JP2019079944A - Coil component, circuit board, and power supply device - Google Patents

Coil component, circuit board, and power supply device Download PDF

Info

Publication number
JP2019079944A
JP2019079944A JP2017206160A JP2017206160A JP2019079944A JP 2019079944 A JP2019079944 A JP 2019079944A JP 2017206160 A JP2017206160 A JP 2017206160A JP 2017206160 A JP2017206160 A JP 2017206160A JP 2019079944 A JP2019079944 A JP 2019079944A
Authority
JP
Japan
Prior art keywords
magnetic
coil
leg
gap
coil component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017206160A
Other languages
Japanese (ja)
Inventor
暁光 鄭
Xiaoguang Zheng
暁光 鄭
和嗣 草別
Kazutsugu Kusabetsu
和嗣 草別
将義 廣田
Masayoshi Hirota
将義 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2017206160A priority Critical patent/JP2019079944A/en
Publication of JP2019079944A publication Critical patent/JP2019079944A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

To provide a coil component used for multi-phase transformer coupling of three or more phases, having a simple configuration and an excellent productivity, and being less likely to be magnetically saturated.SOLUTION: A coil component 10 used for multi-phase transformer coupling comprises: three or more n independent coils 1-3; and one magnetic core 6. The magnetic core 6 comprises: n magnetic legs 61 and 62 on which each coil is arranged; a central leg part 66 that has a portion arranged between two arbitrary magnetic legs; a pair of coupling parts 67 and 68 that couple the n magnetic legs and the central leg part in a parallel state; a main gap 66g interposed in the central leg part 66; and a leg part gap interposed in each magnetic leg.SELECTED DRAWING: Figure 1

Description

本発明は、コイル部品、回路基板、及び電源装置に関する。   The present invention relates to a coil component, a circuit board, and a power supply device.

昇圧動作を行うDC−DCコンバータに備えられる回路として、特許文献1の図5に示す多相方式のトランス結合型昇圧チョッパ回路がある。特許文献1は、この回路に用いられるコイル部品として、二つのE字状のコアを組み合わせた磁性コアを備えるものを開示する。   A multi-phase transformer coupled boost chopper circuit shown in FIG. 5 of Patent Document 1 is a circuit included in a DC-DC converter that performs a boost operation. Patent Document 1 discloses a coil component used in this circuit that includes a magnetic core in which two E-shaped cores are combined.

特開2013−198211号公報JP, 2013-198211, A

大電流用途では、コイルの数を多くして、コイル部品の多相化を図ることが有利である。しかし、3相以上の多相方式のトランス結合型昇降圧回路に用いられるコイル部品として、簡単な構成で生産性良く製造することができるコイル部品は現在のところ検討されていない。また、多相のトランス結合に利用されるコイル部品には、磁気飽和し難いことが求められている。   In high current applications, it is advantageous to increase the number of coils to achieve multiphase coil components. However, coil components that can be manufactured with a simple configuration and with high productivity as coil components used for three-phase or higher multiphase transformer coupled type buck-boost circuits have not been studied at present. In addition, coil components used for multiphase transformer coupling are required to be less susceptible to magnetic saturation.

そこで、本開示は、3相以上の多相のトランス結合に利用され、簡単な構成で生産性に優れ、磁気飽和し難いコイル部品を提供することを目的の一つとする。また、本開示は、多相方式のトランス結合型昇降圧回路に用いられ、所定の変圧動作を良好に行える回路基板及び電源装置を提供することを別の目的の一つとする。   Accordingly, an object of the present disclosure is to provide a coil component that is used for multiphase transformer coupling of three or more phases, has a simple configuration, is excellent in productivity, and is less likely to cause magnetic saturation. In addition, another object of the present disclosure is to provide a circuit board and a power supply device that can be used in a multiphase type transformer coupled buck-boost circuit and can perform predetermined transformation operation well.

本開示のコイル部品は、
多相のトランス結合に利用されるコイル部品であって、
3以上のn個の独立したコイルと1つの磁性コアとを備え、
前記磁性コアは、
各コイルが配置されるn個の磁脚と、
任意の二つの前記磁脚の間に配置される部分を有する中央脚部と、
n個の前記磁脚及び前記中央脚部を並列状態で連結する一対の連結部と、
前記中央脚部に介在される主ギャップと、
各磁脚に介在される脚部ギャップと、を備える。
The coil component of the present disclosure is
A coil component used for multiphase transformer coupling,
With 3 or more n independent coils and 1 magnetic core,
The magnetic core is
N magnetic legs on which each coil is disposed,
A central leg having a portion disposed between any two of said magnetic legs;
a pair of connecting parts connecting the n magnetic legs and the central leg in parallel;
A main gap interposed in the central leg;
And a leg gap interposed in each magnetic leg.

本開示の回路基板は、
前記本開示のコイル部品を備える。
The circuit board of the present disclosure is
The coil component of the present disclosure is provided.

本開示の電源装置は、
前記本開示の回路基板を備える。
The power supply device of the present disclosure is
The circuit board of the present disclosure is provided.

本開示のコイル部品は、生産性に優れ、磁気飽和し難い。   The coil component of the present disclosure is excellent in productivity and hard to be magnetically saturated.

本開示の回路基板、及び本開示の電源装置は、所定の変圧動作を良好に行える。   The circuit board of the present disclosure and the power supply device of the present disclosure can perform predetermined transformation operations well.

実施形態1のコイル部品の概略斜視図である。1 is a schematic perspective view of a coil component of Embodiment 1. FIG. 実施形態1のコイル部品の上側の分割コア片を除いたコイル部品の上面図である。5 is a top view of the coil component excluding the upper split core piece of the coil component of Embodiment 1. FIG. 実施形態1のコイル部品の正面図である。5 is a front view of the coil component of Embodiment 1. FIG. 実施形態1の回路基板の一例を等価回路で示す概略構成図である。It is a schematic block diagram which shows an example of the circuit board of Embodiment 1 by an equivalent circuit. 実施形態2のコイル部品の概略斜視図である。5 is a schematic perspective view of a coil component of Embodiment 2. FIG. 実施形態2のコイル部品の上側の分割コア片を除いたコイル部品の上面図である。FIG. 14 is a top view of the coil component excluding the upper split core piece of the coil component of Embodiment 2; 実施形態2のコイル部品の正面図である。7 is a front view of a coil component of Embodiment 2. FIG. 実施形態3のコイル部品の概略斜視図である。It is a schematic perspective view of the coil component of Embodiment 3. FIG. 実施形態3のコイル部品の上側の分割コア片を除いたコイル部品の上面図である。It is a top view of the coil component except the upper part split core piece of the coil component of Embodiment 3. FIG. 実施形態3のコイル部品の正面図である。It is a front view of the coil component of Embodiment 3. FIG. 試験例1に係るコイル部品の各コイルに流れる電流の波形を示すグラフである。It is a graph which shows the waveform of the electric current which flows into each coil of the coil components which concern on the example 1 of a test.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
Description of the embodiment of the present invention
First, the embodiments of the present invention will be listed and described.

(1)本発明の一態様に係るコイル部品は、
多相のトランス結合に利用されるコイル部品であって、
3以上のn個の独立したコイルと1つの磁性コアとを備え、
前記磁性コアは、
各コイルが配置されるn個の磁脚と、
任意の二つの前記磁脚の間に配置される部分を有する中央脚部と、
n個の前記磁脚及び前記中央脚部を並列状態で連結する一対の連結部と、
前記中央脚部に介在される主ギャップと、
各磁脚に介在される脚部ギャップと、を備える。
(1) A coil component according to one aspect of the present invention is
A coil component used for multiphase transformer coupling,
With 3 or more n independent coils and 1 magnetic core,
The magnetic core is
N magnetic legs on which each coil is disposed,
A central leg having a portion disposed between any two of said magnetic legs;
a pair of connecting parts connecting the n magnetic legs and the central leg in parallel;
A main gap interposed in the central leg;
And a leg gap interposed in each magnetic leg.

上記nは3以上6以下とすることが好ましく、3以上5以下とすることができる。上記構成のコイル部品は、各コイルのそれぞれに対応する磁脚を備える磁性コアを用いることで、各磁脚にコイルを配置するだけで磁性コアを作製することができる。そのため、上記構成のコイル部品は生産性に優れる。   The n is preferably 3 or more and 6 or less, and can be 3 or more and 5 or less. The coil component of the said structure can produce a magnetic core only by arrange | positioning a coil in each magnetic leg by using the magnetic core provided with the magnetic leg corresponding to each of each coil. Therefore, the coil component of the said structure is excellent in productivity.

また、上記構成のコイル部品は、主ギャップに加えて、各コイルが配置される磁脚にもギャップ(脚部ギャップ)を備える。主ギャップ及び脚部ギャップを設けることで、磁気飽和し難いコイル部品とすることができる。   Further, in addition to the main gap, the coil component having the above configuration also has a gap (leg gap) in the magnetic leg in which each coil is disposed. By providing the main gap and the leg gap, it is possible to provide a coil component that is less susceptible to magnetic saturation.

(2)上記コイル部品の一例として、
前記n個のコイルのうちの任意のコイルと残りのコイルとの結合係数の合計が0.7以上である形態が挙げられる。
(2) As an example of the above-mentioned coil parts,
There is a mode in which the sum of the coupling coefficients between any one of the n coils and the remaining coils is 0.7 or more.

