JP2019073436A - Method for producing nickel-cobalt composite hydroxide and method for producing cathode active material for nonaqueous electrolyte secondary battery - Google Patents

Method for producing nickel-cobalt composite hydroxide and method for producing cathode active material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2019073436A
JP2019073436A JP2018221202A JP2018221202A JP2019073436A JP 2019073436 A JP2019073436 A JP 2019073436A JP 2018221202 A JP2018221202 A JP 2018221202A JP 2018221202 A JP2018221202 A JP 2018221202A JP 2019073436 A JP2019073436 A JP 2019073436A
Authority
JP
Japan
Prior art keywords
solution
nickel
cobalt
composite hydroxide
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018221202A
Other languages
Japanese (ja)
Other versions
JP7121283B2 (en
JP2019073436A5 (en
Inventor
吉田 秀樹
Hideki Yoshida
秀樹 吉田
将人 園尾
Masahito Sonoo
将人 園尾
卓弘 北川
Takuhiro Kitagawa
卓弘 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of JP2019073436A publication Critical patent/JP2019073436A/en
Publication of JP2019073436A5 publication Critical patent/JP2019073436A5/ja
Application granted granted Critical
Publication of JP7121283B2 publication Critical patent/JP7121283B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide: a method for producing a nickel-cobalt composite hydroxide containing tungsten homogeneously inside and on the surface of primary particles; and a method for producing a cathode active material using the former as a raw material.SOLUTION: The method for producing a nickel-cobalt composite hydroxide comprises: preparing a first solution containing nickel ions and cobalt ions, a second solution containing tungsten ions and having a pH of 10 or more, a third solution containing complex ion forming factors, and a liquid medium having a pH in a range of 10 to 13.5; supplying to the liquid medium the first solution, the second solution, and the third solution separately and simultaneously to obtain a reaction solution whose pH is maintained in a range of 10 to 13.5; and obtaining from the reaction solution a composite hydroxide containing nickel, cobalt, and tungsten.SELECTED DRAWING: Figure 1

Description

本発明は、ニッケルコバルト複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法に関する。   The present invention relates to a method of producing a nickel-cobalt composite hydroxide and a method of producing a positive electrode active material for a non-aqueous electrolyte secondary battery.

近年、携帯電話やVTRなどの電子機器の小型化と需要の増大に伴い、これら電子機器の電源である二次電池に対する高エネルギー化が要求されている。このような二次電池として、リチウムイオン二次電池のような非水系電解質二次電池が期待されている。リチウムイオン二次電池の正極活物質には、コバルト酸リチウム、ニッケル酸リチウム、ニッケルコバルトマンガン酸リチウム等の層状構造のリチウム遷移金属複合酸化物が用いられている。   2. Description of the Related Art In recent years, with the downsizing and demand of electronic devices such as mobile phones and VTRs, high energy is required for secondary batteries that are power sources of these electronic devices. As such secondary batteries, non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries are expected. As a positive electrode active material of a lithium ion secondary battery, a lithium transition metal complex oxide having a layered structure such as lithium cobaltate, lithium nickelate, lithium nickelcobalt manganate, etc. is used.

上記リチウム遷移金属複合酸化物の原料であるニッケルコバルト複合水酸化物の製造方法として共沈法がある。
特許文献1においては、ニッケル、コバルト、マンガン及び添加元素を含む溶液を用いて、添加元素をニッケル、コバルト、マンガンと共沈させ、ニッケルコバルト複合水酸化物の二次粒子内部において添加元素を均一に存在させる製造方法が記載されている。
There is coprecipitation method as a manufacturing method of the nickel cobalt compound hydroxide which is a raw material of the above-mentioned lithium transition metal compound oxide.
In Patent Document 1, an additive element is coprecipitated with nickel, cobalt and manganese using a solution containing nickel, cobalt, manganese and an additive element, and the additive element is made uniform within the secondary particle of the nickel-cobalt composite hydroxide. The manufacturing method to be present is described.

特開2011−116580号公報JP 2011-116580 A

本発明の一実施形態は、一次粒子内部及び表面においてタングステンを均質に含むニッケルコバルト複合水酸化物の製造方法及びその方法により得られるニッケルコバルト複合水酸化物を用いた非水系電解質二次電池用正極活物質の製造方法を提供することを課題とする。   One embodiment of the present invention is a method for producing a nickel-cobalt composite hydroxide homogeneously containing tungsten in the primary particles and on the surface, and for a non-aqueous electrolyte secondary battery using the nickel-cobalt composite hydroxide obtained by the method It is an object of the present invention to provide a method for producing a positive electrode active material.

第一態様のニッケルコバルト複合水酸化物の製造方法は、ニッケルイオン及びコバルトイオンを含む第一溶液を準備することと、タングステンイオンを含み、pHが10以上の第二溶液を準備することと、錯イオン形成因子を含む第三溶液を準備することと、pHが10以上13.5以下の範囲にある液媒体を準備することと、前記液媒体に、前記第一溶液、第二溶液及び第三溶液を別々に且つ同時に供給して、pHが10以上13.5以下の範囲に維持される反応溶液を得ることと、前記反応溶液からニッケル、コバルト及びタングステンを含む複合水酸化物を得ることと、を含む。   The method for producing a nickel-cobalt composite hydroxide according to the first aspect comprises: preparing a first solution containing nickel ions and cobalt ions; preparing a second solution containing tungsten ions and having a pH of 10 or more; Providing a third solution containing a complexing agent, preparing a liquid medium having a pH of 10 or more and 13.5 or less, and using the liquid medium with the first solution, the second solution and the second Three solutions are separately and simultaneously supplied to obtain a reaction solution in which the pH is maintained in the range of 10 to 13.5, and to obtain a composite hydroxide containing nickel, cobalt and tungsten from the reaction solution. And.

第二態様の非水系電解質二次電池用正極活物質の製造方法は、前記ニッケルコバルト複合水酸化物の製造方法により得られるニッケルコバルト複合水酸化物を酸素存在下で熱処理して熱処理物を得ることと、前記熱処理物とリチウム化合物とを混合して、リチウム混合物を得ることと、前記リチウム混合物を熱処理して、ニッケル及びコバルトを含み層状構造を有するリチウム遷移金属複合酸化物を得ることと、を含む。   In the method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the second aspect, the nickel-cobalt composite hydroxide obtained by the method for producing a nickel-cobalt composite hydroxide is heat-treated in the presence of oxygen to obtain a heat-treated product And mixing the heat-treated product with a lithium compound to obtain a lithium mixture, and heat-treating the lithium mixture to obtain a lithium transition metal composite oxide containing nickel and cobalt and having a layered structure. including.

本発明の一実施形態によれば、一次粒子内部及び表面においてタングステンを均質に含むニッケルコバルト複合水酸化物の製造方法及びその方法により得られるニッケルコバルト複合水酸化物を用いた非水系電解質二次電池用正極活物質の製造方法を提供することができる。   According to one embodiment of the present invention, a method of producing a nickel-cobalt composite hydroxide homogeneously containing tungsten on the inside and on the surface of primary particles and a non-aqueous electrolyte secondary using the nickel-cobalt composite hydroxide obtained by the method The manufacturing method of the positive electrode active material for batteries can be provided.

一実施形態の正極活物質を製造する工程の概略フローチャートである。It is a schematic flowchart of the process of manufacturing the positive electrode active material of one Embodiment. 他の実施形態の正極活物質を製造する工程の概略フローチャートである。It is a schematic flowchart of the process of manufacturing the positive electrode active material of other embodiment. 実施例1の水酸化物のHAADF像を示す図である。FIG. 2 is a view showing an HAADF image of a hydroxide of Example 1; 実施例1の水酸化物のTEM−EDX像を示す図である。2 is a view showing a TEM-EDX image of the hydroxide of Example 1. FIG. 実施例1のリチウム遷移金属複合酸化物のHAADF像を示す図である。FIG. 2 is a view showing an HAADF image of the lithium transition metal complex oxide of Example 1. 実施例1のリチウム遷移金属複合酸化物のTEM−EDX像を示す図である。2 is a view showing a TEM-EDX image of the lithium transition metal complex oxide of Example 1. FIG. 比較例1のHAADF像を示す図である。It is a figure which shows the HAADF image of the comparative example 1. FIG. 比較例1のTEM−EDX像を示す図である。It is a figure which shows the TEM-EDX image of the comparative example 1. FIG.

以下、本発明の実施形態について詳述する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための一例であり、本発明を以下の実施形態に限定するものではない。なお、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。また組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   Hereinafter, embodiments of the present invention will be described in detail. However, the embodiment described below is an example for embodying the technical concept of the present invention, and the present invention is not limited to the following embodiment. In the present specification, the term "process" is not limited to an independent process, but may be used in this term if the intended purpose of the process is achieved even if it can not be clearly distinguished from other processes. included. The content of each component in the composition means the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.

