について、電極触媒層の密度及び発電特性を評価した。その評価結果を表2に示す。
ここで、各電極触媒層において、配合する触媒の質量が同じになるように調整しているが、他の構成が異なるため、各電極触媒層の厚さが異なっている。
As shown in Table 1, when no fibrous substance was added (Comparative Example 4), the PET film was coated without cracks, but many cracks were generated in the polymer electrolyte membrane. On the other hand, when a fibrous material was added like Examples 1-4 and Comparative Examples 1-3, it was a catalyst layer without a crack.
Moreover, the density of an electrode catalyst layer and the power generation characteristic were evaluated about the electrode catalyst layer of Examples 1-4 and Comparative Examples 1-5. The evaluation results are shown in Table 2.
Here, in each electrode catalyst layer, although it adjusts so that the mass of the catalyst to mix | blend becomes the same, since another structure is different, the thickness of each electrode catalyst layer is different.

Figure 2019083186
Figure 2019083186

表1及び表2から、繊維状物質を加えないと本発明の密度よりも密度が高くてもクラックが発生しやすくなることが分かる。また、触媒、炭素粒子、高分子電解質及び繊維状物質からなり、密度が500mg/cm以上、900mg/cm以下で電極触媒層を使用することで、クラックが発生せず、排水性やガス拡散性が向上して、高出力が可能な高分子形燃料電池用の電極触媒層を提供することができることが分かった。 From Tables 1 and 2, it can be seen that cracking is likely to occur even if the density is higher than the density of the present invention if the fibrous substance is not added. Also, by using an electrode catalyst layer comprising a catalyst, carbon particles, a polymer electrolyte and a fibrous substance and having a density of 500 mg / cm 3 or more and 900 mg / cm 3 or less, no cracks are generated, and drainage property and gas can be obtained. It has been found that the diffusivity is improved, and an electrode catalyst layer for a polymer fuel cell capable of high output can be provided.

1高分子電解質膜
2カソード側電極触媒層
3アノード側電極触媒層
4空気極側ガス拡散層
5燃料極側ガス拡散層
6空気極
7燃料極
8ガス流路
9冷却水流路
10セパレータ
11固体高分子型燃料電池
12膜電極接合体
13触媒
14炭素粒子
15高分子電解質
16繊維状物質
1 polymer electrolyte membrane 2 cathode side electrode catalyst layer 3 anode side electrode catalyst layer 4 air electrode side gas diffusion layer 5 fuel electrode side gas diffusion layer 6 air electrode 7 fuel electrode 8 gas flow path 9 cooling water flow path 10 separator 11 solid height Molecular fuel cell 12 membrane electrode assembly 13 catalyst 14 carbon particles 15 polymer electrolyte 16 fibrous material

Claims (4)

高分子電解質膜に接合される電極触媒層であって、
触媒、炭素粒子、高分子電解質及び繊維状物質を有し、
密度が500mg/cm以上900mg/cm以下であり、
上記高分子電解質がフッ素系樹脂であることを特徴とする電極触媒層。
An electrode catalyst layer bonded to a polymer electrolyte membrane,
With catalysts, carbon particles, polyelectrolytes and fibrous materials,
Density is 500 mg / cm 3 or more and 900 mg / cm 3 or less,
An electrode catalyst layer characterized in that the polymer electrolyte is a fluorine-based resin.
上記炭素粒子が上記触媒を担持して触媒担持粒子となっていることを特徴とする請求項1に記載の電極触媒層。   The electrode catalyst layer according to claim 1, wherein the carbon particles support the catalyst to form catalyst-supporting particles. 上記繊維状物質は、カーボンナノチューブ又はカーボンナノファイバーであることを特徴とする請求項1又は請求項2に記載の電極触媒層。   The said fibrous material is a carbon nanotube or a carbon nanofiber, The electrode catalyst layer of Claim 1 or Claim 2 characterized by the above-mentioned. 上記電極触媒層の厚さが5μm以上30μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載の電極触媒層。   The thickness of the said electrode catalyst layer is 5 micrometers-30 micrometers, The electrode catalyst layer of any one of the Claims 1-3 characterized by the above-mentioned.
JP2018089513A 2017-10-31 2018-05-07 Electrode catalyst layer Active JP6950617B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018089513A JP6950617B2 (en) 2017-10-31 2018-05-07 Electrode catalyst layer
JP2021155857A JP7140256B2 (en) 2018-05-07 2021-09-24 Electrocatalyst layer
JP2022143253A JP7315079B2 (en) 2018-05-07 2022-09-08 Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211041A JP6332541B1 (en) 2017-10-31 2017-10-31 Electrocatalyst layer
JP2018089513A JP6950617B2 (en) 2017-10-31 2018-05-07 Electrode catalyst layer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017211041A Division JP6332541B1 (en) 2017-10-31 2017-10-31 Electrocatalyst layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021155857A Division JP7140256B2 (en) 2018-05-07 2021-09-24 Electrocatalyst layer