上記のコイル部品は、任意のコイルと残りのコイルとの結合係数の合計が0.7以上を満たす範囲で各磁脚にギャップを備える。そのため、結合係数の低下に起因するリップル電流の増加量が小さく、リップル電流が回路全体に与える影響を小さくすることができる。このようなコイル部品を多相のトランス結合型昇降圧回路といった変圧回路に用いれば、磁気飽和し難い上に、リップル電流の増加が小さいため、所定の変圧動作を良好に行える。   The above-mentioned coil component is provided with a gap in each magnetic leg in the range in which the sum of coupling coefficients between any coil and the remaining coils satisfies 0.7 or more. Therefore, the amount of increase in ripple current due to the decrease in coupling coefficient is small, and the influence of the ripple current on the entire circuit can be reduced. When such a coil component is used in a transformer circuit such as a multiphase transformer-coupled buck-boost circuit, it is difficult to magnetically saturate, and the increase in ripple current is small, so a predetermined transformation operation can be performed well.

(3)上記コイル部品の一例として、
前記中央脚部の中心軸を中心とする仮想円上に、n個の前記磁脚が等間隔に配置されている形態が挙げられる。
(3) As an example of the coil component
There is a form in which n magnetic legs are arranged at equal intervals on a virtual circle centered on the central axis of the central leg.

上記構成は、軸方向から見た各磁脚の中心軸を線分で繋げたときに正n角形となる構成である。例えばn=3であれば、正三角形の頂点の位置に磁脚の中心軸が配置される。中央脚部の中心軸を取り囲むように複数の磁脚を円状に配置することで、磁性コアをコンパクトにすることができる。また、各磁脚間の距離を揃え易いため、対称性が良く、相間の電流波形のずれを小さくすることができ、コイル部品を磁気飽和し難くできる。特に、n=3のとき、任意の2つの磁脚間の距離を等しくでき、コイル部品の磁気飽和を効果的に抑制できる。   The above configuration is a configuration in which when the central axes of the magnetic legs viewed from the axial direction are connected by a line segment, they become a regular n-gon. For example, if n = 3, the central axis of the magnetic leg is placed at the position of the apex of the regular triangle. The magnetic core can be made compact by arranging the plurality of magnetic legs in a circular shape so as to surround the central axis of the central leg. In addition, since the distances between the magnetic legs can be easily made uniform, the symmetry is good, the deviation of the current waveform between the phases can be reduced, and the coil parts can be made less susceptible to magnetic saturation. In particular, when n = 3, the distance between any two magnetic legs can be equalized, and the magnetic saturation of the coil component can be effectively suppressed.

(4)上記(3)のコイル部品の一例として、
前記中央脚部は、その軸方向から見たときに、周方向に隣接する二つの前記磁脚の間のそれぞれに延びるn個の突出部を備える形態が挙げられる。
(4) As an example of the coil component of said (3),
The central leg may include n protrusions extending respectively between two circumferentially adjacent magnetic legs when viewed in the axial direction.

突出部を備える中央脚部は、その軸方向から見たときに、n個の突出部が等角度で配置された概略星型形状となる。周方向に隣接する二つの磁脚の間に突出部が延びることで、各磁脚を中央脚部側に寄せてコイル部品をコンパクトにしつつ、中央脚部の磁路断面積を大きく確保することができる。   The central leg provided with the projections, when viewed in the axial direction, has a generally star-like shape in which the n projections are equiangularly arranged. By extending the projecting portion between two magnetic legs adjacent in the circumferential direction, each magnetic leg is brought close to the central leg side to make the coil component compact while securing a large magnetic path cross-sectional area of the central leg. Can.

(5)上記(4)のコイル部品の一例として、
前記中央脚部をその軸方向から見たときの前記突出部の外周形状は、前記コイルの外周面に沿った形状である形態が挙げられる。
(5) As an example of the coil component of said (4),
The outer peripheral shape of the protrusion when the central leg is viewed in the axial direction may be a shape along the outer peripheral surface of the coil.

上記構成によれば、各磁脚から突出部までの距離が近くなり、しかも当該距離が等しくなる部分が多くなるため、中央脚部にコイルの磁束を引き込み易く、中央脚部外に磁束が漏れることを抑制できる。   According to the above configuration, the distance from each magnetic leg to the projecting portion is short and the number of portions having the same distance is large, so that the magnetic flux of the coil can be easily drawn into the central leg and the magnetic flux leaks out of the central leg Can be suppressed.

(6)上記のコイル部品の一例として、
前記脚部ギャップのギャップ長は、前記主ギャップのギャップ長よりも短い形態が挙げられる。
(6) As an example of the above coil parts,
The gap length of the leg gap may be shorter than the gap length of the main gap.

上記形態は、各磁脚におけるギャップ長が主ギャップよりも短いため、結合係数を大きく確保し易く、リップル電流の増加量をより小さくし易い。また、ギャップを含めた磁性コアの大型化も低減し易い。従って、上記形態は、磁気飽和し難い上に、リップル電流による影響をより小さくし易い。   In the above embodiment, since the gap length in each magnetic leg is shorter than the main gap, it is easy to secure a large coupling coefficient, and it is easy to make the amount of increase in ripple current smaller. In addition, the increase in size of the magnetic core including the gap can be easily reduced. Therefore, the above-mentioned form is hard to be magnetically saturated, and is also easy to make the influence by ripple current smaller.

(7)上記(6)のコイル部品の一例として、
前記脚部ギャップのギャップ長は、前記主ギャップのギャップ長の10%以下である形態が挙げられる。
(7) As an example of the coil component of said (6),
The gap length of the leg gap may be 10% or less of the gap length of the main gap.

上記形態は、各磁脚におけるギャップ長が主ギャップに対して更に短い。従って、上記形態は、磁気飽和し難い上に、リップル電流による影響を更に小さくし易い。   In the above embodiment, the gap length in each magnetic leg is shorter than the main gap. Therefore, in the above-described embodiment, the magnetic saturation is not easily achieved, and the influence of the ripple current can be further reduced.

(8)本発明の一態様に係る回路基板は、
上記(1)から(7)のいずれか一つに記載のコイル部品を備える。
(8) A circuit board according to an aspect of the present invention is
The coil component according to any one of the above (1) to (7).

上記の回路基板は、磁気飽和し難くリップル電流の増加量も小さい上記のコイル部品を備えるため、多相のトランス結合型昇降圧回路といった変圧回路に用いれば、所定の変圧動作を良好に行える。   Since the circuit board described above is provided with the above-mentioned coil component which is hard to saturate magnetically and has a small increase in ripple current, it can perform a predetermined transformation operation well when used in a transformer circuit such as a multiphase transformer coupled buck-boost circuit.

(9)本発明の一態様に係る電源装置は、上記(8)に記載の回路基板を備える。 (9) A power supply device according to an aspect of the present invention includes the circuit board according to (8).

上記の電源装置は、磁気飽和し難くリップル電流の増加量も小さい上記のコイル部品が設けられた上記の回路基板を備えるため、多相のトランス結合型昇降圧コンバータといったコンバータに用いれば、所定の変圧動作を良好に行える。   The power supply device described above is provided with the above circuit board provided with the above-mentioned coil component which is hard to cause magnetic saturation and has a small increase in ripple current, and therefore, when used in a converter such as a multiphase transformer coupled buck-boost converter, Good transformation operation can be performed.

[本発明の実施形態の詳細]
以下、図面を適宜参照して、実施形態に係るコイル部品、回路基板、電源装置を具体的に説明する。図中、同一名称物は、同一物を意味する。
Details of the Embodiment of the Present Invention
Hereinafter, the coil component, the circuit board, and the power supply device according to the embodiment will be specifically described with reference to the drawings as appropriate. In the figure, the same name means the same thing.

[実施形態1]
図1〜図4を参照して、実施形態1のコイル部品10、回路基板7、及び電源装置8を説明する。ここで、図2では、分割コア片6bを除くコイル部品10を示す。また、図4では、コイル部品10を除く主要な回路部品を回路記号で示すと共に、コイル部品10の磁性コア6を実際の形状とは異なる形状で仮想的に示す。
Embodiment 1
The coil component 10, the circuit board 7, and the power supply device 8 according to the first embodiment will be described with reference to FIGS. Here, FIG. 2 shows the coil component 10 excluding the split core piece 6b. Further, in FIG. 4, the main circuit components excluding the coil component 10 are indicated by circuit symbols, and the magnetic core 6 of the coil component 10 is virtually illustrated in a shape different from the actual shape.

(全体構成)
実施形態1のコイル部品10は、3相のトランス結合に利用されるものであり、図1に示すように、第一コイル1と、第二コイル2と、第三コイル3と、これらのコイル1,2,3が配置される磁性コア6と、を備える。以下、コイル部品10の各構成部材を詳細に説明する。
(overall structure)
The coil component 10 according to the first embodiment is used for three-phase transformer coupling, and as shown in FIG. 1, the first coil 1, the second coil 2, the third coil 3, and these coils And 1, 2 and 3 are disposed. Hereinafter, each component of the coil component 10 will be described in detail.

(コイル)
第一コイル1、第二コイル2、及び第三コイル3はいずれも、巻線を螺旋状に巻回してなる筒状の巻回部を備える。巻回部から延びる巻線の各端部(図示せず)には、配線パターンなどを介して、電源71(図4)などが接続される。コイル1,2,3は、通電したときに、任意の二つのコイル1,2(1,3又は2,3)に流れる直流電流がつくる磁束が互いに打ち消されるように配置される。つまり、コイル1,2,3の磁束が同一方向(図1の紙面上方向又は紙面下方向)を向くように配置される。
(coil)
Each of the first coil 1, the second coil 2, and the third coil 3 includes a cylindrical winding portion formed by spirally winding a winding. A power supply 71 (FIG. 4) or the like is connected to each end (not shown) of the winding extending from the winding portion via a wiring pattern or the like. The coils 1, 2, 3 are arranged such that the magnetic fluxes generated by the direct current flowing through any two coils 1, 2 (1, 3 or 2, 3) cancel each other when energized. That is, the magnetic fluxes of the coils 1, 2 and 3 are arranged to be directed in the same direction (in the upper direction or lower direction in FIG. 1).

