JP2019073401A - Method for delaminating layered mineral powder and method for producing layered nanoplate composite - Google Patents

Method for delaminating layered mineral powder and method for producing layered nanoplate composite Download PDF

Info

Publication number
JP2019073401A
JP2019073401A JP2017198450A JP2017198450A JP2019073401A JP 2019073401 A JP2019073401 A JP 2019073401A JP 2017198450 A JP2017198450 A JP 2017198450A JP 2017198450 A JP2017198450 A JP 2017198450A JP 2019073401 A JP2019073401 A JP 2019073401A
Authority
JP
Japan
Prior art keywords
organic solvent
layered
salt
mineral powder
layered mineral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017198450A
Other languages
Japanese (ja)
Other versions
JP6979196B2 (en
Inventor
与史彦 荒尾
Yoshihiko Arao
与史彦 荒尾
昌敏 久保内
Masatoshi Kubonai
昌敏 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2017198450A priority Critical patent/JP6979196B2/en
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to KR1020207010990A priority patent/KR20200068670A/en
Priority to US16/755,137 priority patent/US20200331761A1/en
Priority to PCT/JP2018/038171 priority patent/WO2019074109A1/en
Priority to CN201880066440.3A priority patent/CN111212812A/en
Priority to CN202311113177.8A priority patent/CN117142463A/en
Priority to EP18865633.4A priority patent/EP3696143A4/en
Priority to CN202311113185.2A priority patent/CN117142522A/en
Priority to CA3078591A priority patent/CA3078591A1/en
Publication of JP2019073401A publication Critical patent/JP2019073401A/en
Application granted granted Critical
Publication of JP6979196B2 publication Critical patent/JP6979196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a method for delaminating a layered mineral powder excellent in producibility and dispersibility and a method for producing a layered nanoplate composite.SOLUTION: A method for delaminating a layered mineral powder is provided which comprises an addition step of adding into an organic solvent a layered mineral powder and a salt dispersible in the organic solvent and a mixing step of stirring the resultant mixed liquid. The relative dielectric constant and the boiling point of the organic solvent fulfill specific ranges. The acid dissociation constant pKa (HO) of a counter ion of the salt is greater than 0.SELECTED DRAWING: Figure 5

Description

本発明は、層状鉱物粉体の剥離方法および層状ナノプレート複合体の製造方法に関する。   The present invention relates to a method for exfoliating layered mineral powder and a method for producing a layered nanoplate composite.

グラフェンに代表される層状ナノプレートは、熱伝導性や導電性等を有する機能性接着剤、機能性コーティング膜、機能性プリンタブルインクをはじめとする機能性材料・電子材料への応用が期待されている。   Layered nanoplates represented by graphene are expected to be applied to functional materials and electronic materials including functional adhesives with functional conductivity and conductivity, functional coating films, functional printable inks, etc. There is.

グラフェンの製造方法として、グラファイトに対し、テープを用いて剥離する方法が知られている。また、グラファイトを硝酸や硫酸などで激しく酸化させて酸化グラフェンを合成し、その後に水熱合成を行い、エポキシ鎖を開裂することでグラフェンを微細化する方法が開示されている(非特許文献1)。また、9,9−ビス(置換アリール)フルオレン骨格を有する水溶性化合物と酸化グラフェンとを含む酸化グラフェン水分散体を用いて、グラフェンシート有機分散体を得、グラフェンシート水分散体と有機溶媒とを混合した後、グラフェンシートを遠心沈降させて回収する工程等を経てグラフェンシート有機分散体を得る方法が開示されている(特許文献1)。また、特定のイオン液体にグラファイトを添加し、マイクロ波等を照射してグラフェン分散液を製造する方法が提案されている(特許文献2)。   As a method of producing graphene, a method of exfoliating graphite using a tape is known. There is also disclosed a method of synthesizing graphene oxide by vigorously oxidizing graphite with nitric acid, sulfuric acid or the like, and then performing hydrothermal synthesis and cleaving an epoxy chain to miniaturize the graphene (Non-Patent Document 1). ). Further, using a graphene oxide water dispersion containing a water-soluble compound having a 9,9-bis (substituted aryl) fluorene skeleton and graphene oxide, a graphene sheet organic dispersion is obtained, and a graphene sheet water dispersion and an organic solvent A method of obtaining a graphene sheet organic dispersion through a step of centrifugally settling and collecting the graphene sheet and the like is disclosed (Patent Document 1). Moreover, a method of adding a graphite to a specific ionic liquid and irradiating a microwave etc. and manufacturing a graphene dispersion liquid is proposed (patent document 2).

また、NMP、DMF又はDMSO中に塩を加え、高せん断、超音波処理を施すことでグラフェンを製造する方法(非特許文献2)、塩を黒鉛の層間に挿入し、その層間化合物をピリジン中で超音波照射し、グラフェンを製造する方法(非特許文献3)が提案されている。また、活性メチレン化合物誘導体と塩基性化合物を含む液体にグラフェン積層構造を有する炭素材料を浸漬させ、撹拌することにより薄片化黒鉛を得る方法(特許文献3)、黒鉛とポリ芳香族炭化水素化合物を分散させた分散液を用いてフレーク化されたグラフェンを得る方法(特許文献4)も提案されている。   In addition, salt is added to NMP, DMF or DMSO, and high shear and ultrasonication are applied to produce graphene (non-patent document 2), the salt is inserted between the layers of graphite, and the intercalation compound is in pyridine A method (Non-patent Document 3) of producing graphene by ultrasonic irradiation at Moreover, the carbon material which has a graphene laminated structure is immersed in the liquid containing an active methylene compound derivative and a basic compound, and the method to obtain exfoliated graphite by stirring (patent document 3), a graphite and a polyaromatic hydrocarbon compound A method of obtaining flaked graphene using a dispersed liquid dispersion (Patent Document 4) has also been proposed.

なお、層状鉱物ではないが、カーボンナノチューブの分散性を向上させる方法として、有機溶媒と塩を用いる方法が提案されている(特許文献5)。   In addition, although it is not a layered mineral, the method of using an organic solvent and a salt is proposed as a method of improving the dispersibility of a carbon nanotube (patent document 5).

特開2015−59079号公報JP, 2015-59079, A 国際公開第2014/175449号International Publication No. 2014/175449 特開2016−69275号公報JP, 2016-69275, A 特表2017−500265号公報Japanese Patent Publication No. 2017-500265 特開2015−1681610号公報JP, 2015-1681610, A

J. Mater. Chem. 2012, 22, 8764-8766.J. Mater. Chem. 2012, 22, 8764-8766. Chemical Physics Letters 568-569 (2013) 198-201Chemical Physics Letters 568-569 (2013) 198-201 Carbon 113 (2017) 379-386Carbon 113 (2017) 379-386

市場では、様々な用途への応用展開を実現するために、分散性が高く、且つより生産性の高いグラフェンの製造方法が切望されている。なお、上記においては、グラフェンにおける課題について述べたが、層状ナノプレート全般において同様の課題を有する。   In the market, in order to realize application development to various applications, a highly dispersible and more productive method for producing graphene is desired. In addition, in the above, although the subject in graphene was described, it has the same subject in layered nanoplates in general.

本発明は、上記背景に鑑みて成されたものであり、生産性に優れ、且つ分散性に優れる層状鉱物粉体の剥離方法、および層状ナノプレート複合体の製造方法を提供することを課題とする。   The present invention has been made in view of the above background, and an object thereof is to provide a peeling method of layered mineral powder which is excellent in productivity and excellent in dispersibility, and a method of manufacturing a layered nanoplate composite. Do.

本発明者らが鋭意検討を重ねたところ、以下の態様において、本発明の課題を解決し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors, the inventors have found that the problems of the present invention can be solved in the following embodiments, and have completed the present invention.