<非水系電解質二次電池用正極活物質の製造方法>
図1は、本実施形態に係る正極活物質の製造方法を説明するためのものである。図1を参照してニッケルコバルト複合水酸化物の製造方法及び非水系電解質二次電池用正極活物質の製造方法について説明する。
まず、ニッケル及びコバルトを含む第一溶液(以下「混合溶液」ともいう)と、25℃におけるpH(以下、pHについては液温25℃にて測定した場合の値とする。)が10以上のタングステンを含む第二溶液(以下「W溶液」ともいう)と、錯イオン形成因子を含む第三溶液(以下、「錯イオン形成溶液」ともいう)と、pHが10以上13.5以下である液媒体(以下「反応前溶液」ともいう)と、を準備する。次に、晶析工程として、反応前溶液に対して、混合溶液と、W溶液と、錯イオン形成溶液と、を別々に且つ同時に供給して反応溶液を形成する。このとき反応溶液のpHを10以上13.5以下の範囲に維持する。反応溶液からニッケル、コバルト及びタングステンを含む複合水酸化物を得る。以上により一次粒子が凝集してなる二次粒子からなるニッケルコバルト複合水酸化物が製造される。次に、熱処理工程において、このようにして得られるニッケル、コバルト及びタングステンを含む複合水酸化物を熱処理して熱処理物を得る。次に、混合工程として、熱処理物とリチウム化合物とを混合してリチウム混合物を得る。次に、焼成工程として、リチウム混合物を焼成することにより、ニッケル及びコバルトを含む層状構造を有するリチウム遷移金属複合酸化物を得る。以上により非水系電解質二次電池用正極活物質が製造される。
<Method of manufacturing positive electrode active material for non-aqueous electrolyte secondary battery>
FIG. 1 is for explaining a method of manufacturing a positive electrode active material according to the present embodiment. A method of producing a nickel-cobalt composite hydroxide and a method of producing a positive electrode active material for a non-aqueous electrolyte secondary battery will be described with reference to FIG.
First, a first solution containing nickel and cobalt (hereinafter also referred to as “mixed solution”) and a pH at 25 ° C. (hereinafter, the pH is a value when measured at a liquid temperature of 25 ° C.) is 10 or more. A second solution containing tungsten (hereinafter also referred to as “W solution”), a third solution containing a complex ion forming factor (hereinafter also referred to as “complex ion forming solution”), and a pH of 10 or more and 13.5 or less A liquid medium (hereinafter also referred to as "pre-reaction solution") is prepared. Next, as a crystallization step, a mixed solution, a W solution and a complex ion forming solution are separately and simultaneously supplied to the pre-reaction solution to form a reaction solution. At this time, the pH of the reaction solution is maintained in the range of 10 or more and 13.5 or less. A composite hydroxide containing nickel, cobalt and tungsten is obtained from the reaction solution. Thus, a nickel-cobalt composite hydroxide comprising secondary particles in which primary particles are aggregated is produced. Next, in the heat treatment step, the composite hydroxide containing nickel, cobalt and tungsten thus obtained is heat-treated to obtain a heat-treated product. Next, as a mixing step, the heat-treated product and the lithium compound are mixed to obtain a lithium mixture. Next, as a firing step, the lithium mixture is fired to obtain a lithium transition metal composite oxide having a layered structure containing nickel and cobalt. Thus, a positive electrode active material for a non-aqueous electrolyte secondary battery is produced.

本実施形態では、晶析工程において、反応前溶液に対して、形成される反応溶液のpHを10以上13.5以下の範囲に維持しつつ、混合溶液と、W溶液と、錯イオン形成溶液と、を別々に且つ同時に供給することにより、タングステンがより均一に存在するニッケル、コバルト及びタングステンを含む複合水酸化物を生成することができる。係る複合水酸化物ではタングステンが均一に分布し正極活物質の製造に好適に用いられる。以下、この点について説明する。   In this embodiment, in the crystallization step, while maintaining the pH of the reaction solution to be formed in the range of 10 or more and 13.5 or less with respect to the solution before reaction, the mixed solution, the W solution, and the complex ion forming solution Can be separately and simultaneously supplied to form a composite hydroxide containing nickel, cobalt and tungsten in which tungsten is more uniformly present. In such a composite hydroxide, tungsten is uniformly distributed and is suitably used for the production of a positive electrode active material. Hereinafter, this point will be described.

タングステンは、塩基性条件下においてタングステンの水酸化物として析出せず、混合溶液に含まれる金属元素(以下では、この金属元素がニッケルである場合を一例として説明する)と一緒にタングステンの化合物(例えばNiWO)として析出し、複合水酸化物からなる一次粒子の内部及び表面に取り込まれる。したがって、仮に、混合溶液とW溶液とをあらかじめ混合したものを反応前溶液に対して供給する場合は、タングステンイオン周辺のニッケルイオンの濃度が高いことから、タングステンの化合物の析出速度が速くなり、一次粒子の内部及び表面においてタングステンの偏析が起こりやすい。しかし、本実施形態のように、反応前溶液に対して混合溶液とW溶液を別々に供給した場合は、混合溶液が供給された領域においてはタングステンイオンの存在とは関係なくニッケル水酸化物が析出する。これにより、反応溶液中においてニッケルイオンが高濃度には存在せず、ニッケルを含むタングステン化合物の析出はほとんど起こらない。一方、析出したニッケル水酸化物は錯イオン形成溶液に含まれる錯イオン形成因子と反応することにより、ニッケル錯イオンとして徐々に再溶出する。そして、再溶出したニッケル錯イオンとタングステンが反応することにより、タングステン化合物が析出する。再溶出したニッケル錯イオンの濃度は比較的低いため、タングステン化合物の析出速度を遅くすることができる。以上の理由により、混合溶液とW溶液を別々に反応前溶液に供給して反応液を形成することで、複合水酸化物の一次粒子の内部及び表面に、より均質にタングステンを存在させることができると考えられる。 Tungsten does not precipitate as a hydroxide of tungsten under basic conditions, and a compound of tungsten (which will be described below as an example when the metal element is nickel) contained in the mixed solution for example precipitate as NiWO 4), it is incorporated in and surfaces of the primary particles composed of a composite hydroxide. Therefore, if a mixture of the mixed solution and the W solution in advance is supplied to the pre-reaction solution, since the concentration of nickel ions around the tungsten ions is high, the deposition rate of the tungsten compound is increased, Segregation of tungsten is likely to occur inside and on the surface of the primary particles. However, as in the present embodiment, when the mixed solution and the W solution are separately supplied to the pre-reaction solution, the nickel hydroxide is independent of the presence of tungsten ions in the region to which the mixed solution is supplied. It precipitates. As a result, nickel ions are not present at a high concentration in the reaction solution, and precipitation of a tungsten compound containing nickel hardly occurs. On the other hand, the precipitated nickel hydroxide is gradually re-eluted as a nickel complex ion by reacting with the complex ion formation factor contained in the complex ion formation solution. Then, the tungsten compound reacts by reacting the re-eluted nickel complex ion with tungsten. Since the concentration of re-eluted nickel complex ions is relatively low, the deposition rate of the tungsten compound can be reduced. For the above reasons, tungsten can be more uniformly present in and on the primary particles of the composite hydroxide by separately supplying the mixed solution and the W solution to the pre-reaction solution to form the reaction solution. It is considered possible.

仮にW溶液のpHが10よりも低い場合、W溶液が供給される箇所において反応溶液のpHが局所的に低くなり、その領域において一旦析出したニッケル水酸化物が再度溶解することがある。そうなると、反応溶液のpHが局所的に低くなった領域において、タングステン周辺のニッケル濃度が高くなり、タングステン化合物の析出速度が速くなる。これにより、一次粒子の内部及び表面においてタングステンの偏析が起こりやすくなると考えられる。以上の理由により、W溶液のpHを10より高く調整することで、タングステンの化合物の析出速度を遅くなり、一次粒子においてより均質にタングステンを分布させることができると考えられる。   If the pH of the W solution is lower than 10, the pH of the reaction solution is locally lowered at the point where the W solution is supplied, and the nickel hydroxide that has once precipitated in that area may be dissolved again. Then, in the region where the pH of the reaction solution is locally lowered, the concentration of nickel around tungsten is increased, and the deposition rate of the tungsten compound is increased. This is considered to be likely to cause segregation of tungsten inside and on the surface of the primary particles. For the above reasons, it is thought that by adjusting the pH of the W solution to more than 10, the deposition rate of the tungsten compound can be reduced, and tungsten can be distributed more uniformly in the primary particles.

以下各工程について説明する。   Each step will be described below.

[混合溶液の準備]
混合溶液は、目的のリチウム遷移金属酸化物の組成に応じてタングステンを除く各金属を含む塩を所定量水に溶解して調製される。塩の種類としては、硝酸塩、硫酸塩、塩酸塩などが挙げられる。また、混合溶液を調製する際に、各金属を含む塩を溶解しやすくするために、水に酸性溶液(例えば硫酸水溶液)を加えてもよい。この場合、塩基性溶液をさらに加えてpH調整を行ってもよい。また混合溶液におけるニッケル等の金属元素の合計モル数は、目的とするリチウム遷移金属酸化物の平均粒径に応じて適宜設定できる。ここで金属元素の合計モル数は、混合溶液が、ニッケル及びコバルトを含む場合はニッケル及びコバルトの合計モル数であり、ニッケル、コバルト及びマンガンを含む場合はニッケル、コバルト及びマンガンの合計モル数を意味する。
[Preparation of mixed solution]
The mixed solution is prepared by dissolving a predetermined amount of a salt containing each metal except tungsten in water according to the composition of the target lithium transition metal oxide. Types of salts include nitrates, sulfates, hydrochlorides and the like. In addition, when preparing the mixed solution, an acidic solution (for example, an aqueous sulfuric acid solution) may be added to water in order to facilitate dissolution of the salt containing each metal. In this case, the pH may be adjusted by further adding a basic solution. In addition, the total number of moles of metal elements such as nickel in the mixed solution can be appropriately set according to the average particle diameter of the target lithium transition metal oxide. Here, the total number of moles of the metal element is the total number of moles of nickel and cobalt when the mixed solution contains nickel and cobalt, and the total number of moles of nickel, cobalt and manganese when nickel, cobalt and manganese are included. means.

混合溶液のニッケル等の金属イオンの濃度は、各金属イオンの合計で1.0mol/L以上2.6mol/L以下、好ましくは1.5mol/L以上2.2mol/L以下とする。混合溶液の濃度が1.0mol/L以上であると、反応槽当たりの晶析物量が充分に得られるために生産性が向上する。一方、混合溶液の濃度が2.6mol/L以下であると、常温での金属塩の飽和濃度を超えることがなく、結晶が再析出による溶液中の金属イオン濃度の減少が抑制される。   The total concentration of metal ions such as nickel in the mixed solution is 1.0 mol / L or more and 2.6 mol / L or less, preferably 1.5 mol / L or more and 2.2 mol / L or less. When the concentration of the mixed solution is 1.0 mol / L or more, the amount of the crystallized material per reaction vessel can be sufficiently obtained to improve the productivity. On the other hand, when the concentration of the mixed solution is 2.6 mol / L or less, the decrease in the metal ion concentration in the solution due to reprecipitation of crystals is suppressed without exceeding the saturation concentration of the metal salt at normal temperature.

混合溶液は、実質的にタングステンイオンを含まない。実質的に含まないとは、混合溶液に不可避的に混入するタングステンイオンの存在を排除しないことを意味する。混合溶液におけるタングステンイオンの存在量は、例えば500ppm以下であり、50ppm以下が好ましい。   The mixed solution is substantially free of tungsten ions. Substantially free does not exclude the presence of tungsten ions which are inevitably mixed in the mixed solution. The amount of tungsten ions present in the mixed solution is, for example, 500 ppm or less, preferably 50 ppm or less.

