JP2019062135A - Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission - Google Patents

Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission Download PDF

Info

Publication number
JP2019062135A
JP2019062135A JP2017187351A JP2017187351A JP2019062135A JP 2019062135 A JP2019062135 A JP 2019062135A JP 2017187351 A JP2017187351 A JP 2017187351A JP 2017187351 A JP2017187351 A JP 2017187351A JP 2019062135 A JP2019062135 A JP 2019062135A
Authority
JP
Japan
Prior art keywords
coil
power transmission
core
power
ferrite core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187351A
Other languages
Japanese (ja)
Inventor
政則 内藤
Masanori Naito
政則 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017187351A priority Critical patent/JP2019062135A/en
Publication of JP2019062135A publication Critical patent/JP2019062135A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Or Transformers For Communication (AREA)

Abstract

To provide a coil device for power transmission and a non-contact power transmission system capable of obtaining high power transmission efficiency similarly to a case provided with a thick core, without thickening a magnetic substance.SOLUTION: A coil device for power transmission includes a coil, a sheet of magnetic substance covering one winding axis direction of the coil, and a core of magnetic substance placed on the inside of the coil. The core has a shaft elongating in the winding axis direction, and one or more than one flanges provided at least in the way of the winding axis direction of the shaft. A non-contact power transmission system has the coil device for power transmission as a power transmission coil and a power reception coil, and when a power transmission device and a power reception device are made to face each other, the cores of the power transmission coil and the power reception coil come into contact, or are brought into contact via a magnetic substance provided in the member interposed between the power transmission coil and the power reception coil.SELECTED DRAWING: Figure 1

Description

本発明は、電力伝送用コイル装置、非接触電力伝送システム及び電力伝送用コイル装置の製造方法に関する。   The present invention relates to a power transmission coil device, a contactless power transmission system, and a method of manufacturing the power transmission coil device.

以前より、送電コイルを有する送電装置と、受電コイルを有する受電装置とを対向させて、非接触で電力を伝送する非接触電力伝送システムがある。一般に、送電コイルの受電コイルに対向する側の反対側にはシート状の磁性体が配置され、受電コイルの送電コイルに対向する側の反対側にはシート状の磁性体が配置される。このような磁性体の配置により、送電コイルと受電コイルとの磁界の結合強度を向上して、電力伝送効率を高めることができる。   2. Description of the Related Art There has been a contactless power transfer system in which power is transmitted contactlessly, with a power transmission device having a power transmission coil facing a power reception device having a power reception coil. In general, a sheet-like magnetic body is disposed on the opposite side of the power transmission coil to the side facing the power reception coil, and a sheet-like magnetic body is disposed on the opposite side of the power reception coil to the side facing the power transmission coil. By arranging such magnetic bodies, it is possible to improve the coupling strength of the magnetic field between the power transmission coil and the power reception coil and to improve the power transmission efficiency.

本発明に関連する技術として、特許文献1と特許文献2には、一次コイルから二次コイルへ電力を伝送する非接触型の電力伝送装置が開示されている。これらの装置は、一方のコイルが設けられた筐体に、一次コイルと二次コイルとを貫くフェライトコアを備え、これにより一次コイルと二次コイルとの磁界の結合強度を上げている。   As a technique related to the present invention, Patent Literature 1 and Patent Literature 2 disclose non-contact power transmission devices that transmit power from a primary coil to a secondary coil. In these devices, a housing provided with one of the coils is provided with a ferrite core passing through the primary coil and the secondary coil, thereby increasing the coupling strength of the magnetic field between the primary coil and the secondary coil.

また、本発明に関連する技術として、特許文献3には、コイルと、コイルが配設される磁性シートとを備える非接触電力伝送用のコイルモジュールが開示されている。磁性シートは、中央部で磁性シートの垂直方向に突起する内側突起部を有し、内側突起部がコイルの空芯部に配置されている。そして、このようなコイルモジュールを送電側と受電側とで対向配置させることで、漏れ磁束の量を少なくし、磁界の結合強度を上げている。   In addition, as a technology related to the present invention, Patent Document 3 discloses a coil module for contactless power transmission that includes a coil and a magnetic sheet on which the coil is disposed. The magnetic sheet has an inner projection projecting in the vertical direction of the magnetic sheet at the central portion, and the inner projection is disposed on the air core of the coil. Then, by arranging such coil modules to be opposite to each other on the power transmission side and the power reception side, the amount of leakage magnetic flux is reduced, and the coupling strength of the magnetic field is increased.

特開平8−322252号公報JP-A-8-322252 特開2010−123729号公報JP, 2010-123729, A 特開2012−070557号公報JP 2012-070557 A

送電コイルの一方の側と受電コイルの一方の側にシート状の磁性体を設けた従来の非接触電力伝送システムは、シート状の磁性体が無い構成と比較すれば磁界の結合強度は向上する。しかし、これだけでは十分な磁界の結合強度は得られない。   In the conventional non-contact power transmission system in which the sheet-like magnetic body is provided on one side of the power transmission coil and the one side of the power receiving coil, the coupling strength of the magnetic field is improved compared to the configuration without the sheet-like magnetic body . However, this alone does not provide sufficient magnetic field coupling strength.

また、コイルの内側にフェライトコアを設けた特許文献1及び特許文献2の技術では、フェライトコアが大きな径を有していれば磁界の結合強度を向上できるが、フェライトコアの径が小さいと十分な磁界の結合強度が得られないという課題がある。同様に、磁性シートにコイルの内側に配置される内側突起部を有する特許文献3のコイルモジュールにおいても、内側突起部の径が小さいと十分な磁界の結合強度が得られないという課題がある。   Further, in the techniques of Patent Document 1 and Patent Document 2 in which the ferrite core is provided inside the coil, the coupling strength of the magnetic field can be improved if the ferrite core has a large diameter, but if the diameter of the ferrite core is small, sufficient. The problem is that the coupling strength of the magnetic field can not be obtained. Similarly, in the coil module of Patent Document 3 having an inner protrusion disposed on the inner side of the coil in the magnetic sheet, there is a problem that sufficient magnetic field coupling strength can not be obtained if the diameter of the inner protrusion is small.

大型の電力伝送用コイル装置であれば、フェライトコアとコイルとを別々に形成し、その後、両者を組み付けるなどして、大きな径のフェライトコアを適用することが容易である。しかし、電力伝送用コイル装置を小型化する場合、或いは、フェライトコアとコイルとを一連の工程で形成する場合などには、製造上、フェライトコアの径が小さい方が好ましい場合がある。   In the case of a large-sized power transmission coil device, it is easy to form a ferrite core and a coil separately and then assemble the two to apply a large diameter ferrite core. However, in the case of miniaturizing the power transmission coil device, or when forming the ferrite core and the coil in a series of steps, for example, it may be preferable in terms of manufacture that the diameter of the ferrite core be smaller.

本発明は、磁性体のコアを太くしなくても、太いコアを設けた場合と同様に高い電力伝送効率が得られる電力伝送用コイル装置及び非接触電力伝送システムを提供することを目的とする。また、本発明は、このような電力伝送用コイル装置を容易に製造できる製造方法を提供することを目的とする。   An object of the present invention is to provide a coil device for power transmission and a non-contact power transmission system in which high power transmission efficiency can be obtained as in the case of providing a thick core without thickening the core of the magnetic body. . Moreover, this invention aims at providing the manufacturing method which can manufacture easily the coil apparatus for such power transmission.