[1]: 層状鉱物粉体を層状に剥離する方法であって、
有機溶媒中に、層状鉱物粉体と前記有機溶媒に分散する塩とを加える添加工程と、得られた混合液を撹拌する混合工程とを含み、
前記有機溶媒は、以下の数式(1)および数式(2)を満たし、
前記塩は、当該塩の対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩である、層状鉱物粉体の剥離方法。
[数式(1)]
4≦有機溶媒1の体積比率×有機溶媒1の比誘電率+・・+有機溶媒n−1の体積比率×有機溶媒n−1の比誘電率≦60
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
[数式(2)]
有機溶媒1の体積比率×有機溶媒1の沸点+・・+有機溶媒n−1の体積比率×有機溶媒n−1の沸点<100℃
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
上記層状鉱物粉体の剥離方法によれば、簡便且つ短時間に剥離を行うことができるので、生産性を高めることができる。また、塩を加えることにより分散性を顕著に高めることができる。
[1]: A method of exfoliating layered mineral powder in layers,
Including an addition step of adding a layered mineral powder and a salt dispersed in the organic solvent in an organic solvent, and a mixing step of stirring the obtained liquid mixture,
The organic solvent satisfies the following Formula (1) and Formula (2):
The method for removing layered mineral powder, wherein the salt is a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion of the salt is greater than 0.
[Formula (1)]
4 ≦ volume ratio of organic solvent 1 × dielectric constant of organic solvent 1 + ··· volume ratio of organic solvent n−1 × dielectric constant of organic solvent n−1 ≦ 60
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
[Formula (2)]
Volume ratio of organic solvent 1 × boiling point of organic solvent 1 + ··· volume ratio of organic solvent n−1 × boiling point of organic solvent n−1 <100 ° C.
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
According to the peeling method of the layered mineral powder, since peeling can be performed simply and in a short time, productivity can be enhanced. In addition, the dispersibility can be remarkably enhanced by adding a salt.

[2]: 有機溶媒中に、層状鉱物粉体と前記有機溶媒に分散する塩とを加える添加工程と、
得られた混合液を撹拌する混合工程とを含み、
前記有機溶媒は、以下の数式(1)および数式(2)を満たし、
前記塩は、当該塩の対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩である、層状ナノプレート複合体の製造方法。
[数式(1)]
4≦有機溶媒1の体積比率×有機溶媒1の比誘電率+・・+有機溶媒n−1の体積比率×有機溶媒n−1の比誘電率≦60
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
[数式(2)]
有機溶媒1の体積比率×有機溶媒1の沸点+・・+有機溶媒n−1の体積比率×有機溶媒n−1の沸点<100℃
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
上記層状ナノプレート複合体の製造方法によれば、有機溶媒中に塩を加えることにより分散性を顕著に高めることができる。この反応は、常温・常圧において行うことができるので、また、短時間で分散性を高められるので、生産性に優れる。
[2]: an addition step of adding a layered mineral powder and a salt dispersed in the organic solvent in an organic solvent,
Mixing the obtained mixture, and
The organic solvent satisfies the following Formula (1) and Formula (2):
The method for producing a layered nanoplate complex, wherein the salt is a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion of the salt is greater than 0.
[Formula (1)]
4 ≦ volume ratio of organic solvent 1 × dielectric constant of organic solvent 1 + ··· volume ratio of organic solvent n−1 × dielectric constant of organic solvent n−1 ≦ 60
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
[Formula (2)]
Volume ratio of organic solvent 1 × boiling point of organic solvent 1 + ··· volume ratio of organic solvent n−1 × boiling point of organic solvent n−1 <100 ° C.
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
According to the method for producing a layered nanoplate complex, the dispersibility can be remarkably enhanced by adding a salt in an organic solvent. Since this reaction can be carried out at normal temperature and pressure, and the dispersibility can be enhanced in a short time, the productivity is excellent.

[3]: 前記混合工程後、濾別により濾取する濾取工程と、
前記濾取工程後、溶媒に再分散させ、サイズ分画する工程を含む[2]に記載の層状ナノプレート複合体の製造方法。
上記製造方法によれば、サイズの揃った分散性に優れた層状ナノプレート複合体を簡便に得ることができる。
[3]: a filtering step of filtering out by filtration after the mixing step;
The method for producing a layered nanoplate composite according to [2], comprising the steps of redispersing in a solvent and size fractionation after the filtration step.
According to the above production method, a layered nanoplate complex excellent in dispersibility with uniform size can be easily obtained.

[4]: 前記濾取工程後に、前記有機溶媒を留去する工程をさらに備える[2]又は[3]に記載の層状ナノプレート複合体の製造方法。
上記製造方法によれば、層状ナノプレート複合体を容易に得ることができる。
[4]: The method for producing a layered nanoplate composite according to [2] or [3], further comprising the step of distilling off the organic solvent after the filtration step.
According to the above manufacturing method, a layered nanoplate complex can be easily obtained.

[5]: 前記混合工程により、前記層状鉱物粉体が薄膜化されている[2]〜[4]のいずれかに記載の層状ナノプレート複合体の製造方法。 [5]: The method for producing a layered nanoplate composite according to any one of [2] to [4], wherein the layered mineral powder is thinned by the mixing step.

本発明によれば、生産性に優れ、且つ分散性に優れる層状鉱物粉体の剥離方法、および層状ナノプレート複合体の製造方法を提供できるという優れた効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the outstanding effect that the peeling method of layered mineral powder which is excellent in productivity and excellent in dispersibility, and the manufacturing method of a layered nanoplate composite can be provided is produced.

実施例1に係る分散液(図中の左側は塩添加前のサンプル瓶、右側は塩添加後のサンプル瓶)および実施例1に係る層状ナノプレート複合体のTEM像。TEM images of the dispersion according to Example 1 (the left side of the figure is a sample bottle before salt addition, the right side is a sample bottle after salt addition) and the layered nanoplate composite according to Example 1. 実施例2に係る分散液(図中の左側は塩添加前のサンプル瓶、右側は塩添加後のサンプル瓶)および実施例2に係る層状ナノプレート複合体のTEM像。TEM images of the dispersion according to Example 2 (the left side in the figure is the sample bottle before salt addition, the right side is the sample bottle after salt addition) and the layered nanoplate composite according to Example 2. 実施例3に係る分散液(図中の左側は塩添加前のサンプル瓶、右側は塩添加後のサンプル瓶)および実施例3に係る層状ナノプレート複合体のTEM像。TEM images of the dispersion according to Example 3 (the left side of the figure is the sample bottle before salt addition, the right side is the sample bottle after salt addition) and the layered nanoplate composite according to Example 3. 実施例24の分散液の写真(図中の左側)および比較例9の分散液の写真(図中の右側)。A photograph of the dispersion of Example 24 (left in the figure) and a photograph of the dispersion of Comparative Example 9 (right in the figure). 有機溶媒(塩添加無し VS 塩添加有)にグラフェンを添加したときのグラフェン濃度をプロットした図。The figure which plotted the graphene density | concentration when graphene is added to the organic solvent (with no salt addition VS salt addition).

以下、本発明を適用した実施形態の一例について説明する。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれることは言うまでもない。   Hereinafter, an example of an embodiment to which the present invention is applied will be described. Needless to say, other embodiments are also included in the scope of the present invention as long as they conform to the spirit of the present invention.

[層状鉱物粉体の剥離方法]
本実施形態に係る層状鉱物粉体の剥離方法は、層状鉱物粉体を剥離して元の層状鉱物粉体よりも薄層化する方法に関する。本実施形態に係る層状鉱物粉体の剥離方法は、少なくとも有機溶媒中で層状鉱物粉体と有機溶媒に分散する塩とを加える添加工程と、塩と層状鉱物粉体を有機溶媒中で混合する混合工程とを含む。ここで「有機溶媒に分散する塩」とは、実質的に溶解は含まず、懸濁する意である。但し、懸濁が支配的であればよく、一部の塩が有機溶媒に溶解していてもよい。なお、分散には、塩および層状鉱物粉体がそれぞれ有機溶媒中に分散できればよく、撹拌等の物理的手段を用いて分散できるものも含む。添加工程と混合工程は同時または順に行うことができる。また、添加工程における塩と層状鉱物粉体の添加順は問わない。
[Peeling method of layered mineral powder]
The peeling method of the layered mineral powder according to the present embodiment relates to a method of peeling the layered mineral powder to make the layer thinner than the original layered mineral powder. The peeling method of the layered mineral powder according to the present embodiment comprises the addition step of adding the layered mineral powder and the salt dispersed in the organic solvent at least in the organic solvent, and mixing the salt and the layered mineral powder in the organic solvent And a mixing step. Here, "a salt dispersed in an organic solvent" means that it does not substantially dissolve but is suspended. However, as long as suspension is dominant, some salts may be dissolved in the organic solvent. In addition, dispersion | distribution should just disperse | distribute a salt and layered mineral powder in an organic solvent, respectively, and also what can be disperse | distributed using physical means, such as stirring. The addition step and the mixing step can be performed simultaneously or sequentially. In addition, the order of addition of the salt and the layered mineral powder in the addition step does not matter.