各コイル1,2,3をなす巻線は、導体線の外周に絶縁被覆を備える被覆線を好適に利用できる。導体線の構成材料は、例えば銅やアルミニウム、その合金が挙げられる。絶縁被覆の構成材料は、例えばエナメルと呼ばれるポリアミドイミドなどの樹脂が挙げられる。この例では、各コイル1,2,3をなす巻線は、同じ仕様(構成材料、幅や厚さ、断面積など)の被覆平角線である。また、この例の各コイル1,2,3は、同じ仕様(巻径、巻き数、自然長など)の円筒状のエッジワイズコイルである。   The winding which makes each coil 1, 2, 3 can use suitably the covered wire which equips the perimeter of a conductor with insulation coating. The constituent material of the conductor wire is, for example, copper, aluminum, or an alloy thereof. The constituent material of the insulation coating is, for example, a resin such as polyamide imide, which is called enamel. In this example, the winding forming each of the coils 1, 2 and 3 is a coated flat wire of the same specification (constituent material, width, thickness, cross-sectional area, etc.). Further, each of the coils 1, 2, and 3 in this example is a cylindrical edgewise coil having the same specifications (winding diameter, number of turns, natural length, etc.).

巻線の仕様、巻回部の仕様は適宜選択できる。また、その他の巻線として、コイルに利用される公知の線材、例えば平角線、丸線、被覆丸線、リッツ線などを利用できる。本例のように、導体線が平角線であれば、占積率をリッツ線よりも大きくし易く、コイル部品10を大電流用途に好適に利用できる。また、導体線が平角線からなるコイルは、リッツ線よりも保形性に優れ、磁性コア6と独立して作製しても中空形状を保持できる。更に、本例のように円筒状のエッジワイズコイルであれば、巻径が比較的小さい場合でも製造し易く、製造性にも優れる。   The specifications of the winding and the specifications of the winding portion can be selected appropriately. In addition, as other windings, known wire materials used for coils, such as flat wire, round wire, coated round wire, litz wire, etc. can be used. If the conductor wire is a flat wire as in this example, the space factor can be easily made larger than the litz wire, and the coil component 10 can be suitably used for high current applications. In addition, a coil in which the conductor wire is a flat wire is better in shape retention than a litz wire, and can maintain a hollow shape even when manufactured independently of the magnetic core 6. Furthermore, if it is a cylindrical edgewise coil like this example, even when the winding diameter is relatively small, it is easy to manufacture and excellent in manufacturability.

(磁性コア)
磁性コア6は、軟磁性材料を含み、閉磁路を形成する磁性部材である。この磁性コア6は、図2に示すように、コイル1,2,3の数に一致する複数の磁脚61,62,63と、任意の二つのコイルの間に配置される部分を有する中央脚部66と、これらの部材61〜63,66をその軸方向から挟み込む一対の連結部67,68(図1参照)と、を備える。
(Magnetic core)
The magnetic core 6 is a magnetic member that includes a soft magnetic material and forms a closed magnetic path. As shown in FIG. 2, this magnetic core 6 has a central portion having a plurality of magnetic legs 61, 62, 63 corresponding to the number of coils 1, 2, 3 and a portion disposed between any two coils. The leg portion 66 and a pair of connecting portions 67 and 68 (see FIG. 1) sandwiching these members 61 to 63 in the axial direction are provided.

第一磁脚61の外周には第一コイル1が配置され、第二磁脚62の外周には第二コイル2が配置され、第三磁脚63の外周には第三コイル3が配置される。各磁脚61,62,63はそれぞれ、正三角形の各頂点の位置に配置される。つまり、磁脚61,62,63の中心軸を結ぶ線分が正三角形となるように、磁脚61,62,63が配置されている。   The first coil 1 is disposed on the outer periphery of the first magnetic leg 61, the second coil 2 is disposed on the outer periphery of the second magnetic leg 62, and the third coil 3 is disposed on the outer periphery of the third magnetic leg 63. Ru. Each of the magnetic legs 61, 62, 63 is arranged at the position of each vertex of an equilateral triangle. That is, the magnetic legs 61, 62, 63 are arranged such that the line segments connecting the central axes of the magnetic legs 61, 62, 63 are equilateral triangles.

各磁脚61,62,63は、円柱状や直方体状などといった適宜な柱状体であることが挙げられる。各磁脚61,62,63は、各コイル1,2,3の内周形状とは非相似な形状であってもよいが、相似な形状、即ち各磁脚61,62,63の外周面形状が、各コイル1,2,3の内周面形状に沿った形状であることが好ましい。本例では、各磁脚61,62,63は円柱状である。このような構成であれば、各コイル1,2,3と各磁脚61,62,63とを組み付け易く、コイル部品10の製造性に優れる。   Each of the magnetic legs 61, 62, 63 may be a suitable columnar body such as a cylindrical shape or a rectangular shape. Each magnetic leg 61, 62, 63 may have a shape that is not similar to the inner peripheral shape of each coil 1, 2, 3, but has a similar shape, that is, the outer peripheral surface of each magnetic leg 61, 62, 63. It is preferable that the shape conforms to the inner peripheral surface shape of each of the coils 1, 2, 3. In the present example, each of the magnetic legs 61, 62, 63 has a cylindrical shape. With such a configuration, the coils 1, 2, 3 and the magnetic legs 61, 62, 63 can be easily assembled, and the manufacturability of the coil component 10 is excellent.

中央脚部66は、三つの磁脚61,62,63が作る正三角形の中心に配置されている。言い換えれば、中央脚部66の中心軸を中心とする仮想円上に三つの磁脚61,62,63が等間隔で配置されている。   The central leg 66 is disposed at the center of an equilateral triangle formed by the three magnetic legs 61, 62, 63. In other words, three magnetic legs 61, 62, 63 are arranged at equal intervals on a virtual circle centered on the central axis of the central leg 66.

中央脚部66は、磁脚61,62,63の配置に応じた適宜な形状の柱状体である。中央脚部66は、任意の二つの磁脚の間に配置される部分を備えている。例えば、磁脚61,62を例にすれば、図2の磁脚61,62の紙面上端同士を結ぶ接線と、紙面下端同士を結ぶ接線との間に、中央脚部66の一部が配置されている。本例の中央脚部66は、その磁路断面積の輪郭線に内接する円柱部660(図2の二点鎖線参照)と、その円柱部660の外周から磁脚61,62(62,63、又は63,61)間に延びる舌片形状の三つの突出部661,662,663とで構成される星型形状となっている。この中央脚部66では、円柱部660の一部と突出部661とが共に、磁脚61,62の間に配置されている。また、上記円柱部660の磁路断面積は、各磁脚61,62,63の磁路断面積よりも小さいが、突出部661〜663を含めた中央脚部66の磁路断面積は、各磁脚61,62,63の磁路断面積よりも大きくなっている。このような星形形状の中央脚部66とすることで、中央脚部66の磁路断面積を各磁脚61,62,63の磁路断面積以上としつつ、三つの磁脚61,62,63を中央脚部66側に寄せることができるので、コイル部品10をコンパクト化できる。   The central leg 66 is a columnar body of an appropriate shape according to the arrangement of the magnetic legs 61, 62, 63. The central leg 66 comprises a portion disposed between any two magnetic legs. For example, in the case of the magnetic legs 61 and 62, for example, a part of the central leg 66 is disposed between the tangent connecting the upper ends of the magnetic legs 61 and 62 in FIG. It is done. The central leg 66 in this example is a cylindrical portion 660 (see the two-dot chain line in FIG. 2) inscribed in the contour line of the magnetic path cross sectional area and the magnetic legs 61, 62 (62, 63) from the outer periphery of the cylindrical portion 660 Or, it has a star-like shape configured of three projecting portions 661, 662, 663 having tongue-like shapes extending between 63, 61). In the central leg portion 66, a part of the cylindrical portion 660 and the projecting portion 661 are both disposed between the magnetic legs 61 and 62. Although the magnetic path cross sectional area of the cylindrical portion 660 is smaller than the magnetic path cross sectional area of each of the magnetic legs 61, 62 and 63, the magnetic path cross sectional area of the central leg 66 including the projecting portions 661 to 663 is The magnetic path cross-sectional area of each of the magnetic legs 61, 62, 63 is larger. By forming the central leg 66 in such a star-like shape, the three magnetic legs 61 and 62 can be obtained while the magnetic path cross-sectional area of the central leg 66 is equal to or greater than the magnetic path cross-sectional area of each of the magnetic legs 61 , 63 can be brought closer to the central leg 66 side, so the coil component 10 can be made compact.

中央脚部66をその軸方向から見たときの突出部661,662,663の外周形状は、コイル1,2,3の外周面に沿った形状である。突出部661,662,663をこのような形状とすることで、各磁脚61,62,63へのコイル1,2,3の配置を邪魔しない範囲で突出部661,662,663の磁路断面積を大きくできる。また、磁脚61(62又は63)から突出部661(662又は663)までの距離が近くなり、当該距離が等しくなる部分が多くなるため、中央脚部66にコイル1(2又は3)の磁束を引き込み易く、中央脚部66外に磁束が漏れることを抑制できる。上記突出部661,662,663は、後述する連結部67,68の外周輪郭線からはみ出ないように形成することが好ましい。   The outer peripheral shapes of the projecting portions 661, 662, 663 when the central leg 66 is viewed in the axial direction are shapes along the outer peripheral surfaces of the coils 1, 2, 3. By forming the projecting portions 661, 662, 663 in such a shape, the magnetic path of the projecting portions 661, 662, 663 within a range that does not disturb the arrangement of the coils 1, 2, 3 to the magnetic legs 61, 62, 63. The cross-sectional area can be increased. In addition, since the distance from the magnetic leg 61 (62 or 63) to the projecting portion 661 (662 or 663) becomes short and the number of portions where the distance becomes equal increases, the central leg portion 66 is made of the coil 1 (2 or 3). The magnetic flux can be easily drawn in and leakage of the magnetic flux to the outside of the central leg 66 can be suppressed. It is preferable that the projecting portions 661, 662, 663 be formed so as not to protrude from outer peripheral outlines of connecting portions 67, 68 described later.

