JP2019078440A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2019078440A
JP2019078440A JP2017204863A JP2017204863A JP2019078440A JP 2019078440 A JP2019078440 A JP 2019078440A JP 2017204863 A JP2017204863 A JP 2017204863A JP 2017204863 A JP2017204863 A JP 2017204863A JP 2019078440 A JP2019078440 A JP 2019078440A
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
oil
temperature sensor
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017204863A
Other languages
Japanese (ja)
Inventor
雄章 水藤
Takeaki Mizufuji
雄章 水藤
増田 哲也
Tetsuya Masuda
哲也 増田
長谷川 寛
Hiroshi Hasegawa
寛 長谷川
誠之 飯高
Masayuki Iidaka
誠之 飯高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017204863A priority Critical patent/JP2019078440A/en
Publication of JP2019078440A publication Critical patent/JP2019078440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

To provide an air conditioner that can be operated at high efficiency.SOLUTION: An air conditioner includes: a compressor 101 driven by an engine 100; a bypass pipe line 404 for bypassing a refrigerant flowing out from an outdoor heat exchanger 104 to a suction side of the compressor 101; flow rate control means 107 for restricting a flow rate of the refrigerant in the bypass pipe line 404; an oil separator 102; an oil return pipe line 405 for returning separated oil to the suction side of the compressor 101; a first temperature sensor 301 for measuring a temperature of the refrigerant on the discharge side; and decompression means 108 and a second temperature sensor 302 that are provided in the oil return pipe line 405 in this order from the connection side to the oil separator 102. When a difference between values of the first temperature sensor 301 and the second temperature sensor 302 increases, the flow rate of the refrigerant in the bypass pipe line 404 is reduced.SELECTED DRAWING: Figure 1

Description

本発明は空気調和機に関するものである。   The present invention relates to an air conditioner.

従来技術として、冷房運転時に室外熱交換器で凝縮した冷媒の一部を分岐させ、バイパス膨張弁で減圧した後に圧縮機の吸入側の冷媒に合流させるバイパス管路と、圧縮機の吸入側の冷媒の温度と圧力から過熱度を算出する手段とを備え、過熱度が所定の値になるようにバイパス膨張弁の開度を制御することを特徴とした空気調和機が提案されている(例えば、特許文献1参照)。   As a prior art, a bypass pipe line which branches a part of the refrigerant condensed by the outdoor heat exchanger during cooling operation, and after being decompressed by the bypass expansion valve, joins the refrigerant on the suction side of the compressor, and There has been proposed an air conditioner characterized by comprising means for calculating the degree of superheat from the temperature and pressure of the refrigerant, and controlling the degree of opening of the bypass expansion valve so that the degree of superheat becomes a predetermined value (for example, , Patent Document 1).

図11は、特許文献1に記載された従来の空気調和機を示すものである。図11に示すように、圧縮機5と、圧縮機5の吐出側の冷媒管路に接続され圧縮機5の吐出側の冷媒からオイルを分離するオイルセパレータ19と、オイルセパレータ19に一端を接続され、圧縮機5の吸入側の冷媒管路に他端を接続されたオイル戻し管路31と、冷房運転時に室外熱交換器10より中圧の冷媒が流入する中圧冷媒管路40と、中圧冷媒管路40に一端を接続され圧縮機5の吸入側の冷媒管路に他端を接続されたバイパス管路33と、バイパス管路33に流れる冷媒を膨張させるバイパス膨張弁21と、吸入冷媒温度センサ8と、吸入冷媒圧力センサ32から構成されており、吸入冷媒温度センサ8と吸入圧力冷媒センサ32から得られる圧縮機5の吸入側の冷媒の温度と圧力をもとに算出される圧縮機5の吸入側の過熱度が所定の値になるようにバイパス膨張弁21の開度を制御する。   FIG. 11 shows a conventional air conditioner described in Patent Document 1. As shown in FIG. As shown in FIG. 11, the compressor 5, an oil separator 19 connected to a refrigerant pipe on the discharge side of the compressor 5 to separate oil from the refrigerant on the discharge side of the compressor 5, and one end connected to the oil separator 19 An oil return pipe 31 whose other end is connected to the refrigerant pipe on the suction side of the compressor 5, and a medium pressure refrigerant pipe 40 into which medium pressure refrigerant flows from the outdoor heat exchanger 10 during cooling operation; A bypass line 33 whose one end is connected to the medium pressure refrigerant line 40 and whose other end is connected to the suction side refrigerant line of the compressor 5; a bypass expansion valve 21 which expands the refrigerant flowing in the bypass line 33; It is composed of the suction refrigerant temperature sensor 8 and the suction refrigerant pressure sensor 32, and is calculated based on the temperature and pressure of the refrigerant on the suction side of the compressor 5 obtained from the suction refrigerant temperature sensor 8 and the suction pressure refrigerant sensor 32. Of the suction side of the compressor 5 Controlling the opening of the bypass expansion valve 21 so that a constant value.

特開2011−47525号公報JP 2011-47525 A

しかしながら、前記従来の構成では、圧縮機の吸入側の冷媒の過熱度を適正化することを目的としているため、室内機を経由する低圧冷媒管路にオイルが溜まった場合に、低圧冷媒管路の冷媒の流路面積が減り、低圧冷媒管路の冷媒の流速が大きくなるという課題があった。これにより、低圧冷媒管路を流れる冷媒の圧損が増加し、低圧側の冷媒の圧力が低下して圧縮機の吸入側の冷媒の密度が低下するため、同一能力を維持するためには圧縮機の回転数を上げる必要がある。特に、エンジンを圧縮機の駆動源として用いる場合、エンジンは回転数の増加に伴い空気の吸入負圧が大きくなりポンピングロスが増加するので、ガス消費量が増え、効率が低下する。   However, since the conventional configuration aims at optimizing the degree of superheat of the refrigerant on the suction side of the compressor, when oil is accumulated in the low pressure refrigerant pipeline passing through the indoor unit, the low pressure refrigerant pipeline There is a problem that the flow passage area of the refrigerant in the above-mentioned refrigerant decreases, and the flow velocity of the refrigerant in the low-pressure refrigerant pipeline increases. As a result, the pressure loss of the refrigerant flowing through the low pressure refrigerant pipe increases, the pressure of the refrigerant on the low pressure side decreases, and the density of the refrigerant on the suction side of the compressor decreases. It is necessary to increase the number of rotations of In particular, when the engine is used as a drive source of a compressor, the intake negative pressure of air increases as the engine speed increases, and the pumping loss increases, so the gas consumption increases and the efficiency decreases.

また、エンジンを圧縮機の駆動源として用いる場合、外部の動力により駆動する開放型の圧縮機を利用することになる。開放型の圧縮機は、吐出する冷媒を旋回させてオイルを分離する機構を持たないため、圧縮機からの高温のオイルの吐出量が多くなる。吐出されたオイルはオイルセパレータで大部分が冷媒から分離され、オイルセパレータに溜まるが、圧縮機のオイルを枯渇させないためには、より多くのオイルを圧縮機の吸入側の冷媒に合流させる必要がある。これにより圧縮機の吸入側の冷媒の受熱量が増えるので、圧縮機の吸入側の冷媒の過熱度を適正化するために、圧縮機の吸入側にバイパスさせる冷媒の流量を増やして圧縮機の吸入側の冷媒をより冷却する必要があるが、これに伴って室内機を経由する低圧側の冷媒の流量がさらに少なくなり、オイルを回収しにくくなるため、さらに低圧冷媒管路の圧損が増加し、圧縮機の吸入側の密度が低下する。故に、同一能力を維持するには、エンジンの回転数を更に上げる必要があるので、特に効率が低下する。
本発明は、前記の従来課題を解決するもので、低圧冷媒管路にオイルが溜まった場合にも、低圧冷媒管路の冷媒の流路面積が増え、低圧冷媒管路の冷媒の流速が小さくなる空気調和機を提供すること目的とする。
In addition, when the engine is used as a drive source of the compressor, an open compressor driven by an external power is used. Since the open-type compressor does not have a mechanism for swirling the discharged refrigerant to separate the oil, the amount of discharge of high-temperature oil from the compressor increases. The discharged oil is mostly separated from the refrigerant by the oil separator and accumulated in the oil separator, but in order not to deplete the compressor oil, it is necessary to combine more oil with the refrigerant on the suction side of the compressor is there. As a result, since the amount of heat received by the refrigerant on the suction side of the compressor increases, the flow rate of the refrigerant to be bypassed to the suction side of the compressor is increased to optimize the degree of superheat of the refrigerant on the suction side of the compressor. Although it is necessary to further cool the suction side refrigerant, the flow rate of the low pressure side refrigerant passing through the indoor unit is further reduced along with this, and it becomes difficult to recover the oil, further increasing the pressure loss of the low pressure refrigerant pipeline. And the density on the suction side of the compressor is reduced. Hence, maintaining the same capacity requires a further increase in the engine speed, resulting in a particularly reduced efficiency.
The present invention solves the above-mentioned conventional problems, and even when oil is accumulated in the low pressure refrigerant pipe, the flow area of the refrigerant in the low pressure refrigerant pipe increases and the flow velocity of the refrigerant in the low pressure refrigerant pipe is small. It is an object of the present invention to provide an air conditioner.