(層状鉱物粉体)
本実施形態に係る層状鉱物粉体は、層状に積層された粉体状の層状鉱物をいう。原料として用いる「層状鉱物粉体」のサイズは、有機溶媒中で分散できるサイズであれば特に限定されず任意のサイズでよい。例えば、ミリオーダーの顆粒状の粉体、マイクロサイズまたはナノサイズの微粒子が例示できる。
(Layered mineral powder)
The layered mineral powder according to the present embodiment refers to a powdery layered mineral stacked in a layered manner. The size of the “layered mineral powder” used as the raw material is not particularly limited as long as it can be dispersed in an organic solvent, and may be any size. For example, milli-order granular powder, fine particles of micro size or nano size can be exemplified.

層状鉱物粉体の種類は特に限定されないが、窒化ホウ素、二硫化モリブデン、天然黒鉛、人造黒鉛、膨張化黒鉛、不定形黒鉛、板状型黒鉛、グラフェンナノプレート、グラフェン、二硫化タングステン、酸化グラフェン、酸化チタン、酸化マンガン、酸化バナジウム、層状腹水酸化物(LDH)、遷移金属ダイカルコゲナイト、黒リンが例示できる。グラフェンには、多層グラフェン、単層グラフェンを含む。層状鉱物粉体は、公知の方法により製造したり、市販品を用いたりすることができる。層状鉱物粉体は1種単独で又は併用して用いられる。有機溶媒に対する層状鉱物粉体の添加量は分散に支障がない範囲であればよく限定されないが、好ましくは10〜100g/Lである。   The type of layered mineral powder is not particularly limited, but boron nitride, molybdenum disulfide, natural graphite, artificial graphite, expanded graphite, amorphous graphite, plate-like graphite, graphene nanoplates, graphene, tungsten disulfide, graphene oxide Examples thereof include titanium oxide, manganese oxide, vanadium oxide, layered belly hydroxide (LDH), transition metal dichalcogenite, and black phosphorus. Graphene includes multilayer graphene and single-layer graphene. The layered mineral powder can be produced by a known method or a commercially available product can be used. The layered mineral powder is used singly or in combination. The addition amount of the layered mineral powder to the organic solvent is not particularly limited as long as the dispersion is not impaired, but is preferably 10 to 100 g / L.

(有機溶媒)
本実施形態に係る有機溶媒は、比誘電率が以下の数式(1)を満たすものを用いる。
[数式(1)]
4≦有機溶媒1の体積比率×有機溶媒1の比誘電率+・・+有機溶媒n−1の体積比率×有機溶媒n−1の比誘電率≦60
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
有機溶媒の種類は、1種単独の有機溶媒を用いても2種以上の混合溶媒で用いてもよい。1種単独の有機溶媒を用いる場合には、比誘電率が4以上、60以下になる有機溶媒を用いる。複数の有機溶媒を混合する場合には、上記数式1に示す通り、全有機溶媒に対する各有機溶媒の体積比率と各有機溶媒の比誘電率の積の和が4以上、60以下になるものを用いる。分散性向上の観点から、数式1のより好ましい範囲は10以上、50以下であり、更に好ましい範囲は20以上、40以下である。
(Organic solvent)
As the organic solvent according to the present embodiment, one having a dielectric constant satisfying the following formula (1) is used.
[Formula (1)]
4 ≦ volume ratio of organic solvent 1 × dielectric constant of organic solvent 1 + ··· volume ratio of organic solvent n−1 × dielectric constant of organic solvent n−1 ≦ 60
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
The organic solvent may be used alone or in combination of two or more. When using a single organic solvent, an organic solvent having a dielectric constant of 4 or more and 60 or less is used. In the case of mixing a plurality of organic solvents, as shown in the above equation 1, the sum of the product of the volume ratio of each organic solvent to the total organic solvent and the relative dielectric constant of each organic solvent is 4 or more and 60 or less Use. From the viewpoint of improving the dispersibility, the more preferable range of Formula 1 is 10 or more and 50 or less, and the more preferable range is 20 or more and 40 or less.

また、本実施形態の有機溶媒には、沸点が以下の数式(2)を満たすものを用いる。
[数式(2)]
有機溶媒1の体積比率×有機溶媒1の沸点+・・+有機溶媒n−1の体積比率×有機溶媒n−1の沸点<100℃
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
1種単独で有機溶媒を用いる場合には、沸点が100℃未満の有機溶媒を用いる。混合有機溶媒を用いる場合には、上記数式2に示す通り、全有機溶媒に対する各有機溶媒の体積比率と各有機溶媒の沸点の積の和が100℃未満になるものを用いる。分散液の利用の観点から、数式2のより好ましい範囲は90℃以下であり、さらに好ましい範囲は80℃以下である。沸点の下限値は特にないが、常温で簡便に製造でき、取り扱い容易性の観点からは、常温(23℃)で液体を示すものが好ましく、沸点が60℃以上であることがより好ましい。
Further, as the organic solvent of the present embodiment, one having a boiling point satisfying the following formula (2) is used.
[Formula (2)]
Volume ratio of organic solvent 1 × boiling point of organic solvent 1 + ··· volume ratio of organic solvent n−1 × boiling point of organic solvent n−1 <100 ° C.
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
When using an organic solvent singly, an organic solvent having a boiling point of less than 100 ° C. is used. When a mixed organic solvent is used, one having a sum of the product of the volume ratio of each organic solvent to the total organic solvent and the boiling point of each organic solvent is less than 100 ° C., as shown in the above equation 2. From the viewpoint of using the dispersion, the more preferable range of Formula 2 is 90 ° C. or less, and the more preferable range is 80 ° C. or less. Although the lower limit of the boiling point is not particularly limited, it can be easily produced at normal temperature, and from the viewpoint of easy handling, it preferably exhibits a liquid at normal temperature (23 ° C.), and more preferably has a boiling point of 60 ° C. or higher.

有機溶媒の比誘電率が上記数式(1)を満たすことにより、有機溶媒中で塩の解離を誘起することができる。塩の解離は部分的に起こっていればよく、その程度は問わないが、全て解離している状態は好ましくない。換言すると、塩が有機溶媒中で部分的に解離、或いはほとんど解離していない状態が好ましい。   Dissociation of the salt can be induced in the organic solvent when the dielectric constant of the organic solvent satisfies the above equation (1). Dissociation of the salt is only required to occur partially, and the degree is not important, but it is not preferred that the salt be completely dissociated. In other words, it is preferable that the salt be partially dissociated or hardly dissociated in the organic solvent.

有機溶媒の種類は上記数式(1)および数式(2)を満たせば特に限定されないが、単独で用いる場合の好適な溶媒として、アセトン、エタノール、メタノール、2−プロパノール、テトラヒドロフラン、メチルエチルケトン、アセトニトリル等が挙げられる。混合溶媒の場合には、前記有機溶媒に加えて、単独では上記数式(1)および/又は数式(2)を満たさない有機溶媒を併用することができる。係る混合に用いられる有機溶媒としては、例えば、ジメチルホルムアミド、ジメチルスルホキシド、N−メチルピロリドン(NMP)、トルエン、キシレンが例示できる。分散液のポストプロセス性の観点からは、アセトン、エタノール、メタノール等の極性溶媒が好ましい。また、生産安定性の観点からは、1種単独の有機溶媒を用いることが好ましい。   The type of the organic solvent is not particularly limited as long as the above formulas (1) and (2) are satisfied, but acetone, ethanol, methanol, 2-propanol, tetrahydrofuran, methyl ethyl ketone, acetonitrile and the like are suitable solvents when used alone. It can be mentioned. In the case of a mixed solvent, in addition to the organic solvent, an organic solvent which alone does not satisfy the formula (1) and / or the formula (2) can be used in combination. Examples of the organic solvent used for such mixing include dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone (NMP), toluene and xylene. From the viewpoint of the post-processability of the dispersion, polar solvents such as acetone, ethanol and methanol are preferred. Further, from the viewpoint of production stability, it is preferable to use one type of organic solvent alone.

(塩)
本実施形態に係る塩は、有機溶媒中で層状鉱物粉体を剥離させる剥離剤として機能する。本実施形態に係る塩は、この塩を構成する対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩を用いる。好適な塩の対アニオンの酸として、リン酸(1.83),酢酸(4.76),炭酸(6.11)が挙げられる。
(salt)
The salt according to the present embodiment functions as a release agent for releasing layered mineral powder in an organic solvent. The salt according to the present embodiment uses a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion constituting this salt is greater than 0. Suitable counter anion acids of the salt include phosphoric acid (1.83), acetic acid (4.76), carbonic acid (6.11).