請求項1記載の発明は、
コイルと、
前記コイルの巻回軸方向の一方を覆う磁性体のシートと、
前記コイルの内側に配置される磁性体のコアと、
を備え、
前記コアは、
前記巻回軸方向に延びる軸部と、
前記軸部の少なくとも前記巻回軸方向の途中に設けられる1つ又は複数の鍔部と、
を有することを特徴とする電力伝送用コイル装置である。
The invention according to claim 1 is
With the coil,
A sheet of magnetic material covering one side in the winding axis direction of the coil;
A core of magnetic material disposed inside the coil;
Equipped with
The core is
An axial portion extending in the winding axial direction;
One or more ridges provided at least halfway along the winding axis of the shaft;
It is a coil apparatus for electric power transmission characterized by having.

請求項2記載の発明は、請求項1記載の電力伝送用コイル装置において、
前記コイルは、多層基板の複数層の配線パターンを含み、
前記鍔部は、前記軸部から径方向に張り出した円盤状の形態を有し、前記複数層の何れかの層に設けられていることを特徴とする。
The invention according to claim 2 is the coil device for power transmission according to claim 1,
The coil includes wiring patterns of multiple layers of a multilayer substrate,
The flange portion has a disk-like shape protruding in a radial direction from the shaft portion, and is provided in any one of the plurality of layers.

請求項3記載の発明は、請求項1又は請求項2記載の電力伝送用コイル装置において、
前記コイルの幅寸が10mm以下であることを特徴とする。
The invention according to claim 3 is the coil device for electric power transmission according to claim 1 or 2.
The width of the coil is 10 mm or less.

請求項4記載の発明は、
送電コイルにより非接触で電力を送る送電装置と、
受電コイルにより非接触で電力を受ける受電装置とを備え、
前記送電コイルと前記受電コイルとは請求項1から請求項3のいずれか一項に記載の電力伝送用コイル装置であり、
前記送電装置と前記受電装置とを対向させたときに、前記送電コイルの前記コアと前記受電コイルの前記コアとが接触、或いは、前記送電コイルと前記受電コイルとの間に介在する部材に設けられた磁性体を介して接触されることを特徴とする非接触電力伝送システムである。
The invention according to claim 4 is
A power transmission device for sending electric power contactlessly by a power transmission coil;
And a power receiving device for receiving electric power contactlessly by the power receiving coil,
The power transmission coil device according to any one of claims 1 to 3, wherein the power transmission coil and the power reception coil are provided.
When the power transmission device and the power reception device are opposed to each other, the core of the power transmission coil and the core of the power reception coil are in contact with each other, or provided in a member interposed between the power transmission coil and the power reception coil. Contactless power transfer system characterized in that the contact is made via the magnetic material.

請求項5記載の発明は、
コア基板に、コイルの配線パターンと、前記コイルの配線パターンの内側に配置される貫通孔と、前記貫通孔に磁性体部材を充填した充填部と、前記コイルの配線パターンと同一の層で前記貫通孔より広がる磁性体部材の円盤状パターンとを形成し、
前記コア基板に複数の絶縁材料を順次積層し、
各絶縁材料の積層ごとに、積層された前記絶縁材料に、前記コイルの配線パターンと、前記コア基板の前記貫通孔から基板面に垂直な方向に配置される下穴と、積層された前記絶縁材料の前記下穴に磁性体部材を充填した充填部と、積層された前記絶縁材料の前記コイルの配線パターンと同一の層で前記下穴より広がる磁性体部材の円盤状パターンとを形成することを特徴とする電力伝送用コイル装置の製造方法である。
The invention according to claim 5 is
The core substrate includes the wiring pattern of the coil, the through hole disposed inside the wiring pattern of the coil, the filling portion in which the through hole is filled with the magnetic material member, and the same layer as the wiring pattern of the coil. Forming a disk-like pattern of the magnetic material member extending from the through hole;
Sequentially laminating a plurality of insulating materials on the core substrate;
In each laminated layer of the insulating material, the laminated insulating material, the wiring pattern of the coil, the lower hole disposed in the direction perpendicular to the substrate surface from the through hole of the core substrate, and the insulating layer laminated Forming a filling portion in which a magnetic material member is filled in the lower hole of the material, and a disk-like pattern of the magnetic material member extending from the lower hole in the same layer as the wiring pattern of the coil of the insulating material stacked. It is a manufacturing method of the coil device for electric power transmission characterized by the above.

本発明に係る電力伝送用コイル装置及び非接触電力伝送システムによれば、磁性体のコアを太くしなくても、太いコアを設けた場合と同様に高い電力伝送効率を得ることができる。本発明に係る製造方法によれば、このような電力伝送用コイル装置を容易に製造することができる。   According to the power transmission coil device and the contactless power transmission system according to the present invention, high power transmission efficiency can be obtained as in the case where a thick core is provided, without thickening the magnetic core. According to the manufacturing method of the present invention, such a power transmission coil device can be easily manufactured.

本発明の実施形態1に係る電力伝送用コイル装置を示す斜視図である。It is a perspective view which shows the coil apparatus for electric power transmission concerning Embodiment 1 of this invention. 図1の電力伝送用コイル装置の多層構造を示す側断面図である。It is a sectional side view which shows the multilayer structure of the coil apparatus for electric power transmission of FIG. 図1のフェライトコアを示す斜視図である。It is a perspective view which shows the ferrite core of FIG. 図1のフェライトコアの周辺を示す側断面図である。It is a sectional side view which shows the periphery of the ferrite core of FIG. 実施形態2に係る電力伝送用コイル装置の多層構造を示す側断面図である。FIG. 7 is a side sectional view showing a multilayer structure of a power transmission coil device according to a second embodiment. 図5のフェライトコアの周辺を示す側断面図である。It is a sectional side view which shows the periphery of the ferrite core of FIG. 実施形態1及び実施形態2におけるコイルの配線パターン及びフェライトコアの寸法の一例を示す平面図である。It is a top view which shows an example of the wiring pattern of the coil in Embodiment 1 and Embodiment 2, and the dimension of a ferrite core. 比較例の電力伝送用コイル装置の構造例を示す側断面図(A)と寸法例を示す平面図(B)である。They are a sectional side view (A) which shows the structural example of the coil apparatus for electric power transmission of a comparative example, and a top view (B) which shows an example of a size. 電力の伝送効率の周波数特性を示すグラフである。It is a graph which shows the frequency characteristic of the transmission efficiency of electric power. 電力伝送中の磁界の強度を表わす特性図であり、(A)は比較例の特性、(B)は実施形態1の特性、(C)は実施形態2の特性をそれぞれ示す。It is a characteristic view showing the intensity | strength of the magnetic field in electric power transmission, (A) is a characteristic of a comparative example, (B) shows the characteristic of Embodiment 1, (C) shows the characteristic of Embodiment 2, respectively. 実施形態2の電力伝送用コイル装置の製造方法を示す説明図であり、(A)〜(D)はその第1工程〜第4工程をそれぞれ示す。It is explanatory drawing which shows the manufacturing method of the coil apparatus for electric power transmission of Embodiment 2, (A)-(D) shows the 1st process-the 4th process, respectively.