[W溶液の準備]
W溶液は、実質的に金属イオンとしてタングステンイオンのみを含む溶液とする。W溶液は、目的の組成に応じてタングステン化合物を塩基性溶液に溶解してpHが10以上になるように調製される。タングステン化合物としては、パラタングステン酸アンモニウム、タングステン酸ナトリウムが挙げられる。W溶液におけるタングステンのモル数は、目的とする正極活物質の組成と混合溶液におけるニッケル等の合計モル数に応じて適宜調整する。実質的に金属イオンとしてタングステンイオンのみを含むとは、不可避的に混入する他の金属イオンの存在を許容することを意味する。W溶液における他の金属イオンの存在量は、タングステンイオンに対して例えば500ppm以下であり、50ppm以下が好ましい。W溶液におけるタングステンイオン濃度は、例えば0.04mol/L以上1.2mol/L以下、好ましくは0.6mol/L以上1.0mol/L以下である。
[Preparation of W solution]
The W solution is a solution substantially containing only tungsten ions as metal ions. The W solution is prepared to have a pH of 10 or more by dissolving a tungsten compound in a basic solution according to the target composition. Examples of tungsten compounds include ammonium paratungstate and sodium tungstate. The number of moles of tungsten in the W solution is appropriately adjusted according to the composition of the target positive electrode active material and the total number of moles of nickel and the like in the mixed solution. Substantially including only tungsten ions as metal ions means to allow the presence of other metal ions which are inevitably mixed. The amount of other metal ions present in the W solution is, for example, 500 ppm or less, preferably 50 ppm or less, based on tungsten ions. The tungsten ion concentration in the W solution is, for example, 0.04 mol / L or more and 1.2 mol / L or less, preferably 0.6 mol / L or more and 1.0 mol / L or less.

[錯イオン形成溶液の準備]
錯イオン形成溶液は、混合溶液に含まれる金属元素と錯イオンを形成する錯イオン形成因子を含むものである。例えば錯イオン形成因子がアンモニアである場合、錯イオン形成溶液にはアンモニア水溶液を用いることができ、アンモニア水溶液中に含まれるアンモニアの含量は、例えば5重量%以上25重量%以下、好ましくは10重量%以上20重量%以下である。
[Preparation of complex ion forming solution]
The complex ion formation solution contains a complex ion formation factor that forms a complex ion with the metal element contained in the mixed solution. For example, when the complex ion formation factor is ammonia, an aqueous ammonia solution can be used for the complex ion formation solution, and the content of ammonia contained in the aqueous ammonia solution is, for example, 5 wt% or more and 25 wt% or less, preferably 10 wt%. % Or more and 20% by weight or less.

[反応前溶液の準備]
反応前溶液は、pH10以上13.5以下の液媒体であり、例えば、反応容器に、所定量の水と、水酸化ナトリウム水溶液等の塩基性溶液を用いてpH10以上13.5以下の溶液として調整される。溶液のpHを10以上13.5以下に調整することで、反応初期における反応溶液のpH変動を抑制することができる。
[Preparation of solution before reaction]
The pre-reaction solution is a liquid medium having a pH of 10 or more and 13.5 or less, and, for example, as a solution having a pH of 10 or more and 13.5 or less using a predetermined amount of water and a basic solution such as sodium hydroxide aqueous solution in a reaction vessel. Adjusted. By adjusting the pH of the solution to 10 or more and 13.5 or less, the pH fluctuation of the reaction solution at the initial stage of the reaction can be suppressed.

[晶析工程]
反応前溶液に対して、形成される反応溶液のpHを10以上13.5以下の範囲に維持しつつ、混合溶液と、W溶液と、錯イオン形成溶液とを別々に且つ同時に供給することにより、反応溶液からニッケル、コバルト及びタングステンを含む複合水酸化物粒子を得ることができる。反応前溶液には、混合溶液、W溶液及び錯イオン形成溶液に加えて、塩基性溶液を同時に供給してもよい。これにより反応溶液のpHを10以上13.5以下の範囲に容易に維持することができる。
[Crystallization process]
By separately and simultaneously supplying the mixed solution, the W solution, and the complex ion forming solution while maintaining the pH of the reaction solution formed in the range of 10 or more and 13.5 or less with respect to the solution before reaction. Composite hydroxide particles containing nickel, cobalt and tungsten can be obtained from the reaction solution. The basic solution may be simultaneously supplied to the pre-reaction solution in addition to the mixed solution, the W solution and the complex ion forming solution. Thereby, the pH of the reaction solution can be easily maintained in the range of 10 or more and 13.5 or less.

晶析工程では、反応溶液のpHが10以上13.5以下の範囲を維持するように各溶液を供給することが好ましい。例えば混合溶液の供給量に応じて、塩基性溶液の供給量を調整することで反応溶液のpHを10以上13.5以下の範囲に維持することができる。反応溶液のpHが10より低い場合は、得られる複合水酸化物に含まれる不純物(例えば、混合溶液に含まれる金属以外の硫酸分や硝酸分)の量が多くなり、最終生産物である二次電池の容量の低下をまねく場合がある。また、pHが13.5より高い場合は、微小の二次粒子が多く生成し、得られる複合水酸化物のハンドリング性が悪くなる場合がある。また反応溶液の温度は、例えば25℃以上80℃以下の範囲になるように制御する。   In the crystallization step, each solution is preferably supplied such that the pH of the reaction solution is maintained in the range of 10 or more and 13.5 or less. For example, the pH of the reaction solution can be maintained in the range of 10 or more and 13.5 or less by adjusting the supply amount of the basic solution according to the supply amount of the mixed solution. When the pH of the reaction solution is lower than 10, the amount of impurities contained in the resulting composite hydroxide (for example, the content of sulfuric acid and nitric acid other than metals contained in the mixed solution) increases, and the final product It may lead to a decrease in capacity of the secondary battery. Moreover, when pH is higher than 13.5, many fine secondary particles may be generated, and the handleability of the resulting composite hydroxide may be deteriorated. Further, the temperature of the reaction solution is controlled to be, for example, in the range of 25 ° C. or more and 80 ° C. or less.

晶析工程では、反応溶液中のニッケルイオンの濃度を10ppm以上1000ppm以下の範囲になるように維持することが好ましい。ニッケルイオンの濃度が10ppm以上の場合は、タングステン化合物が充分に析出する。ニッケルイオンの濃度が1000ppm以下の場合は、溶出するニッケル量が少ないため、目的の組成からずれることが抑制される。ニッケルイオン濃度は、例えば錯イオン形成溶液にアンモニア水溶液を用いた場合、反応溶液中のアンモニウムイオン濃度が、1000ppm以上15000ppm以下となるように、錯イオン形成溶液を供給することで、調整することができる。   In the crystallization step, the concentration of nickel ions in the reaction solution is preferably maintained in the range of 10 ppm to 1000 ppm. When the concentration of nickel ions is 10 ppm or more, the tungsten compound is sufficiently precipitated. When the concentration of nickel ions is 1000 ppm or less, the amount of nickel to be eluted is small, so that deviation from the target composition is suppressed. The nickel ion concentration can be adjusted, for example, by supplying a complex ion formation solution so that the ammonium ion concentration in the reaction solution is 1000 ppm or more and 15000 ppm or less when an aqueous ammonia solution is used as the complex ion formation solution. it can.

混合溶液を供給する時間は、12時間以上60時間以下とすることが好ましい。12時間以上とすることにより、タングステン化合物の析出速度が遅くなるため、より均質にタングステンを存在させることができる。また60時間以下とすることにより、生産性を向上することができる。   The time for supplying the mixed solution is preferably 12 hours or more and 60 hours or less. By setting it as 12 hours or more, since the deposition rate of a tungsten compound becomes slow, tungsten can be more uniformly present. Moreover, productivity can be improved by setting it as 60 hours or less.

晶析工程全体をとおして供給される混合溶液のニッケル等の合計モル数を分母とし、一時間あたりに供給される混合溶液のニッケル等の合計モル数を分子とした値を、0.015以上0.085以下とするのが好ましい。0.015以上とすることで、生産性を向上することができる。0.085以下とすることで、タングステンの化合物の析出速度が遅くなるため、より均質にタングステンを存在させることができる。W溶液の供給速度は、混合溶液の供給速度と目的の組成中のタングステンのモル比により適宜調整する。   The total mole number of nickel etc. of the mixed solution supplied throughout the crystallization process is used as a denominator, and the value of the total mole number of nickel etc. of the mixed solution supplied per hour as a molecule is 0.015 or more It is preferable to set it as 0.085 or less. By setting it as 0.015 or more, productivity can be improved. By setting the amount to 0.085 or less, the deposition rate of the compound of tungsten is reduced, so that tungsten can be present more uniformly. The feed rate of the W solution is appropriately adjusted by the feed rate of the mixed solution and the molar ratio of tungsten in the target composition.

反応終了後、生成する沈殿物を水洗し、濾過し、乾燥させることにより、ニッケルコバルト複合水酸化物を得ることができる。得られるニッケルコバルト複合水酸化物における金属元素の組成比は、これらを原料として得られるリチウム遷移金属複合酸化物の金属元素の組成比とほぼ一致する。   After completion of the reaction, the precipitate formed is washed with water, filtered and dried to obtain a nickel-cobalt composite hydroxide. The compositional ratio of the metal elements in the obtained nickel-cobalt composite hydroxide substantially matches the compositional ratio of the metal elements in the lithium transition metal composite oxide obtained using these as raw materials.

本実施形態のニッケルコバルト複合水酸化物は、例えば下記式(1)で表される組成を有することが好ましい。
Ni1−x−yCo (OH)2+p (1)
The nickel-cobalt composite hydroxide of the present embodiment preferably has a composition represented by, for example, the following formula (1).
Ni 1-x-y Co x 1 M y W z (OH) 2+ p (1)

式(1)中、Mは、Mn、Al、Mg、Ca、Ti、Zr、Nb、Ta、Cr、Mo、Fe,Cu、Si、Sn、Bi、Ga、Y、Sm、Er、Ce、Nd、La、Cd及びLuからなる群より選択される少なくとも一種であって、0.01≦x≦0.35、0≦y≦0.35、0<z≦0.05、0≦p≦0.5を満たす。式(1)において、Mは、Mn及びAlの少なくとも一方であることが好ましい。また0<y≦0.35であることが好ましい。 In the formula (1), 1 M is Mn, Al, Mg, Ca, Ti, Zr, Nb, Ta, Cr, Mo, Fe, Cu, Si, Sn, Bi, Ga, Y, Sm, Er, Ce, At least one selected from the group consisting of Nd, La, Cd and Lu, wherein 0.01 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0 <z ≦ 0.05, 0 ≦ p ≦ Meet 0.5. In the formula (1), 1 M is preferably at least one of Mn and Al. Further, it is preferable that 0 <y ≦ 0.35.