前記アニオンと塩を形成する対カチオンの好ましい例としてカリウムイオン、ナトリウムイオン、アンモニウムイオンが例示できる。塩の濃度は特に限定されないが、層状鉱物粉体100質量部あたり例えば0.01〜100質量部が好ましい。より好ましくは0.1〜10質量部であり、更に好ましくは0.1〜1質量部である。また、有機溶媒に対する塩の添加量は特に限定されないが、好ましくは0.05〜10g/Lである。   Preferred examples of the counter cation forming a salt with the anion include potassium ion, sodium ion and ammonium ion. The concentration of the salt is not particularly limited, but preferably 0.01 to 100 parts by mass, for example, per 100 parts by mass of the layered mineral powder. More preferably, it is 0.1-10 mass parts, More preferably, it is 0.1-1 mass part. Moreover, the addition amount of the salt with respect to the organic solvent is although it does not specifically limit, Preferably it is 0.05-10 g / L.

有機溶媒に塩と層状鉱物粉体を加える添加工程を行う際の環境条件は特に限定されないが、常温、空気中で簡便に行うことができる。また、添加する順番は問わない。同時でもよいし、層状鉱物粉体の分散液に塩を加えてもよい。その後の混合工程は、公知の混合手段を制限なく用いることができる。例えば、攪拌機等の混合機を用いることができる。また、超音波照射、マイクロ波照射、高速ホモジナイザ(High Speed Homogenizer)、圧力式ホモジナイザ、ジェットミル、ボールミル、ビーズミル処理等が例示できる。混合工程において、加熱工程を併用してもよい。   Although the environmental conditions at the time of performing the addition process which adds a salt and layered mineral powder to an organic solvent are not specifically limited, It can carry out simply in normal temperature and in air. Further, the order of addition is not limited. It may be simultaneous or salt may be added to the dispersion of layered mineral powder. For the subsequent mixing step, known mixing means can be used without limitation. For example, a mixer such as a stirrer can be used. Moreover, ultrasonic irradiation, microwave irradiation, a high speed homogenizer (High Speed Homogenizer), a pressure type homogenizer, a jet mill, a ball mill, bead mill processing etc. can be illustrated. In the mixing step, a heating step may be used in combination.

混合工程後は、必要に応じて、濾別工程を行うことができる。濾別に用いるフィルターとしては、テフロン(登録商標)性メンブレン等が好適に用いられる。用途により最適な孔径を選定する。通常、濾取工程を行った後に、良溶媒を用いて洗浄を行う。これらの工程を経て、塩等の不純物を除去する。   After the mixing step, a filtration step can be carried out, if necessary. As a filter used for the filtration, a Teflon (registered trademark) membrane or the like is suitably used. Select the optimum pore size depending on the application. Usually, after performing a filtration step, washing is performed using a good solvent. Through these steps, impurities such as salts are removed.

濾別工程(濾取工程)を行った後または濾別工程(濾取工程)を行わずに、本実施形態に係る有機溶媒に再分散させ、サイズ分画工程を行うことができる。サイズ分画の方法としては、遠心分離法、透析、濾過(限外濾過、加圧濾過、減圧濾過等)、超遠心分離などが例示できる。   After performing the filtration step (filtering step) or without performing the filtration step (filtering step), the particles can be re-dispersed in the organic solvent according to the present embodiment to perform the size fractionation step. Examples of the method of size fractionation include centrifugation, dialysis, filtration (ultrafiltration, pressure filtration, vacuum filtration, etc.), ultracentrifugation and the like.

これらの工程を経て、層状鉱物粉体の剥離が行われる。剥離を促進させる方法としては、塩濃度を高くしたり、混合処理を長くしたり撹拌条件をハードにしたりすることが有効である。層状鉱物粉体が剥離されるメカニズムは、上記特定の有機溶媒中で層状鉱物粉体と塩を接触させることによって、塩の一部が解離し、層状鉱物粉体と塩の対カチオンが相互に結合又は配位し、これにより層状鉱物粉体に静電反発が誘起され、層状鉱物粉体の剥離が起こるものと考察している。層状鉱物粉体と塩の対カチオンとの結合又は配位は、主として層状鉱物粉体のエッジ部において形成されているものと考えている。従って、これらの工程により得られる層状鉱物粉体は、主としてエッジ部に塩の対カチオンが結合又は配位されていると考えられる。塩の対アニオン、層状鉱物粉体と結合していない対カチオンおよび塩は、溶液とともに容易に除去できるが、残存していてもよい。   Through these steps, exfoliation of the layered mineral powder is performed. As a method of promoting exfoliation, it is effective to increase the salt concentration, to lengthen the mixing process, or to make the stirring conditions hard. The mechanism by which the layered mineral powder is exfoliated is that, by contacting the layered mineral powder with the salt in the above-mentioned specific organic solvent, a part of the salt is dissociated, and the layered mineral powder and the counter cation of the salt mutually interact. It is considered that bonding or coordination causes electrostatic repulsion to the layered mineral powder, and exfoliation of the layered mineral powder occurs. It is believed that the bonding or coordination of the layered mineral powder and the counter cation of the salt is mainly formed at the edge of the layered mineral powder. Therefore, the layered mineral powder obtained by these steps is considered to have the counter cation of the salt bound or coordinated mainly at the edge portion. Salt counter anions, counter cations not associated with layered mineral powder and salts can be easily removed with the solution but may remain.

本実施形態に係る層状鉱物粉体の剥離方法によれば、特定の有機溶媒に対して塩と原料の層状鉱物粉体を加え、混合工程を行うという簡便な工程により行うので、生産性を格段に高めることができる。なお、剥離後の層状鉱物粉体は、原料の層状鉱物粉体に比して薄膜化されているものであり、層状鉱物粉体のエッジ部には、塩のカチオン対が結合または配位していると考えられる。得られた分散液は、そのまま若しくは精製して利用することができる。また、分散液に樹脂等を加えて、例えばペースト材料として利用できる。また、インク等の組成物として利用することもできる。また、分散液から塩等の不要物を除去し、有機溶媒を留去して粉体として用いることができる。有機溶媒を留去する際の乾燥工程は、例えば、加熱乾燥、真空乾燥またはこれらを組み合わせる例が挙げられる。   According to the peeling method of the layered mineral powder according to the present embodiment, since the salt and the layered mineral powder of the raw material are added to the specific organic solvent, and the mixing process is performed, the productivity is remarkably improved. Can be raised. In addition, the layered mineral powder after exfoliation is made thinner as compared to the layered mineral powder of the raw material, and at the edge portion of the layered mineral powder, cationic pairs of salts are bound or coordinated. It is thought that The obtained dispersion can be used as it is or after purification. Moreover, resin etc. can be added to a dispersion liquid, and it can utilize as a paste material, for example. Moreover, it can also utilize as compositions, such as an ink. Further, unnecessary substances such as salts can be removed from the dispersion, and the organic solvent can be distilled off and used as a powder. Examples of the drying process when distilling off the organic solvent include, for example, heat drying, vacuum drying, or a combination thereof.

層状ナノプレート複合体は、分散液のまま用いる他、例えばペーストや粉体として又はシート状に形成して利用できるが、層状ナノプレート複合体からカチオン成分を除去することもできる。後者の場合には、加熱により容易にアンモニウム成分を除去できる観点から、アンモニウムイオンが結合した層状ナノプレート複合体が好ましい。樹脂と層状ナノプレート複合体の含有比はニーズに応じて適宜設計できる。樹脂に対する層状ナノプレート複合体の含有量は、例えば0.1〜95質量%である。基材に塗工して塗膜を形成してもよい。   The layered nanoplate complex can be used as a dispersion as it is, for example, as a paste or a powder or formed into a sheet, but the cationic component can also be removed from the layered nanoplate complex. In the latter case, a layered nanoplate complex to which ammonium ions are bonded is preferable, from the viewpoint of easily removing the ammonium component by heating. The content ratio of the resin and the layered nanoplate complex can be appropriately designed according to the needs. The content of the layered nanoplate complex to the resin is, for example, 0.1 to 95% by mass. You may apply to a base material and form a coating film.