連結部67,68は、板状体であることが挙げられる。本例では、磁脚61,62,63を軸方向から見たときに、連結部67,68は、磁脚61と磁脚62とを繋ぐ接線、磁脚62と磁脚63とを繋ぐ接線、磁脚63と磁脚61とを繋ぐ接線、及び磁脚61,62,63の外周面の一部で構成される概略正三角形状(正三角形の角部を丸めた形状)に形成されている。連結部67,68によって、磁性コア6に閉磁路を形成することができる。   The connection parts 67 and 68 are plate-like bodies. In this example, when the magnetic legs 61, 62, 63 are viewed in the axial direction, the connecting portions 67, 68 are tangent lines connecting the magnetic legs 61 and 62, and tangent lines connecting the magnetic legs 62 and 63. , A tangent connecting the magnetic leg 63 and the magnetic leg 61, and a part of the outer peripheral surface of the magnetic legs 61, 62, 63 and formed in a substantially equilateral triangle shape (a shape obtained by rounding the corner of the equilateral triangle) There is. A closed magnetic path can be formed in the magnetic core 6 by the connecting portions 67 and 68.

《ギャップ》
第一コイル1、第二コイル2、及び第三コイル3にはそれぞれ、図4に示すように、配線パターンなどを介してスイッチ72,73,74などの回路部品が接続される。これら配線パターンや回路部品の製造誤差や接続状態のばらつきなどに起因して、各コイル1,2,3に流れる電流に差が生じることがある。その電流の差に起因して磁性コア6が磁気飽和する可能性があるので、その対策として、本例では後述する主ギャップ66gと脚部ギャップ61g,62g,63gを設けている。
"gap"
As shown in FIG. 4, circuit components such as switches 72, 73 and 74 are connected to the first coil 1, the second coil 2, and the third coil 3 via wiring patterns and the like, respectively. The currents flowing through the coils 1, 2 and 3 may differ due to manufacturing errors of the wiring patterns and circuit components and variations in the connection state. Since the magnetic core 6 may be magnetically saturated due to the difference in the current, as a countermeasure, in the present embodiment, a main gap 66g and leg gaps 61g, 62g, and 63g described later are provided.

ここで、磁性コア6に磁気飽和が生じるメカニズムについてコイル1,2を例にして説明する。各コイル1,2がつくる磁束は、各磁脚61,62と連結部67,68と中央脚部66(突出部661)とで構成される磁路を通る。一方、両コイル1,2に加わる変化する電圧に起因する磁束の鎖交磁束は、主として、一方の磁脚61から、連結部67,68を通って他方の磁脚62を経る磁路を通る。この磁路は、両コイル1,2のトランス結合の磁路である。各コイル1,2の巻き数をN、各コイル1,2流れる電流をI,Iとすると、上記トランス結合の磁路に、上述の鎖交磁束に加えてN×(I−I)の磁束も通過しようとする。上記の式から明らかなように、コイル1,2の電流差(I−I)が大きいほど、上記トランス結合の磁路を通過しようとする磁束量が多くなり、磁性コア6が磁気飽和する。上記電流差によって磁気飽和することで、所定の昇圧動作または降圧動作など変圧動作を行えなくなる。 Here, the mechanism by which magnetic saturation occurs in the magnetic core 6 will be described by taking the coils 1 and 2 as an example. The magnetic flux generated by the coils 1 and 2 passes through a magnetic path formed by the magnetic legs 61 and 62, the coupling portions 67 and 68, and the central leg 66 (projecting portion 661). On the other hand, the flux linkage caused by the voltage applied to both coils 1 and 2 mainly passes from one of the magnetic legs 61 through the coupling portions 67 and 68 to the magnetic path through the other magnetic leg 62. . This magnetic path is a magnetic path of the transformer coupling of both coils 1 and 2. Assuming that the number of turns of each coil 1, 2 is N, and the current flowing through each coil 1 , 2 is I1, I2, in the magnetic path of the transformer coupling, in addition to the above-mentioned flux linkage, N × (I 1 -I The magnetic flux of 2 ) also tries to pass. As apparent from the above equation, as the current difference (I 1 -I 2 ) between the coils 1 and 2 is larger, the amount of magnetic flux passing through the magnetic path of the transformer coupling is larger, and the magnetic core 6 is magnetically saturated. Do. By performing magnetic saturation due to the current difference, it is not possible to perform a transformation operation such as a predetermined boosting operation or a buck operation.

磁気飽和のメカニズムに鑑み、本例のコイル部品10では、磁性コア6においてコイル1,2,3が配置されない中央脚部66に主ギャップ66gを備える。このような磁性コア6は、コイル部品10が多相のトランス結合に用いられた場合に、各コイル1,2,3に基づく漏れ磁束によって磁気飽和し難い。更に本例のコイル部品10は、磁性コア6において各コイル1,2,3が配置される各磁脚61,62,63にも脚部ギャップ61g,62g,63gを備える。なお、脚部ギャップ63gは、図1〜3では見えない位置にあるため図示していないが、説明の便宜上、符号を付して以下の説明を行なっている。   In view of the mechanism of magnetic saturation, in the coil component 10 of the present example, the main leg 66g is provided in the central leg 66 where the coils 1, 2 and 3 are not disposed in the magnetic core 6. When the coil component 10 is used for multiphase transformer coupling, such a magnetic core 6 is unlikely to be magnetically saturated due to the leakage flux based on each of the coils 1, 2, 3. Furthermore, the coil component 10 of this example is provided with leg gaps 61g, 62g, 63g also in the magnetic legs 61, 62, 63 where the coils 1, 2, 3 are disposed in the magnetic core 6. The leg gap 63g is not shown because it is at a position not visible in FIGS. 1 to 3, but for convenience of explanation, the following explanation is given with reference numerals for convenience.

主ギャップ66gのギャップ長L66は、上述の漏れ磁束による磁気飽和を低減できるように適宜設定するとよい。第一ギャップ61gのギャップ長L61、第二ギャップ62gのギャップ長L62、及び第三ギャップ63gのギャップ長L63は、上述の電流差に起因する磁気飽和を低減しつつ、結合係数を過度に低下させない範囲で設ける。結合係数の低下は、リップル電流の増大を招くからである。リップル電流の増大は、半導体素子の損失増大、コンデンサ78(図4)の発熱量の増大や熱損傷を招き得る。そこで、ギャップ長L61,L62,L63は、リップル電流の増加量が少ない範囲となる大きさ、具体的には結合係数が0.7以上を満たす大きさとする。例えば、ギャップ長L61,L62,L63は、主ギャップ66gのギャップ長L66よりも短くすることが挙げられる。ギャップ長L61,L62,L63はそれぞれ、主ギャップ66gのギャップ長L33の10%以下とすることができる。ギャップ長L61,L62,L63は短いほど、結合係数を大きくし易く、リップル電流の増加量も少なくし易い。結合係数を大きくする観点から、ギャップ長L61,L62,L63は、主ギャップ66gのギャップ長L66の9.5%以下、更に9%以下、8.5%以下、8%以下であることが好ましい。一方、ギャップ長L61,L62,L63は長いほど、磁気飽和を低減し易いため、主ギャップ66gのギャップ長L66の1%以上、更に2%以上、3%以上とすることが挙げられる。 The gap length L 66 of the main gap 66 g may be appropriately set to reduce the magnetic saturation due to the above-described leakage flux. Gap length L 61 of the first gap 61 g, the gap length L 63 of the gap length L 62 of the second gap 62 g, and the third gap 63g, while reducing the magnetic saturation due to the current difference of the above, excessive coupling coefficient In the range that does not reduce the This is because the decrease in the coupling coefficient causes an increase in ripple current. An increase in ripple current can lead to an increase in loss of the semiconductor device, an increase in the amount of heat generation of the capacitor 78 (FIG. 4) and a thermal damage. Therefore, the gap lengths L 61 , L 62 , and L 63 have sizes that fall within a range in which the amount of increase in ripple current is small, specifically, a size that satisfies a coupling coefficient of 0.7 or more. For example, the gap lengths L 61 , L 62 and L 63 may be shorter than the gap length L 66 of the main gap 66 g. The gap lengths L 61 , L 62 and L 63 can each be 10% or less of the gap length L 33 of the main gap 66 g. As the gap lengths L 61 , L 62 , and L 63 are shorter, it is easier to increase the coupling coefficient and to reduce the amount of increase in ripple current. From the viewpoint of increasing the coupling coefficient, the gap lengths L 61 , L 62 , and L 63 are 9.5% or less, 9% or less, 8.5% or less, and 8% or less of the gap length L 66 of the main gap 66g. Is preferred. On the other hand, the longer the gap lengths L 61 , L 62 and L 63 , the easier it is to reduce the magnetic saturation, so that the gap length L 66 of the main gap 66 g is 1% or more, 2% or more, 3% or more Be

ギャップ長L61,L62,L63は、異ならせることができるが、本例のように実質的に等しいと、各磁脚61,62,63に均一的に磁束を流し易い。その他、脚部ギャップ61g,62g,63gは、図2に示すように、各コイル1,2,3の内部に位置するように磁性コア6に設けることが挙げられる。 The gap lengths L 61 , L 62 and L 63 can be made different, but it is easy to flow the magnetic flux uniformly to the magnetic legs 61, 62 and 63 if they are substantially equal as in this example. In addition, as shown in FIG. 2, the leg gaps 61 g, 62 g, and 63 g may be provided in the magnetic core 6 so as to be positioned inside the coils 1, 2, and 3.