以下、本発明の各実施形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る電力伝送用コイル装置を示す斜視図である。図2は、図1の電力伝送用コイル装置の多層構造を示す側断面図である。図3は、図1のフェライトコアを示す斜視図である。図4は、図1のフェライトコアの周辺を示す側断面図である。図1、図2、図4は、送電装置に備わる1つの電力伝送用コイル装置1と、受電装置に備わる1つの電力伝送用コイル装置1とを対向配置させた状態を示している。
(Embodiment 1)
FIG. 1 is a perspective view showing a power transmission coil device according to Embodiment 1 of the present invention. FIG. 2 is a side sectional view showing a multilayer structure of the power transmission coil device of FIG. FIG. 3 is a perspective view showing the ferrite core of FIG. FIG. 4 is a side sectional view showing the periphery of the ferrite core of FIG. FIGS. 1, 2 and 4 show a state in which one power transmission coil device 1 provided in the power transmission device and one power transmission coil device 1 provided in the power reception device are disposed to face each other.

実施形態1の電力伝送用コイル装置1は、多層基板2と、多層基板2の配線パターンにより形成されたコイル10と、コイル10の内側に配置されるフェライトコア20と、コイル10及びフェライトコア20の一方の側を覆うフェライトシート30とを備える。また、受電装置及び送電装置は、電力伝送用コイル装置1を収容する筐体40と、筐体40に設けられたフェライトコア41とを有する。図1は、最上部のフェライトシート30及び後述の保護膜18を取り除いた状態を示し、取り除かれた構成は仮想線で示している。図2は、多層基板2の絶縁層及び筐体40の樹脂部分を仮に透明なものとして、内部の構成を実線で示している。上記の構成のうち、フェライトコア20は本発明に係る磁性体のコアの一例に相当し、フェライトシート30は本発明に係る磁性体のシートの一例に相当する。また、筐体40のフェライトコア41は、本発明に係る「送電コイルと受電コイルとの間に介在する部材に設けられた磁性体」の一例に相当する。   The coil device 1 for power transmission according to the first embodiment includes a multilayer substrate 2, a coil 10 formed by the wiring pattern of the multilayer substrate 2, a ferrite core 20 disposed inside the coil 10, a coil 10 and a ferrite core 20. And a ferrite sheet 30 covering one side of the sheet. Further, the power receiving device and the power transmitting device have a case 40 for housing the power transmission coil device 1 and a ferrite core 41 provided in the case 40. FIG. 1 shows a state in which the top ferrite sheet 30 and a protective film 18 described later have been removed, and the removed configuration is shown by a phantom line. FIG. 2 shows the internal configuration as a solid line, assuming that the insulating layer of the multilayer substrate 2 and the resin portion of the housing 40 are temporarily transparent. Among the above configurations, the ferrite core 20 corresponds to an example of the core of the magnetic body according to the present invention, and the ferrite sheet 30 corresponds to an example of the sheet of the magnetic body according to the present invention. Further, the ferrite core 41 of the housing 40 corresponds to an example of the “magnetic body provided to a member interposed between the power transmission coil and the power reception coil” according to the present invention.

コイル10は、多層基板2の複数の配線層の各々に、例えば渦巻き状の配線パターンが設けられ、これらがビアVを介して一続きになるように接続されて構成される。コイル10の巻回面に垂直で巻回中心を通る仮想的な軸を巻回軸と呼ぶ。コイル10の内側には、配線の無い空芯の領域が形成されている。   The coil 10 is formed, for example, by providing a spiral wiring pattern on each of the plurality of wiring layers of the multilayer substrate 2 and connecting them in series via the via V. An imaginary axis perpendicular to the winding surface of the coil 10 and passing through the winding center is called a winding axis. Inside the coil 10, a region of an air core without wiring is formed.

フェライトコア20は、図3及び図4に示すように、コイル10の巻回軸方向に延びる軸部21と、軸部21から巻回軸方向に対して垂直な方向に張り出した鍔部22とを有する。軸部21は、巻回軸方向において、コイル10の最も上層の配線パターンから最も下層の配線パターンに至る範囲に設けられている。鍔部22は、軸部21の全周から径方向に張り出した円盤状の形態を有する。鍔部22は、多層基板2の配線層に設けられ、軸部21の巻回軸方向における両端と、軸部21の巻回軸方向における途中の複数箇所に設けられている。   As shown in FIGS. 3 and 4, the ferrite core 20 has a shaft 21 extending in the winding axis direction of the coil 10, and a ridge 22 extending from the shaft 21 in a direction perpendicular to the winding axis. Have. The shaft portion 21 is provided in the range from the wiring pattern of the uppermost layer of the coil 10 to the wiring pattern of the lower layer in the winding axis direction. The collar portion 22 has a disk-like shape protruding radially from the entire circumference of the shaft portion 21. The flange portions 22 are provided in the wiring layer of the multilayer substrate 2 and provided at both ends in the winding axis direction of the shaft portion 21 and at a plurality of locations halfway along the winding axis direction of the shaft portion 21.

多層基板2は、コイル10とフェライトコア20とを有する他、図2と図4に示すように、上面及び下面にソルダーレジストなどの保護膜18が形成されている。   The multilayer substrate 2 has a coil 10 and a ferrite core 20, and as shown in FIGS. 2 and 4, a protective film 18 such as a solder resist is formed on the upper and lower surfaces.

フェライトシート30は、相手側のコイルと対向する側の反対側で、コイル10及びフェライトコア20を覆うように配置される。フェライトシート30は、コイル10の配線パターンよりも大きな寸法を有し、多層基板2の基板面に垂直な方向から見て、コイル10の全域を覆う。   The ferrite sheet 30 is disposed to cover the coil 10 and the ferrite core 20 on the side opposite to the side facing the opposing coil. The ferrite sheet 30 has a dimension larger than the wiring pattern of the coil 10, and covers the entire area of the coil 10 as viewed from the direction perpendicular to the substrate surface of the multilayer substrate 2.

筐体40は、多層基板2の相手コイルに対向する側に、多層基板2と接触するように配置される。筐体40には内面から外面に通じるフェライトコア41が設けられる。フェライトコア41は、多層基板2に設けられるフェライトコア20の軸部21とほぼ同一の径を有し、両方のフェライトコア20、41の中心軸が同一直線上に並ぶように配置される。   The housing 40 is disposed on the side of the multilayer substrate 2 facing the opposing coil so as to be in contact with the multilayer substrate 2. The housing 40 is provided with a ferrite core 41 communicating from the inner surface to the outer surface. The ferrite core 41 has a diameter substantially the same as that of the shaft portion 21 of the ferrite core 20 provided on the multilayer substrate 2 and is arranged such that the central axes of both ferrite cores 20 and 41 are aligned on the same straight line.