組成物として用いる場合には、塩を必要に応じて除去した後、他の化合物を添加することができる。他の化合物は、目的およびニーズに応じて適宜選定できる。好適な例として樹脂、分散剤、消泡剤、可塑剤、酸化防止剤、着色剤および結着材等を加えてもよい。樹脂は、熱可塑性樹脂、硬化性化合物を含む熱硬化性樹脂等が例示できる。また、感光性樹脂、導電性樹脂も好適に用いられる。熱可塑性樹脂としては、(メタ)アクリル系ポリマー、ポリオレフィン樹脂、ポリアミド樹脂、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、フェノキシ樹脂、感光性樹脂等が挙げられる。また、耐衝撃性向上のために、熱可塑性樹脂組成物はその他のエラストマー成分を含有してもよい。また、樹脂として導電性高分子を用い、グラフェンおよび/またはグラファイトと導電性高分子の相乗効果によって導電特性を発現させることができる。樹脂と層状ナノプレート複合体の含有比は、ニーズに応じて適宜設計できる。樹脂に対する層状ナノプレート複合体の含有量は、例えば、0.1〜95質量%である。   When used as a composition, other compounds can be added after removing the salt if necessary. Other compounds can be suitably selected according to the purpose and needs. As a suitable example, resins, dispersants, antifoams, plasticizers, antioxidants, colorants, binders and the like may be added. The resin may, for example, be a thermoplastic resin or a thermosetting resin containing a curable compound. In addition, photosensitive resins and conductive resins are also suitably used. Examples of the thermoplastic resin include (meth) acrylic polymers, polyolefin resins, polyamide resins, polystyrenes, polycarbonates, polyethylene terephthalates, phenoxy resins, photosensitive resins and the like. In addition, the thermoplastic resin composition may contain other elastomer components to improve impact resistance. In addition, a conductive polymer can be used as a resin, and a conductive property can be exhibited by the synergistic effect of graphene and / or graphite and the conductive polymer. The content ratio of the resin to the layered nanoplate complex can be appropriately designed according to the needs. The content of the layered nanoplate complex to the resin is, for example, 0.1 to 95% by mass.

非特許文献1、特許文献1の方法によれば、酸化・還元反応を行う工程を含んでおり生産性が高いとはいえなかった。また、特許文献2〜4の方法によれば、特定のイオン液体、活性メチレン化合物誘導体或いはポリ芳香族炭化水素化合物等を用意する必要があり、生産性が高いとはいえなかった。更に、非特許文献2の方法によれば、NMP、DMF又はDMSOを用いるので、例えばシート化するときの乾燥工程において分散液のポストプロセス性に課題があった。   According to the methods of Non-Patent Document 1 and Patent Document 1, the process of performing the oxidation / reduction reaction was included, and it could not be said that the productivity was high. Moreover, according to the methods of Patent Documents 2 to 4, it is necessary to prepare a specific ionic liquid, an active methylene compound derivative, a polyaromatic hydrocarbon compound or the like, and it can not be said that the productivity is high. Furthermore, according to the method of Non-Patent Document 2, since NMP, DMF or DMSO is used, there is a problem in post-processability of the dispersion in, for example, a drying step when forming a sheet.

一方、本実施形態に係る層状鉱物粉体の剥離方法によれば、数式(1)および数式(2)を満たす有機溶媒を用い、且つ酸解離定数pKa(HO)が0越えの酸からなる塩を用いることによって、層状鉱物粉体の剥離を簡便且つ短時間に行うことができる。また、市販の塩を用いることができるので製造工程が簡便であり、生産性が高められる。これは、塩の対アニオンが結合又は配位された層状ナノプレート複合体の互いの静電反発により分散性が高まることによって、有機溶媒中での分散性を顕著に高められたものと考えている。また、得られる層状ナノプレート複合体の経時的安定性も向上させることができる。 On the other hand, according to the peeling method of the layered mineral powder according to the present embodiment, using an organic solvent satisfying formula (1) and formula (2) and using an acid with an acid dissociation constant pKa (H 2 O) exceeding 0 Peeling of layered mineral powder can be performed simply and in a short time by using a salt of Moreover, since a commercially available salt can be used, the production process is simple and productivity is enhanced. This is considered to be that the dispersibility in the organic solvent is significantly enhanced by the increase in the dispersibility due to the electrostatic repulsion of the layered nanoplate complex in which the counter anion of the salt is bound or coordinated. There is. In addition, the temporal stability of the resulting layered nanoplate complex can also be improved.

また、混合工程において外部エネルギーの有無およびその強度を調整することが容易であり、遠心分離後の再分離によるサイズ分画も容易である。また、本実施形態に係る層状鉱物粉体の剥離方法によれば、製造コスト低減を図ることができる。また、剥離により、原料の層状鉱物粉体に比して表面積を高めることができるというメリットを有する。また、これに付随して層状鉱物粉体の特性(例えば伝導性等)を高めることが期待できる。   Moreover, it is easy to adjust the presence or absence of external energy and its intensity in the mixing step, and size fractionation by re-separation after centrifugation is also easy. Moreover, according to the peeling method of the layered mineral powder which concerns on this embodiment, manufacturing cost reduction can be aimed at. Moreover, it has the merit that surface area can be raised compared with the layered mineral powder of a raw material by peeling. In addition, it can be expected that the properties (for example, conductivity etc.) of the layered mineral powder can be enhanced concomitantly.

[層状ナノプレート複合体の製造方法]
次に、本実施形態に係る層状ナノプレート複合体の製造方法について説明する。層状ナノプレート複合体の製造方法には、層状鉱物粉体を剥離する態様(上記層状鉱物粉体の剥離方法と重複する)の他、層状鉱物粉体(この場合には層状ナノプレート複合体)は剥離しないが、分散を格段に向上させる態様およびこれらの組合せが含まれる。また、上記層状鉱物粉体の剥離方法と層状ナノプレート複合体の製造方法とは、前者が得られる化合物がナノオーダー(0.3nm以上、1000nm未満)に限定されない点、後者が剥離せずに分散する態様も含む点において相違しており、目的が異なる場合も想定されるが、両者のいずれにも該当している場合も含まれている。従って、基本的には、上記実施形態と同様の工程を有する。
[Method for producing layered nanoplate complex]
Next, the manufacturing method of the layered nanoplate complex concerning this embodiment is explained. In the method of producing a layered nanoplate composite, in addition to an embodiment of exfoliating layered mineral powder (which overlaps with the exfoliating method of layered mineral powder), layered mineral powder (in this case, layered nanoplate composite) Does not exfoliate, but includes aspects and combinations thereof that significantly improve dispersion. In addition, the method for peeling the layered mineral powder and the method for producing the layered nanoplate composite are characterized in that the compound from which the former is obtained is not limited to nano order (0.3 nm or more and less than 1000 nm); Although it differs in the point containing the aspect to disperse | distribute, and the case where the objective is different is also assumed, the case where it corresponds to both of both is also contained. Therefore, basically, the process is the same as the above embodiment.

本実施形態に係る層状ナノプレート複合体の製造方法は、上述した数式(1)および数式(2)を満たす有機溶媒中に、層状鉱物粉体と有機溶媒に分散する塩とを加える添加工程と、得られた混合液を撹拌する混合工程とを含む。塩は、前述した通り、当該塩の対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩である。添加工程と混合工程は同時に行っても、順に行ってもよい。 The method for producing a layered nanoplate complex according to the present embodiment includes the addition step of adding a layered mineral powder and a salt dispersed in an organic solvent in an organic solvent satisfying the above-mentioned numerical formula (1) and numerical formula (2) And a mixing step of stirring the obtained mixture. The salt is, as described above, a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion of the salt is greater than 0. The addition step and the mixing step may be performed simultaneously or sequentially.

(層状ナノプレート複合体)
本実施形態に係る層状ナノプレート複合体は、元の層状鉱物粉体を有機溶媒中で塩と共に添加して、混合した後に得られる層状鉱物粉体と塩の対カチオンとが結合又は配位した複合体をいう。層状ナノプレート複合体の厚みは0.3nm以上、1000nm未満のナノメータオーダーにあるものをいい、単層体または積層体が含まれる。用途によるが、層状ナノプレートの厚みは100nm未満であることがより好ましい。本実施形態に係る層状ナノプレート複合体の製造方法によれば、分散性が顕著に優れる分散液を提供できる。また、常温・常圧で短時間に調製できるので生産性が高いという優れた効果を有している。なお、層状ナノプレート複合体は、原料として用いる層状鉱物粉体より薄膜化されていても、同サイズであってもよい。
(Layered nanoplate complex)
In the layered nanoplate complex according to the present embodiment, the layered mineral powder obtained after mixing and mixing the original layered mineral powder with the salt in an organic solvent is bound or coordinated with the counter cation of the salt. It is a complex. The thickness of the layered nanoplate complex is in the nanometer order of 0.3 nm or more and less than 1000 nm, and includes a monolayer or a laminate. Depending on the application, the thickness of the layered nanoplate is more preferably less than 100 nm. According to the method for producing a layered nanoplate complex according to the present embodiment, it is possible to provide a dispersion in which the dispersibility is remarkably excellent. Moreover, since it can prepare in a short time by normal temperature and pressure, it has the outstanding effect that productivity is high. The layered nanoplate complex may be thinner than the layered mineral powder used as a raw material or may have the same size.