前記従来の課題を解決するために、本発明の空気調和機は、エンジンにより駆動する圧縮機と、室外熱交換器より流出する冷媒を圧縮機の吸入側にバイパスさせるバイパス管路と、バイパス管路へ流入する冷媒の流量を制限する流量調整手段と、オイルセパレータと、分離したオイルを圧縮機の吸入側に戻すオイル戻し管路と、吐出側の冷媒の温度を測定する第1温度センサと、オイル戻し管路にはオイルセパレータとの接続側から順に減圧手段と第2温度センサとを備え、圧縮機の吸入側の冷媒の過熱度が所定になるようにバイパス管路の冷媒の流量を調整する空気調和機であって、第1温度センサと第2温度センサの値の差が増加した場合に、圧縮機の吸入側の冷媒の過熱度によらず、バイパス管路の冷媒の流量を減らすとしたものである。   In order to solve the above-mentioned conventional problems, an air conditioner according to the present invention includes a compressor driven by an engine, a bypass line for bypassing a refrigerant flowing out from an outdoor heat exchanger to a suction side of the compressor, and a bypass pipe Flow rate adjusting means for limiting the flow rate of the refrigerant flowing into the passage, an oil separator, an oil return pipe for returning the separated oil to the suction side of the compressor, and a first temperature sensor for measuring the temperature of the refrigerant on the discharge side The oil return pipe is provided with pressure reducing means and a second temperature sensor in order from the connection side with the oil separator, and the flow rate of the refrigerant in the bypass pipe is set so that the degree of superheat of the refrigerant on the suction side of the compressor becomes predetermined. An air conditioner that adjusts the flow rate of the refrigerant in the bypass pipeline regardless of the degree of superheat of the refrigerant on the suction side of the compressor when the difference between the values of the first temperature sensor and the second temperature sensor increases. It is intended to reduce .

ここで、オイルセパレータにおいて、オイル戻し管路とオイルセパレータの接続部よりも上にオイルの液面が存在する場合、つまり、オイルセパレータにオイルが溜まっている場合、オイル戻し管路にはオイルが流入する。オイルは非圧縮性流体であり、減圧に伴う温度低下がないので、減圧手段を通過する際は温度低下せず、第1温度センサと第2温度センサの温度差はほとんどない。また、能力一定の場合ではオイルの液面がオイル戻し管路とオイルセパレータの接続部よりも上にある限り、温度差は一定となる。このとき、オイルは低圧冷媒管路に溜まっていないと判断する。   Here, in the oil separator, when the liquid level of the oil exists above the connection portion between the oil return pipe and the oil separator, that is, when the oil is accumulated in the oil separator, the oil is in the oil return pipe. To flow. Oil is an incompressible fluid and there is no temperature drop associated with decompression, so there is no temperature drop when passing the decompression means, and there is almost no temperature difference between the first temperature sensor and the second temperature sensor. In addition, in the case where the capacity is constant, the temperature difference is constant as long as the oil level is above the connection between the oil return pipe and the oil separator. At this time, it is determined that the oil has not accumulated in the low pressure refrigerant pipe.

一方で、運転中にオイルセパレータのオイルが減ると、オイルの液面がオイル戻し管路とオイルセパレータの接続部に近づく。このとき、冷媒の循環に伴って、オイルセパレータに溜まっているオイルの液面が揺れるため、オイルの液面がオイル戻し管路とオイルセパレータの接続部よりも低くなることがある。この場合オイル戻し管路には、圧縮性流体である冷媒が一時的に流入するため、減圧手段の通過の際に、減圧による温度低下を生じ、第2温度センサにおいては、冷媒の流入に応じて温度が低下し、第1温度センサと第2温度センサの温度差が一時的に大きくなる。オイルの液面の揺れによって、オイルの液面がオイル戻し管路とオイルセパレータの接続部よりも上に存在するようになると、オイル戻し管路にはオイルのみが流入するため、第1温度センサと第2温度センサの温度差は小さくなる。このように、オイルの液面がオイル戻し管路とオイルセパレータの接続部の付近にある場合、第1温度センサと第2温度センサの温度差は大小を繰り返し、オイルの液面が更に下がっていくと、オイル戻し管路に流入する冷媒量が増えるので、第1温度センサと第2温度センサの温度差は大小を繰り返しながら徐々に大きくなっていく。このとき、オイルは低圧冷媒管路に溜まっていると判断する。   On the other hand, if the oil of the oil separator is reduced during operation, the liquid level of the oil approaches the connection between the oil return pipe and the oil separator. At this time, the liquid level of the oil accumulated in the oil separator shakes with the circulation of the refrigerant, so the liquid level of the oil may be lower than the connection portion between the oil return pipe and the oil separator. In this case, since the refrigerant, which is a compressible fluid, temporarily flows into the oil return pipeline, the temperature reduction due to the pressure reduction occurs when passing through the pressure reducing means, and the second temperature sensor responds to the inflow of the refrigerant. Temperature decreases, and the temperature difference between the first temperature sensor and the second temperature sensor temporarily increases. If the oil level is above the connection between the oil return line and the oil separator due to the fluctuation of the oil level, only oil flows into the oil return line, so the first temperature sensor The temperature difference between the second temperature sensor and the second temperature sensor decreases. As described above, when the oil level is in the vicinity of the connection portion between the oil return pipe and the oil separator, the temperature difference between the first temperature sensor and the second temperature sensor repeatedly increases and decreases, and the oil level drops further. As the amount of refrigerant flowing into the oil return pipe increases as it progresses, the temperature difference between the first temperature sensor and the second temperature sensor gradually increases while repeating large and small. At this time, it is determined that the oil is accumulated in the low pressure refrigerant pipe.

これによって、第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、一時的に流速が増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。   As a result, when the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of refrigerant in the bypass line. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity temporarily increases, and the oil accumulated in the low pressure refrigerant pipe is recovered. The flow passage area of the refrigerant in the pipe increases.

本発明の空気調和機は、室内機を経由する低圧冷媒管路にオイルが溜まった場合に、冷媒の流路面積が増え、低圧冷媒管路の冷媒の流速が小さくなる。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を
上げることができる。
In the air conditioner of the present invention, when oil is accumulated in the low pressure refrigerant pipeline passing through the indoor unit, the flow passage area of the refrigerant increases and the flow velocity of the refrigerant in the low pressure refrigerant pipeline decreases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases. As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における冷房運転時の冷媒流路を示す冷凍サイクル図Refrigerating cycle diagram showing a refrigerant flow path at the time of cooling operation in Embodiment 1 of the present invention 本発明の実施の形態1におけるオイルセパレータの断面図Sectional view of an oil separator according to Embodiment 1 of the present invention 本発明の実施の形態1における流量調整手段の制御フロー図Control flow diagram of the flow rate adjusting means in the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 本発明の実施の形態1における空気調和機の冷凍サイクル図Refrigeration cycle diagram of the air conditioner according to the first embodiment of the present invention 従来の空気調和機の冷凍サイクル図Conventional air conditioner refrigeration cycle diagram