図示は省略するが、送電装置は、電力伝送用コイル装置1のコイル10の端子間に送電用の電流を流す送電回路を備える。また、受電装置は、電力伝送用コイル装置1のコイル10の端子間に電力を受ける受電回路を備える。本実施形態の非接触電力伝送システムは、これらの送電装置及び受電装置を備え、送電装置から受電装置へ非接触に電力を送る。送電側の電力伝送用コイル装置1が送電コイルに該当し、受電側の電力伝送用コイル装置1が受電コイルに該当する。   Although illustration is omitted, the power transmission device includes a power transmission circuit that causes a current for power transmission to flow between the terminals of the coil 10 of the power transmission coil device 1. Further, the power receiving device includes a power receiving circuit that receives power between the terminals of the coil 10 of the power transmission coil device 1. The non-contact power transmission system of the present embodiment includes the power transmission device and the power reception device, and transmits power from the power transmission device to the power reception device in a non-contact manner. The power transmission coil device 1 on the power transmission side corresponds to a power transmission coil, and the power transmission coil device 1 on the power reception side corresponds to a power reception coil.

送電装置と受電装置とを電力伝送の際に対向させて配置させると、図1、図2、図4に示すように、送電側と受電側の電力伝送用コイル装置1のフェライトコア20、41が、互いの中心軸が一直線上に並ぶように配置される。   When the power transmission device and the power reception device are arranged to face each other during power transmission, as shown in FIGS. 1, 2 and 4, the ferrite cores 20 and 41 of the power transmission coil devices 1 on the power transmission side and the power reception side. Are arranged so that their central axes are aligned.

また、このとき、フェライトコア20の一端とフェライトシート30との間には、磁性体以外の部材(保護膜18)が設けられる。また、フェライトコア20の他端と筐体40のフェライトコア41との間には、磁性体以外の部材(保護膜18)が設けられる。   At this time, a member (protective film 18) other than the magnetic material is provided between one end of the ferrite core 20 and the ferrite sheet 30. Further, between the other end of the ferrite core 20 and the ferrite core 41 of the housing 40, a member (protective film 18) other than the magnetic body is provided.

(実施形態2)
図5は、実施形態2に係る電力伝送用コイル装置の多層構造を示す側断面図である。図6は、図5のフェライトコアの周辺を示す側断面図である。図5は、多層基板2の絶縁層及び筐体40の樹脂部分を仮に透明なものとして、内部の構成を実線で示している。
Second Embodiment
FIG. 5 is a side sectional view showing a multilayer structure of the power transmission coil device according to the second embodiment. 6 is a side sectional view showing the periphery of the ferrite core of FIG. FIG. 5 shows the internal configuration as a solid line, assuming that the insulating layer of the multilayer substrate 2 and the resin portion of the housing 40 are temporarily transparent.

実施形態2に係る電力伝送用コイル装置1Aは、多層基板2に設けられるフェライトコア20Aの一端と他端の鍔部22a、22aの厚みを変えたものであり、その他の要素は実施形態1と同様である。同様の要素については、実施形態1と同一符号を付して、詳細な説明を省略する。   The power transmission coil device 1A according to the second embodiment is obtained by changing the thickness of the ridges 22a and 22a at one end and the other end of the ferrite core 20A provided on the multilayer substrate 2, and the other elements are the same as the first embodiment. It is similar. About the same element, the same numerals as Embodiment 1 are attached, and detailed explanation is omitted.

実施形態2では、フェライトコア20Aの軸部21の両端に設けられる2つの鍔部22a、22aの厚みが保護膜18の厚み分増加され、上端の鍔部22aの上方及び下端の鍔部22aの下方に保護膜18が設けられていない。これらの構成により、フェライトコア20Aの一端とフェライトシート30とが接触し、また、フェライトコア20Aの他端と筐体40のフェライトコア41とが接触する。   In the second embodiment, the thickness of the two ridges 22a and 22a provided at both ends of the shaft 21 of the ferrite core 20A is increased by the thickness of the protective film 18, and the ridges 22a above and below the ridges 22a of the upper end The protective film 18 is not provided below. With these configurations, one end of the ferrite core 20A is in contact with the ferrite sheet 30, and the other end of the ferrite core 20A is in contact with the ferrite core 41 of the housing 40.

送電装置と受電装置とを電力伝送の際に対向させて配置させると、図5及び図6に示すように、送電側と受電側の電力伝送用コイル装置1のフェライトコア20A、41の中心軸が一直線上に並ぶように配置される。さらに、実施形態2では、この配置において、送電装置のフェライトシート30、フェライトコア20A、41、受電装置のフェライトシート30、フェライトコア20A、41が一続きに接触される。   When the power transmission device and the power reception device are arranged to face each other during power transmission, as shown in FIGS. 5 and 6, the central axes of the ferrite cores 20A and 41 of the power transmission coil devices 1 on the power transmission side and the power reception side. Are arranged in a straight line. Furthermore, in the second embodiment, in this arrangement, the ferrite sheet 30 of the power transmission device, the ferrite cores 20A and 41, the ferrite sheet 30 of the power reception device, and the ferrite cores 20A and 41 are in series contact.

(磁界の結合強度)
続いて、実施形態1及び実施形態2の電力伝送用コイル装置1、1Aの磁界の結合強度について、比較例の電力伝送用コイル装置100と比較しつつ説明する。
(Coupling strength of magnetic field)
Subsequently, the coupling strength of the magnetic field of the power transmission coil devices 1 and 1A of the first and second embodiments will be described in comparison with the power transmission coil device 100 of the comparative example.

図7は、実施形態1及び実施形態2におけるコイルの配線パターン及びフェライトコアの寸法の一例を示す平面図である。図8は、比較例の電力伝送用コイル装置の構造例を示す側断面図(A)と寸法例を示す平面図(B)である。   FIG. 7 is a plan view showing an example of dimensions of the wiring pattern of the coil and the ferrite core in the first embodiment and the second embodiment. FIG. 8 is a side cross sectional view (A) showing a structural example of a power transmission coil device of a comparative example and a plan view (B) showing dimensional examples.

シミュレーションにより磁界の結合強度を計算するにあたって、実施形態1及び実施形態2のコイル10の配線パターン及びフェライトコア20、20Aの寸法は、図7のように規定した。すなわち、コイル10を渦巻き状とし、コイル10の外周形状を長辺L1が5.36mm、短辺L2が4.65mmの矩形状とした。すなわち、コイル10の幅寸を10mm以下とした。また、コイル10の内側の空間を、平面視で長辺L3が2.06mm、短辺L4が1.35mmの矩形状とした。また、コイル10は8層の配線パターンがビアV(図2を参照)により一続きに接続される構成とした。また、コイル10の両端にはコンデンサC1、C2が接続され、共振周波数が電力伝送の周波数に調整された構成とした。   In calculating the coupling strength of the magnetic field by simulation, the dimensions of the wiring patterns and the ferrite cores 20 and 20A of the coil 10 of the first and second embodiments are defined as shown in FIG. That is, the coil 10 is formed in a spiral shape, and the outer peripheral shape of the coil 10 is a rectangular shape having a long side L1 of 5.36 mm and a short side L2 of 4.65 mm. That is, the width dimension of the coil 10 was 10 mm or less. Further, the space inside the coil 10 is rectangular in plan view with a long side L3 of 2.06 mm and a short side L4 of 1.35 mm. The coil 10 has a configuration in which eight wiring patterns are connected in series by vias V (see FIG. 2). Further, capacitors C1 and C2 are connected to both ends of the coil 10, and the resonance frequency is adjusted to the frequency of power transmission.