《結合係数》
実施形態1のコイル部品10は、上述のように磁性コア6が主ギャップ66gに加えて、脚部ギャップ61g,62g,63gを備えており、任意のコイルと他のコイルとの結合係数の合計が0.7以上である。本例の場合、第一コイル1と第二コイル2の結合係数と第一コイル1と第三コイル3の結合係数との合計が0.7以上で、第二コイル2と第三コイル3の結合係数と第二コイル2と第一コイル1の結合係数との合計が0.7以上で、かつ第三コイル3と第一コイル1の結合係数と第三コイル3と第二コイル2の結合係数との合計が0.7以上である。このような磁性コア6は、コイル部品10が多相のトランス結合に用いられた場合に、コイル1,2,3に流れる電流に差が生じた場合に、この電流差に基づく磁束によって磁気飽和し難い。そのため、コイル部品10を用いて多相のトランス結合型変圧回路などを構築した場合に、リップル電流の増加量が小さく、昇降圧などの変圧動作を長期に亘り安定して行える。結合係数の合計が大きいほど、リップル電流の増加量を小さくし易く、この観点からは、結合係数は0.75以上、更に0.78以上、0.8以上であることが好ましい。結合係数の合計が0.7以上を満たすように、ギャップ長L61,L62,L63を調整するとよい。
<< Coupling factor >>
In the coil component 10 according to the first embodiment, as described above, the magnetic core 6 includes the leg gaps 61g, 62g, and 63g in addition to the main gap 66g, and the sum of the coupling coefficients of any coil and other coils Is 0.7 or more. In the case of this example, the sum of the coupling coefficient of the first coil 1 and the second coil 2 and the coupling coefficient of the first coil 1 and the third coil 3 is 0.7 or more, and the second coil 2 and the third coil 3 The total of the coupling coefficient and the coupling coefficient of the second coil 2 and the first coil 1 is 0.7 or more, and the coupling coefficient of the third coil 3 and the first coil 1 and the coupling of the third coil 3 and the second coil 2 The sum with the coefficient is 0.7 or more. Such a magnetic core 6 is magnetically saturated by the magnetic flux based on the current difference when the current flowing in the coils 1, 2, 3 is different when the coil component 10 is used for multiphase transformer coupling. It is difficult to do. Therefore, when a multiphase transformer coupled transformer circuit or the like is constructed using the coil component 10, the amount of increase in ripple current is small, and the transformation operation such as buck-boost can be stably performed for a long time. The larger the sum of the coupling coefficients, the smaller the amount of increase in ripple current. From this point of view, the coupling coefficient is preferably 0.75 or more, and more preferably 0.78 or more and 0.8 or more. The gap lengths L 61 , L 62 , and L 63 may be adjusted so that the sum of coupling coefficients satisfies 0.7 or more.

なお、二つのコイル間の結合係数は、以下の関係式から求められる。結合係数をk、一方のコイルの自己インダクタンスをL1、他方のコイルの自己インダクタンスをL2、両コイルの相互インダクタンスをMとすると、結合係数kは、k=M/(L1×L2)を満たす。 The coupling coefficient between the two coils can be obtained from the following equation. Assuming that the coupling coefficient is k, the self-inductance of one coil is L1, the self-inductance of the other coil is L2, and the mutual inductance of both coils is M, the coupling coefficient k is k 2 = M 2 / (L 1 × L 2 ) Fulfill.

市販のシミュレーションソフトなどを用いて、結合係数とリップル電流との相関データや、結合係数ごとのギャップ長L61,L62,L63と通電電流値との相関データなどを予め求めておくことができる。上記相関データを利用すれば、所望の要求に応じて、より好ましい結合係数やギャップ長L61,L62,L63、使用電流値などを容易に選択できる。 Using, for example, commercially available simulation software, correlation data between the coupling coefficient and the ripple current, correlation data between the gap lengths L 61 , L 62 , and L 63 for each coupling coefficient, and the current value may be obtained in advance. it can. By using the above correlation data, it is possible to easily select a more preferable coupling coefficient, gap lengths L 61 , L 62 , L 63 , working current value and the like according to a desired request.

《分割構成》
本例の磁性コア6は、図3に示すように、一対の分割コア片6a,6bの磁脚片同士を突き合わせるように組み付けることで形成されている。特に、実施形態1のコイル部品10では、磁脚61,62,63及び中央脚部66のそれぞれにギャップ61g,62g,63g,66gを含むため、分割コア片6a,6bは、ギャップ長に応じた隙間をあけて組み付けられる。磁性コア6を複数の分割コア片6a,6bの組物とすることで、上記隙間を容易に設けられて、ギャップ61g,62g,63g,66gを備えることができる。また、上述のように各コイル1,2,3をエッジワイズコイルといった磁性コア6とは独立して作製可能なものとする場合に、コイル1,2,3と分割コア片6a,6bとを容易に組み付けられる。本例のように分割コア片の個数を二つとすると、組み付け部品数を少なくできる。ひいては、コイル部品10の製造性に優れる。
Division configuration
As shown in FIG. 3, the magnetic core 6 of this example is formed by assembling so that the magnetic leg pieces of the pair of split core pieces 6a and 6b are butted. In particular, in the coil component 10 of the first embodiment, since the magnetic legs 61, 62, 63 and the central leg 66 respectively include the gaps 61g, 62g, 63g, 66g, the split core pieces 6a, 6b correspond to the gap lengths. With a gap between them. By forming the magnetic core 6 as a combination of a plurality of divided core pieces 6a and 6b, the gap can be easily provided and the gaps 61g, 62g, 63g, and 66g can be provided. Further, in the case where each coil 1, 2, 3 can be manufactured independently of the magnetic core 6 such as an edgewise coil as described above, the coils 1, 2, 3 and the split core pieces 6a, 6b Easy to assemble. If the number of divided core pieces is two as in this example, the number of assembled parts can be reduced. As a result, the productivity of the coil component 10 is excellent.

この例では、各分割コア片6a,6bは同一形状、同一の大きさである。そのため、以下の説明では、一方の分割コア片6aを代表して説明する。両分割コア片6a,6bが同一形状、同一の大きさであれば、例えば分割コア片6a,6bを金型成形する場合に同一の金型で成形できて量産性に優れる、組み付け易く組立作業性に優れる、といった効果を奏する。   In this example, the divided core pieces 6a and 6b have the same shape and the same size. Therefore, in the following description, one split core piece 6a will be described as a representative. If both split core pieces 6a and 6b have the same shape and the same size, for example, when molding the split core pieces 6a and 6b, they can be molded by the same mold and excellent in mass productivity, easy to assemble, assembly work It has the effect of being excellent in sex.

分割コア片6aは、各磁脚61,62,63の一部を形成する3つの磁脚片と、中央脚部66の一部を形成する中央脚片と、3つの磁脚片及び中央脚片を支持する一方の連結部67とを備える。3つの磁脚片及び中央脚片は、連結部67の内面から突出する。この例では、両磁脚片の突出高さは実質的に等しく、かつ中央脚片の突出高さよりも若干大きい。そのため、磁脚片間に所定の隙間が設けられるように両分割コア片6a,6bを組み付けると、両分割コア片6a,6bの中央脚片間に上述の各磁脚片間の隙間よりも大きな隙間を設けることができる。この大きめの隙間を主ギャップ66gとする。第一磁脚61をなす二つの磁脚片間の隙間を第一ギャップ61gとする。第二磁脚62をなす二つの磁脚片間の隙間を第二ギャップ62gとする。第三磁脚63をなす二つの磁脚片間の隙間を第二ギャップ63gとする。   The split core piece 6a includes three magnetic leg pieces that form a part of each of the magnetic legs 61, 62, 63, a central leg piece that forms a part of the central leg portion 66, three magnetic leg pieces and a central leg. And one connecting portion 67 for supporting the piece. The three magnetic legs and the central leg protrude from the inner surface of the connecting portion 67. In this example, the projecting heights of the two magnetic legs are substantially equal and slightly larger than the projecting height of the central leg. Therefore, when both split core pieces 6a and 6b are assembled such that a predetermined gap is provided between the magnetic leg pieces, the gap between the central leg pieces of both split core pieces 6a and 6b is greater than the gap between the magnetic leg pieces described above. A large gap can be provided. This large gap is referred to as a main gap 66g. A gap between two magnetic legs forming the first magnetic leg 61 is referred to as a first gap 61 g. The gap between the two magnetic legs forming the second magnetic leg 62 is referred to as a second gap 62 g. A gap between two magnetic legs forming the third magnetic leg 63 is referred to as a second gap 63 g.

《材料》
磁性コア6(ここでは分割コア片6a,6b)には、公知の構成材料で形成された種々の形態のものが利用できる。例えば、フェライトコアなどの焼結体、軟磁性材料の粉末を用いた圧粉成形体、軟磁性材料の粉末と樹脂とを含む複合材料からなる成形体、電磁鋼板などの軟磁性材料の板材を積層した積層体などが挙げられる。
"material"
As the magnetic core 6 (here, the split core pieces 6a, 6b), those of various forms formed of known constituent materials can be used. For example, a sintered compact such as a ferrite core, a powder compact formed using a powder of a soft magnetic material, a compact formed of a composite material containing a powder of a soft magnetic material and a resin, and a plate of a soft magnetic material such as an electromagnetic steel sheet The laminated body etc. which were laminated | stacked are mentioned.