[種生成工程]
ニッケルコバルト複合水酸化物の製造方法においては、図2に示すように晶析工程の前に種生成工程を有することが好ましい。反応前溶液に対して、混合溶液の一部を供給することによりニッケル及びコバルトを含む複合水酸化物粒子を種晶として含む種溶液を得ることができる。すなわち、晶析工程に供する液媒体は、ニッケル及びコバルトを含む複合水酸化物を含む種溶液であることが好ましい。種生成工程にて得られるニッケル及びコバルトを含む複合水酸化物の粒子一個が、晶析工程後に得られる複合水酸化物の粒子一個を構成する種晶となることから、種生成工程において得られる種晶の数によって、晶析工程後に得られる水酸化物の二次粒子の総数を制御することができる。例えば、種生成工程において混合溶液を多く供給すると生成する種晶の数が多くなるので、晶析工程後の複合水酸化物の二次粒子の平均粒径が小さくなる傾向がある。また、例えば、種生成工程のpHを晶析工程のpHより高くする場合は、生成する種晶の成長よりも種晶の生成が優先されることで、より均質な粒径を有する種晶が生成し、粒度分布の狭い種溶液を得ることができる。これにより粒度分布の狭い複合水酸化物を得ることができる。種生成工程後、種溶液に対して、反応溶液のpHを10以上13.5以下の範囲に維持しつつ、混合溶液と、W溶液と、錯イオン形成溶液と、を別々に且つ同時に供給することで上述の晶析工程を行う。
[Seed production process]
In the method of producing the nickel-cobalt composite hydroxide, it is preferable to have a seed generation step before the crystallization step as shown in FIG. By supplying a part of the mixed solution to the solution before reaction, it is possible to obtain a seed solution containing composite hydroxide particles containing nickel and cobalt as seed crystals. That is, the liquid medium to be subjected to the crystallization step is preferably a seed solution containing a composite hydroxide containing nickel and cobalt. One particle of the composite hydroxide containing nickel and cobalt obtained in the seed generation step becomes a seed crystal constituting one particle of the composite hydroxide obtained after the crystallization step, so it is obtained in the seed generation step The number of seed crystals can control the total number of secondary particles of hydroxide obtained after the crystallization step. For example, when a large amount of mixed solution is supplied in the seed generation step, the number of seed crystals generated is large, so the average particle diameter of the secondary particles of the composite hydroxide after the crystallization step tends to be small. Also, for example, when the pH of the seed production step is made higher than the pH of the crystallization step, seed crystals having a more homogeneous particle diameter can be generated by giving priority to the production of seed crystals rather than the growth of seed crystals produced. A seed solution having a narrow particle size distribution can be obtained. Thereby, a composite hydroxide having a narrow particle size distribution can be obtained. After the seed generation step, the mixed solution, the W solution, and the complex ion forming solution are separately and simultaneously supplied to the seed solution while maintaining the pH of the reaction solution in the range of 10 to 13.5. To carry out the above-mentioned crystallization step.

種生成工程において、混合溶液とW溶液とを同時に供給することも可能ではあるが、混合溶液のみを供給することが好ましい。タングステンは、上述のとおり、混合溶液に含まれる金属元素と一緒にタングステン化合物として析出する。混合溶液とW溶液を供給する場合は、混合溶液によって供給される金属元素のモル数だけでなく、タングステン化合物の析出量にも依存して種晶の数が決まることになる。それに対して、W溶液を用いずに混合溶液のみを供給して種生成をする場合は、混合溶液で供給される金属源のモル数により種晶の数が決まり、タングステン化合物の析出に依存しない分、製造LOTごとの種晶の数の変動を抑制できると考えられる。   In the seed production step, it is possible to simultaneously supply the mixed solution and the W solution, but it is preferable to supply only the mixed solution. Tungsten is deposited as a tungsten compound together with the metal element contained in the mixed solution as described above. In the case of supplying the mixed solution and the W solution, the number of seed crystals is determined depending not only on the number of moles of the metal element supplied by the mixed solution but also on the deposition amount of the tungsten compound. On the other hand, in the case of seed generation by supplying only the mixed solution without using the W solution, the number of seed crystals is determined by the number of moles of the metal source supplied in the mixed solution and does not depend on the precipitation of tungsten compound. It is considered that the variation of the number of seed crystals per minute and production LOT can be suppressed.

種生成工程において供給する混合溶液に含まれるニッケル等の合計モル数は、例えば、晶析工程において供給する混合溶液に含まれるニッケル等の合計モル数の1.5%以下とする。混合溶液の供給は、得られる種溶液のpHが10以上13.5以下の範囲を維持するように、塩基性溶液の供給と同時に行ってもよいし、所定量の混合溶液を供給した後の反応溶液のpHが10以上13.5以下の範囲になるように、反応前溶液にあらかじめ塩基性溶液を供給した後に行ってもよい。   The total number of moles of nickel and the like contained in the mixed solution supplied in the seed generation step is, for example, 1.5% or less of the total number of moles of nickel and the like contained in the mixed solution supplied in the crystallization step. The supply of the mixed solution may be performed simultaneously with the supply of the basic solution so that the pH of the obtained seed solution is maintained in the range of 10 or more and 13.5 or less, or after the predetermined amount of mixed solution is supplied. You may carry out after supplying a basic solution to the solution before reaction so that pH of a reaction solution may be in the range of 10 or more and 13.5 or less.

[熱処理工程]
熱処理工程では、上述のニッケルコバルト複合水酸化物の製造方法で得られるニッケルコバルト複合水酸化物を大気雰囲気下、熱処理することにより含有する水分を除去して熱処理物を得る。得られる熱処理物にはニッケルコバルト遷移金属酸化物が含まれる。
熱処理の温度は例えば、105℃以上900℃以下とし、熱処理時間は5時間以上30時間以下とする。
[Heat treatment process]
In the heat treatment step, the nickel-cobalt composite hydroxide obtained by the above-described method for producing a nickel-cobalt composite hydroxide is heat-treated in the atmosphere to remove moisture contained therein to obtain a heat-treated product. The heat-treated product obtained contains a nickel-cobalt transition metal oxide.
The temperature of the heat treatment is, for example, 105 ° C. or more and 900 ° C. or less, and the heat treatment time is 5 hours or more and 30 hours or less.

[混合工程]
混合工程は、ニッケルコバルト遷移金属酸化物を含む熱処理物と、リチウム化合物とを混合して、リチウム混合物を得る工程である。
[Mixing process]
The mixing step is a step of mixing a heat-treated material containing a nickel-cobalt transition metal oxide with a lithium compound to obtain a lithium mixture.

混合方法には、例えば、出発原料である熱処理物とリチウム化合物とを撹拌混合機等で乾式混合する方法、又は出発原料のスラリーを調製し、ボールミル等の混合機で湿式混合する方法が挙げられる。リチウム化合物としては、例えば、水酸化リチウム、硝酸リチウム、炭酸リチウム、もしくはこれらの混合物が挙げられる。   Examples of the mixing method include a method of dry-mixing a heat-treated product as a starting material and a lithium compound by a stirring mixer or the like, or a method of preparing a slurry of the starting materials and wet-mixing by a mixer such as a ball mill. . As a lithium compound, lithium hydroxide, lithium nitrate, lithium carbonate, or these mixtures are mentioned, for example.

リチウム混合物におけるリチウム以外の金属元素の合計モル数とリチウムのモル数との比は、0.90以上1.30以下であることが好ましい。0.90以上であると副生成物の生成が抑制される傾向がある。また1.30以下であるとリチウム混合物の表面に存在するアルカリ成分量が増加することが抑制され、アルカリ成分の潮解性による水分吸着が抑制されて、ハンドリング性が向上する傾向がある。   The ratio of the total number of moles of metal elements other than lithium to the number of moles of lithium in the lithium mixture is preferably 0.90 or more and 1.30 or less. If it is 0.90 or more, the formation of byproducts tends to be suppressed. Moreover, it is suppressed that the amount of alkaline components which exist on the surface of a lithium mixture as it is 1.30 or less is suppressed, the water adsorption by the deliquescent property of an alkaline component is suppressed, and there exists a tendency for handling property to improve.

[焼成工程]
焼成工程は、混合工程で得られるリチウム混合物を熱処理して、リチウム遷移金属複合酸化物を得る工程である。焼成工程において、リチウム化合物に含まれるリチウムがニッケルコバルト遷移金属酸化物中に拡散することにより、リチウム遷移金属複合酸化物を得ることができる。
[Firing process]
The firing step is a step of heat treating the lithium mixture obtained in the mixing step to obtain a lithium transition metal composite oxide. In the firing step, lithium contained in the lithium compound is diffused into the nickel-cobalt transition metal oxide, whereby a lithium transition metal composite oxide can be obtained.

焼成温度は、650℃以上990℃以下が好ましい。焼成温度が650℃以上であると未反応リチウム分の増加が抑制される傾向がある。990℃以下であるとタングステンの偏析が抑制される傾向がある。焼成時間は最高温度を保持する時間として例えば10時間以上あれば十分である。   The firing temperature is preferably 650 ° C. or more and 990 ° C. or less. When the firing temperature is 650 ° C. or more, the increase in the amount of unreacted lithium tends to be suppressed. When the temperature is 990 ° C. or less, segregation of tungsten tends to be suppressed. For the firing time, for example, 10 hours or more is sufficient as the time for maintaining the maximum temperature.

焼成工程の雰囲気は、酸素存在下が好ましく、10容量%以上100容量%以下の酸素を含有する雰囲気がより好ましい。   The atmosphere in the firing step is preferably in the presence of oxygen, and more preferably an atmosphere containing 10% by volume to 100% by volume of oxygen.