また、フェライトコア20、20Aは、コイル10の内側中央に配置され、軸部21の直径φ1が0.5mm、鍔部22、22aの直径φ2が0.95mmとした。   The ferrite cores 20 and 20A are disposed at the inner center of the coil 10. The diameter φ1 of the shaft 21 is 0.5 mm, and the diameter φ2 of the flanges 22 and 22a is 0.95 mm.

比較例の電力伝送用コイル装置100は、図8(B)に示すよう、コイル110の大きさ及び形状を、図7の実施形態1、2と同様とする一方、フェライトコア120をコイル10の内側に十分に広がる大きな寸法とした。すなわち、フェライトコア120は、一端から他端まで太さが同一であり、平面視で長辺L5が1.66mm、短辺L6が0.95mmの矩形状とした。さらに、フェライトコア120は、筐体140を挟んで送電側のコイル110から受電側のコイル110に至るまで一体的な構成とした。また、比較例の電力伝送用コイル装置100は、送電側と受電側とにフェライトシート130を有し、フェライトコア120の端部と接触している構成とした。さらに、コイル110の両端にはコンデンサC1、C2が接続され、共振周波数が電力伝送の周波数に調整された構成とした。   As shown in FIG. 8B, the coil device 100 for power transmission of the comparative example has the same size and shape of the coil 110 as those of the first and second embodiments of FIG. It has a large size that extends fully inside. That is, the ferrite core 120 has the same thickness from one end to the other end, and has a rectangular shape having a long side L5 of 1.66 mm and a short side L6 of 0.95 mm in a plan view. Further, the ferrite core 120 is integrally configured from the coil 110 on the power transmission side to the coil 110 on the power reception side with the housing 140 interposed therebetween. The coil device 100 for power transmission of the comparative example has the ferrite sheet 130 on the power transmission side and the power reception side, and is in contact with the end of the ferrite core 120. Further, capacitors C1 and C2 are connected to both ends of the coil 110, and the resonance frequency is adjusted to the frequency of power transmission.

図9は、電力の伝送効率の周波数特性を示すグラフである。図10は、電力伝送中の磁界の強度を表わす特性図であり、(A)は比較例の特性、(B)は実施形態1の特性、(C)は実施形態2の特性をそれぞれ示す。図10の特性図は、電力伝送の周波数を125kHzとして駆動したときの特性を示す。   FIG. 9 is a graph showing frequency characteristics of transmission efficiency of power. FIG. 10 is a characteristic diagram showing the strength of the magnetic field during power transmission, in which (A) shows the characteristics of the comparative example, (B) shows the characteristics of the first embodiment, and (C) shows the characteristics of the second embodiment. The characteristic diagram of FIG. 10 shows the characteristics when the power transmission frequency is driven at 125 kHz.

シミュレーションの結果、図9に示すように、幅寸大のフェライトコア120を有する比較例の電力伝送用コイル装置100が、最も効率が高いものの、実施形態2の電力伝送用コイル装置1Aは、ほぼ同程度の高い効率が得られることが確認された。また、実施形態1の電力伝送用コイル装置1は、幾分の低下があるものの、共振周波数125kHzにおいて高い効率が得られることが確認できた。   As a result of simulation, as shown in FIG. 9, although the power transmission coil device 100 of the comparative example having the ferrite core 120 having a large width is most efficient, the power transmission coil device 1A of the second embodiment is substantially It was confirmed that the same high efficiency could be obtained. In addition, it was confirmed that the coil device 1 for power transmission of the first embodiment can obtain high efficiency at the resonance frequency of 125 kHz although there is a slight decrease.

また、図10(A)の特性図から、比較例では、フェライトコア120の周辺の磁界結合は小さく、コイル110の外周側の部分で送電側と受電側とでコイル110の磁界結合が確保されていることが確認された。   Further, according to the characteristic diagram of FIG. 10A, in the comparative example, the magnetic field coupling around the ferrite core 120 is small, and the magnetic field coupling of the coil 110 is secured between the power transmission side and the power reception side at the outer peripheral side of the coil 110. Was confirmed.

一方、図10(B)の特性図から、実施形態1の構成では、送電側と受電側とでコイル10同士の磁界接合よりも、コイル10とフェライトコア20との磁界結合が強く現れていることが確認された。加えて、多層基板2のフェライトコア20、筐体40のフェライトコア41及びフェライトシート30の間にも磁界結合が強く現れていることが確認された。さらに、受電側のフェライトコア20の複数の鍔部22及びこれらの間、並びに、送電側のフェライトコア20の複数の鍔部22及びこれらの間には強い磁界が発生していないことが確認された。   On the other hand, in the configuration of the first embodiment, the magnetic field coupling between the coil 10 and the ferrite core 20 appears more strongly in the configuration of the first embodiment than the magnetic field joining of the coils 10 on the power transmission side and the power reception side. That was confirmed. In addition, it was also confirmed that magnetic field coupling strongly appeared between the ferrite core 20 of the multilayer substrate 2, the ferrite core 41 of the housing 40, and the ferrite sheet 30. Furthermore, it is confirmed that no strong magnetic field is generated between the plurality of ridges 22 of the power receiving side ferrite core 20 and between them, and between the plurality of ridges 22 of the power transmission side ferrite core 20 and between them. The

また、図10(C)の特性図から、実施形態2の構成では、フェライトコア20Aの周辺に磁界結合が確認されるが、この結合は実施形態1のものよりも弱い結合であることが確認された。また、フェライトコア20Aの複数の鍔部22、22aには、強い磁界が発生していないことが確認された。そして、コイル10の外周側の部分において送電側と受電側との磁界結合が確保されていることが確認された。   Further, from the characteristic diagram of FIG. 10C, in the configuration of the second embodiment, magnetic field coupling is confirmed around the ferrite core 20A, but it is confirmed that this coupling is weaker than that of the first embodiment. It was done. Further, it was confirmed that no strong magnetic field was generated in the plurality of ridges 22 and 22a of the ferrite core 20A. Then, it was confirmed that the magnetic coupling between the power transmission side and the power reception side is secured at the outer peripheral side of the coil 10.

一般に、フェライトコアは他の部分と比較して透磁率が非常に高く、多くの磁束を通しやすい。また、フェライトコアは直径が大きい方が、多くの磁束を通すことができる。したがって、幅寸大のフェライトコア120を有する比較例は、フェライトコア120に多くの磁束を通して、コイル10同士の強い磁界接合が得られると考えられる。   In general, the ferrite core has a very high permeability compared to the other parts, and easily passes a large amount of magnetic flux. Also, the larger the diameter of the ferrite core, the more magnetic flux can pass through. Therefore, it is considered that the comparative example having the ferrite core 120 having a large width can pass a large amount of magnetic flux through the ferrite core 120 to obtain a strong magnetic field junction between the coils 10.