第1の発明は、本発明の空気調和機は、室内機と室外機からなる空気調和機において、エンジンと、エンジンの動力により駆動する圧縮機と、圧縮機の吐出側には、圧縮機の吐出側より順に、圧縮機の吐出側の冷媒が流入する高圧冷媒管路と、高圧冷媒管路より冷媒が流入する中圧冷媒管路と、中圧冷媒管路より冷媒が流入するとともに冷媒を圧縮機の吸入側へ流入させる低圧冷媒管路を備え、高圧冷媒管路は、圧縮機の吐出側から順に、圧縮機より吐出された冷媒からオイルを分離するオイルセパレータと、高圧冷媒管路に流入する冷媒と室外空気とで熱交換を行う室外熱交換器と、室外膨張弁を備え、中圧冷媒管路は、中圧冷媒管路より流出する冷媒を膨張させる室内膨張弁を備え、低圧冷媒管路は、室内膨張弁により減圧された冷媒と室内空気とで熱交換を行う室内熱交換器を備え、高圧冷媒管路の室外熱交換器よりも下流側の冷媒管路もしくは中圧冷媒管路に一端を接続され低圧冷媒管路の室内熱交換器よりも下流側の冷媒管路に他端を接続されたバイパス管路を備え、バイパス管路には、バイパス管路へ流入する冷媒の流量を制限する流量調整手段を備え、オイルセパレータに一端を接続され低圧冷媒管路の室内熱交換器よりも下流側の冷媒管路もしくはバイパス管路に他端を接続されたオイル戻し管路を備え、オイル戻し管路にはオイルを減圧する減圧手段を備え、オイル戻し管路の減圧手段よりも上流側の管路もしくは高圧冷媒管路の室外熱交換器よりも上流側の冷媒管路には第1温度センサを備え、オイル戻し管路の減圧手段よりも下流側の管路には第2温度センサを備え、低圧冷媒管路の低圧冷媒管路とオイル戻し管路の接続部及び低圧冷媒管路とバイパス管路の接続部よりも下流側の冷媒管路には第3温度センサを備え、低圧冷媒管路において室内熱交換器よりも下流側の冷媒管路には圧力センサを備え、第3温度センサと圧力センサの値から圧縮機の吸入側の冷媒の過熱度を算出する算出手段を備え、過熱度が所定値になるように流量調整手段の開度を制御する空気調和機であって、第1温度センサと第2温度センサの値の差が増加した場合は、バイパス管路へ流入する冷媒の流量を下げるとしたものである。   According to a first aspect of the present invention, an air conditioner according to the present invention is an air conditioner comprising an indoor unit and an outdoor unit, the engine, a compressor driven by the power of the engine, and a compressor on the discharge side of the compressor. The refrigerant flows from the high pressure refrigerant pipeline where the refrigerant on the discharge side of the compressor flows in from the discharge side, the medium pressure refrigerant pipeline where the refrigerant flows in from the high pressure refrigerant pipe, and the medium pressure refrigerant pipeline The high pressure refrigerant pipeline is provided with an oil separator for separating oil from the refrigerant discharged from the compressor in order from the discharge side of the compressor, and a high pressure refrigerant pipeline. An outdoor heat exchanger that exchanges heat between the inflowing refrigerant and the outdoor air, and an outdoor expansion valve. The medium pressure refrigerant pipe has an indoor expansion valve that expands the refrigerant flowing out of the medium pressure refrigerant pipe. The refrigerant pipeline is a refrigerant that has been depressurized by the indoor expansion valve and An indoor heat exchanger that exchanges heat with internal air, and one end of which is connected to a refrigerant pipeline or medium-pressure refrigerant pipeline downstream of the outdoor heat exchanger of the high-pressure refrigerant pipeline, and indoor heat of the low-pressure refrigerant pipeline The bypass line includes a bypass line whose other end is connected to the refrigerant line downstream of the exchanger, and the bypass line includes flow rate adjusting means for limiting the flow rate of the refrigerant flowing into the bypass line. It has an oil return line connected at one end and connected at the other end to a refrigerant line or bypass line downstream of the indoor heat exchanger in the low pressure refrigerant line. A first temperature sensor in a pipe line upstream of the pressure reducing means in the oil return pipe or in a refrigerant pipe upstream of the outdoor heat exchanger in the high pressure refrigerant pipe; The second temperature sensor is installed in the pipe downstream of the pressure reducing means. A third temperature sensor is provided on the refrigerant pipeline downstream of the connection between the low pressure refrigerant pipeline and the oil return pipeline of the low pressure refrigerant pipeline and the connection between the low pressure refrigerant pipeline and the bypass pipeline, The refrigerant pipe has a pressure sensor on the refrigerant pipe downstream of the indoor heat exchanger, and calculation means for calculating the degree of superheat of the refrigerant on the suction side of the compressor from the values of the third temperature sensor and pressure sensor. The air conditioner controls the opening degree of the flow rate adjusting means so that the degree of superheat becomes a predetermined value, and when the difference between the values of the first temperature sensor and the second temperature sensor increases, the air flows into the bypass pipeline To reduce the flow rate of the refrigerant.

ここで、オイルセパレータにおいて、オイル戻し管路とオイルセパレータの接続部よりも上にオイルの液面が存在する場合、つまり、オイルセパレータにオイルが溜まっている場合、オイル戻し管路にはオイルが流入する。オイルは非圧縮性流体であり、減圧に伴う温度低下がないので、減圧手段を通過する際は温度低下せず、第1温度センサと第2温度センサの温度差はほとんどない。また、能力一定の場合ではオイルの液面がオイル戻し管路とオイルセパレータの接続部よりも上にある限り、温度差は一定となる。このとき、オイルは低圧冷媒管路に溜まっていないと判断する。   Here, in the oil separator, when the liquid level of the oil exists above the connection portion between the oil return pipe and the oil separator, that is, when the oil is accumulated in the oil separator, the oil is in the oil return pipe. To flow. Oil is an incompressible fluid and there is no temperature drop associated with decompression, so there is no temperature drop when passing the decompression means, and there is almost no temperature difference between the first temperature sensor and the second temperature sensor. In addition, in the case where the capacity is constant, the temperature difference is constant as long as the oil level is above the connection between the oil return pipe and the oil separator. At this time, it is determined that the oil has not accumulated in the low pressure refrigerant pipe.

運転中にオイルセパレータのオイルが減ると、オイルの液面がオイル戻し管路とオイルセパレータの接続部に近づく。このとき、冷媒の循環に伴って、オイルセパレータに溜ま
っているオイルの液面が揺れるため、オイルの液面がオイル戻し管路とオイルセパレータの接続部よりも低くなることがある。この場合オイル戻し管路には、圧縮性流体である冷媒が一時的に流入するため、減圧手段の通過の際に、減圧による温度低下を生じ、第2温度センサにおいては、冷媒の流入に応じて温度が低下し、第1温度センサと第2温度センサの温度差が一時的に大きくなる。オイルの液面の揺れによって、オイルの液面がオイル戻し管路とオイルセパレータの接続部よりも上に存在するようになると、オイル戻し管路にはオイルのみが流入するため、第1温度センサと第2温度センサの温度差は小さくなる。
If the oil in the oil separator decreases during operation, the oil level approaches the connection between the oil return line and the oil separator. At this time, the liquid level of the oil accumulated in the oil separator shakes with the circulation of the refrigerant, so the liquid level of the oil may be lower than the connection portion between the oil return pipe and the oil separator. In this case, since the refrigerant, which is a compressible fluid, temporarily flows into the oil return pipeline, the temperature reduction due to the pressure reduction occurs when passing through the pressure reducing means, and the second temperature sensor responds to the inflow of the refrigerant. Temperature decreases, and the temperature difference between the first temperature sensor and the second temperature sensor temporarily increases. If the oil level is above the connection between the oil return line and the oil separator due to the fluctuation of the oil level, only oil flows into the oil return line, so the first temperature sensor The temperature difference between the second temperature sensor and the second temperature sensor decreases.

このように、オイルの液面がオイル戻し管路とオイルセパレータの接続部の付近にある場合、第1温度センサと第2温度センサの温度差は大小を繰り返し、オイルの液面が更に下がっていくと、オイル戻し管路に流入する冷媒量が増えるので、第1温度センサと第2温度センサの温度差は大小を繰り返しながら徐々に大きくなっていく。このとき、オイルは低圧冷媒管路に溜まっていると判断する。   As described above, when the oil level is in the vicinity of the connection portion between the oil return pipe and the oil separator, the temperature difference between the first temperature sensor and the second temperature sensor repeatedly increases and decreases, and the oil level drops further. As the amount of refrigerant flowing into the oil return pipe increases as it progresses, the temperature difference between the first temperature sensor and the second temperature sensor gradually increases while repeating large and small. At this time, it is determined that the oil is accumulated in the low pressure refrigerant pipe.

これによって、第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   As a result, when the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of refrigerant in the bypass line. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases. As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

第2の発明は、特に、第1の発明の第1温度センサと第2温度センサの値の差が増加した場合に流量調整手段を閉じるとしたものである。   In the second invention, in particular, the flow rate adjusting means is closed when the difference between the values of the first temperature sensor and the second temperature sensor of the first invention increases.

これにより、第1温度センサと第2温度センサの値の差が増加した場合は、圧縮機の吸入側の冷媒の過熱度にかかわらず流量調整手段を閉じることで、バイパス管路に冷媒が流れなくなるので、一時的に増加する低圧冷媒管路の冷媒の流量が更に増える。低圧冷媒管路の冷媒の流量が更に増えることで、低圧冷媒管路の冷媒の流量が増えるので、低圧冷媒管路において冷媒によって回収されるオイルの量が増え、低圧冷媒管路の冷媒の圧損が低下するまでにかかる時間が短縮される。したがって、圧縮機の吸入側の冷媒の圧力が素早く上昇することに伴い、圧縮機の吸入側の冷媒の密度が素早く上昇するため、エンジンの回転数を下げるのにかかる時間が短縮され、より素早く効率を向上させることができる。   Thereby, when the difference between the values of the first temperature sensor and the second temperature sensor increases, the refrigerant flows in the bypass pipe by closing the flow rate adjusting means regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Since it disappears, the flow rate of the refrigerant of the low pressure refrigerant pipeline which increases temporarily increases further. Since the flow rate of the refrigerant in the low pressure refrigerant pipeline increases by further increasing the flow rate of the refrigerant in the low pressure refrigerant pipeline, the amount of oil recovered by the refrigerant in the low pressure refrigerant pipeline increases, and the pressure loss of the refrigerant in the low pressure refrigerant pipeline The time it takes to decrease is reduced. Therefore, as the pressure of the refrigerant on the suction side of the compressor rises quickly, the density of the refrigerant on the suction side of the compressor rises quickly, so the time taken to reduce the number of revolutions of the engine is shortened, and more quickly Efficiency can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
(実施の形態1)
図1は、本発明の第1の実施の形態における空気調和機の冷凍サイクル図を示すものである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the present embodiment.
Embodiment 1
FIG. 1 shows a refrigeration cycle diagram of an air conditioner according to a first embodiment of the present invention.