主ギャップ66g及び脚部ギャップ61g,62g,63gの少なくとも一つは、エアギャップであることが挙げられる。例えば、コイル部品10は、主ギャップ66gがエアギャップであり、脚部ギャップ61g,62g,63gの一部にエアギャップを含むように分割コア片6a,6bの組付け状態を維持可能な形状保持部材(図示せず)を備えることが挙げられる。又は、主ギャップ66g及び脚部ギャップ61g,62g,63gの少なくとも一つは、非磁性材料からなるギャップ材を備えることが挙げられる。非磁性材料は、アルミナなどの非金属無機材料、樹脂などの非金属有機材料などが挙げられる。ギャップ材は、平板や、所定の形状の樹脂成形体など種々のものが挙げられる。ギャップ材は接着剤などで分割コア片6a,6bに固定してもよい。例えば、主ギャップ66gをエアギャップとし、脚部ギャップ61g,62g,63gはギャップ材を備えることが挙げられる。この場合、ギャップ材が両面接着テープや接着剤といった接着力を有するものであると、ギャップ材が磁気ギャップとして機能すると共に、分割コア片6a,6bを一体化する接合部材としても機能する。分割コア片6a,6bの磁脚片間が、上述の接着部材を兼ねるギャップ材で接合されることで、磁性コア6の組物としての強度を高められる上に、保形性に優れる。両面接着テープや接着剤層はその厚さを薄くし易く、比較的小さい磁気ギャップでよいギャップ61g,62g,63gに好適に利用できる。   At least one of the main gap 66g and the leg gaps 61g, 62g, and 63g is an air gap. For example, in the coil component 10, the main gap 66g is an air gap, and the shape retention of the split core pieces 6a, 6b can be maintained so that the air gaps are included in part of the leg gaps 61g, 62g, 63g. It is possible to provide a member (not shown). Alternatively, at least one of the main gap 66g and the leg gaps 61g, 62g, and 63g includes a gap material made of a nonmagnetic material. Nonmagnetic materials include nonmetallic inorganic materials such as alumina, nonmetallic organic materials such as resin, and the like. As the gap material, various materials such as a flat plate and a resin molded body having a predetermined shape can be mentioned. The gap material may be fixed to the split core pieces 6a and 6b with an adhesive or the like. For example, the main gap 66g may be an air gap, and the leg gaps 61g, 62g, and 63g may include gap members. In this case, when the gap material has an adhesive force such as a double-sided adhesive tape or an adhesive, the gap material functions as a magnetic gap and also functions as a joining member for integrating the split core pieces 6a and 6b. By joining between the magnetic leg pieces of the split core pieces 6a and 6b by the gap material which also serves as the above-mentioned adhesive member, the strength as a combination of the magnetic core 6 can be enhanced and the shape retention property is excellent. A double-sided adhesive tape or an adhesive layer is easy to reduce its thickness, and can be suitably used for gaps 61 g, 62 g, and 63 g which may have relatively small magnetic gaps.

(用途)
実施形態1のコイル部品10は、多相のトランス結合を行う回路基板7の構成部品の一つに利用される。回路基板7は、多相のトランス結合を行う電源装置8の構成部品の一つに利用される。図4では、回路基板7の一部が電源装置8のケースに収納された状態を部分的に、かつ仮想的に示す。回路基板7の一例として、DC−DCコンバータであって、多相のトランス結合型昇降圧チョッパ回路を構成するものが挙げられる。このような回路基板7を備える電源装置8は、例えば、ハイブリッド自動車や電気自動車、燃料電池自動車といった車両に搭載されるコンバータなどに利用することが挙げられる。
(Use)
The coil component 10 of the first embodiment is used as one of the components of the circuit board 7 that performs multiphase transformer coupling. The circuit board 7 is used as one of the components of the power supply device 8 that performs multiphase transformer coupling. In FIG. 4, a state in which a part of the circuit board 7 is housed in the case of the power supply device 8 is partially and virtually illustrated. An example of the circuit board 7 is a DC-DC converter, which constitutes a multiphase transformer coupled buck-boost chopper circuit. The power supply device 8 provided with such a circuit board 7 may be used, for example, as a converter mounted on a vehicle such as a hybrid car, an electric car, or a fuel cell car.

(回路基板)
実施形態1の回路基板7は、図4に示すように実施形態1のコイル部品10を備える。代表的には、回路基板7は、コイル部品10を含む各種の回路部品と、これら回路部品を搭載する基板本体70と、基板本体70に設けられ、回路部品が接続される配線パターン(図示せず)とを備える。各回路部品は、回路基板7の用途に応じて備えられ、代表的には配線パターンを介して接続される。コイル部品10では各コイル1,2,3の巻線の端部が配線パターンに接続される。上記の接続には、半田付けやねじ結合など、公知の接続方法が利用できる。
(Circuit board)
The circuit board 7 of the first embodiment includes the coil component 10 of the first embodiment as shown in FIG. Typically, the circuit board 7 is provided on various circuit components including the coil component 10, the substrate main body 70 on which the circuit components are mounted, and the wiring pattern (shown in FIG. And). Each circuit component is provided in accordance with the application of the circuit board 7 and is typically connected via a wiring pattern. In the coil component 10, the ends of the windings of the coils 1, 2, 3 are connected to the wiring pattern. For the above connection, known connection methods such as soldering and screw connection can be used.

図4は、回路基板7として、DC−DCコンバータであって、多相のトランス結合型昇降圧チョッパ回路を構成するものを例示する。この回路基板7は、回路部品として、コイル部品10の他、直流の電源71と、スイッチ72〜77、コンデンサ78、負荷79などを備える。スイッチ72〜77には、図4に例示するMOSFETなどの半導体素子が利用される。回路基板7は、これらのスイッチ72〜77の開閉を制御する制御回路(図示せず)などを備える。制御回路によってスイッチ72〜77の開閉を制御することで、この回路基板7は、電源71の電圧を下げて、負荷79に出力できる(降圧動作)。一方、入出力を逆転する場合、いわば図4に示す負荷79を電源に、電源71を負荷に入れ替える場合、スイッチ72〜77の制御内容を変更することで、電源電圧を昇圧して、負荷に出力できる(昇圧動作)。回路基板7の基本的な構成や材料などは、公知の技術を利用でき、詳細な説明を省略する。   FIG. 4 exemplifies, as the circuit board 7, a DC-DC converter, which constitutes a multiphase transformer coupled buck-boost chopper circuit. The circuit board 7 includes, as circuit components, a DC power supply 71, switches 72 to 77, a capacitor 78, a load 79, and the like in addition to the coil component 10. For the switches 72 to 77, semiconductor elements such as MOSFETs illustrated in FIG. 4 are used. The circuit board 7 includes a control circuit (not shown) that controls the opening and closing of the switches 72 to 77. By controlling the opening and closing of the switches 72 to 77 by the control circuit, the circuit board 7 can reduce the voltage of the power supply 71 and can output it to the load 79 (step-down operation). On the other hand, in the case of reversing the input and output, when replacing the load 79 shown in FIG. 4 with a power supply and replacing the power supply 71 with a load, the control content of the switches 72 to 77 is changed to boost the power supply voltage. Can be output (boost operation). Well-known techniques can be used for the basic configuration, materials, etc. of the circuit board 7 and the detailed description will be omitted.

(電源装置)
実施形態1の電源装置8は、実施形態1の回路基板7を備える。図4では、電源装置8は、上述のようにDC−DCコンバータであって、多相のトランス結合型昇降圧チョッパ回路を構成する回路基板7を備えるものを例示する。電源装置8におけるその他の構成については公知の構成を利用でき、詳細な説明を省略する。
(Power supply)
The power supply device 8 of the first embodiment includes the circuit board 7 of the first embodiment. In FIG. 4, the power supply device 8 is a DC-DC converter as described above, and includes a circuit board 7 that constitutes a multiphase transformer coupled buck-boost chopper circuit. A known configuration can be used for other configurations in the power supply device 8, and the detailed description will be omitted.

(主な効果)
実施形態1のコイル部品10は、主ギャップ66gとは別に、各コイル1,2,3が配置される各磁脚61,62,63にも脚部ギャップ61g,62g,63gを備えるという簡単な構成でありながら、各コイル1,2,3に流れる電流に差が有っても、この電流差によって磁気飽和し難い。また、実施形態1のコイル部品10は、各コイル1,2,3の結合係数の合計が0.7以上を満たす範囲で脚部ギャップ61g,62g,63gを備えるため、リップル電流の増加量を小さくできる。
(Main effect)
In the coil component 10 according to the first embodiment, the magnetic legs 61, 62, 63 in which the coils 1, 2, 3 are disposed separately from the main gap 66g are simply provided with leg gaps 61g, 62g, 63g. Although there is a difference between the currents flowing through the coils 1, 2 and 3 despite the configuration, magnetic saturation hardly occurs due to the current difference. In addition, since the coil component 10 according to the first embodiment includes the leg gaps 61g, 62g, and 63g in a range where the sum of coupling coefficients of the coils 1, 2, and 3 satisfies 0.7 or more, the amount of increase in ripple current is increased. It can be made smaller.

また、実施形態1のコイル部品10は、別個に用意したコイル1,2,3と、磁性コア6と、を組付けるだけで完成させることができる。そのため、このコイル部品10は生産性良く製造することができる。   Moreover, the coil component 10 of Embodiment 1 can be completed only by assembling the coils 1, 2, 3 and the magnetic core 6 separately prepared. Therefore, this coil component 10 can be manufactured with high productivity.