一方、径の小さなフェライトコア20、20Aを有する実施形態1又は実施形態2の構成では、それだけであれば、比較例のように強い磁界結合は得られないはずである。しかし、実施形態1の構成においては、フェライトコア20に軸部21から円盤状に広がった鍔部22があることで、図10(B)に示されるように、軸部21周辺に磁界の発生があるものの、コイル10の外周部においては送電側のコイル10と受電側のコイル10との磁界結合が確保されており、効率改善に貢献していることが分かる。また、実施形態2の構成においては、フェライトコア20Aに軸部21から円盤状に広がった鍔部22、22aがあることで、図10(C)に示されるように、フェライトコア20Aの軸部21周辺においては、強い磁界は発生していないことが分かる。さらに、この強い磁界が発生しない範囲が、比較例の太いフェライトコア120と同程度の幅まで広がっていることが分かる。そして、比較例と同様に送電側と受電側とでコイル10同士の強い磁界結合が得られ、図9のグラフに示したように、電力の高い伝送効率が達成されていると考えられる。したがって、フェライトコア20、20Aが鍔部22、22aを有することで、電力の伝送効率を十分に向上できることが推測される。ただし、実施形態2のように、フェライトコア20A、41及びフェライトシート30が隙間なく接触されている構成の方が、電力の伝送効率はより高くなる。   On the other hand, in the configuration of Embodiment 1 or Embodiment 2 having ferrite cores 20 and 20A with a small diameter, strong magnetic field coupling should not be obtained as in the comparative example. However, in the configuration of the first embodiment, the magnetic core is generated around the shaft portion 21 as shown in FIG. However, in the outer peripheral portion of the coil 10, the magnetic field coupling between the coil 10 on the power transmission side and the coil 10 on the power reception side is secured, and it can be seen that it contributes to the efficiency improvement. Further, in the configuration of the second embodiment, as shown in FIG. 10C, the shaft of the ferrite core 20A is formed by the presence of the ridges 22 and 22a which are expanded in a disk shape from the shaft 21 in the ferrite core 20A. It can be seen that a strong magnetic field is not generated around 21. Furthermore, it can be seen that the range in which the strong magnetic field is not generated is extended to the same extent as that of the thick ferrite core 120 of the comparative example. Then, as in the comparative example, strong magnetic field coupling between the coils 10 is obtained on the power transmission side and the power reception side, and it is considered that high transmission efficiency of power is achieved as shown in the graph of FIG. Therefore, it is presumed that the power transmission efficiency can be sufficiently improved by the ferrite cores 20 and 20A having the ridges 22 and 22a. However, as in the second embodiment, the transmission efficiency of power is higher in the configuration in which the ferrite cores 20A and 41 and the ferrite sheet 30 are in contact without a gap.

(電力伝送用コイル装置の製造方法)
図11は、実施形態2の電力伝送用コイル装置の製造方法を示す説明図であり、(A)〜(D)はその第1工程〜第4工程をそれぞれ示す。
(Method of manufacturing coil device for power transmission)
FIG. 11: is explanatory drawing which shows the manufacturing method of the coil apparatus for electric power transmission of Embodiment 2, (A)-(D) shows the 1st process-the 4th process, respectively.

本実施形態の製造方法において、電力伝送用コイル装置1Aは、ビルドアップ工法により製造される。先ず、図11(A)に示すように、コア基板51にコイル10の配線パターン52(例えば2層分の配線パターン)を形成するとともに、必要な箇所にビアV(図5を参照)の形成を行う。その後、コア基板51にフェライトコア20Aの軸部21を形成するための貫通孔53を形成する。   In the manufacturing method of the present embodiment, the power transmission coil device 1A is manufactured by a build-up method. First, as shown in FIG. 11A, the wiring pattern 52 (for example, wiring patterns for two layers) of the coil 10 is formed on the core substrate 51, and the vias V (see FIG. 5) are formed in necessary places. I do. Thereafter, a through hole 53 for forming the shaft portion 21 of the ferrite core 20A is formed in the core substrate 51.

次に、図11(B)に示すように、貫通孔53にフェライトペーストを充填して充填部55を形成し、さらに配線パターン52と同一層に鍔部22となるフェライトペーストの円盤状パターン56を形成する。フェライトペーストは、本発明に係る磁性体部材の一例に相当し、固化されると、焼結により形成した一般的なフェライトと同程度の透磁率を有する。   Next, as shown in FIG. 11B, a ferrite paste is filled in the through holes 53 to form the filling portion 55, and further, a disc-like pattern 56 of ferrite paste to be the ridge portion 22 in the same layer as the wiring pattern 52. Form The ferrite paste corresponds to an example of the magnetic member according to the present invention, and when solidified, has a magnetic permeability similar to that of a general ferrite formed by sintering.

続いて、図11(B)に示すように、コア基板51へ絶縁材料61を順次積層する。   Subsequently, as shown in FIG. 11B, the insulating material 61 is sequentially stacked on the core substrate 51.

さらに、絶縁材料61を積層する毎に、図11(C)に示すように、絶縁材料61にコイル10の配線パターン62を形成するとともに、必要な箇所にビアV(図5を参照)の形成を行う。その後、絶縁材料61にフェライトコア20Aの軸部21を形成するための下穴63を形成する。下穴63は、コア基板51の貫通孔53と、互いの中心軸が同一直線上に並ぶように形成される。   Furthermore, every time the insulating material 61 is laminated, as shown in FIG. 11C, the wiring pattern 62 of the coil 10 is formed on the insulating material 61, and the vias V (see FIG. 5) are formed in necessary places. I do. Thereafter, pilot holes 63 for forming the shaft portion 21 of the ferrite core 20A are formed in the insulating material 61. The lower holes 63 are formed such that the through holes 53 of the core substrate 51 and the central axes of the lower holes 63 are aligned on the same straight line.

そして、図11(D)に示すように、下穴63にフェライトペーストを充填して充填部65を形成するとともに、さらに配線パターン62と同一層に鍔部22、22aとなるフェライトペーストの円盤状パターン66を形成する。図11では、2つの絶縁材料61を積層する例を示しているが、絶縁材料61の積層数は3以上としてもよい。   Then, as shown in FIG. 11D, a ferrite paste is filled in the lower holes 63 to form the filling portion 65, and further, a disk shape of the ferrite paste to be the ridge portions 22 and 22a in the same layer as the wiring pattern 62. The pattern 66 is formed. Although FIG. 11 shows an example in which two insulating materials 61 are stacked, the number of stacked insulating materials 61 may be three or more.

円盤状パターン66を形成する際、フェライトコア20Aの端部に配置される円盤状パターン66については、保護膜18の厚み分増して形成する。そして、図11(D)に示すように、全ての絶縁材料61の積層と配線パターン62の形成が完了したら、多層基板2の表面にソルダーレジスト等により保護膜18を形成し、多層基板2の一方の基板面にフェライトシート71を設ける。   When forming the disc-like pattern 66, the disc-like pattern 66 disposed at the end of the ferrite core 20A is formed by increasing the thickness of the protective film 18. Then, as shown in FIG. 11D, when the lamination of all the insulating materials 61 and the formation of the wiring pattern 62 are completed, a protective film 18 is formed on the surface of the multilayer substrate 2 by solder resist or the like. A ferrite sheet 71 is provided on one of the substrate surfaces.