図1において、第1の実施の形態における空気調和機は、エンジン100と、エンジン100の動力により冷媒を圧縮する圧縮機101と、圧縮機101の吐出側には、圧縮機101の吐出側より順に、圧縮機101の吐出側の冷媒が流入する高圧冷媒管路401と、高圧冷媒管路401より冷媒が流入する中圧冷媒管路402と、中圧冷媒管路402より冷媒が流入するとともに冷媒を圧縮機101の吸入側へ流入させる低圧冷媒管路403とを備え、高圧冷媒管路401は、圧縮機101の吐出側から順に、圧縮機101より吐出された冷媒からオイルを分離するオイルセパレータ102と、高圧冷媒管路401に流
入する冷媒と室外空気とで熱交換を行う室外熱交換器104と、室外膨張弁106と、を備え、中圧冷媒管路402は、中圧冷媒管路402より流出する冷媒を膨張させる室内膨張弁200を備え、低圧冷媒管路403は、室内膨張弁200により減圧された冷媒と室内空気とで熱交換を行う室内熱交換器201を備え、高圧冷媒管路401の室外熱交換器104よりも上流側の冷媒管路には、を備え、中圧冷媒管路402に一端を接続され低圧冷媒管路403の室内熱交換器201よりも下流側の冷媒管路に他端を接続されたバイパス管路404を備え、バイパス管路404には、バイパス管路404へ流入する冷媒の流量を制限する流量調整手段107を備え、オイルセパレータ102に一端を接続され低圧冷媒管路403の室内熱交換器201よりも下流側の冷媒管路に他端を接続されたオイル戻し管路405を備え、オイル戻し管路405にはオイルを減圧する減圧手段108を備え、高圧冷媒管路401の室外熱交換器104よりも上流側の冷媒管路には第1温度センサ301を備え、オイル戻し管路405の減圧手段108よりも下流側の管路には第2温度センサ302を備え、低圧冷媒管路403において低圧冷媒管路403とオイル戻し管路405の接続部及び低圧冷媒管路403とバイパス管路404の接続部よりも下流側の冷媒管路には第3温度センサ303を備え、低圧冷媒管路403において室内熱交換器201よりも下流側の冷媒管路には圧力センサ304を備える。
In FIG. 1, the air conditioner according to the first embodiment includes an engine 100, a compressor 101 that compresses a refrigerant by the power of the engine 100, and a discharge side of the compressor 101 from the discharge side of the compressor 101. The high pressure refrigerant pipeline 401 to which the refrigerant on the discharge side of the compressor 101 flows in, the medium pressure refrigerant pipeline 402 to which the refrigerant flows in from the high pressure refrigerant pipeline 401, and the refrigerant inflow from the medium pressure refrigerant pipeline 402 in order. The high pressure refrigerant pipeline 401 is an oil for separating oil from the refrigerant discharged from the compressor 101 in order from the discharge side of the compressor 101. The medium pressure refrigerant pipeline 402 is provided with a separator 102, an outdoor heat exchanger 104 that exchanges heat with the refrigerant flowing into the high pressure refrigerant pipeline 401, and outdoor air, and an outdoor expansion valve 106. The low-pressure refrigerant pipe 403 includes an indoor heat exchanger 201 that exchanges heat between the refrigerant decompressed by the indoor expansion valve 200 and the indoor air. The refrigerant pipeline on the upstream side of the outdoor heat exchanger 104 of the high pressure refrigerant pipeline 401 is provided with one end connected to the medium pressure refrigerant pipeline 402 and the indoor heat exchanger 201 of the low pressure refrigerant pipeline 403 Also, the bypass line 404 is connected to the downstream side refrigerant line, and the bypass line 404 is provided with a flow adjustment means 107 for limiting the flow rate of the refrigerant flowing into the bypass line 404, and an oil separator The oil return pipe 405 includes one end connected to the refrigerant pipe 102 and the other end connected to the refrigerant pipe downstream of the indoor heat exchanger 201 in the low-pressure refrigerant pipe 403. A pressure reducing means 108 is provided, and a refrigerant line upstream of the outdoor heat exchanger 104 of the high pressure refrigerant line 401 is provided with a first temperature sensor 301, and a downstream side of the oil return line 405 downstream of the pressure reducing means 108. The pipe is provided with a second temperature sensor 302, and the low pressure refrigerant pipe 403 is downstream of the connection between the low pressure refrigerant pipe 403 and the oil return pipe 405 and the connection between the low pressure refrigerant pipe 403 and the bypass pipe 404 The third refrigerant line includes the third temperature sensor 303, and the low pressure refrigerant line 403 includes the pressure sensor 304 in the refrigerant line downstream of the indoor heat exchanger 201.

以上のように構成された空気調和機について、以下、その動作、作用を説明する。
図2は本発明の実施の形態1における冷房運転時の冷媒流路を示すものである。エンジン100の動力により駆動する圧縮機101で圧縮された高温高圧の冷媒は、圧縮機101の内部のオイルと共に圧縮機101より吐出し、オイルセパレータ102に流入する。オイルセパレータ102においては、高温高圧の冷媒に含まれるオイルの大部分が分離され高温高圧の冷媒の多くは四方弁103へ流入し、分離されたオイルはオイル戻し管路405に流入し減圧手段108によって減圧された後に低圧冷媒管路403に流入する。
Hereinafter, the operation and action of the air conditioner configured as described above will be described.
FIG. 2 shows a refrigerant flow path at the time of cooling operation in Embodiment 1 of the present invention. The high-temperature and high-pressure refrigerant compressed by the compressor 101 driven by the power of the engine 100 is discharged from the compressor 101 together with the oil inside the compressor 101 and flows into the oil separator 102. In the oil separator 102, most of the oil contained in the high-temperature and high-pressure refrigerant is separated, most of the high-temperature and high-pressure refrigerant flows into the four-way valve 103, and the separated oil flows into the oil return line 405 and the pressure reducing means 108 , And then flow into the low pressure refrigerant line 403.

一方、オイルの大部分が分離された高温高圧の冷媒は、冷房運転時においては、室外熱交換器104へ流入する。高温高圧の冷媒は、室外熱交換器104で室外空気と熱交換をすることで凝縮し、室外膨張弁106を通過した後に、中圧冷媒管路402に流入する。中圧冷媒管路402においては、中圧冷媒管路402に流入した冷媒を室内機203を介さずに圧縮機101の吸入側の冷媒管路に戻す手段として、バイパス管路404が設けられており、バイパス管路404には流量調整手段107が設けられている。流量調整手段107が開となっている場合は、中圧冷媒管路402に流入した冷媒の一部がバイパス管路404へ流入し、流量調整手段107を通過して減圧され温度が低下し低温の冷媒となる。一方、バイパス管路404に流入しなかった冷媒は室内機203へ流入し、室内膨張弁200により減圧された後に室内熱交換器201で室内空気から吸熱する。その後、吸熱した冷媒は室内機203から流出し、室外機113に流入した後、圧縮機101の吸入側の冷媒管路において、バイパス管路404より流入する低温の冷媒及び、オイル戻し管路405より流入するオイルと合流する。その後、液冷媒を分離し回収するアキュムレータ112を介して圧縮機101で再び圧縮される。   On the other hand, the high temperature / high pressure refrigerant from which most of the oil has been separated flows into the outdoor heat exchanger 104 during the cooling operation. The high-temperature and high-pressure refrigerant condenses by heat exchange with outdoor air in the outdoor heat exchanger 104, passes through the outdoor expansion valve 106, and then flows into the medium pressure refrigerant pipe 402. In the medium pressure refrigerant pipeline 402, a bypass pipeline 404 is provided as means for returning the refrigerant flowing into the medium pressure refrigerant pipeline 402 to the refrigerant pipeline on the suction side of the compressor 101 without passing through the indoor unit 203. The bypass line 404 is provided with a flow rate adjusting means 107. When the flow rate adjusting means 107 is open, a part of the refrigerant flowing into the medium pressure refrigerant line 402 flows into the bypass line 404, passes through the flow rate adjusting means 107, is decompressed, and the temperature drops. It becomes a refrigerant of On the other hand, the refrigerant that has not flowed into the bypass pipe line 404 flows into the indoor unit 203, is decompressed by the indoor expansion valve 200, and then absorbs heat from indoor air by the indoor heat exchanger 201. After that, the refrigerant that has absorbed heat flows out from the indoor unit 203 and flows into the outdoor unit 113, and then in the refrigerant pipe on the suction side of the compressor 101, the low temperature refrigerant flowing from the bypass pipe 404 and the oil return pipe 405 It joins with the inflowing oil. Thereafter, the refrigerant is compressed again by the compressor 101 via the accumulator 112 which separates and recovers the liquid refrigerant.