(層状鉱物粉体)
層状ナノプレート複合体の製造方法に用いる層状鉱物粉体は、前述と同様に層状に積層された粉体状の層状鉱物である。原料として用いる「層状鉱物粉体」のサイズは、層状ナノプレート複合体が得られればよく特に限定されない。例えば、ミリオーダーの顆粒状の粉体、マイクロまたはナノサイズの微粒子等が挙げられる。層状鉱物粉体の種類は、上述した粉体に加えて、グラフェン量子ドットが例示できる。
(Layered mineral powder)
The layered mineral powder used in the method for producing a layered nanoplate composite is a powdery layered mineral layered in the same manner as described above. The size of the “layered mineral powder” used as a raw material is not particularly limited as long as a layered nanoplate composite can be obtained. For example, granular powder of milli order, micro or nano-sized particles, etc. may be mentioned. The type of layered mineral powder can be exemplified by graphene quantum dots in addition to the above-mentioned powder.

例えば、層状鉱物粉体としてグラフェンを用い、単層または積層数の少ないグラフェンナノプレート複合体を得たり、単層のグラフェンやグラフェン量子ドットを層状鉱物粉体として用い、高分散化された分散液を得たりしてもよい。用いる層状鉱物粉体は1種でも複数種でもよい。   For example, a dispersion liquid obtained by using graphene as a layered mineral powder, obtaining a graphene nanoplate complex having a small number of single layers or stacked layers, or using single layer graphene or graphene quantum dots as a layered mineral powder You may get The layered mineral powder to be used may be one kind or plural kinds.

(有機溶媒)
本実施形態に係る有機溶媒は、比誘電率が上記数式(1)および数式(2)を満たすものを用いる。好ましい範囲や有機溶媒の種類等については上述したとおりである。
(Organic solvent)
As the organic solvent according to the present embodiment, one having a dielectric constant satisfying the above-mentioned equation (1) and equation (2) is used. The preferable range, the type of the organic solvent, and the like are as described above.

(塩)
本実施形態に係る塩は、有機溶媒中で層状鉱物粉体を分散させる役割を担う。層状鉱物粉体を剥離する役割も兼ね備えることができる。本実施形態に係る塩は、前述した通り、この塩を構成する対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩を用いる。好適な塩の対アニオンの酸や対カチオンの好ましい例、好ましい濃度等は前述した通りである。
(salt)
The salt according to the present embodiment plays a role of dispersing layered mineral powder in an organic solvent. It can also play the role of exfoliating layered mineral powder. As described above, the salt according to this embodiment uses a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion constituting this salt is greater than 0. Preferred examples of the acid and counter cation of a suitable salt counter anion, preferred concentrations and the like are as described above.

有機溶媒に塩と層状鉱物粉体を加える添加工程を行う際の環境条件は特に限定されず、上述した層状鉱物粉体の剥離方法と同様の例が挙げられる。また、混合工程後、必要に応じて行う濾別、洗浄、サイズ分画工程等についても前述したとおりである。   The environmental conditions at the time of performing the addition step of adding the salt and the layered mineral powder to the organic solvent are not particularly limited, and the same examples as the peeling method of the layered mineral powder described above can be mentioned. Further, after the mixing step, the filtration, washing, size fractionation step and the like which are performed as necessary are also as described above.

これらの工程を経て、層状ナノプレート複合体が製造される。分散性をよい高める方法としては、塩濃度や混合処理条件を調整する方法がある。本実施形態に係る層状ナノプレート複合体の製造方法によれば、特定の有機溶媒に対して塩と原料の層状鉱物粉体を加え、混合工程を行うという簡便な工程であることから、生産性を格段に高めることができる。   Through these steps, a layered nanoplate complex is produced. As a method of improving dispersibility well, there is a method of adjusting salt concentration and mixing treatment conditions. According to the method for producing a layered nanoplate complex according to the present embodiment, productivity is obtained because it is a simple step of adding a layered mineral powder of a salt and a raw material to a specific organic solvent and performing a mixing step. Can be dramatically improved.

また、層状鉱物粉体の分散性を顕著に高め、経時的安定性に優れる分散液を提供できる。また、層状ナノプレート複合体にカウンターカチオンが結合又は配位していることで、溶媒中あるいはスラリーにおいて層状ナノプレート複合体の分散性を向上させることができる。   In addition, the dispersibility of the layered mineral powder can be significantly enhanced, and a dispersion having excellent temporal stability can be provided. In addition, the dispersibility of the layered nanoplate complex in a solvent or in a slurry can be improved by binding or coordination of the counter cation to the layered nanoplate complex.

層状ナノプレート複合体の用途としてはインク、機能性コート膜、電極触媒の担持体、導電性複合体、電極等の電子部材、各種センサー等が例示できる。また、建材用途、塗料、医療機器など幅広い応用が期待できる。   Examples of applications of the layered nanoplate composite include an ink, a functional coat film, a carrier of an electrode catalyst, a conductive composite, an electronic member such as an electrode, various sensors, and the like. In addition, a wide range of applications such as building materials, paints, and medical devices can be expected.

<実施例>
以下、本発明を実施例により更に詳細に説明する。但し、本発明は以下の実施例により何ら限定されるものではない。
<Example>
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited at all by the following examples.

有機溶媒は、乾燥工程を行わずそのまま用いた。塩は、市販品をそのまま用いた。   The organic solvent was used as it was without performing the drying step. The salt used the commercial item as it was.

(実施例1)
常温下、空気中でアセトン100mLに1gの二硫化モリブデン(ニチモリ社製)を添加して撹拌した。この混合物に、リン酸カリウムの粉末を0.1g加え、高出力超音波(600W,SMT社製)を10分間照射した。リン酸カリウムを加える前、二硫化モリブデンはアセトン中で透明な分散液であった(図1中の左側のサンプル瓶)が、塩を添加して10分間の超音波処理を行った後は分散性が劇的に向上し、濃い色の分散液が得られた(図1中の右側のサンプル瓶)。得られた懸濁液を一部採取し、TEMグリッド上に滴下した試料を透過型電子顕微鏡(TEM)で観察した。その結果、図1の右側の写真に示すように、薄く透明な二硫化モリブデンのナノシートが形成されていることを確認した。
Example 1
At room temperature, 1 g of molybdenum disulfide (manufactured by Nichimori Co., Ltd.) was added to 100 mL of acetone in air and stirred. To this mixture, 0.1 g of potassium phosphate powder was added, and irradiated with high-power ultrasound (600 W, manufactured by SMT) for 10 minutes. Before adding potassium phosphate, molybdenum disulfide was a clear dispersion in acetone (sample bottle on the left in Figure 1), but after adding salt and sonicating for 10 minutes dispersion The sex was dramatically improved, and a dark colored dispersion was obtained (the sample bottle on the right in FIG. 1). A part of the obtained suspension was collected, and a sample dropped onto a TEM grid was observed with a transmission electron microscope (TEM). As a result, as shown in the photograph on the right side of FIG. 1, it was confirmed that thin and transparent nanosheets of molybdenum disulfide were formed.

(実施例2)
二硫化モリブデンに代えて、窒化ホウ素(昭和電工社製)を用いた以外は、実施例1と同様の方法により分散液を得た。リン酸カリウムを加える前、窒化ホウ素はアセトン中でクリアな白色を示していた(図2中の左側のサンプル瓶)が、塩を添加して10分間の超音波処理を行った後は分散性が劇的に向上し、濁った白色の分散液が得られた(図2中の右側のサンプル瓶)。実施例1と同様の方法によりTEM像を観察したところ、図2に示すように、塩を添加する前に比して層厚が十分に薄い半透明状のナノシートが形成されていることを確認した。
(Example 2)
A dispersion was obtained in the same manner as in Example 1 except that boron nitride (manufactured by Showa Denko KK) was used instead of molybdenum disulfide. Prior to the addition of potassium phosphate, the boron nitride had a clear white color in acetone (the sample bottle on the left in FIG. 2), but after adding the salt and sonicating for 10 minutes it was dispersible Dramatically improved, and a cloudy white dispersion was obtained (the sample bottle on the right in FIG. 2). The TEM image was observed by the same method as in Example 1. As a result, as shown in FIG. 2, it was confirmed that a semitransparent nanosheet having a sufficiently thin layer thickness was formed as compared with before the addition of the salt. did.