貫通孔53、下穴63にフェライトペーストが充填された充填部55、65及びフェライトペーストの円盤状パターン56、66は、形成毎に固化する。   The through holes 53, the filling portions 55 and 65 in which the ferrite paste is filled in the pilot holes 63, and the disk-like patterns 56 and 66 of the ferrite paste are solidified at each formation.

このような製造方法により、フェライトコア20の軸部21及び鍔部22、22aとコイル10の配線パターン52、62とが形成された多層基板2が製造される。筐体40及び筐体40のフェライトコア41は、別途設け、フェライトコア20A、41が接触するように、筐体40と多層基板2とが固定される。これにより、電力伝送用コイル装置1Aが製造される。   By such a manufacturing method, the multilayer substrate 2 in which the shaft portion 21 and the flange portions 22 and 22a of the ferrite core 20 and the wiring patterns 52 and 62 of the coil 10 are formed is manufactured. The casing 40 and the ferrite core 41 of the casing 40 are separately provided, and the casing 40 and the multilayer substrate 2 are fixed so that the ferrite cores 20A and 41 are in contact with each other. Thus, the power transmission coil device 1A is manufactured.

また、最上層と最下層のフェライトコアの円盤状パターン66の厚みを増加させず、これらの表面に保護膜18を形成することで、実施形態1の電力伝送用コイル装置1が製造される。   In addition, the power transmission coil device 1 of the first embodiment is manufactured by forming the protective film 18 on the surface of the disk-shaped patterns 66 of the uppermost and lowermost ferrite cores without increasing the thickness.

以上のように、本実施形態の電力伝送用コイル装置1、1A及び非接触電力伝送システムによれば、フェライトコア20、20Aに鍔部22、22aが設けられることで、太いフェライトコアを有する場合と同程度に電力伝送効率を向上できる。例えば電力伝送用コイル装置1、1Aの小型化を図る場合、或いは、多層基板のビルトアップ工法で行われる孔(穴)加工を利用してフェライトコアを形成するような場合には、フェライトコアを太く形成することが困難となる。しかし、このような場合でも、配線層に鍔部22、22aを形成し、軸部21の直径が小さいフェライトコア20を製造し、高い電力伝送効率を達成することができる。   As described above, according to the power transmission coil device 1 and 1A and the contactless power transmission system of the present embodiment, the case where the ferrite cores 20 and 20A are provided with the ridges 22 and 22a, thereby providing a thick ferrite core. Power transmission efficiency can be improved to the same extent. For example, in order to miniaturize the coil devices 1 and 1A for power transmission or to form a ferrite core using hole processing performed by a buildup method of a multilayer substrate, the ferrite core is used. It becomes difficult to form thick. However, even in such a case, the ridges 22 and 22a are formed in the wiring layer, the ferrite core 20 having a small diameter of the shaft 21 can be manufactured, and high power transmission efficiency can be achieved.

また、本実施形態の電力伝送用コイル装置1、1Aによれば、幅寸が10mm以下のような小型のコイル10において、電力伝送効率を向上して十分な電力を伝送することができるので、特に効果的である。   Moreover, according to the coil device for electric power transmission 1 and 1A of the present embodiment, sufficient electric power can be transmitted by improving electric power transmission efficiency in a small coil 10 having a width of 10 mm or less. Particularly effective.

また、実施形態2の電力伝送用コイル装置1Aを適用した非接触電力伝送システムによれば、多層基板2に設けられたフェライトコア20が、筐体40のフェライトコア41を介して、送電側と受電側とで一続きに接触される。この構成により、電力伝送効率をより向上することができる。   Further, according to the non-contact power transmission system to which the coil device for power transmission 1A of the second embodiment is applied, the ferrite core 20 provided on the multilayer substrate 2 is connected to the power transmission side via the ferrite core 41 of the housing 40. A series of contacts with the power receiving side are made. This configuration can further improve the power transfer efficiency.

また、上記実施形態の製造方法によれば、多層基板のビルドアップ工法の途中にフェライトペーストの充填及びパターン形成の工程を加えることで、容易に電力伝送用コイル装置1、1Aを製造することができる。また、小型の電力伝送用コイル装置1、1Aを容易に製造することができる。   Moreover, according to the manufacturing method of the above embodiment, the coil devices 1 and 1A for power transmission can be easily manufactured by adding the steps of ferrite paste filling and pattern formation in the middle of the buildup method of the multilayer substrate. it can. In addition, the compact power transmission coil device 1 or 1A can be easily manufactured.

以上、本発明の各実施形態について説明した。しかし、本発明は上記実施形態に限られない。例えば、上記実施形態では、コイルの配線パターンが形成される全ての配線層にフェライトコア20の鍔部22を設けた例を示した。しかし、幾つかの層を飛ばして鍔部22が形成されていても良いし、コイルの配線パターンが形成されない層に鍔部が形成されていてもよい。その他、コイルの配線パターンの形状は様々に変更可能であるし、フェライトコア20の断面形状は円形に限らず多角形状としてもよい。また、本発明に係る電力伝送用コイル装置は、実施形態の製造方法以外の方法で製造されていてもよいし、その他、実施形態で示した細部は、発明の趣旨を逸脱しない範囲で適宜変更可能である。   The embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiment. For example, in the said embodiment, the example which provided the collar part 22 of the ferrite core 20 in all the wiring layers in which the wiring pattern of a coil is formed was shown. However, the ridge portion 22 may be formed by skipping some layers, or the ridge portion may be formed in a layer in which the wiring pattern of the coil is not formed. In addition, the shape of the wiring pattern of the coil can be changed variously, and the cross-sectional shape of the ferrite core 20 is not limited to a circle, and may be a polygon. In addition, the coil device for power transmission according to the present invention may be manufactured by a method other than the manufacturing method of the embodiment, and the details shown in the embodiment may be appropriately changed without departing from the scope of the invention. It is possible.

1、1A、100 電力伝送用コイル装置
2 多層基板
10、110 コイル
18 保護膜
20、20A、41、120 フェライトコア
21 軸部
22、22a 鍔部
30、71、130 フェライトシート(磁性体のシート)
40、140 筐体
51 コア基板
52、62 配線パターン
53 貫通孔
63 下穴
55、65 充填部
56、66 円盤状パターン
61 絶縁材料
DESCRIPTION OF SYMBOLS 1, 1A, 100 Coil device for power transmission 2 Multilayer substrate 10, 110 Coil 18 Protective film 20, 20A, 41, 120 Ferrite core 21 Shaft part 22, 22a Flange part 30, 71, 130 Ferrite sheet (sheet of magnetic material)
40, 140 Casing 51 Core Substrate 52, 62 Wiring Pattern 53 Through Hole 63 Under Hole 55, 65 Filled Part 56, 66 Disc-like Pattern 61 Insulating Material

Claims (5)