Publications (2)

Publication Number Publication Date
JP2019083186A true JP2019083186A (en) 2019-05-30
JP6950617B2 JP6950617B2 (en) 2021-10-13

Family

ID=66669664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018089513A Active JP6950617B2 (en) 2017-10-31 2018-05-07 Electrode catalyst layer

Country Status (1)

Country Link
JP (1) JP6950617B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108551A (en) * 2003-09-29 2005-04-21 Tomoegawa Paper Co Ltd Catalyst film for solid polymer fuel cells, its manufacturing method and fuel cell using the same
JP2006278232A (en) * 2005-03-30 2006-10-12 Jsr Corp Porous electrode catalyst layer, and its manufacturing method
JP2007103083A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2008311180A (en) * 2007-06-18 2008-12-25 Mitsubishi Rayon Co Ltd Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108551A (en) * 2003-09-29 2005-04-21 Tomoegawa Paper Co Ltd Catalyst film for solid polymer fuel cells, its manufacturing method and fuel cell using the same
JP2006278232A (en) * 2005-03-30 2006-10-12 Jsr Corp Porous electrode catalyst layer, and its manufacturing method
JP2007103083A (en) * 2005-09-30 2007-04-19 Dainippon Printing Co Ltd Transfer sheet for manufacturing catalyst layer-electrolyte film laminate for fuel cell, and catalyst layer-electrolyte film laminate
JP2008311180A (en) * 2007-06-18 2008-12-25 Mitsubishi Rayon Co Ltd Membrane electrode assembly, its manufacturing method, and fuel cell using the membrane electrode assembly

Also Published As

Publication number Publication date
JP6950617B2 (en) 2021-10-13

Similar Documents

Publication Publication Date Title
CN111149244B (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP6332541B1 (en) Electrocatalyst layer
JP2006339124A (en) Membrane-electrode assembly for fuel cell, and solid polymer fuel cell using this
JP7310800B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
WO2019088096A1 (en) Electrode catalyst layer and solid polymer fuel cell
JP5928072B2 (en) Manufacturing method of membrane electrode assembly
JP7067136B2 (en) Catalyst layer, membrane electrode assembly, polymer electrolyte fuel cell
JP7140256B2 (en) Electrocatalyst layer
JP7315079B2 (en) Electrode catalyst layer, membrane electrode assembly and polymer electrolyte fuel cell
JP7187798B2 (en) Catalyst layers and membrane electrode assemblies for polymer electrolyte fuel cells
JP6950617B2 (en) Electrode catalyst layer
JP2021163699A (en) Catalyst layer for polymer electrolyte fuel cell, membrane electrode assembly, and polymer electrolyte fuel cell
JP7294513B2 (en) Electrode catalyst layer and polymer electrolyte fuel cell
JP2019139952A (en) Membrane electrode assembly and polymer electrolyte fuel cell having the same
JP7215429B2 (en) Electrode catalyst layer, membrane-electrode assembly, and method for producing electrode catalyst layer
WO2022186323A1 (en) Membrane electrode assembly and solid-polymer fuel cell
EP4216321A1 (en) Electrode catalyst layer, membrane electrode assembly, and solid polymer-type fuel cell
JP2023176353A (en) electrode catalyst layer
JP2022095263A (en) Catalyst ink for polymer electrolyte fuel cell, catalyst layer for polymer electrolyte fuel cell, and membrane-electrode assembly for polymer electrolyte fuel cell
JP2024063350A (en) Electrode catalyst layer and membrane electrode assembly
JP2011198503A (en) Membrane electrode assembly for solid polymer fuel cell and its manufacturing method, fuel cell single cell using it, fuel cell stack
JP2011204605A (en) Electrode catalytic layer for fuel cell, membrane electrode assembly for fuel cell comprising the electrode catalytic layer, fuel cell comprising the membrane electrode assembly, and method of manufacturing the electrode catalytic layer for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6950617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150