焼成後、必要に応じてリチウム遷移金属酸化物を粗砕、粉砕、乾式篩い等の処理を行い、本実施形態の非水系電解質二次電池用正極活物質が得られる。   After firing, the lithium transition metal oxide is subjected to treatments such as crushing, pulverizing, dry sieving, etc. as necessary to obtain the positive electrode active material for a non-aqueous electrolyte secondary battery of the present embodiment.

[非水系電解質二次電池用正極活物質]
本実施形態の正極活物質は、式(2)で表されるリチウム遷移金属複合酸化物を含む。リチウム遷移金属複合酸化物は、層状構造を有する六方晶系の結晶構造を有するものである。
LiNi1−x−yCo (2)
[Positive electrode active material for non-aqueous electrolyte secondary battery]
The positive electrode active material of the present embodiment includes the lithium transition metal composite oxide represented by Formula (2). The lithium transition metal complex oxide is one having a hexagonal crystal structure having a layered structure.
Li p Ni 1-x-y Co x 2 M y W z O 2 (2)

式(2)中、Mは、Mn、Al、Mg、Ca、Ti、Zr、Nb、Ta、Cr、Mo、Fe,Cu、Si、Sn、Bi、Ga、Y、Sm、Er、Ce、Nd、La、Cd、及びLuからなる群より選択される一種以上の元素であって、0.95≦p≦1.2、0.10≦x≦0.35、0≦y≦0.35、0<z≦0.05を満たす。 In the formula (2), 2 M is Mn, Al, Mg, Ca, Ti, Zr, Nb, Ta, Cr, Mo, Fe, Cu, Si, Sn, Bi, Ga, Y, Sm, Er, Ce, One or more elements selected from the group consisting of Nd, La, Cd, and Lu, and 0.95 ≦ p ≦ 1.2, 0.10 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35 , 0 <z ≦ 0.05 is satisfied.

式(2)におけるMは、これら正極活物質を用いた非水系電解質二次電池における安全性の点で、Mn及びAlの少なくとも一方から選択されることが好ましい。 It is preferable that 2 M in Formula (2) is selected from at least one of Mn and Al in terms of safety in a non-aqueous electrolyte secondary battery using these positive electrode active materials.

式(2)におけるpが0.95以上の場合、得られるリチウム遷移金属酸化物を含む正極活物質を用いた非水系電解質二次電池における正極表面と電解質との界面で発生する界面抵抗が抑制されるため、電池の出力が向上する傾向がある。一方、pが1.2以下の場合、上記正極活物質を非水系電解質二次電池の正極に用いる場合の初期放電容量が向上する傾向がある。   When p in the formula (2) is 0.95 or more, the interfacial resistance generated at the interface between the positive electrode surface and the electrolyte in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material containing lithium transition metal oxide is suppressed Therefore, the output of the battery tends to be improved. On the other hand, when p is 1.2 or less, the initial discharge capacity tends to be improved in the case of using the positive electrode active material as the positive electrode of the non-aqueous electrolyte secondary battery.

式(2)におけるx、y、zの範囲は、得られたリチウム遷移金属酸化物を含む正極活物質を用いた非水系電解質二次電池における、充放電容量やサイクル特性、安全性などを考慮して決定される。xの値は、0.10以上0.35以下とする。yの値は、0以上0.35以下、好ましくは0.10以上0.35以下とする。zの値は0.05以下、好ましくは0.02以下とする。   The ranges of x, y and z in the formula (2) take account of charge / discharge capacity, cycle characteristics, safety, etc. in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material containing lithium transition metal oxide. To be determined. The value of x is 0.10 or more and 0.35 or less. The value of y is 0 or more and 0.35 or less, preferably 0.10 or more and 0.35 or less. The value of z is 0.05 or less, preferably 0.02 or less.

以下、実施例にてより具体的な例を説明するが、本発明はこれらの実施例に限定されない。   Hereinafter, more specific examples will be described with examples, but the present invention is not limited to these examples.

[実施例1]
(各溶液の準備)
硫酸ニッケル溶液と、硫酸コバルト溶液と、硫酸マンガン溶液と、をそれぞれ金属元素のモル比で1:1:1になるように水に溶解して混合した混合溶液(ニッケルイオン、コバルトイオン及びマンガンイオンを合わせた濃度で1.7モル/L)を準備した。混合溶液中の金属元素の総モル数を474モルとした。
パラタングステン酸アンモニウム4.7モル分を水酸化ナトリウム水溶液に溶解させて液温25℃におけるpHが12.3であるW溶液(濃度1.5モル/L)を準備した。
塩基性水溶液として、25重量%の水酸化ナトリウム水溶液を準備した。
錯イオン形成溶液として、12.5重量%のアンモニア水溶液を準備した。
Example 1
(Preparation of each solution)
A mixed solution of nickel sulfate solution, cobalt sulfate solution and manganese sulfate solution dissolved in water so as to have a molar ratio of metal elements of 1: 1: 1 (nickel ions, cobalt ions and manganese ions) (The concentration is 1.7 mol / L). The total number of moles of the metal element in the mixed solution was 474 moles.
4.7 mol of ammonium paratungstate was dissolved in an aqueous solution of sodium hydroxide to prepare a W solution (concentration: 1.5 mol / L) having a pH of 12.3 at a liquid temperature of 25 ° C.
A 25% by weight aqueous solution of sodium hydroxide was prepared as a basic aqueous solution.
A 12.5 wt% aqueous ammonia solution was prepared as a complex ion forming solution.

(反応前溶液の準備)
反応容器に水40リットルを準備し、水酸化ナトリウム水溶液をpHが12.5になるように加えた。窒素ガスを導入し反応容器内を窒素で置換して反応前溶液を準備した。
(Preparation of solution before reaction)
In a reaction vessel, 40 liters of water was prepared, and an aqueous solution of sodium hydroxide was added so that the pH was 12.5. Nitrogen gas was introduced and the inside of the reaction vessel was replaced with nitrogen to prepare a pre-reaction solution.

(種生成工程)
反応溶液を撹拌しながら、反応前溶液に対して混合溶液をニッケル等の総モル数として4モル分加えて、ニッケル、コバルト及びマンガンを含む複合水酸化物を析出させた。
(Seed production process)
While stirring the reaction solution, the mixed solution was added to the pre-reaction solution in a total molar number of 4 moles such as nickel to precipitate a composite hydroxide containing nickel, cobalt and manganese.

(晶析工程)
残りの混合溶液470モル分と、W溶液4.7モル分と、水酸化ナトリウム水溶液と、アンモニア水溶液を、塩基性(pH11.3)条件下、反応溶液中においてニッケル濃度が約300ppmであり、アンモニウム濃度が約10000ppmとなるように、それぞれを別々に且つ同時に反応溶液を撹拌しながら供給して、ニッケル、コバルト、マンガン及びタングステンを含む複合水酸化物粒子を析出させた。混合溶液の供給時間は18時間であった。
反応溶液の温度は、約50℃になるように制御した。
(Crystallization process)
The remaining mixed solution of 470 mol, W solution of 4.7 mol, aqueous sodium hydroxide solution and aqueous ammonia solution under a basic (pH 11.3) condition have a nickel concentration of about 300 ppm in the reaction solution, The reaction solution was separately and simultaneously supplied with stirring so that the ammonium concentration was about 10000 ppm to precipitate composite hydroxide particles containing nickel, cobalt, manganese and tungsten. The feed time of the mixed solution was 18 hours.
The temperature of the reaction solution was controlled to be about 50 ° C.

続いて水洗、濾過、乾燥を行いニッケル、コバルト、マンガン及びタングステンを含む複合水酸化物(以下、「ニッケルコバルト複合水酸化物」ともいう)を得た。得られたニッケルコバルト複合水酸化物を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成はNi0.33Co0.33Mn0.330.01(OH)2+a(0≦a≦0.5)であった。 Subsequently, washing with water, filtration and drying were performed to obtain a composite hydroxide containing nickel, cobalt, manganese and tungsten (hereinafter also referred to as "nickel-cobalt composite hydroxide"). The obtained nickel-cobalt composite hydroxide was dissolved in an inorganic acid, and then chemical analysis was conducted by ICP emission spectroscopy. The composition was Ni 0.33 Co 0.33 Mn 0.33 W 0.01 (OH 2 ) + a (0 ≦ a ≦ 0.5).

続いてニッケルコバルト複合水酸化物粒子をエポキシ樹脂に分散させ固化した後、クロスセクションポリッシャにて二次粒子の断面出しを行い、高角度環状暗視野走査透過型電子顕微鏡/エネルギー分散型X線分析装置(JEOL社製)にてHAADF像及びTEM−EDX像(加速電圧200kV)を測定した。
実施例1のニッケルコバルト複合水酸化物の高角度環状暗視野走査透過型電子顕微鏡(HAADF−STEM)像(以下、HAADF像)を図3に、TEM−EDX像を図4に示す。図3ではニッケルコバルト複合水酸化物粒子は、複数の一次粒子からなる二次粒子を形成している。図3において、一次粒子内部1は、例えば×で示される部位であり、一次粒子粒界2は、例えば実線で示される部位である。実施例1のニッケルコバルト複合水酸化物のTEM−EDX分析による一次粒子内部及び粒界におけるタングステン元素の組成比率(at%)を表1に示す。
平均組成(%)は各点(表1における1から4)の平均値とし、ばらつきは各点の標準偏差とし、変動係数は平均組成に対するばらつきの比の値である。
Subsequently, nickel-cobalt composite hydroxide particles are dispersed and solidified in an epoxy resin, and then cross-sectioning of secondary particles is carried out with a cross section polisher, and high-angle annular dark-field scanning transmission electron microscopy / energy dispersive X-ray analysis The HAADF image and the TEM-EDX image (acceleration voltage: 200 kV) were measured with a device (manufactured by JEOL).
A high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM) image (hereinafter, HAADF image) of the nickel-cobalt composite hydroxide of Example 1 is shown in FIG. 3, and a TEM-EDX image is shown in FIG. In FIG. 3, the nickel-cobalt composite hydroxide particles form secondary particles composed of a plurality of primary particles. In FIG. 3, the primary particle interior 1 is, for example, a portion indicated by x, and the primary particle grain boundary 2 is, for example, a portion indicated by a solid line. The composition ratio (at%) of tungsten element in primary particles and in grain boundaries by TEM-EDX analysis of the nickel-cobalt composite hydroxide of Example 1 is shown in Table 1.
The average composition (%) is the average value of each point (1 to 4 in Table 1), the variation is the standard deviation of each point, and the variation coefficient is the value of the ratio of the variation to the average composition.