実施形態1のコイル部品10を備える実施形態1の回路基板7、及びこの回路基板7を備える実施形態1の電源装置8は、多相のトランス結合型昇降圧回路やこの回路を備えるコンバータなどに用いた場合に、リップル電流の増加量を小さく抑えつつ、上述の電流差に基づく磁気飽和が生じ難いため、所定の変圧動作を長期に亘り良好に行える。   The circuit board 7 of the first embodiment including the coil component 10 of the first embodiment and the power supply device 8 of the first embodiment including the circuit board 7 include a multiphase transformer coupled buck-boost circuit and a converter including the circuit. When used, it is difficult to cause magnetic saturation based on the above-mentioned current difference while suppressing the increase amount of the ripple current small, so that predetermined transformation operation can be performed well over a long period of time.

[実施形態2]
実施形態2では、4相のトランス結合型昇降圧回路に利用できるコイル部品10を、図5,6,7に基づいて説明する。図5,6,7の見方は、実施形態1の図1,2,3と同様である。
Second Embodiment
In the second embodiment, a coil component 10 that can be used for a four-phase transformer coupled buck-boost circuit will be described based on FIGS. The perspective of FIGS. 5, 6 and 7 is the same as that of FIGS. 1, 2 and 3 of the first embodiment.

図5,6に示すように、本例のコイル部品10は、4つのコイル1,2,3,4と、各コイル1,2,3,4が配置される4つの磁脚61,62,63,64を有する磁性コア6と、を備える(第四コイル4と第四磁脚64については図6を参照)。   As shown in FIGS. 5 and 6, the coil component 10 of this example includes four coils 1, 2, 3, 4 and four magnetic legs 61, 62, where each coil 1, 2, 3, 4 is disposed. And a magnetic core 6 having 63, 64 (see FIG. 6 for the fourth coil 4 and the fourth magnetic leg 64).

本例においても、図6に示すように、磁脚61,62,63,64は、中央脚部66の中心軸を中心とする仮想円上に等間隔に配置され、各磁脚61,62,63,64には図7に示す脚部ギャップ61g,62g,63g,64g(63g,64gは図示せず)が形成されている。図6に示すように、中央脚部66は、円柱部660と舌片状の4つの突出部661〜664とで構成される概略十字形状に形成されている。また、脚部ギャップ61g〜64gの各ギャップ長L61〜L64は、中央脚部66の主ギャップ66gのギャップ長L66よりも短くなっており、そのため、任意のコイルと、その他のコイルとの結合係数の合計が0.7以上となる。例えば、任意のコイルとして第一コイル1を選択した場合、コイル1,2の結合係数とコイル1,3の結合係数とコイル1,4の結合係数との合計が0.7以上である。任意のコイルとして、第二コイル2、第三コイル3、又は第四コイル4を選択した場合も同様に、合計結合係数が0.7以上である。 Also in this example, as shown in FIG. 6, the magnetic legs 61, 62, 63, 64 are arranged at equal intervals on a virtual circle centered on the central axis of the central leg 66, and the magnetic legs 61, 62 are arranged. , 63, 64 are formed with leg gaps 61g, 62g, 63g, 64g (63g, 64g are not shown) shown in FIG. As shown in FIG. 6, the central leg 66 is formed in a substantially cross shape including a cylindrical portion 660 and four tongues 661 to 664. Further, each gap length L 61 to L 64 of the leg gaps 61 g to 64 g is shorter than the gap length L 66 of the main gap 66 g of the central leg 66, and therefore any coil and other coils The sum of coupling coefficients of is 0.7 or more. For example, when the first coil 1 is selected as an arbitrary coil, the sum of the coupling coefficient of the coils 1 and 2, the coupling coefficient of the coils 1 and 3, and the coupling coefficient of the coils 1 and 4 is 0.7 or more. Similarly, when the second coil 2, the third coil 3 or the fourth coil 4 is selected as an arbitrary coil, the total coupling coefficient is 0.7 or more.

本例のコイル部品10も、別個に用意したコイル1〜4と磁性コア6とを組み合わせるだけで作製することができるので、生産性に優れる。また、本例のコイル部品10は、コイル1〜4が配置される磁脚61〜64に脚部ギャップ61g〜64gを形成することで磁気飽和し難くなっている。   Since the coil component 10 of this example can also be manufactured only by combining the coils 1 to 4 separately prepared with the magnetic core 6, the productivity is excellent. Moreover, the coil component 10 of this example is difficult to be magnetically saturated by forming the leg gaps 61g to 64g in the magnetic legs 61 to 64 in which the coils 1 to 4 are disposed.

[実施形態3]
実施形態3では、5相のトランス結合型昇降圧回路に利用できるコイル部品10を、図8,9,10に基づいて説明する。図8,9,10の見方は、実施形態1の図1,2,3と同様である。
Third Embodiment
In the third embodiment, a coil component 10 that can be used for a five-phase transformer coupled buck-boost circuit will be described based on FIGS. The perspective of FIGS. 8, 9 and 10 is the same as that of FIGS. 1, 2 and 3 of the first embodiment.

図8,9に示すように、本例のコイル部品10は、5つのコイル1,2,3,4,5と、各コイル1,2,3,4,5が配置される5つの磁脚61,62,63,64,65を有する磁性コア6と、を備える(第四コイル4については図9を参照)。   As shown in FIGS. 8 and 9, the coil component 10 of this example has five coils 1, 2, 3, 4, 5 and five magnetic legs in which the coils 1, 2, 3, 4, 5 are disposed. 61, 62, 63, 64, 65, and a magnetic core 6 (see FIG. 9 for the fourth coil 4).

本例においても、図9に示すように、磁脚61,62,63,64,65は、中央脚部66の中心軸を中心とする仮想円上に等間隔に配置され、各磁脚61,62,63,64,65には図10に示す脚部ギャップ61g,62g,63g,64g,65g(63g,64g,65gは図示せず)が形成されている。図9に示すように、中央脚部66は、円柱部660と舌片状の5つの突出部661〜665とで構成される概略星型形状に形成されている。また、脚部ギャップ61g〜65gの各ギャップ長L61〜L65は、中央脚部66の主ギャップ66gのギャップ長L66よりも短くなっており、そのため、任意のコイルと、その他のコイルとの結合係数の合計が0.7以上となる。 Also in this example, as shown in FIG. 9, the magnetic legs 61, 62, 63, 64, 65 are arranged at equal intervals on a virtual circle centered on the central axis of the central leg 66, , 62, 63, 64, 65 are formed with leg gaps 61g, 62g, 63g, 64g, 65g (63g, 64g, 65g are not shown) shown in FIG. As shown in FIG. 9, the central leg 66 is formed in a substantially star-like shape configured by a cylindrical portion 660 and five tongue-shaped protruding portions 661 to 665. Further, each gap length L 61 to L 65 of the leg gaps 61 g to 65 g is shorter than the gap length L 66 of the main gap 66 g of the central leg 66, and therefore any coil and other coils The sum of coupling coefficients of is 0.7 or more.

本例のコイル部品10も、別個に用意したコイル1〜5と磁性コア6とを組み合わせるだけで作製することができるので、生産性に優れる。また、本例のコイル部品10は、コイル1〜5が配置される磁脚61〜65に脚部ギャップ61g〜65gを形成することで磁気飽和し難くなっている。   The coil component 10 of this example can also be manufactured only by combining the separately prepared coils 1 to 5 and the magnetic core 6, and therefore, the productivity is excellent. Moreover, the coil component 10 of this example is difficult to be magnetically saturated by forming the leg gaps 61g to 65g in the magnetic legs 61 to 65 in which the coils 1 to 5 are disposed.

[試験例1]
実施形態2の図5〜7に示す4相のトランス結合型昇降圧回路に用いられるコイル部品10を作製して、通電電流値を変化させたときの磁気飽和状態を調べた。
[Test Example 1]
The coil component 10 used in the four-phase transformer coupled type buck-boost circuit shown in FIGS. 5 to 7 of the second embodiment was manufactured, and the magnetic saturation state was examined when the value of the supplied current was changed.

試験例のコイル部品の仕様は以下の通りである。
主ギャップ66gのギャップ長L66は2mmである。
各脚部ギャップ61g〜64gのギャップ長L61〜L64はそれぞれ、0.13mmであり、主ギャップのギャップ長よりも短い。
コイル部品10の合計結合係数は0.80である。
The specifications of the coil parts of the test example are as follows.
The gap length L 66 of the main gap 66 g is 2 mm.
The gap lengths L 61 to L 64 of the leg gaps 61 g to 64 g are respectively 0.13 mm, which is shorter than the gap length of the main gap.
The total coupling coefficient of the coil component 10 is 0.80.

この試験では、第一コイル、第二コイル、第三コイル、及び第四コイルにそれぞれ35Aの直流電流を供給し、そのときの電流波形を市販の電流プローブで測定した。直流電流が35Aのときの各コイルの電流波形を図11に示す。図11は、上述の電流波形を示すグラフであり、横軸は時間(マイクロ秒)、縦軸は直流電流値(A)を示す。   In this test, a direct current of 35 A was supplied to each of the first coil, the second coil, the third coil, and the fourth coil, and the current waveform at that time was measured with a commercially available current probe. The current waveform of each coil when the direct current is 35 A is shown in FIG. FIG. 11 is a graph showing the above-mentioned current waveform, the horizontal axis indicates time (microseconds), and the vertical axis indicates a direct current value (A).

図11に示すように、各コイル1,2,3,4の電流波形は若干分離しているものの、各コイル1,2,3,4の電流波形は規則的な形状であり、局所的なピークなどが存在していない。電流波形の分離は、結合係数がある程度低いことで生じる。つまり、結合係数が高いと、各コイル1,2,3,4の電流波形が重複する箇所が多く、分離箇所が少なくなる。電流波形が大きく分離した箇所の発生は、コイル部品10が磁気飽和していることを意味する。つまり、本試験例のコイル部品10では、磁気飽和は生じていないといえる。   As shown in FIG. 11, although the current waveforms of the respective coils 1, 2, 3 and 4 are slightly separated, the current waveforms of the respective coils 1, 2, 3 and 4 are regular in shape and locally There is no peak etc. The separation of the current waveforms results from a somewhat lower coupling coefficient. That is, when the coupling coefficient is high, the current waveforms of the coils 1, 2, 3 and 4 overlap in many places, and the separation places are reduced. The occurrence of a location where the current waveform is largely separated means that the coil component 10 is magnetically saturated. That is, it can be said that magnetic saturation does not occur in the coil component 10 of this test example.