コイルと、
前記コイルの巻回軸方向の一方を覆う磁性体のシートと、
前記コイルの内側に配置される磁性体のコアと、
を備え、
前記コアは、
前記巻回軸方向に延びる軸部と、
前記軸部の少なくとも前記巻回軸方向の途中に設けられる1つ又は複数の鍔部と、
を有することを特徴とする電力伝送用コイル装置。
With the coil,
A sheet of magnetic material covering one side in the winding axis direction of the coil;
A core of magnetic material disposed inside the coil;
Equipped with
The core is
An axial portion extending in the winding axial direction;
One or more ridges provided at least halfway along the winding axis of the shaft;
A coil device for electric power transmission characterized by having.
前記コイルは、多層基板の複数層の配線パターンを含み、
前記鍔部は、前記軸部から径方向に張り出した円盤状の形態を有し、前記複数層の何れかの層に設けられていることを特徴とする請求項1記載の電力伝送用コイル装置。
The coil includes wiring patterns of multiple layers of a multilayer substrate,
The coil device for electric power transmission according to claim 1, wherein the flange portion has a disk-like form projecting radially from the shaft portion, and is provided in any one of the plurality of layers. .
前記コイルの幅寸が10mm以下であることを特徴とする請求項1又は請求項2記載の電力伝送用コイル装置。   The coil device for electric power transmission according to claim 1 or 2 whose width size of said coil is 10 mm or less. 送電コイルにより非接触で電力を送る送電装置と、
受電コイルにより非接触で電力を受ける受電装置とを備え、
前記送電コイルと前記受電コイルとは請求項1から請求項3のいずれか一項に記載の電力伝送用コイル装置であり、
前記送電装置と前記受電装置とを対向させたときに、前記送電コイルの前記コアと前記受電コイルの前記コアとが接触、或いは、前記送電コイルと前記受電コイルとの間に介在する部材に設けられた磁性体を介して接触されることを特徴とする非接触電力伝送システム。
A power transmission device for sending electric power contactlessly by a power transmission coil;
And a power receiving device for receiving electric power contactlessly by the power receiving coil,
The power transmission coil device according to any one of claims 1 to 3, wherein the power transmission coil and the power reception coil are provided.
When the power transmission device and the power reception device are opposed to each other, the core of the power transmission coil and the core of the power reception coil are in contact with each other, or provided in a member interposed between the power transmission coil and the power reception coil. A contactless power transmission system characterized in that the contact is made via a magnetic material.
コア基板に、コイルの配線パターンと、前記コイルの配線パターンの内側に配置される貫通孔と、前記貫通孔に磁性体部材を充填した充填部と、前記コイルの配線パターンと同一の層で前記貫通孔より広がる磁性体部材の円盤状パターンとを形成し、
前記コア基板に複数の絶縁材料を順次積層し、
各絶縁材料の積層ごとに、積層された前記絶縁材料に、前記コイルの配線パターンと、前記コア基板の前記貫通孔から基板面に垂直な方向に配置される下穴と、積層された前記絶縁材料の前記下穴に磁性体部材を充填した充填部と、積層された前記絶縁材料の前記コイルの配線パターンと同一の層で前記下穴より広がる磁性体部材の円盤状パターンとを形成することを特徴とする電力伝送用コイル装置の製造方法。
The core substrate includes the wiring pattern of the coil, the through hole disposed inside the wiring pattern of the coil, the filling portion in which the through hole is filled with the magnetic material member, and the same layer as the wiring pattern of the coil. Forming a disk-like pattern of the magnetic material member extending from the through hole;
Sequentially laminating a plurality of insulating materials on the core substrate;
In each laminated layer of the insulating material, the laminated insulating material, the wiring pattern of the coil, the lower hole disposed in the direction perpendicular to the substrate surface from the through hole of the core substrate, and the insulating layer laminated Forming a filling portion in which a magnetic material member is filled in the lower hole of the material, and a disk-like pattern of the magnetic material member extending from the lower hole in the same layer as the wiring pattern of the coil of the insulating material stacked. The manufacturing method of the coil apparatus for electric power transmission characterized by these.
JP2017187351A 2017-09-28 2017-09-28 Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission Pending JP2019062135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187351A JP2019062135A (en) 2017-09-28 2017-09-28 Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187351A JP2019062135A (en) 2017-09-28 2017-09-28 Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission

Publications (1)

Publication Number Publication Date
JP2019062135A true JP2019062135A (en) 2019-04-18

Family

ID=66177627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187351A Pending JP2019062135A (en) 2017-09-28 2017-09-28 Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission

Country Status (1)

Country Link
JP (1) JP2019062135A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285042A (en) * 1996-04-11 1997-10-31 Sony Corp Contactless power supply
JP2004200468A (en) * 2002-12-19 2004-07-15 Denso Corp Inductor and method for manufacturing the same
JP2008172873A (en) * 2007-01-09 2008-07-24 Sony Ericsson Mobilecommunications Japan Inc Contactless power transmission coil, portable terminal, terminal charger, magnetic layer forming apparatus for planar coil and magnetic layer forming method thereof
JP2011124420A (en) * 2009-12-11 2011-06-23 Tdk Corp Stacked common mode filter
JP2017092121A (en) * 2015-11-04 2017-05-25 株式会社村田製作所 Coil component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285042A (en) * 1996-04-11 1997-10-31 Sony Corp Contactless power supply
JP2004200468A (en) * 2002-12-19 2004-07-15 Denso Corp Inductor and method for manufacturing the same
JP2008172873A (en) * 2007-01-09 2008-07-24 Sony Ericsson Mobilecommunications Japan Inc Contactless power transmission coil, portable terminal, terminal charger, magnetic layer forming apparatus for planar coil and magnetic layer forming method thereof
JP2011124420A (en) * 2009-12-11 2011-06-23 Tdk Corp Stacked common mode filter
JP2017092121A (en) * 2015-11-04 2017-05-25 株式会社村田製作所 Coil component

Similar Documents

Publication Publication Date Title
TWI425533B (en) Transformer device
JP6079225B2 (en) Trance
US9413196B2 (en) Wireless power transfer
JP5413445B2 (en) Trance
KR930008880A (en) Multi-Layer Coil and Manufacturing Method Thereof
CN109215992B (en) Magnetic assembly and wireless power transmission device comprising same
JP4713621B2 (en) Communication IC unit with antenna
CN109215959B (en) Reactor and method for manufacturing core body
WO2021112086A1 (en) Module substrate antenna and module substrate using same
WO2018123699A1 (en) High-frequency module
JP2014038883A (en) Electronic component and method for manufacturing electronic component
JP2017228896A (en) Noise countermeasure component, and noise countermeasure module
JP2004349562A (en) Transformer and coil for transformer
JP2019062135A (en) Coil device for power transmission, non-contact power transmission system and manufacturing method of coil device for power transmission
JPH07201569A (en) Laminated electronic part and its manufacture
JP6895832B2 (en) Planar transformer and DCDC converter
JP2006086460A (en) Coupling coil
JP2005223261A (en) Multilayer common mode choke coil and its manufacturing method
CN216721675U (en) Resin multilayer substrate
JP6484068B2 (en) Resin case for inductance element and inductance element
JP4214542B2 (en) Method for manufacturing antenna-mounted communication IC unit
JP7167677B2 (en) Coil pair, power transmitting device, power receiving device, and power transmission system
US3441903A (en) Electroacoustic transducer with improved electromagnetic drive
JP2013168780A (en) Surface-mounted antenna
KR102536830B1 (en) Inductor and emi filter comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210330

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005