ここで、圧縮機101の吐出側の冷媒の温度とオイル戻し管路405において減圧されたオイルの温度の差、つまり、第1温度センサ301と第2温度センサ302の値の差によってオイルセパレータ102におけるオイルの有無を検知する方法について説明する。図3は、オイルセパレータ102の断面図である。オイルセパレータ102には圧縮機101より吐出した冷媒及びオイルが流入して、オイルセパレータ102の内部の壁面に衝突するとともに衝突後に壁面を伝いながら旋回することで冷媒からオイルの大部分が分離され、オイルの大部分が分離された冷媒は室外熱交換器104へ流入し、分離されたオイルはオイルセパレータ102の下部に溜まる。オイル戻し管路405とオイルセパレータ102の接続部よりも上にオイルの液面が存在する場合、つまり、オイルセパレータ102にオイルが溜まっている場合、オイル戻し管路405にはオイルが流入する。オイルは
非圧縮性流体であり、減圧に伴う温度低下がないので、減圧手段108を通過する際は温度低下せず、第1温度センサ301と第2温度センサ302の温度差はほとんどなくなる。また、能力一定の場合ではオイルの液面がオイル戻し管路405とオイルセパレータ102の接続部よりも上にある限り、温度差は一定となる。このとき、オイルはオイルセパレータ102に溜まっており低圧冷媒管路403には溜まっていないと判断する。
Here, the difference between the temperature of the refrigerant on the discharge side of the compressor 101 and the temperature of the oil decompressed in the oil return line 405, that is, the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 A method of detecting the presence or absence of oil in FIG. 3 is a cross-sectional view of the oil separator 102. As shown in FIG. The refrigerant and oil discharged from the compressor 101 flow into the oil separator 102 and collide with the inner wall surface of the oil separator 102 and swirl along the wall surface after the collision to separate most of the oil from the refrigerant. The refrigerant from which most of the oil is separated flows into the outdoor heat exchanger 104, and the separated oil is accumulated at the bottom of the oil separator 102. When the oil level exists above the connection portion between the oil return pipe 405 and the oil separator 102, that is, when the oil is accumulated in the oil separator 102, the oil flows into the oil return pipe 405. The oil is an incompressible fluid, and there is no temperature drop due to the pressure reduction, so the temperature does not drop when passing through the pressure reducing means 108, and the temperature difference between the first temperature sensor 301 and the second temperature sensor 302 is almost eliminated. In addition, in the case where the capacity is constant, the temperature difference is constant as long as the liquid level of the oil is above the connection portion between the oil return pipe 405 and the oil separator 102. At this time, it is determined that the oil is accumulated in the oil separator 102 and is not accumulated in the low pressure refrigerant pipe 403.

一方で、運転中にオイルセパレータ102のオイルが減ると、オイルの液面がオイル戻し管路とオイルセパレータ102の接続部に近づく。このとき、冷媒の循環に伴って、オイルセパレータ102に溜まっているオイルの液面が揺れるため、オイルの液面がオイル戻し管路405とオイルセパレータ102の接続部よりも低くなることがある。   On the other hand, when the oil of the oil separator 102 decreases during operation, the liquid level of the oil approaches the connection portion between the oil return pipe and the oil separator 102. At this time, the liquid level of the oil accumulated in the oil separator 102 shakes with the circulation of the refrigerant, so the liquid level of the oil may be lower than the connection portion between the oil return pipe 405 and the oil separator 102.

この場合オイル戻し管路405には、圧縮性流体である冷媒が一時的に流入するため、減圧手段108の通過の際に、減圧による温度低下を生じ、第2温度センサ302においては、冷媒の流入に応じて温度が低下し、第1温度センサ301と第2温度センサ302の温度差が一時的に大きくなる。   In this case, since the refrigerant, which is a compressible fluid, temporarily flows into the oil return pipe 405, the temperature reduction due to the pressure reduction occurs when passing through the pressure reducing means 108, and the second temperature sensor 302 The temperature decreases according to the inflow, and the temperature difference between the first temperature sensor 301 and the second temperature sensor 302 temporarily increases.

オイルの液面の揺れによって、オイルの液面がオイル戻し管路405とオイルセパレータ102の接続部よりも上に存在するようになると、オイル戻し管路405にはオイルのみが流入するため、第1温度センサ301と第2温度センサ302の温度差は小さくなる。このように、オイルの液面がオイル戻し管路405とオイルセパレータ102の接続部の付近にある場合、第1温度センサ301と第2温度センサ302の温度差は大小を繰り返し、オイルの液面が更に下がっていくと、オイル戻し管路405に流入する冷媒量が増えるので、第1温度センサ301と第2温度センサ302の温度差は大小を繰り返しながら徐々に大きくなっていく。このとき、オイルは低圧冷媒管路403に溜まっていると判断する。   When the oil level is above the connection between the oil return line 405 and the oil separator 102 due to the fluctuation of the oil level, only oil flows into the oil return line 405. The temperature difference between the first temperature sensor 301 and the second temperature sensor 302 decreases. As described above, when the liquid level of oil is in the vicinity of the connection portion between the oil return pipeline 405 and the oil separator 102, the temperature difference between the first temperature sensor 301 and the second temperature sensor 302 repeatedly repeats large and small. As the amount of refrigerant flowing into the oil return pipe 405 increases as the value of d decreases further, the temperature difference between the first temperature sensor 301 and the second temperature sensor 302 gradually increases while repeating the magnitude. At this time, it is determined that the oil is accumulated in the low pressure refrigerant pipe 403.

低圧冷媒管路403に溜まっているオイルが回収され、オイルセパレータ102のオイルの液面が増加する場合は、逆に、第1温度センサ301と第2温度センサ302の温度差は大小を繰り返しながら徐々に小さくなっていく。   When the oil accumulated in the low pressure refrigerant pipe 403 is recovered and the oil level of the oil in the oil separator 102 increases, the temperature difference between the first temperature sensor 301 and the second temperature sensor 302 is repeatedly large and small. It becomes smaller gradually.

このとき、一部のオイルは低圧冷媒管路403に溜まっているものの、低圧冷媒管路403から回収される傾向にあり、低圧冷媒管路403における冷媒の圧損は小さくなる方向へ推移していくため、意図的にオイルを回収する必要はない。   At this time, although a portion of the oil is accumulated in the low pressure refrigerant pipe 403, it tends to be recovered from the low pressure refrigerant pipe 403, and the pressure loss of the refrigerant in the low pressure refrigerant pipe 403 shifts to become smaller. Therefore, there is no need to intentionally recover the oil.

次に、バイパス管路404における流量調整手段107の開度の制御方法について説明する。流量調整手段107の開度は、第1温度センサ301と第2温度センサ302の値の差及び、第3温度センサ303と圧力センサ304の値から算出される圧縮機101の吸入側の冷媒の過熱度に基づいて制御される。   Next, a control method of the opening degree of the flow rate adjusting means 107 in the bypass conduit 404 will be described. The degree of opening of the flow rate adjusting means 107 is determined by the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 and the refrigerant on the suction side of the compressor 101 calculated from the values of the third temperature sensor 303 and the pressure sensor 304. It is controlled based on the degree of superheat.

まず、第1温度センサ301と第2温度センサ302の値の差が一定もしくは減少している場合、つまり低圧冷媒管路403にオイルが溜まっていない、もしくは減少傾向にあると判断する場合は、低圧冷媒管路403においてオイルによる冷媒の圧損が小さく、低圧冷媒管路403からオイルを回収する必要がないので、圧縮機101の吸入側の冷媒の過熱度の適正化を優先し、過熱度が所定値になるように流量調整手段107の開度を制御する。具体的には、過熱度が所定以上の場合には、流量調整手段107の開度を上げて圧縮機101の吸入側へバイパスする冷媒の流量を増やし、過熱度を下げ、一方、過熱度が所定未満の場合には、圧縮機101の吸入側の冷媒を冷却する必要はないため、流量調整手段107の開度を下げて圧縮機101の圧縮機101の吸入側へバイパスする冷媒の流量を減らし、過熱度を所定に近づける。   First, when the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 is constant or decreasing, that is, when it is judged that the oil is not accumulated in the low pressure refrigerant pipe 403 or is decreasing. Since the pressure loss of the refrigerant due to the oil is small in the low pressure refrigerant pipe 403 and there is no need to recover the oil from the low pressure refrigerant pipe 403, priority is given to optimizing the degree of superheat of the refrigerant on the suction side of the compressor 101. The opening degree of the flow rate adjusting means 107 is controlled to be a predetermined value. Specifically, when the degree of superheat is equal to or higher than a predetermined level, the opening degree of the flow rate adjusting means 107 is increased to increase the flow rate of the refrigerant bypassed to the suction side of the compressor 101 to lower the degree of superheat. In the case of less than the predetermined value, it is not necessary to cool the refrigerant on the suction side of the compressor 101, so the flow rate of the refrigerant bypassing to the suction side of the compressor 101 of the compressor 101 is Reduce and bring the degree of superheat closer to a predetermined level.

一方で、第1温度センサ301と第2温度センサ302の値の差が増加した場合は、低圧冷媒管路403にオイルが溜まっていると判断し、圧縮機101の吸入側の冷媒の過熱度にかかわらず、低圧冷媒管路403からオイルを回収することを目的とし、バイパス管路404の冷媒の流量を減らす。バイパス管路404の冷媒の流量が減った分、低圧冷媒管路403の冷媒の流量が一時的に増えるので、低圧冷媒管路403の冷媒の流速が一時的に増加し、低圧冷媒管路403に溜まっているオイルが回収され、低圧冷媒管路403の冷媒の流路面積が増える。   On the other hand, when the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 increases, it is determined that the oil is accumulated in the low pressure refrigerant pipeline 403, and the degree of superheat of the refrigerant on the suction side of the compressor 101 Regardless, the objective is to recover the oil from the low pressure refrigerant line 403 and reduce the flow rate of the refrigerant in the bypass line 404. The flow rate of the refrigerant in the low pressure refrigerant pipe 403 is temporarily increased since the flow rate of the refrigerant in the low pressure refrigerant pipe 403 is temporarily increased as the flow rate of the refrigerant in the bypass pipe 404 is decreased. The oil accumulated in the low pressure refrigerant pipeline 403 is recovered, and the flow passage area of the refrigerant in the low pressure refrigerant pipeline 403 is increased.