(正極活物質の製造)
ニッケルコバルト複合水酸化物を、大気雰囲気下、300℃で20時間の熱処理を行い、ニッケル、コバルト、マンガン及びタングステンを含む遷移金属複合酸化物(以下、「ニッケルコバルト遷移金属複合酸化物」ともいう)として回収した。次にニッケルコバルト遷移金属複合酸化物に対する炭酸リチウムのモル比が1.15倍となるように両者を乾式混合し、大気雰囲気中930℃で15時間焼成した。その後、分散処理してリチウム遷移金属複合酸化物を得た。
得られたリチウム遷移金属複合酸化物を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成はLi1.15Ni0.33Co0.33Mn0.330.01であった。
(Production of positive electrode active material)
The nickel-cobalt composite hydroxide is heat-treated at 300 ° C. for 20 hours in an air atmosphere, and is also referred to as a transition metal composite oxide containing nickel, cobalt, manganese and tungsten (hereinafter referred to as “nickel-cobalt transition metal composite oxide”) Collected as). Next, both were dry-mixed so that the molar ratio of lithium carbonate to nickel-cobalt transition metal complex oxide would be 1.15 times, and the mixture was fired at 930 ° C. for 15 hours in the air atmosphere. Thereafter, dispersion treatment was carried out to obtain a lithium transition metal composite oxide.
The obtained lithium transition metal complex oxide was dissolved in an inorganic acid, and then chemical analysis was conducted by ICP emission spectroscopy. The composition was Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 W 0 .01 O 2

続いてニッケルコバルト複合水酸化物粒子と同様にして、リチウム遷移金属酸化物粒子をエポキシ樹脂に分散させ固化した後、クロスセクションポリッシャにて二次粒子の断面出しを行い、高角度環状暗視野走査透過型電子顕微鏡/エネルギー分散型X線分析装置(JEOL社製)にてHAADF像及びTEM−EDX像を、走査型電子顕微鏡/エネルギー分散型X線分析装置(日立ハイテクノロジーズ社製)にてSEM―EDX(加速電圧5kV)を測定した。
実施例1のリチウム遷移金属複合酸化物のHAADF像を図5に、TEM−EDX像を図6に示す。実施例1のリチウム遷移金属複合酸化物のTEM−EDX分析による一次粒子内部及び粒界におけるタングステン元素の組成比率(at%)を表2に、SEM−EDX分析による一次粒子内部及び粒界におけるタングステン元素の組成比率(at%)を表3に示す。
Subsequently, lithium transition metal oxide particles are dispersed in epoxy resin and solidified in the same manner as nickel-cobalt composite hydroxide particles, and then cross-sectioning of secondary particles is carried out with a cross section polisher, and high angle annular dark field scanning is performed. HAADF image and TEM-EDX image by transmission electron microscope / energy dispersive X-ray analyzer (made by JEOL), SEM by scanning electron microscope / energy dispersive X-ray analyzer (made by Hitachi High-Technologies Corporation) -EDX (acceleration voltage 5 kV) was measured.
The HAADF image of the lithium transition metal complex oxide of Example 1 is shown in FIG. 5, and the TEM-EDX image is shown in FIG. Table 2 shows the composition ratio (at%) of tungsten element in primary particles and at grain boundaries by TEM-EDX analysis of lithium transition metal complex oxide of Example 1 Tungsten in primary particles and grain boundaries by SEM-EDX analysis The composition ratios (at%) of the elements are shown in Table 3.

[比較例1]
W溶液を用いない以外は、実施例1と同様の条件にてニッケルコバルト遷移金属複合酸化物を得た。得られたニッケルコバルト遷移金属複合酸化物と炭酸リチウムと酸化タングステン(組成比で0.01モル分)を所定量乾式混合した以外は、実施例1と同様の条件にてリチウム遷移金属酸化物を得た。
得られたリチウム遷移金属複合酸化物を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成はLi1.15Ni0.33Co0.33Mn0.330.01であった。
続いて実施例1と同じ条件にて、HAADF像とTEM−EDX像を測定した。
比較例1のリチウム遷移金属複合酸化物のHAADF像を図7に、TEM−EDX像を図8に示す。比較例1の正極活物質のTEM−EDX分析による一次粒子内部及び粒界におけるタングステン元素の組成比率(at%)を表4に示す。
Comparative Example 1
A nickel-cobalt transition metal complex oxide was obtained under the same conditions as in Example 1 except that the W solution was not used. A lithium transition metal oxide was prepared under the same conditions as in Example 1 except that the obtained nickel-cobalt transition metal composite oxide, lithium carbonate and tungsten oxide (composition ratio 0.01 mol) were dry mixed in predetermined amounts. Obtained.
The obtained lithium transition metal complex oxide was dissolved in an inorganic acid, and then chemical analysis was conducted by ICP emission spectroscopy. The composition was Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 W 0 .01 O 2
Subsequently, under the same conditions as in Example 1, HAADF images and TEM-EDX images were measured.
The HAADF image of the lithium transition metal complex oxide of Comparative Example 1 is shown in FIG. 7, and the TEM-EDX image is shown in FIG. Table 4 shows the composition ratio (at%) of tungsten element in primary particles and at grain boundaries by TEM-EDX analysis of the positive electrode active material of Comparative Example 1.

[比較例2]
(各溶液の準備)
硫酸ニッケル溶液と、硫酸コバルト溶液と、硫酸マンガン溶液の混合溶液(ニッケル、コバルト及びマンガンを合わせた濃度で1.7モル/L)に、さらにパラタングステン酸アンモニウム4.7モル分を溶解させたこと以外は実施例1と同じ手順にてリチウム遷移金属複合酸化物を作製した。
得られたリチウム遷移金属複合酸化物を無機酸により溶解した後、ICP発光分光法により化学分析を行ったところ、その組成はLi1.15Ni0.33Co0.33Mn0.330.01であった。
続いて実施例1と同じ条件にて、SEM−EDX像を測定した。
比較例2の正極活物質のSEM−EDX分析による一次粒子内部及び粒界におけるタングステン元素の組成比率(at%)を表5に示す。
Comparative Example 2
(Preparation of each solution)
In a mixed solution of nickel sulfate solution, cobalt sulfate solution and manganese sulfate solution (1.7 mol / L in total concentration of nickel, cobalt and manganese), 4.7 mol of ammonium paratungstate was further dissolved A lithium transition metal composite oxide was produced in the same manner as in Example 1 except for the above.
The obtained lithium transition metal complex oxide was dissolved in an inorganic acid, and then chemical analysis was conducted by ICP emission spectroscopy. The composition was Li 1.15 Ni 0.33 Co 0.33 Mn 0.33 W 0 .01 O 2
Subsequently, under the same conditions as Example 1, the SEM-EDX image was measured.
Table 5 shows composition ratios (at%) of tungsten elements in primary particles and in grain boundaries by SEM-EDX analysis of the positive electrode active material of Comparative Example 2.

表1から5より、実施例1におけるニッケルコバルト複合水酸化物及びリチウム遷移金属複合酸化物の変動係数が、比較例1及び2におけるリチウム遷移金属複合酸化物の変動係数と比較して小さいことが理解できる。つまり、本実施例の製造方法により得られるニッケルコバルト複合水酸化物及びリチウム遷移金属複合酸化物の一次粒子表面及び内部においてタングステンがより均質に存在することを確認できた。
(二次電池の作製)
From Tables 1 to 5, the variation coefficient of the nickel-cobalt composite hydroxide and the lithium transition metal composite oxide in Example 1 is smaller than the variation coefficient of the lithium transition metal composite oxide in Comparative Examples 1 and 2. Understandable. That is, it could be confirmed that tungsten was more homogeneously present on the surface and inside of the primary particles of the nickel-cobalt composite hydroxide and the lithium transition metal composite oxide obtained by the manufacturing method of this example.
(Preparation of secondary battery)

以下の要領で実施例1、比較例1及び2で得られた正極活物質を用いて評価用二次電池を作製した。   A secondary battery for evaluation was produced using the positive electrode active material obtained in Example 1 and Comparative Examples 1 and 2 in the following manner.

(非水系電解液二次電池)
以下の手順で非水系電解液二次電池を作製した。
(Non-aqueous electrolyte secondary battery)
A non-aqueous electrolyte secondary battery was produced in the following procedure.

(正極の作製)
上記で得られた正極活物質85重量部、アセチレンブラック10重量部、及びPVDF(ポリフッ化ビニリデン)5.0重量部を、NMP(N−メチル−2−ピロリドン)に分散させて正極スラリーを調製した。得られた正極スラリーをアルミニウム箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して正極板を得た。
(Production of positive electrode)
85 parts by weight of the positive electrode active material obtained above, 10 parts by weight of acetylene black, and 5.0 parts by weight of PVDF (polyvinylidene fluoride) are dispersed in NMP (N-methyl-2-pyrrolidone) to prepare a positive electrode slurry did. The obtained positive electrode slurry was applied to an aluminum foil, dried, compression molded using a roll press, and cut into a predetermined size to obtain a positive electrode plate.

(負極の作製)
人造黒鉛97.5重量部、CMC(カルボキシメチルセルロース)1.5重量部、及びSBR(スチレンブタジエンゴム)1.0重量部を水に分散させて負極スラリーを調製した。得られた負極スラリーを銅箔に塗布し、乾燥後ロールプレス機で圧縮成形し、所定サイズに裁断して負極板を得た。
(Fabrication of negative electrode)
A negative electrode slurry was prepared by dispersing 97.5 parts by weight of artificial graphite, 1.5 parts by weight of CMC (carboxymethylcellulose), and 1.0 parts by weight of SBR (styrene butadiene rubber) in water. The obtained negative electrode slurry was applied onto a copper foil, dried, compression molded using a roll press, and cut into a predetermined size to obtain a negative electrode plate.