この試験から、多相のトランス結合型昇降圧回路に用いられるコイル部品10として、主ギャップ66gに加えて、各コイル1,2,3,4が配置される各磁脚61,62,63,64に脚部ギャップ61g,62g,63g,64gを備えることで、磁気飽和を低減できることが示された。   From this test, each magnetic leg 61, 62, 63, where each coil 1, 2, 3, 4 is arranged in addition to the main gap 66g as a coil component 10 used for a multiphase transformer coupled type buck-boost circuit It has been shown that the magnetic saturation can be reduced by providing the leg gaps 61g, 62g, 63g and 64g at 64.

本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、以下の少なくとも一つの変更が可能である。
(1)分割コア片の形状や分割数を変更する。例えば、連結部を中央脚部と磁脚とは別のコア片とすることが挙げられる。
(2)各脚片の脚部ギャップ長を異ならせる。
(3)各コイルと磁性コアとの間に絶縁材料からなる介在部材を備える、又は各コイルを覆う絶縁被覆材を備える、又は磁性コアを覆う絶縁被覆材を備える。これらの場合、各コイルと磁性コアとの間の絶縁性を高められる。
(4)回路基板や電源装置を、昇圧動作のみを行うものとする、又は降圧動作のみを行うものとする。
The present invention is not limited to these exemplifications, but is shown by the claims, and is intended to include all modifications within the scope and meaning equivalent to the claims.
For example, at least one of the following modifications is possible.
(1) Change the shape and number of divisions of the split core piece. For example, it may be mentioned that the central leg and the magnetic leg are separate core pieces.
(2) Make the leg gap length of each leg different.
(3) The interposition member which consists of an insulating material between each coil and a magnetic core is provided, or the insulation coating material which covers each coil is provided, or the insulation coating material which covers a magnetic core is provided. In these cases, the insulation between each coil and the magnetic core can be enhanced.
(4) The circuit board and the power supply device are assumed to perform only the boost operation or perform only the step-down operation.

10 コイル部品
1 第一コイル
2 第二コイル
3 第三コイル
4 第四コイル
5 第五コイル
6 磁性コア
61 第一磁脚 62 第二磁脚 63 第三磁脚 64 第四磁脚 65 第五磁脚
66 中央脚部
660 円柱部 661,662,663,664,665 突出部
67,68 連結部
61g,62g,63g,64g,65g 脚部ギャップ
66g 主ギャップ
6a,6b 分割コア片
7 回路基板
70 基板本体
71 電源
72,73,74,75,76,77 スイッチ
78 コンデンサ
79 負荷
8 電源装置
DESCRIPTION OF SYMBOLS 10 coil parts 1 1st coil 2 2nd coil 3 3rd coil 4 4th coil 5 5th coil 6 magnetic core 61 1st magnetic leg 62 2nd magnetic leg 63 3rd magnetic leg 64 4th magnetic leg 65 5th magnetic Leg 66 central leg 660 cylindrical portion 661, 662, 663, 664, 665 projecting portion 67, 68 connecting portion 61 g, 62 g, 63 g, 64 g, 65 g leg gap 66 g main gap 6 a, 6 b split core piece 7 circuit board 70 substrate Main unit 71 Power supply 72, 73, 74, 75, 76, 77 Switch 78 Capacitor 79 Load 8 Power supply

Claims (9)

多相のトランス結合に利用されるコイル部品であって、
3以上のn個の独立したコイルと1つの磁性コアとを備え、
前記磁性コアは、
各コイルが配置されるn個の磁脚と、
任意の二つの前記磁脚の間に配置される部分を有する中央脚部と、
n個の前記磁脚及び前記中央脚部を並列状態で連結する一対の連結部と、
前記中央脚部に介在される主ギャップと、
各磁脚に介在される脚部ギャップと、を備えるコイル部品。
A coil component used for multiphase transformer coupling,
With 3 or more n independent coils and 1 magnetic core,
The magnetic core is
N magnetic legs on which each coil is disposed,
A central leg having a portion disposed between any two of said magnetic legs;
a pair of connecting parts connecting the n magnetic legs and the central leg in parallel;
A main gap interposed in the central leg;
And a leg gap interposed in each magnetic leg.
前記n個のコイルのうちの任意のコイルと残りのコイルとの結合係数の合計が0.7以上である請求項1に記載のコイル部品。   The coil component according to claim 1, wherein the sum of coupling coefficients between any one of the n coils and the remaining coils is 0.7 or more. 前記中央脚部の中心軸を中心とする仮想円上に、n個の前記磁脚が等間隔に配置されている請求項1又は請求項2に記載のコイル部品。   The coil component according to claim 1 or 2, wherein the n magnetic legs are arranged at equal intervals on a virtual circle centered on the central axis of the central leg. 前記中央脚部は、その軸方向から見たときに、周方向に隣接する二つの前記磁脚の間のそれぞれに延びるn個の突出部を備える請求項3に記載のコイル部品。   The coil component according to claim 3, wherein the central leg includes n protrusions each extending between two circumferentially adjacent magnetic legs when viewed in the axial direction. 前記中央脚部をその軸方向から見たときの前記突出部の外周形状は、前記コイルの外周面に沿った形状である請求項4に記載のコイル部品。   The coil component according to claim 4, wherein an outer peripheral shape of the projecting portion when the central leg portion is viewed from the axial direction is a shape along an outer peripheral surface of the coil. 前記脚部ギャップのギャップ長は、前記主ギャップのギャップ長よりも短い請求項1から請求項5のいずれか1項に記載のコイル部品。   The coil part according to any one of claims 1 to 5, wherein a gap length of the leg gap is shorter than a gap length of the main gap. 前記脚部ギャップのギャップ長は、前記主ギャップのギャップ長の10%以下である請求項6に記載のコイル部品。   The coil component according to claim 6, wherein the gap length of the leg gap is 10% or less of the gap length of the main gap. 前記請求項1から請求項7のいずれか1項に記載のコイル部品を備える回路基板。   A circuit board provided with the coil component according to any one of claims 1 to 7. 請求項8に記載の回路基板を備える電源装置。   A power supply device comprising the circuit board according to claim 8.
JP2017206160A 2017-10-25 2017-10-25 Coil component, circuit board, and power supply device Pending JP2019079944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206160A JP2019079944A (en) 2017-10-25 2017-10-25 Coil component, circuit board, and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206160A JP2019079944A (en) 2017-10-25 2017-10-25 Coil component, circuit board, and power supply device

Publications (1)

Publication Number Publication Date
JP2019079944A true JP2019079944A (en) 2019-05-23

Family

ID=66628151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206160A Pending JP2019079944A (en) 2017-10-25 2017-10-25 Coil component, circuit board, and power supply device

Country Status (1)

Country Link
JP (1) JP2019079944A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113077956A (en) * 2021-03-19 2021-07-06 合肥工业大学 High-power high-frequency five-phase magnetic integrated transformer
WO2022078769A1 (en) * 2020-10-15 2022-04-21 Tdk Electronics Ag Compact coupled inductor
JP2022143320A (en) * 2021-03-17 2022-10-03 Tmp株式会社 choke coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078769A1 (en) * 2020-10-15 2022-04-21 Tdk Electronics Ag Compact coupled inductor
JP2022143320A (en) * 2021-03-17 2022-10-03 Tmp株式会社 choke coil
JP7445900B2 (en) 2021-03-17 2024-03-08 Tmp株式会社 choke coil
CN113077956A (en) * 2021-03-19 2021-07-06 合肥工业大学 High-power high-frequency five-phase magnetic integrated transformer
CN113077956B (en) * 2021-03-19 2022-09-27 合肥工业大学 High-power high-frequency five-phase magnetic integrated transformer

Similar Documents

Publication Publication Date Title
JP6098870B2 (en) Reactor, converter, and power converter
EP2577691B1 (en) Two-phase coupled inductors which promote improved printed circuit board layout
JP4654317B1 (en) Reactor
US8933774B2 (en) Reactor
JP6124110B2 (en) Composite reactor for multi-phase converter and multi-phase converter using the same
TWI442425B (en) Three-phase high frequency transformer
TWI430299B (en) Integrated multi-phase coupled inductor and method for producing inductance
CN111213216B (en) Coil assembly, circuit board and power supply device
JP2011520259A (en) Coupling inductor and manufacturing method thereof
JP2019079944A (en) Coil component, circuit board, and power supply device
TWI611438B (en) Composite smoothing inductor and smoothing circuit
JP2014535172A (en) Induction parts and methods of use
JP2021061647A (en) Coil component and interleaving dc-dc converter using the same
JP7142527B2 (en) Coupled inductors and switching circuits
JP2012079951A (en) Reactor device
JP2013157352A (en) Coil device
JP3144913B2 (en) Thin transformer and power supply using the same
TW201539495A (en) Surface mount power inductor component with stacked component accommodation
JP2019079945A (en) Coil component, circuit board, and power supply device
JP5189637B2 (en) Coil parts and power supply circuit using the same
JP2019201084A (en) Coil part, circuit board, and power supply device
JP5267802B2 (en) Reactor assembly
US10763028B2 (en) Magnetic component and magnetic core of the same
JP2015060850A (en) Inductance unit
JP3187497U (en) Magnetic parts