そのため、低圧冷媒管路403における冷媒の圧損が低下し、低圧冷媒管路403の冷媒の圧力が上昇し、圧縮機101の吸入側の冷媒の密度が上昇する。これにより、同一能力時において、エンジン100の回転数を下げることができるので、エンジン100のポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe 403 is reduced, the pressure of the refrigerant in the low pressure refrigerant pipe 403 is increased, and the density of the refrigerant on the suction side of the compressor 101 is increased. As a result, at the same capacity, the rotational speed of the engine 100 can be reduced, so that the pumping loss of the engine 100 can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

なお、圧縮機の吐出側の冷媒の温度を検知する温度センサと、オイル戻し管路とを設けている一般的な空気調和機においては、オイル戻し管路において減圧された後のオイルの温度を検知する温度センサのみを追加するだけで、上述した形態を実施することができる。そのため、初期のコストを非常に小さくすることができる。また、温度を検知する際に外部からのエネルギーを必要とせず、不要なエネルギーを消費せずにオイルセパレータにおけるオイルの有無を検知できるので、トータルのコストも小さくすることができる。   In a general air conditioner provided with a temperature sensor for detecting the temperature of the refrigerant on the discharge side of the compressor and an oil return pipe, the temperature of the oil after pressure reduction in the oil return pipe is The above-described embodiment can be implemented only by adding only the temperature sensor to be detected. Therefore, the initial cost can be made very small. In addition, since it is possible to detect the presence or absence of oil in the oil separator without consuming energy from the outside when detecting the temperature, it is possible to reduce the total cost.

図4は、流量調整手段107の制御フロー図である。まずStep1として冷房運転を開始した後に、Step2で第1温度センサ301と第2温度センサ302の値の差が増加したかどうかを判断する。第1温度センサ301と第2温度センサ302の値の差が増加した場合は、低圧冷媒管路403にオイルが溜まっていると判断し、Step4−1で流量調整手段107の開度を下げる。   FIG. 4 is a control flow diagram of the flow rate adjusting means 107. As shown in FIG. First, after the cooling operation is started in Step 1, it is determined in Step 2 whether the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 has increased. When the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 increases, it is determined that the oil is accumulated in the low pressure refrigerant pipeline 403, and the opening degree of the flow rate adjusting unit 107 is lowered in Step 4-1.

これにより、低圧冷媒管路403の冷媒の流量が一時的に増え、低圧冷媒管路403の冷媒の流速が一時的に増加するため、低圧冷媒管路403に溜まっているオイルが回収され、低圧冷媒管路403の冷媒の流路面積が増え、低圧冷媒管路403における冷媒の圧損が低下する。   As a result, the flow rate of the refrigerant in the low pressure refrigerant pipeline 403 temporarily increases, and the flow velocity of the refrigerant in the low pressure refrigerant pipeline 403 temporarily increases. Therefore, the oil accumulated in the low pressure refrigerant pipeline 403 is recovered. The flow passage area of the refrigerant in the refrigerant pipe 403 is increased, and the pressure loss of the refrigerant in the low pressure refrigerant pipe 403 is reduced.

一方、Step2で第1温度センサ301と第2温度センサ302の値の差が一定もしくは減少した場合には、低圧冷媒管路403にオイルが溜まっていないもしくは低圧冷媒管路403に溜まっているオイルが減少傾向にあると判断する場合は、圧縮機101の吸入側の冷媒の過熱度の適正化をStep3で行う。   On the other hand, when the difference between the values of the first temperature sensor 301 and the second temperature sensor 302 becomes constant or decreases in Step 2, the oil in the low pressure refrigerant pipe 403 is not accumulated or the oil in the low pressure refrigerant pipe 403 Is determined to be decreasing, the superheat degree of the refrigerant on the suction side of the compressor 101 is optimized in Step 3.

Step3で第3温度センサ303と圧力センサ304から算出される圧縮機101の吸入側の冷媒の過熱度が所定未満の場合は、Step4−1として流量調整手段107の開度を下げる。   When the degree of superheat of the refrigerant on the suction side of the compressor 101 calculated from the third temperature sensor 303 and the pressure sensor 304 in Step 3 is less than a predetermined value, the degree of opening of the flow rate adjusting unit 107 is lowered in Step 4-1.

これにより、バイパス管路404から合流する低温の冷媒の流量が少なくなるので、圧縮機101の吸入側の冷媒の過熱度が上がり、適正化される。また、Step3で第3温度センサ303と圧力センサ304から算出される圧縮機101の吸入側の冷媒の過熱度が所定以上の場合は、Step4−2で流量調整手段107の開度を上げる。これにより、バイパス管路404から合流する低温の冷媒の流量が多くなるので、圧縮機101の吸入側の冷媒の過熱度が下がり、圧縮機101の吸入側の冷媒の密度が上がるため、同一能力時の圧縮機101及びエンジン100の回転数を下げることができる。   As a result, the flow rate of the low temperature refrigerant joining from the bypass pipeline 404 is reduced, so the degree of superheat of the refrigerant on the suction side of the compressor 101 is increased and optimized. When the degree of superheat of the refrigerant on the suction side of the compressor 101 calculated from the third temperature sensor 303 and the pressure sensor 304 in Step 3 is equal to or more than a predetermined value, the opening degree of the flow rate adjusting unit 107 is increased in Step 4-2. As a result, the flow rate of the low temperature refrigerant joining from the bypass pipeline 404 increases, so the degree of superheat of the refrigerant on the suction side of the compressor 101 decreases and the density of the refrigerant on the suction side of the compressor 101 increases. The rotational speed of the compressor 101 and the engine 100 can be reduced.

特にエンジンを動力源として用いるガスヒートポンプの場合、回転数を下げることでエンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができ
る。
In the case of a gas heat pump using an engine as a power source, in particular, the pumping loss of the engine can be reduced by reducing the rotational speed, and the gas consumption can be reduced, so that the efficiency can be increased.

なお、本実施の形態において、流量調整手段107は、第1温度センサ301と第2温度センサ302の値が増加した場合には、Step4−1で流量調整手段107を閉としてもよい。これにより、低圧冷媒管路403に溜まっているオイルを回収する時間が短縮されるため、圧縮機101の吸入側の冷媒の圧力が上昇し、圧縮機101の吸入側の冷媒の密度が上昇するまでの時間が短くなり、効率を素早く向上させることができる。さらに、流量調整手段107は、第1温度センサ301と第2温度センサ302の値が所定値を超えた場合にStep4−1で流量調整手段107の開度を小さくするもしくは閉としてもよく、これにより、圧縮機101の吸入側の冷媒の過熱度の適正化を極力行いながらも低圧冷媒管路403に溜まったオイルを回収し、低圧冷媒管路403の圧損を低減し、圧縮機101の吸入側の冷媒の密度を上げることができるので、エンジン100の回転数を下げ、ガス消費量を下げることができるので効率を向上させることができる。   In the present embodiment, when the values of the first temperature sensor 301 and the second temperature sensor 302 increase, the flow rate adjusting unit 107 may close the flow rate adjusting unit 107 in Step 4-1. As a result, since the time for recovering the oil accumulated in the low pressure refrigerant pipe 403 is shortened, the pressure of the refrigerant on the suction side of the compressor 101 is increased, and the density of the refrigerant on the suction side of the compressor 101 is increased. Time can be shortened and efficiency can be improved quickly. Furthermore, when the values of the first temperature sensor 301 and the second temperature sensor 302 exceed predetermined values, the flow rate adjusting means 107 may reduce or close the opening degree of the flow rate adjusting means 107 in Step 4-1. Thus, the oil accumulated in the low pressure refrigerant pipe 403 is recovered while optimizing the degree of superheat of the refrigerant on the suction side of the compressor 101 as much as possible, and the pressure loss in the low pressure refrigerant pipe 403 is reduced. Since the density of the refrigerant on the side can be increased, the number of revolutions of the engine 100 can be reduced and the gas consumption can be reduced, so the efficiency can be improved.

また、以下に説明する図5、図6、図7、図8、図9、図10に示す冷凍サイクルにしても同様の作用及び効果が得られる。   Further, the same action and effect can be obtained even in the refrigeration cycle shown in FIGS. 5, 6, 7, 8, 9, 10 described below.

図5は、本発明の第1の実施の形態において、アキュムレータ109を、低圧冷媒管路403とオイル戻し管路405との接続部及び低圧冷媒管路403とバイパス管路404との接続部よりも上流側に設けた空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、低圧冷媒管路403において、アキュムレータ109の下流側の冷媒にオイル戻し管路405からオイルが合流し、かつ、アキュムレータ109の下流側の冷媒にバイパス管路404から冷媒が合流する。   FIG. 5 shows the accumulator 109 according to the first embodiment of the present invention from the connection of the low pressure refrigerant conduit 403 and the oil return conduit 405 and the connection of the low pressure refrigerant conduit 403 and the bypass conduit 404 It is a refrigerating-cycle figure of the air conditioner provided in the upper stream side. In the air conditioner configured as described above, in the low pressure refrigerant pipe 403, the oil from the oil return pipe 405 joins the refrigerant on the downstream side of the accumulator 109, and the refrigerant on the downstream side of the accumulator 109 is bypassed. The refrigerant joins from the conduit 404.