(非水電解液の作製)
EC(エチレンカーボネイト)とMEC(メチルエチルカーボネイト)を体積比率3:7で混合し、溶媒とした。得られる混合溶媒に六フッ化リン酸リチウム(LiPF)をその濃度が、1mol/Lになるように溶解させて、非水電解液を得た。
(Preparation of non-aqueous electrolyte)
EC (ethylene carbonate) and MEC (methyl ethyl carbonate) were mixed at a volume ratio of 3: 7, and used as a solvent. Lithium hexafluorophosphate (LiPF 6 ) was dissolved in the resulting mixed solvent to a concentration of 1 mol / L to obtain a non-aqueous electrolytic solution.

(評価用電池の組み立て)
正極板のアルミニウム箔と負極板の銅箔に、それぞれリード電極を取り付けたのち120℃で真空乾燥を行った。次いで、正極と負極との間に多孔性ポリエチレンからなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後60℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、ラミネートパック内に、先述の非水電解液を注入、封止し、ラミネートタイプの非水系電解液二次電池を得た。
(Assembly of evaluation battery)
After lead electrodes were attached to the aluminum foil of the positive electrode plate and the copper foil of the negative electrode plate, respectively, vacuum drying was performed at 120 ° C. Subsequently, a separator made of porous polyethylene was disposed between the positive electrode and the negative electrode, and the separator was housed in a bag-like laminate pack. After storage, it was vacuum dried at 60 ° C. to remove the moisture adsorbed on each member. After vacuum drying, the non-aqueous electrolyte described above was injected into the laminate pack and sealed to obtain a laminate-type non-aqueous electrolyte secondary battery.

(固体電解質二次電池)
以下の手順で固体電解質二次電池を作製した。
(Solid electrolyte secondary battery)
A solid electrolyte secondary battery was produced by the following procedure.

(固体電解質の作製)
アルゴン雰囲気下で硫化リチウム及び五硫化リンを、そのモル比が7:3となるように秤量した。秤量物をメノウ乳鉢で粉砕混合し、硫化物ガラスを得た。これを固体電解質として用いた。
(Preparation of solid electrolyte)
Under an argon atmosphere, lithium sulfide and phosphorus pentasulfide were weighed so that the molar ratio was 7: 3. The weighed material was ground and mixed in an agate mortar to obtain a sulfide glass. This was used as a solid electrolyte.

(正極の作製)
正極活物質60重量部、固体電解質36重量部及びVGCF(気相法炭素繊維)4重量部を混合し、正極合材を得た。
(Production of positive electrode)
60 parts by weight of a positive electrode active material, 36 parts by weight of a solid electrolyte, and 4 parts by weight of VGCF (gas phase grown carbon fiber) were mixed to obtain a positive electrode mixture.

(負極の作製)
厚さ0.05mmのインジウム箔を直径11.00mmの円形にくり抜き、負極とした。
(Fabrication of negative electrode)
An indium foil having a thickness of 0.05 mm was cut out into a circular shape having a diameter of 11.00 mm and used as a negative electrode.

(評価用電池の組み立て)
内径11.00mmの円筒状外型に外径11.00mmの円柱状下型を、外型下部から挿入した。下型の上端は外型の中間の位置に固定した。この状態で外型の上部から下型の上端に固体電解質80mgを投入した。投入後、外径11.00mmの円柱状上型を外型の上部から挿入した。挿入後、上型の上方から90MPaの圧力をかけて、固体電解質を成形し、固体電解質層とした。成形後上型を外型の上部から引き抜き、外型の上部から固体電解質層の上部に正極合材20mgを投入した。投入後、再度上型を挿入し、今度は360MPaの圧力をかけて正極合材を成形し、正極層とした。成形後上型を固定し、下型の固定を解除して外型の下部から引き抜き、下型の下部から固体電解質層の下部に負極を投入した。投入後、再度下型を挿入し、外型の下方から150MPaの圧力をかけて負極を成形し、負極層とした。圧力をかけた状態で下型を固定し、上型に正極端子、下型に負極端子を取り付け、全固体二次電池を得た。
(Assembly of evaluation battery)
A cylindrical lower die having an outer diameter of 11.00 mm was inserted into a cylindrical outer die having an inner diameter of 11.00 mm from the lower portion of the outer die. The upper end of the lower mold was fixed at the middle position of the outer mold. In this state, 80 mg of the solid electrolyte was charged from the top of the outer mold to the top of the lower mold. After the introduction, a cylindrical upper die having an outer diameter of 11.00 mm was inserted from the top of the outer die. After insertion, a pressure of 90 MPa was applied from above the upper mold to form a solid electrolyte to obtain a solid electrolyte layer. After molding, the upper mold was pulled out from the upper part of the outer mold, and 20 mg of the positive electrode mixture was charged from the upper part of the outer mold to the upper part of the solid electrolyte layer. After charging, the upper die was inserted again, and this time, a pressure of 360 MPa was applied to shape the positive electrode mixture, to form a positive electrode layer. After molding, the upper mold was fixed, the lower mold was released from fixation, and the lower mold was pulled out from the lower part of the lower mold, and the negative electrode was introduced from the lower part of the lower mold to the lower part of the solid electrolyte layer. After charging, the lower mold was inserted again, and a negative electrode was formed by applying a pressure of 150 MPa from below the outer mold to form a negative electrode layer. The lower mold was fixed in a state where pressure was applied, and a positive electrode terminal was attached to the upper mold and a negative electrode terminal was attached to the lower mold to obtain an all solid secondary battery.

(電池特性の評価)
上記の評価用二次電池を用い以下の要領で電池特性の評価を行った。
(Evaluation of battery characteristics)
The battery characteristics were evaluated in the following manner using the above-described evaluation secondary battery.

(非水系電解液二次電池)
(初期放電容量)
充電電位4.3V、放電電位2.75V、放電負荷0.2C(なお、1Cは、1時間で放電が終了する電流負荷である。)の条件で、上記試験用二次電池を放電させた。このときの放電容量を初期放電容量Qd(mAh/g)とした。
(Non-aqueous electrolyte secondary battery)
(Initial discharge capacity)
The test secondary battery was discharged under the conditions of a charge potential of 4.3 V, a discharge potential of 2.75 V, and a discharge load of 0.2 C (note that 1 C is a current load at which discharging is completed in one hour). . The discharge capacity at this time was taken as the initial discharge capacity Qd (mAh / g).

(初期効率)
充電電位4.3Vの条件で、上記試験用二次電池を充電させた。このときの充電容量を初期充電容量とした。初期放電容量の値を初期充電容量の値で除して、初期効率Qe(%)を求め、初期特性を評価した。初期効率が高いほど、初期特性が優れることになる。
(Initial efficiency)
The test secondary battery was charged under the condition of a charge potential of 4.3 V. The charging capacity at this time was taken as the initial charging capacity. The value of the initial discharge capacity was divided by the value of the initial charge capacity to obtain an initial efficiency Qe (%), and the initial characteristics were evaluated. The higher the initial efficiency, the better the initial characteristics.

(高温高電圧保存特性)
評価用電池を25℃の恒温槽に入れ、満充電電圧4.5V、充電レート0.2C、充電時間10時間の条件で定電流定電圧充電を行った。充電後、放電電圧2.75V、放電レート0.2Cで定電流定電圧放電を行った。放電後、再充電し、評価用電池を60℃の恒温槽に移した。恒温槽において、充電電圧4.5V、充電レート0.2Cでトリクル充電しながら、50時間保存した。保存後、トリクル充電をやめ、25℃の恒温槽に戻し、放冷した。十分放冷した後、放電電圧2.75V、放電レート0.2Cで定電流定電圧放電を行い、放電容量Qs(mAh/g)を測定した。Qsが高いことは、高温保存特性が優れていることを意味する。
(High temperature high voltage storage characteristics)
The evaluation battery was placed in a thermostat at 25 ° C., and constant current constant voltage charging was performed under the conditions of a full charge voltage of 4.5 V, a charge rate of 0.2 C, and a charge time of 10 hours. After charging, constant current constant voltage discharge was performed at a discharge voltage of 2.75 V and a discharge rate of 0.2C. After discharge, the battery was recharged, and the evaluation battery was transferred to a 60 ° C. thermostat. In a thermostat, it saved for 50 hours, trickle charge by charge voltage 4.5V and charge rate 0.2C. After storage, the trickle charge was stopped, returned to the 25 ° C. thermostat, and allowed to cool. After sufficient cooling, constant current constant voltage discharge was performed at a discharge voltage of 2.75 V and a discharge rate of 0.2 C, and a discharge capacity Qs (mAh / g) was measured. The high Qs means that the high temperature storage characteristics are excellent.

表6より、実施例1は、比較例1及び2に対して初期放電容量に優れる事を確認でき、また比較例1に対して初期効率、高温高電圧保存特性に優れる事を確認できた。   From Table 6, Example 1 can confirm that it is excellent in initial stage discharge capacity with respect to Comparative Examples 1 and 2, and can confirm that it is excellent in initial efficiency and high temperature high voltage storage characteristic to Comparative Example 1.