(実施例3)
二硫化モリブデンに代えて、黒鉛(和光純薬社製)を用いた以外は、実施例1と同様の方法により分散液を得た。リン酸カリウムを加える前、黒鉛はアセトン中で灰色の透明なグラフェン分散液であった(図中の左側のサンプル瓶)。一方、リン酸カリウムを添加して超音波処理を行った後は分散性が劇的に向上し、黒色不透明な分散液が得られた(図中の右側のサンプル瓶)。実施例1と同様の方法によりTEM像を観察したところ、図3に示すように、透明なグラフェンのナノシートが形成されていることを観察した。
(Example 3)
A dispersion was obtained in the same manner as in Example 1 except that graphite (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of molybdenum disulfide. Before adding potassium phosphate, the graphite was a gray clear graphene dispersion in acetone (the sample bottle on the left in the figure). On the other hand, after ultrasonication with the addition of potassium phosphate, the dispersibility was dramatically improved, and a black opaque dispersion was obtained (the sample bottle on the right in the figure). When the TEM image was observed by the same method as Example 1, as shown in FIG. 3, it observed that the nanosheet of transparent graphene was formed.

(実施例4〜24)
表1に示す条件に従い、実施例4〜24に係る分散液を得た。表1に示す条件以外は、実施例1と同様の条件とした。実施例14〜19、21〜23については、混合した後にサイズ分画工程として遠心処理(1500rpm×30分)を行い、上澄み液を採取した。
(Examples 4 to 24)
According to the conditions shown in Table 1, dispersions according to Examples 4 to 24 were obtained. The conditions were the same as in Example 1 except for the conditions shown in Table 1. About Examples 14-19 and 21-23, after mixing, centrifugation (1500 rpm x 30 minutes) was performed as a size fractionation process, and the supernatant liquid was extract | collected.

(比較例1〜5)
表2に示す条件に従い、比較例1〜5に係る分散液を得た。表1に示す条件以外は、実施例1と同様とした。
(Comparative Examples 1 to 5)
According to the conditions shown in Table 2, dispersions according to Comparative Examples 1 to 5 were obtained. The conditions were the same as in Example 1 except for the conditions shown in Table 1.

実施例4〜23の上澄み液を採取し、吸光度を測定した結果を表3に示す。また、比較例1〜8の上澄み液について、同様の方法で吸光度を測定した結果を表4に示す。
The supernatants of Examples 4 to 23 were collected, and the absorbance was measured. The results are shown in Table 3. Moreover, about the supernatant liquid of Comparative Examples 1-8, the result of having measured the light absorbency by the same method is shown in Table 4.

実施例18の分散液の吸光度は3.84であった。一方、塩を添加しない以外は同一条件である比較例6の分散液の吸光度は0.145であり、塩添加によって分散性が顕著に向上することを確認した。
また、実施例19の分散液の吸光度は、ジェットミル処理後の微細粉末黒鉛を用いた以外は実施例18と同様の条件で実験を行ったものであるが、1回の処理で吸光度は10.3まで向上することを確認した。
さらに、アセトンとエタノールの混合有機溶媒からなる実施例20の分散液の吸光度は1.23であった。一方、塩を添加しない以外は実施例20と同一条件である比較例6の分散液の吸光度は0.035であり、塩添加によって分散性を格段に向上できることを確認した。
The absorbance of the dispersion of Example 18 was 3.84. On the other hand, the absorbance of the dispersion of Comparative Example 6 under the same conditions except that no salt was added was 0.145, and it was confirmed that the dispersibility was significantly improved by the addition of the salt.
Moreover, although the light absorbency of the dispersion liquid of Example 19 carried out experiment on the conditions similar to Example 18 except having used the fine powder graphite after a jet mill process, the light absorbency is 10 by one process. It confirmed that it improved to .3.
Furthermore, the absorbance of the dispersion of Example 20 consisting of a mixed organic solvent of acetone and ethanol was 1.23. On the other hand, it was confirmed that the absorbance of the dispersion of Comparative Example 6 under the same conditions as Example 20 except that no salt was added was 0.035, and the dispersibility could be remarkably improved by the addition of salt.

アセトンとNMPの混合有機溶媒からなる実施例21の分散液の吸光度は1.16であった。一方、塩を添加しない以外は実施例21と同一条件である比較例7の分散液の吸光度は0.014であり、分散性が顕著に向上することを確認した。
また、アセトンとトルエン混合有機溶媒からなる実施例22の分散液の吸光度は1.32であった。一方、塩を添加しない以外は実施例22と同一条件である比較例8の分散液の吸光度は0.14であり、塩添加によって分散性が顕著に向上することを確認した。
The absorbance of the dispersion of Example 21 consisting of a mixed organic solvent of acetone and NMP was 1.16. On the other hand, it was confirmed that the absorbance of the dispersion of Comparative Example 7 under the same conditions as Example 21 except that no salt was added was 0.014 and the dispersibility was significantly improved.
The absorbance of the dispersion of Example 22 consisting of acetone and a toluene mixed organic solvent was 1.32. On the other hand, the absorbance of the dispersion of Comparative Example 8 under the same conditions as Example 22 except that no salt was added was 0.14, which confirmed that the dispersibility was significantly improved by the addition of salt.

粒径の小さい黒鉛Z5F(伊藤黒鉛社製)を用いて得た実施例23の高濃度グラフェン分散液の吸光度は35であり、グラフェン濃度約1.06g/Lの高濃度分散液を僅か5分で得られることが確認できた。
実施例24の分散液においては、経時的に沈降が認められたものの24時間後も黒色不透明な分散液が存在していることを確認した(図4中の左側の写真)。一方、塩を添加しない以外は実施例24と同一の条件で行った比較例9は、僅か30分で沈降してしまい、上澄み液は透明であることを確認した(図4中の右側の写真)。
The absorbance of the high concentration graphene dispersion of Example 23 obtained using graphite Z5F (manufactured by Ito Graphite Co., Ltd.) having a small particle diameter is 35, and the high concentration dispersion having a graphene concentration of about 1.06 g / L is only 5 minutes It can be confirmed that it can be obtained by
In the dispersion of Example 24, it was confirmed that a black opaque dispersion was present even after 24 hours although sedimentation was observed with time (photograph on the left side in FIG. 4). On the other hand, in Comparative Example 9 performed under the same conditions as Example 24 except that no salt was added, sedimentation occurred in only 30 minutes, and it was confirmed that the supernatant was transparent (the photograph on the right in FIG. 4). ).

次に、アセトン、イソプロパノール、エタノール、THF,トルエンの各溶媒を100mL入れた試験管をそれぞれ2本ずつ用意し、それぞれの試験管に天然黒鉛0.5gを加えた。そして、各溶媒の一組(2本)の試験管の一方にのみ、塩(炭酸アンモニウム)を1g/Lとなるように加えた。これらの試験管に対し,超音波処理を5分行った。その後、1500rpm×30分の遠心処理を行い、660nmの吸光度を測定し、当該測定値を吸光度係数(3300)で除すことによりグラフェン濃度g/Lを求めた。その結果を図5に示す。   Next, two test tubes each containing 100 mL of each solvent of acetone, isopropanol, ethanol, THF, and toluene were prepared, and 0.5 g of natural graphite was added to each test tube. And salt (ammonium carbonate) was added so that it might become 1 g / L only to one side (one set of test tubes) of each solvent. These test tubes were sonicated for 5 minutes. Thereafter, centrifugation at 1500 rpm for 30 minutes was performed, the absorbance at 660 nm was measured, and the measured value was divided by the absorbance coefficient (3300) to determine the graphene concentration g / L. The results are shown in FIG.

アセトン、イソプロパノール、エタノール、THFを用いた分散液は、塩を添加することにより、グラフェン濃度が顕著に向上することを確認した。また、トルエンの場合には、塩添加の有無にかかわらずグラフェン濃度が低いことを確認した。   In the dispersion using acetone, isopropanol, ethanol and THF, it was confirmed that the graphene concentration was significantly improved by adding a salt. In addition, in the case of toluene, it was confirmed that the graphene concentration was low regardless of the addition of salt.