これによって、第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。   As a result, when the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of refrigerant in the bypass line. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases.

これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

図6は、本発明の第1の実施の形態において、アキュムレータ109を、低圧冷媒管路403とオイル戻し管路405との接続部よりも上流側かつ低圧冷媒管路403とバイパス管路404との接続部よりも下流側に設けた空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、低圧冷媒管路403において、アキュムレータ109の上流側の冷媒にバイパス管路404から冷媒が合流し、かつ、アキュムレータ109の下流側の冷媒にオイル戻し管路405からオイルが合流する。   FIG. 6 shows an accumulator 109 according to the first embodiment of the present invention, which is upstream of the connecting portion between the low pressure refrigerant pipeline 403 and the oil return pipeline 405 and is connected to the low pressure refrigerant pipeline 403 and the bypass pipeline 404. It is a refrigerating-cycle figure of the air conditioner provided downstream rather than the connection part of 3. FIG. In the air conditioner configured as described above, in the low pressure refrigerant pipe 403, the refrigerant from the bypass pipe 404 joins the refrigerant on the upstream side of the accumulator 109, and the oil is returned to the refrigerant on the downstream side of the accumulator 109. The oil merges from the conduit 405.

第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。   When the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, and the bypass pipeline is determined regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of the refrigerant. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases.

これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

図7は、本発明の第1の実施の形態において、アキュムレータ109を、低圧冷媒管路403とオイル戻し管路107との接続部よりも下流側かつ低圧冷媒管路403とバイパス管路107との接続部よりも上流側に設けた空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、低圧冷媒管路403において、アキュムレータ109の上流側の冷媒にオイル戻し管路405からオイルが合流し、かつ、アキュムレータ109の下流側の冷媒にバイパス管路404から冷媒が合流する。   FIG. 7 shows the accumulator 109 according to the first embodiment of the present invention, in which the low pressure refrigerant pipeline 403 and the bypass pipeline 107 are disposed downstream of the connection portion between the low pressure refrigerant pipeline 403 and the oil return pipeline 107. It is a refrigerating-cycle figure of the air conditioner provided in the upstream rather than the connection part of (4). In the air conditioner configured as described above, in the low pressure refrigerant pipe 403, the oil on the upstream side of the accumulator 109 joins the oil from the oil return pipe 405, and the refrigerant on the downstream side of the accumulator 109 is bypassed. The refrigerant joins from the conduit 404.

第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。   When the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, and the bypass pipeline is determined regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of the refrigerant. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases.

そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases. As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

図8は、本発明の第1の実施の形態において、オイル戻し管路405の下流側の接続部をバイパス管路404に設けた空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、バイパス管路404の冷媒はオイル戻し管路405からオイルが合流してから低圧冷媒管路403の冷媒に合流する。   FIG. 8 is a refrigeration cycle diagram of an air conditioner in which the downstream connection portion of the oil return pipe 405 is provided in the bypass pipe 404 in the first embodiment of the present invention. In the air conditioner configured as described above, the refrigerant in the bypass conduit 404 merges with the refrigerant in the low pressure refrigerant conduit 403 after the oil merges from the oil return conduit 405.

第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。   When the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, and the bypass pipeline is determined regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of the refrigerant. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases.

そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases. As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

図9は、本発明の第1の実施の形態において、オイル戻し管路405の減圧手段108をキャピラリーチューブ501とした空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、オイル戻し管路405を流れるオイルがキャピラリーチューブ501によって減圧される。   FIG. 9 is a refrigeration cycle diagram of an air conditioner in which the pressure reducing means 108 of the oil return line 405 is a capillary tube 501 in the first embodiment of the present invention. In the air conditioner configured as described above, the oil flowing through the oil return line 405 is depressurized by the capillary tube 501.

第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。   When the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, and the bypass pipeline is determined regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of the refrigerant.

バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが
回収され、低圧冷媒管路の冷媒の流路面積が増える。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。
Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases.

これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

図10は、本発明の第1の実施の形態において、第1温度センサ301をオイル戻し管路405において減圧手段108よりも上流側の管路に設けた空気調和機の冷凍サイクル図である。以上のように構成された空気調和機については、以上のように構成された空気調和機については、第1温度センサ301を圧縮機101の吐出側の冷媒管路に備えた場合と同様に、減圧される前のオイルの温度が測定される。   FIG. 10 is a refrigeration cycle diagram of an air conditioner in which the first temperature sensor 301 is provided in a pipe line upstream of the pressure reducing means 108 in the oil return pipe line 405 in the first embodiment of the present invention. With regard to the air conditioner configured as described above, in the case of the air conditioner configured as described above, as in the case where the first temperature sensor 301 is provided in the refrigerant pipeline on the discharge side of the compressor 101, The temperature of the oil before being depressurized is measured.

第1温度センサと第2温度センサの値の差が増加した場合は、低圧冷媒管路にオイルが溜まっていると判断し、圧縮機の吸入側の冷媒の過熱度にかかわらず、バイパス管路の冷媒の流量を減らす。バイパス管路の冷媒の流量が減った分、低圧冷媒管路の冷媒の流量が一時的に増えるので、低圧冷媒管路の冷媒の流速が一時的に増加し、低圧冷媒管路に溜まっているオイルが回収され、低圧冷媒管路の冷媒の流路面積が増える。そのため、低圧冷媒管路における冷媒の圧損が低下し、低圧冷媒管路の冷媒の圧力が上昇し、圧縮機の吸入側の冷媒の密度が上昇する。   When the difference between the values of the first temperature sensor and the second temperature sensor increases, it is determined that oil is accumulated in the low pressure refrigerant pipeline, and the bypass pipeline is determined regardless of the degree of superheat of the refrigerant on the suction side of the compressor. Reduce the flow rate of the refrigerant. Since the flow rate of the refrigerant in the low pressure refrigerant pipe temporarily increases as the flow rate of the refrigerant in the bypass pipe decreases, the flow velocity of the refrigerant in the low pressure refrigerant pipe temporarily increases and accumulates in the low pressure refrigerant pipe The oil is recovered, and the refrigerant flow area of the low pressure refrigerant pipe increases. Therefore, the pressure loss of the refrigerant in the low pressure refrigerant pipe decreases, the pressure of the refrigerant in the low pressure refrigerant pipe increases, and the density of the refrigerant on the suction side of the compressor increases.

これにより、同一能力時において、エンジンの回転数を下げることができるので、エンジンのポンピングロスが小さくなり、ガス消費量が減るため、効率を上げることができる。   As a result, at the same capacity, the engine speed can be reduced, so that the pumping loss of the engine can be reduced, and the gas consumption can be reduced, whereby the efficiency can be increased.

以上のように、本発明にかかる空気調和機は、高効率で冷熱を生み出すことが可能であるため、室内空気を冷却する直膨式のみならず、水やブライン等の二次冷媒を冷却して冷熱を輸送するセントラル式にも展開可能である。   As described above, the air conditioner according to the present invention is capable of generating cold energy with high efficiency, so it is possible to cool not only the direct expansion type for cooling indoor air but also secondary refrigerants such as water and brine. It is also possible to develop a central type that transports cold heat.

100 エンジン
101 圧縮機
102 オイルセパレータ
103 四方弁
104 室外熱交換器
105 室外ファン
106 室外膨張弁
107 流量調整手段
108 減圧手段
109 アキュムレータ
110 室外機
200 室内膨張弁
201 室内熱交換器
202 室内ファン
203 室内機
301 第1温度センサ
302 第2温度センサ
303 第3温度センサ
304 圧力センサ
401 高圧冷媒管路
402 中圧冷媒管路
403 低圧冷媒管路
404 バイパス管路
405 オイル戻し管路
501 キャピラリーチューブ
100 engine 101 compressor 102 oil separator 103 four-way valve 104 outdoor heat exchanger 105 outdoor fan 106 outdoor expansion valve 107 flow rate adjusting means 108 pressure reducing means 109 accumulator 110 outdoor unit 200 indoor expansion valve 201 indoor heat exchanger 202 indoor fan 203 indoor fan 203 indoor unit 301 first temperature sensor 302 second temperature sensor 303 third temperature sensor 304 pressure sensor 401 high pressure refrigerant pipeline 402 medium pressure refrigerant pipeline 403 low pressure refrigerant pipeline 404 bypass pipeline 405 oil return pipeline 501 capillary tube

Claims (2)