このようにして得られたリチウム遷移金属複合酸化物を含む正極活物質を正極に用いた非水系電解液二次電池は、電気工具、電気自動車等の動力源として好適に利用可能である。また、このようにして得られたリチウム遷移金属複合酸化物を含む正極活物質を正極に用いた固体電解質二次電池は非水電解液を用いないので、発電所の予備電源等、熱的、機械的に過酷な環境で大出力が求められる電気機器の動力源として好適に利用可能である   The non-aqueous electrolyte secondary battery using the positive electrode active material containing the lithium transition metal composite oxide thus obtained as the positive electrode can be suitably used as a power source for an electric tool, an electric car, and the like. In addition, since a solid electrolyte secondary battery using a positive electrode active material containing a lithium transition metal composite oxide thus obtained as a positive electrode does not use a non-aqueous electrolyte, it is preferable It can be suitably used as a power source for electrical devices that require a large output in mechanically harsh environments

1 一次粒子内部
2 一次粒子粒界
1 Primary particle inside 2 Primary particle grain boundary

Claims (9)

ニッケルイオン及びコバルトイオンを含む第一溶液を準備することと、
タングステンイオンを含み、pHが10以上の第二溶液を準備することと、
錯イオン形成因子を含む第三溶液を準備することと、
pHが10以上13.5以下の範囲にある液媒体を準備することと、
前記液媒体に、前記第一溶液、第二溶液及び第三溶液を別々に且つ同時に供給して、pHが10以上13.5以下の範囲に維持される反応溶液を得ることと、
前記反応溶液からニッケル、コバルト及びタングステンを含む複合水酸化物を得ることと、を含むニッケルコバルト複合水酸化物の製造方法。
Preparing a first solution comprising nickel ions and cobalt ions;
Preparing a second solution containing tungsten ions and having a pH of 10 or more;
Preparing a third solution containing a complexing agent,
preparing a liquid medium having a pH in the range of 10 to 13.5;
Separately and simultaneously supplying the first solution, the second solution and the third solution to the liquid medium to obtain a reaction solution in which the pH is maintained in the range of 10 or more and 13.5 or less;
Obtaining a composite hydroxide containing nickel, cobalt and tungsten from the reaction solution.
前記反応溶液中のニッケルイオンの濃度が、10ppm以上1000ppm以下の範囲に維持される請求項1に記載の製造方法。   The method according to claim 1, wherein the concentration of nickel ions in the reaction solution is maintained in the range of 10 ppm to 1000 ppm. 前記第一溶液を供給する時間が、12時間以上60時間以下である請求項1又は2に記載の製造方法。   The method according to claim 1 or 2, wherein the time for supplying the first solution is 12 hours or more and 60 hours or less. 前記液媒体は、ニッケル及びコバルトを含む複合水酸化物を含む種溶液である、請求項1から3のいずれか1項に記載の製造方法。   The method according to any one of claims 1 to 3, wherein the liquid medium is a seed solution containing a composite hydroxide containing nickel and cobalt. 前記ニッケルコバルト複合水酸化物は下記式(1)で表される組成を有する請求項1から4のいずれか1項に記載の製造方法。
Ni1−x−yCo (OH)2+p (1)
(式(1)中、Mは、Mn、Al、Mg、Ca、Ti、Zr、Nb、Ta、Cr、Mo、Fe,Cu、Si、Sn、Bi、Ga、Y、Sm、Er、Ce、Nd、La、Cd及びLuからなる群より選択される少なくとも一種の元素であって、0.01≦x≦0.35、0≦y≦0.35、0<z≦0.05、0≦p≦0.5を満たす)
The method according to any one of claims 1 to 4, wherein the nickel-cobalt composite hydroxide has a composition represented by the following formula (1).
Ni 1-x-y Co x 1 M y W z (OH) 2+ p (1)
In the formula (1), 1 M is Mn, Al, Mg, Ca, Ti, Zr, Nb, Ta, Cr, Mo, Fe, Cu, Si, Sn, Bi, Ga, Y, Sm, Er, Ce And at least one element selected from the group consisting of Nd, La, Cd and Lu, wherein 0.01 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35, 0 <z ≦ 0.05, 0 Satisfy ≦ p ≦ 0.5)
前記式(1)中のMが、Mn及びAlの少なくとも一方である請求項5に記載のニッケルコバルト複合水酸化物の製造方法。 The method for producing a nickel cobalt composite hydroxide according to claim 5, wherein 1 M in the formula (1) is at least one of Mn and Al. 前記請求項1から6のいずれか1項に記載の製造方法により得られるニッケルコバルト複合水酸化物を酸素存在下で熱処理して熱処理物を得ることと、
前記熱処理物とリチウム化合物とを混合して、リチウム混合物を得ることと、
前記リチウム混合物を熱処理して、ニッケル及びコバルトを含み層状構造を有するリチウム遷移金属複合酸化物を得ることと、を含む非水系電解質二次電池用正極活物質の製造方法。
A heat-treated product is obtained by heat-treating a nickel-cobalt composite hydroxide obtained by the method according to any one of claims 1 to 6 in the presence of oxygen;
Mixing the heat-treated product with a lithium compound to obtain a lithium mixture;
Heat-treating the lithium mixture to obtain a lithium transition metal composite oxide containing nickel and cobalt and having a layered structure, and a method of producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
前記リチウム遷移金属複合酸化物が下記式(2)で表される組成を有する請求項7に記載の製造方法。
LiNi1−x−yCo (2)
(式(2)中、Mは、Mn、Al、Mg、Ca、Ti、Zr、Nb、Ta、Cr、Mo、Fe,Cu、Si、Sn、Bi、Ga、Y、Sm、Er、Ce、Nd、La、Cd及びLuからなる群より選択される一種以上の元素であって、0.95≦p≦1.2、0.10≦x≦0.35、0≦y≦0.35、0<z≦0.05を満たす。)
The method according to claim 7, wherein the lithium transition metal complex oxide has a composition represented by the following formula (2).
Li p Ni 1-x-y Co x 2 M y W z O 2 (2)
(In the formula (2), 2 M is Mn, Al, Mg, Ca, Ti, Zr, Nb, Ta, Cr, Mo, Fe, Cu, Si, Sn, Bi, Ga, Y, Sm, Er, Ce And one or more elements selected from the group consisting of Nd, La, Cd and Lu, and 0.95 ≦ p ≦ 1.2, 0.10 ≦ x ≦ 0.35, 0 ≦ y ≦ 0.35 , 0 <z ≦ 0.05.)
前記式(2)中のMが、Mn及びAlの少なくとも一方である請求項8に記載の製造方法。 The method according to claim 8, wherein 2 M in the formula (2) is at least one of Mn and Al.
JP2018221202A 2016-05-09 2018-11-27 Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery Active JP7121283B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016093544 2016-05-09
JP2016093544 2016-05-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017088613A Division JP6443489B2 (en) 2016-05-09 2017-04-27 Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Publications (3)

Publication Number Publication Date
JP2019073436A true JP2019073436A (en) 2019-05-16
JP2019073436A5 JP2019073436A5 (en) 2020-06-18
JP7121283B2 JP7121283B2 (en) 2022-08-18

Family

ID=60321898

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017088613A Active JP6443489B2 (en) 2016-05-09 2017-04-27 Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2018221202A Active JP7121283B2 (en) 2016-05-09 2018-11-27 Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017088613A Active JP6443489B2 (en) 2016-05-09 2017-04-27 Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (2) JP6443489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022125497A1 (en) 2021-12-03 2023-06-07 Toyota Jidosha Kabushiki Kaisha POSITIVE ELECTRODES FOR LITHIUM-ION SECONDARY BATTERIES

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3716372A4 (en) * 2017-11-21 2021-01-13 Sumitomo Metal Mining Co., Ltd. Positive-electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material for nonaqueous electrolyte secondary battery
JP6939722B2 (en) * 2018-07-02 2021-09-22 トヨタ自動車株式会社 All solid state battery
EP3915946B1 (en) * 2019-03-05 2024-03-27 Lg Chem, Ltd. Method for preparing cathode active material precursor for lithium secondary battery, and cathode active material precursor prepared by preparation method
US11715826B2 (en) 2019-06-25 2023-08-01 Nichia Corporation Method for producing electrode for non-aqueous secondary battery
KR102684662B1 (en) * 2020-05-29 2024-07-15 주식회사 엘지화학 Positive electrode active material precusor and manufacturing method of positive electrode active material precusor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252964A (en) * 2011-06-06 2012-12-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nickel-cobalt-manganese complex hydroxide and method for manufacturing the same
JP2014144894A (en) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd Nickel cobalt composite hydroxide and its manufacturing method
WO2015012284A1 (en) * 2013-07-24 2015-01-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
WO2016017783A1 (en) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same
JP2016047780A (en) * 2014-08-27 2016-04-07 住友金属鉱山株式会社 Transition metal complex hydroxide particles and method for producing the same, cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5662690B2 (en) * 2010-03-05 2015-02-04 国立大学法人名古屋大学 Method for producing ammonium tungstate aqueous solution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252964A (en) * 2011-06-06 2012-12-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nickel-cobalt-manganese complex hydroxide and method for manufacturing the same
JP2014144894A (en) * 2013-01-30 2014-08-14 Sumitomo Metal Mining Co Ltd Nickel cobalt composite hydroxide and its manufacturing method
WO2015012284A1 (en) * 2013-07-24 2015-01-29 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
WO2016017783A1 (en) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and method for producing same
JP2016047780A (en) * 2014-08-27 2016-04-07 住友金属鉱山株式会社 Transition metal complex hydroxide particles and method for producing the same, cathode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022125497A1 (en) 2021-12-03 2023-06-07 Toyota Jidosha Kabushiki Kaisha POSITIVE ELECTRODES FOR LITHIUM-ION SECONDARY BATTERIES

Also Published As

Publication number Publication date
JP6443489B2 (en) 2018-12-26
JP7121283B2 (en) 2022-08-18
JP2017202971A (en) 2017-11-16

Similar Documents

Publication Publication Date Title
US10818921B2 (en) Nickel complex hydroxide particles and nonaqueous electrolyte secondary battery
US11945729B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery comprising lithium transition metal complex oxide, and non-aqueous electrolyte secondary battery
US11374220B2 (en) Manganese-cobalt composite hydroxide and process for producing same, positive electrode active material and process for producing same, and non-aqueous electrolyte secondary battery
US10903492B2 (en) Method of producing nickel-cobalt composite hydroxide and method of producing positive electrode active material for non-aqueous electrolyte secondary battery
JP7121283B2 (en) Method for producing nickel-cobalt composite hydroxide and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
KR101644252B1 (en) Nickel compound hydroxide and method for producing same, positive pole active substance for nonaqueous electrolyte secondary cell and method for producing same, and nonaqueous electrolyte secondary cell
KR101345509B1 (en) Nickel composite hydroxide particles and nonaqueous electrolyte secondary battery
KR102447364B1 (en) Nickel cobalt complex hydroxide particles and method for producing the same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing the same, and non-aqueous electrolyte secondary battery
WO2014034430A1 (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
KR20180059753A (en) Nickel manganese complex hydroxides and methods for their preparation
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
US20180205079A1 (en) Manganese nickel composite hydroxide and method for producing same, lithium manganese nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JP7464102B2 (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery using the same
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
JP2020050562A (en) Metal composite hydroxide and its manufacturing method, positive electrode active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery using the same
KR102015425B1 (en) Positive active material for lithium secondary battery with copper-manganese coating thereon, lithium secondary battery having the same, and method for manufacturing thereof
JP2020167136A (en) Positive electrode active material for all-solid lithium ion secondary battery, and all-solid lithium ion secondary battery
JP2020198194A (en) Positive electrode active material for all-solid lithium ion secondary battery and all-solid lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210318

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220418

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220426

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7121283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151