Claims (5)

層状鉱物粉体を層状に剥離する方法であって、
有機溶媒中に、層状鉱物粉体と前記有機溶媒に分散する塩とを加える添加工程と、
得られた混合液を撹拌する混合工程とを含み、
前記有機溶媒は、以下の数式(1)および数式(2)を満たし、
前記塩は、当該塩の対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩である、
層状鉱物粉体の剥離方法。
[数式(1)]
4≦有機溶媒1の体積比率×有機溶媒1の比誘電率+・・+有機溶媒n−1の体積比率×有機溶媒n−1の比誘電率≦60
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
[数式(2)]
有機溶媒1の体積比率×有機溶媒1の沸点+・・+有機溶媒n−1の体積比率×有機溶媒n−1の沸点<100℃
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
A method of exfoliating layered mineral powder into layers,
Adding the layered mineral powder and the salt dispersed in the organic solvent in the organic solvent;
Mixing the obtained mixture, and
The organic solvent satisfies the following Formula (1) and Formula (2):
The salt is a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion of the salt is greater than 0.
Removal method of layered mineral powder.
[Formula (1)]
4 ≦ volume ratio of organic solvent 1 × dielectric constant of organic solvent 1 + ··· volume ratio of organic solvent n−1 × dielectric constant of organic solvent n−1 ≦ 60
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
[Formula (2)]
Volume ratio of organic solvent 1 × boiling point of organic solvent 1 + ··· volume ratio of organic solvent n−1 × boiling point of organic solvent n−1 <100 ° C.
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
有機溶媒中に、層状鉱物粉体と前記有機溶媒に分散する塩とを加える添加工程と、
得られた混合液を撹拌する混合工程とを含み、
前記有機溶媒は、以下の数式(1)および数式(2)を満たし、
前記塩は、当該塩の対アニオンの酸の酸解離定数pKa(HO)が0より大きい塩である、
層状ナノプレート複合体の製造方法。
[数式(1)]
4≦有機溶媒1の体積比率×有機溶媒1の比誘電率+・・+有機溶媒n−1の体積比率×有機溶媒n−1の比誘電率≦60
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
[数式(2)]
有機溶媒1の体積比率×有機溶媒1の沸点+・・+有機溶媒n−1の体積比率×有機溶媒n−1の沸点<100℃
但し、nは1以上の整数であり、n=1は単独溶媒、n≧2は混合溶媒を示す。
Adding the layered mineral powder and the salt dispersed in the organic solvent in the organic solvent;
Mixing the obtained mixture, and
The organic solvent satisfies the following Formula (1) and Formula (2):
The salt is a salt in which the acid dissociation constant pKa (H 2 O) of the acid of the counter anion of the salt is greater than 0.
Method of manufacturing layered nanoplate complex.
[Formula (1)]
4 ≦ volume ratio of organic solvent 1 × dielectric constant of organic solvent 1 + ··· volume ratio of organic solvent n−1 × dielectric constant of organic solvent n−1 ≦ 60
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
[Formula (2)]
Volume ratio of organic solvent 1 × boiling point of organic solvent 1 + ··· volume ratio of organic solvent n−1 × boiling point of organic solvent n−1 <100 ° C.
However, n is an integer greater than or equal to 1, n = 1 shows a single solvent, n> = 2 shows a mixed solvent.
前記混合工程後、濾別により濾取する濾取工程と、
前記濾取工程後、溶媒に再分散させ、サイズ分画する工程を含む請求項2に記載の層状ナノプレート複合体の製造方法。
A filtering step of filtering out by filtration after the mixing step;
The method for producing a layered nanoplate composite according to claim 2, comprising the steps of redispersing in a solvent and size fractionation after the filtration step.
前記濾取工程後に、前記有機溶媒を留去する工程をさらに備える請求項3に記載の層状ナノプレート複合体の製造方法。   The method for producing a layered nanoplate composite according to claim 3, further comprising the step of distilling off the organic solvent after the filtration step. 前記混合工程により、前記層状鉱物粉体が薄膜化されている請求項2〜4のいずれかに記載の層状ナノプレート複合体の製造方法。   The method for producing a layered nanoplate composite according to any one of claims 2 to 4, wherein the layered mineral powder is thinned by the mixing step.
JP2017198450A 2017-10-12 2017-10-12 Method for exfoliating layered mineral powder and method for producing layered nanoplate complex Active JP6979196B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2017198450A JP6979196B2 (en) 2017-10-12 2017-10-12 Method for exfoliating layered mineral powder and method for producing layered nanoplate complex
US16/755,137 US20200331761A1 (en) 2017-10-12 2018-10-12 Inorganic particle composite, method for producing the same, and inorganic particle composite dispersion
PCT/JP2018/038171 WO2019074109A1 (en) 2017-10-12 2018-10-12 Inorganic-particle composite, production method therefor, and inorganic-particle composite dispersion
CN201880066440.3A CN111212812A (en) 2017-10-12 2018-10-12 Inorganic particle composite, method for producing same, and inorganic particle composite dispersion liquid
KR1020207010990A KR20200068670A (en) 2017-10-12 2018-10-12 Inorganic particle composite and manufacturing method thereof, and dispersion of inorganic particle composite
CN202311113177.8A CN117142463A (en) 2017-10-12 2018-10-12 Method for peeling layered mineral powder and method for producing layered nanosheet composite
EP18865633.4A EP3696143A4 (en) 2017-10-12 2018-10-12 Inorganic-particle composite, production method therefor, and inorganic-particle composite dispersion
CN202311113185.2A CN117142522A (en) 2017-10-12 2018-10-12 Inorganic particle composite, method for producing same, inorganic particle composite dispersion liquid, and composition
CA3078591A CA3078591A1 (en) 2017-10-12 2018-10-12 Inorganic particle composite, method for producing the same, and inorganic particle composite dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017198450A JP6979196B2 (en) 2017-10-12 2017-10-12 Method for exfoliating layered mineral powder and method for producing layered nanoplate complex

Publications (2)

Publication Number Publication Date
JP2019073401A true JP2019073401A (en) 2019-05-16
JP6979196B2 JP6979196B2 (en) 2021-12-08

Family

ID=66543687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017198450A Active JP6979196B2 (en) 2017-10-12 2017-10-12 Method for exfoliating layered mineral powder and method for producing layered nanoplate complex

Country Status (1)

Country Link
JP (1) JP6979196B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231023A (en) * 2021-05-17 2021-08-10 黑龙江省科学院高技术研究院 Preparation method and application of expanded graphite-based cobalt-indium bimetal hydroxide interlayer composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113231023A (en) * 2021-05-17 2021-08-10 黑龙江省科学院高技术研究院 Preparation method and application of expanded graphite-based cobalt-indium bimetal hydroxide interlayer composite material
CN113231023B (en) * 2021-05-17 2022-06-28 黑龙江省科学院高技术研究院 Preparation method and application of expanded graphite-based cobalt-indium bimetal hydroxide interlayer composite material

Also Published As

Publication number Publication date
JP6979196B2 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2019074109A1 (en) Inorganic-particle composite, production method therefor, and inorganic-particle composite dispersion
Lei et al. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization
CN107108226B (en) Method for preparing graphene by utilizing high-speed homogenization pretreatment and high-pressure homogenization
Mallakpour et al. Covalently functionalized graphene sheets with biocompatible natural amino acids
Li et al. Processable aqueous dispersions of graphene nanosheets
Han et al. Graphene modified lipophilically by stearic acid and its composite with low density polyethylene
Tung et al. Electromagnetic properties of Fe3O4‐functionalized graphene and its composites with a conducting polymer
CN102066245B (en) Process for the preparation of graphene
KR20120123108A (en) Dispersion and retrieval of de-bundled nanotubes
JP5933374B2 (en) Method for producing thin-layer graphite or thin-layer graphite compound
CN105849040A (en) Production method for graphene
JP2013079176A (en) Modified graphene, film and molding
JP6887646B2 (en) Sp2-type carbon-containing composition, graphene quantum dot-containing composition and method for producing them, and method for exfoliating graphite.
JP2012153590A (en) Aggregate, and dispersion liquid made by dispersing the aggregate in solvent
Wahid et al. Amphiphilic graphene oxide stabilisation of hexagonal BN and MoS 2 sheets
Chouhan et al. Graphene oxide-Laponite hybrid from highly stable aqueous dispersion
JP2020045266A (en) Graphene oxide dispersion and method for preparing the same
WO2015099378A1 (en) Graphene production method, and graphene dispersion composition
GB2592303A (en) Improvements relating to nanomaterials
JP5326336B2 (en) Conductor and manufacturing method thereof
JP6651185B2 (en) Inorganic particle composite, method for producing the same, and inorganic particle composite dispersion
JP6979196B2 (en) Method for exfoliating layered mineral powder and method for producing layered nanoplate complex
JP6747061B2 (en) Inorganic layered material, inorganic layered material laminate, and inorganic layered material dispersion liquid
Lago et al. Dependence of the polycarbonate mechanical performances on boron nitride flakes morphology
WO2022050191A1 (en) Conductive two-dimensional particles and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6979196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350