室内機と室外機からなる空気調和機において、エンジンと、前記エンジンの動力により駆動する圧縮機と、前記圧縮機の吐出側には、前記圧縮機の吐出側より順に、圧縮機の吐出側の冷媒が流入する高圧冷媒管路と、前記高圧冷媒管路より前記冷媒が流入する中圧冷媒管路と、前記中圧冷媒管路より前記冷媒が流入するとともに前記冷媒を前記圧縮機の吸入側へ流入させる低圧冷媒管路を備え、前記高圧冷媒管路は、前記圧縮機の吐出側から順に、前記圧縮機より吐出された前記冷媒からオイルを分離するオイルセパレータと、前記高圧冷媒管路に流入する前記冷媒と室外空気とで熱交換を行う室外熱交換器と、室外膨張弁を備え、前記中圧冷媒管路は、前記中圧冷媒管路より流出する前記冷媒を膨張させる室内膨張弁を備え、前記低圧冷媒管路は、前記室内膨張弁により減圧された前記冷媒と室内空気とで熱交換を行う室内熱交換器を備え、前記高圧冷媒管路の前記室外熱交換器よりも下流側の冷媒管路もしくは前記中圧冷媒管路に一端を接続され前記低圧冷媒管路の前記室内熱交換器よりも下流側の冷媒管路に他端を接続されたバイパス管路を備え、前記バイパス管路には、前記バイパス管路へ流入する前記冷媒の流量を制限する流量調整手段を備え、前記オイルセパレータに一端を接続され前記低圧冷媒管路の前記室内熱交換器よりも下流側の冷媒管路もしくは前記バイパス管路に他端を接続されたオイル戻し管路を備え、前記オイル戻し管路には前記オイルを減圧する減圧手段を備え、前記オイル戻し管路の前記減圧手段よりも上流側の管路もしくは前記高圧冷媒管路の前記室外熱交換器よりも上流側の冷媒管路には第1温度センサを備え、前記オイル戻し管路の前記減圧手段よりも下流側の管路には第2温度センサを備え、前記低圧冷媒管路の前記低圧冷媒管路と前記オイル戻し管路の接続部及び前記低圧冷媒管路と前記バイパス管路の接続部よりも下流側の冷媒管路には第3温度センサを備え、前記低圧冷媒管路において前記室内熱交換器よりも下流側の冷媒管路には圧力センサを備え、前記第3温度センサと前記圧力センサの値から前記圧縮機の吸入側の前記冷媒の過熱度を算出する算出手段を備え、前記過熱度が所定値になるように前記バイパス管路の前記冷媒の流量を制御する空気調和機であって、前記第1温度センサと前記第2温度センサの値の差が増加した場合は、前記バイパス管路の前記冷媒の流量を減らすことを特徴とする空気調和機。   In an air conditioner comprising an indoor unit and an outdoor unit, an engine, a compressor driven by the power of the engine, and a discharge side of the compressor, sequentially from the discharge side of the compressor, on the discharge side of the compressor The refrigerant flows in from the high pressure refrigerant pipeline where the refrigerant flows in, the medium pressure refrigerant pipeline where the refrigerant flows in from the high pressure refrigerant pipeline, and the medium pressure refrigerant pipeline while the refrigerant flows in from the suction side of the compressor An oil separator for separating oil from the refrigerant discharged from the compressor in order from the discharge side of the compressor; An outdoor heat exchanger for performing heat exchange between the inflowing refrigerant and outdoor air, and an outdoor expansion valve, wherein the medium pressure refrigerant pipe is an indoor expansion valve for expanding the refrigerant flowing out from the medium pressure refrigerant pipe. The low pressure refrigerant The passage includes an indoor heat exchanger that exchanges heat between the refrigerant decompressed by the indoor expansion valve and the indoor air, and a refrigerant pipe or the refrigerant pipe downstream of the outdoor heat exchanger of the high-pressure refrigerant pipe The medium pressure refrigerant pipe is provided with a bypass pipe whose one end is connected and the other end of the low pressure refrigerant pipe is connected to the refrigerant pipe downstream of the indoor heat exchanger, and the bypass pipe is connected to the bypass pipe. A refrigerant pipe or bypass pipe connected downstream of the indoor heat exchanger of the low-pressure refrigerant pipe, having one end connected to the oil separator and having a flow rate adjusting means for restricting the flow rate of the refrigerant flowing into the bypass pipe. It has an oil return line whose other end is connected to the line, and the oil return line is provided with pressure reducing means for reducing the pressure of the oil, and a pipe upstream of the pressure reducing means of the oil return line or In front of high pressure refrigerant pipeline A refrigerant pipe upstream of the outdoor heat exchanger is provided with a first temperature sensor, and a pipe downstream of the pressure reducing means of the oil return pipe is provided with a second temperature sensor, and the low pressure refrigerant pipe A third temperature sensor is provided in the refrigerant pipeline downstream of the connection between the low pressure refrigerant pipeline and the oil return pipeline and the connection between the low pressure refrigerant pipeline and the bypass pipeline, and the low pressure refrigerant A pressure sensor is provided in a refrigerant pipe downstream of the indoor heat exchanger in the pipe, and the degree of superheat of the refrigerant on the suction side of the compressor is calculated from the values of the third temperature sensor and the pressure sensor. An air conditioner comprising a calculation means and controlling the flow rate of the refrigerant in the bypass conduit such that the degree of superheat becomes a predetermined value, wherein the difference between the values of the first temperature sensor and the second temperature sensor is If it increases, the flow of the refrigerant in the bypass line An air conditioner characterized by reducing the amount. 前記第1温度センサと前記第2温度センサの値の差が増加した場合は、前記流量調整手段を閉とすることを特徴とする請求項1に記載の空気調和機。   The air conditioner according to claim 1, wherein when the difference between the values of the first temperature sensor and the second temperature sensor increases, the flow rate adjusting unit is closed.
JP2017204863A 2017-10-24 2017-10-24 Air conditioner Pending JP2019078440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204863A JP2019078440A (en) 2017-10-24 2017-10-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204863A JP2019078440A (en) 2017-10-24 2017-10-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2019078440A true JP2019078440A (en) 2019-05-23

Family

ID=66626457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204863A Pending JP2019078440A (en) 2017-10-24 2017-10-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2019078440A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530054A (en) * 2019-09-06 2019-12-03 广东美的暖通设备有限公司 Heat pump system and its control method, control device and storage medium
CN111811112A (en) * 2020-07-13 2020-10-23 南京天加环境科技有限公司 Intelligent oil return multi-split air conditioner system
CN113483454A (en) * 2021-07-15 2021-10-08 青岛海尔空调器有限总公司 Method for recovering oil stain in pipe of indoor unit
WO2021208523A1 (en) * 2020-04-14 2021-10-21 青岛海尔空调器有限总公司 Oil return control method for compressor of air conditioning system in refrigeration mode
WO2023279611A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Out-of-pipe self-cleaning control method for outdoor heat exchanger
WO2023284193A1 (en) * 2021-07-15 2023-01-19 青岛海尔空调器有限总公司 Control method for implementing self-cleaning function outside of coiled pipe of outdoor heat exchanger
CN117387253A (en) * 2023-12-08 2024-01-12 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530054A (en) * 2019-09-06 2019-12-03 广东美的暖通设备有限公司 Heat pump system and its control method, control device and storage medium
WO2021208523A1 (en) * 2020-04-14 2021-10-21 青岛海尔空调器有限总公司 Oil return control method for compressor of air conditioning system in refrigeration mode
CN111811112A (en) * 2020-07-13 2020-10-23 南京天加环境科技有限公司 Intelligent oil return multi-split air conditioner system
WO2023279611A1 (en) * 2021-07-09 2023-01-12 青岛海尔空调器有限总公司 Out-of-pipe self-cleaning control method for outdoor heat exchanger
CN113483454A (en) * 2021-07-15 2021-10-08 青岛海尔空调器有限总公司 Method for recovering oil stain in pipe of indoor unit
WO2023284193A1 (en) * 2021-07-15 2023-01-19 青岛海尔空调器有限总公司 Control method for implementing self-cleaning function outside of coiled pipe of outdoor heat exchanger
CN117387253A (en) * 2023-12-08 2024-01-12 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit
CN117387253B (en) * 2023-12-08 2024-03-08 珠海格力电器股份有限公司 Unit oil return control method and device and water chilling unit

Similar Documents

Publication Publication Date Title
JP2019078440A (en) Air conditioner
JP5169295B2 (en) Refrigeration equipment
JP5502459B2 (en) Refrigeration equipment
KR101005678B1 (en) Air conditioner
JP5596745B2 (en) Air conditioner
JP5484889B2 (en) Refrigeration equipment
JP2009052752A (en) Refrigeration cycle device
JP2011208860A (en) Air conditioner
JP5484890B2 (en) Refrigeration equipment
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP5496645B2 (en) Refrigeration equipment
CN104220821A (en) Air-conditioning device
JP6080031B2 (en) Refrigeration equipment
JP5433158B2 (en) Refrigeration cycle equipment
JP5523817B2 (en) Refrigeration equipment
JP2007170683A (en) Air conditioner
JP2013155972A (en) Refrigeration device
JP2011133206A (en) Refrigerating apparatus
JP5502460B2 (en) Refrigeration equipment
JP2006258418A (en) Refrigerating device
JP2011133208A (en) Refrigerating apparatus
JP5927553B2 (en) Refrigeration equipment
JP2014159950A (en) Freezer
KR102032183B1 (en) An air conditioner and a control method the same
JP2008032391A (en) Refrigerating unit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121