JP2019055458A - Teaching system of robot - Google Patents

Teaching system of robot Download PDF

Info

Publication number
JP2019055458A
JP2019055458A JP2017181394A JP2017181394A JP2019055458A JP 2019055458 A JP2019055458 A JP 2019055458A JP 2017181394 A JP2017181394 A JP 2017181394A JP 2017181394 A JP2017181394 A JP 2017181394A JP 2019055458 A JP2019055458 A JP 2019055458A
Authority
JP
Japan
Prior art keywords
robot
posture
target
external force
teaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017181394A
Other languages
Japanese (ja)
Other versions
JP7074962B2 (en
Inventor
健太 長江
Kenta Nagae
健太 長江
寛章 白取
Hiroaki Shiratori
寛章 白取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Denso Wave Inc
Original Assignee
Denso Corp
Denso Wave Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Denso Wave Inc filed Critical Denso Corp
Priority to JP2017181394A priority Critical patent/JP7074962B2/en
Publication of JP2019055458A publication Critical patent/JP2019055458A/en
Application granted granted Critical
Publication of JP7074962B2 publication Critical patent/JP7074962B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

To provide a teaching system of a robot capable of performing accurately positioning even an operator teaches by manual operation.SOLUTION: A teaching system 100 includes: an object robot 1 to be taught; an operation robot 11 provided by manual operation by an operator so that its attitude can be changed; a detection section 19b which detects the magnitude and the direction of an external force applied to the operation robot 11; and a control section 19a which executes processing of switching a direct control mode of controlling the attitude of the object robot 1 so as to coincide with the attitude of the operation robot 11 and a detailed control mode of controlling the attitude of the object robot 1 by a previously set operation unit based on the detected external force, and teaching the object robot 1 based on the operation of the operator to the operation robot 11.SELECTED DRAWING: Figure 1

Description

本発明は、ロボットを教示する教示システムに関する。   The present invention relates to a teaching system for teaching a robot.

従来、多関節型のロボットを教示する際には、ティーチングペンダント等の教示装置を用いる手法が採用されていた。しかし、教示装置による教示ではロボットに対して直観的に指示を行うことができず、不慣れな作業者が教示を行うと所望の動作を教示するためには非常に時間がかかるという問題があった。そのため、近年では、教示対象のロボットを作業者が直接触って教示するいわゆるダイレクトティーチングと呼ばれる手法が採用されつつある(例えば、特許文献1参照)。   Conventionally, when teaching an articulated robot, a technique using a teaching device such as a teaching pendant has been employed. However, there is a problem that teaching by the teaching device cannot give instructions intuitively to the robot, and it takes a very long time to teach a desired operation when an unfamiliar operator teaches. . Therefore, in recent years, a so-called direct teaching method in which an operator teaches a robot to be taught by direct contact is being adopted (see, for example, Patent Document 1).

特開2017−74669号公報JP 2017-74669 A

しかしながら、ダイレクトティーチングの場合には作業者がロボットを直接が触る必要があるものの、高温や多粉塵あるいは高所等、作業し難い場所にロボットが設置されている場合には、教示することが困難になるという問題がある。また、作業し易い場所であっても、対象が例えば大型のロボットである場合には、大きなロボットアームを直接動かす必要があり、作業性が悪いという問題もある。   However, in the case of direct teaching, it is necessary for the operator to touch the robot directly, but it is difficult to teach if the robot is installed in a place where it is difficult to work, such as high temperature, high dust, or high place. There is a problem of becoming. Even in a place where it is easy to work, if the target is a large robot, for example, it is necessary to move a large robot arm directly, and there is a problem that workability is poor.

さらに、ダイレクトティーチングの場合、高精度の位置決めが困難であるという大きな問題がある。これは、作業者がロボットアームを直接触って教示する場合には、作業者の手の微少な振動等が反映されてしまわないようにある程度の不感帯を設ける必要があり、細かな調整ができないためである。また、ロボットの仕様にもよるものの、例えば数十μmといった精度での位置決めを作業者が手動行うことはそもそも困難である。   Furthermore, in the case of direct teaching, there is a big problem that high-precision positioning is difficult. This is because when a worker teaches by directly touching a robot arm, it is necessary to provide a certain dead zone so that minute vibrations of the operator's hand are not reflected, and fine adjustment is not possible. It is. Further, although depending on the specifications of the robot, it is difficult in the first place for the operator to manually perform positioning with an accuracy of, for example, several tens of μm.

また、ダイレクトティーチングの場合には、作業者がロボットアームを仮に真横方向に動かそうとしても、手がぶれて方向がずれてしまうことが想定され、作業者の意図する方向にロボットアームを移動できないおそれがある。このように、ダイレクトティーチングの場合には、アームを移動させる際の距離だけでなく、アームを移動させる際の方向においても、高精度な位置決めを行うことが困難になる重大な要因が存在している。また、教示対象となるロボットがダイレクトティーチング機能に対応している必要もある。   In the case of direct teaching, even if the operator tries to move the robot arm in the lateral direction, it is assumed that the direction is shifted due to hand shaking, and the robot arm cannot be moved in the direction intended by the operator. There is a fear. Thus, in the case of direct teaching, there are significant factors that make it difficult to perform highly accurate positioning not only in the distance when moving the arm but also in the direction when moving the arm. Yes. In addition, the robot to be taught needs to support the direct teaching function.

そのため、大まかな位置決めは作業者が手動で行うとしても、最終的な高精度の位置決めを行う際には、例えば特許文献1のように微調整用に別途ティーチングペンダント等を用いて行う必要があり、ロボットからティーチングペンダントへの持ち替えや操作の切り替え等が必要になって作業性が低下するという問題がある。   Therefore, even if the operator performs manual positioning manually, when performing final high-accuracy positioning, it is necessary to use a teaching pendant or the like separately for fine adjustment as in Patent Document 1, for example. In addition, there is a problem that workability is deteriorated because it is necessary to switch from the robot to the teaching pendant or change the operation.

本発明は上記事情に鑑みてなされたものであり、その目的は、作業者が手動によりロボットを操作して教示する場合であっても高精度で位置決めを行うことができるロボットの教示システムを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a robot teaching system capable of positioning with high accuracy even when an operator manually teaches a robot by operating it. There is to do.

請求項1記載の発明では、教示システムは、教示する対象である対象ロボットと、作業者による手動での操作によって姿勢を変更可能に設けられている操作ロボットと、を備えている。つまり、実際の教示対象である対象ロボットとは別に、作業者が操作可能な操作ロボットを設けている。ここで、作業者による手動での操作によって姿勢を変更可能であるとは、操作ロボットの形状や大きさだけでなく、安全且つ容易に作業者が触れることができる環境に操作ロボットが設置されていることも含んでいる。   According to the first aspect of the present invention, the teaching system includes a target robot that is a target to be taught, and an operating robot that can be changed in posture by a manual operation by an operator. That is, an operating robot that can be operated by an operator is provided separately from the target robot that is the actual teaching target. Here, the posture can be changed by manual operation by the operator means that not only the shape and size of the operating robot but also the operating robot is installed in an environment where the operator can touch it safely and easily. It also includes being.

そして、教示システムは、作業者が操作した操作ロボットの姿勢に一致するように対象ロボットの姿勢を制御する直接制御モードと、操作ロボットに加わる外力の大きさおよび方向を検出し、検出した外力の大きさが予め設定されている閾値を超えた場合に検出した外力の方向に予め設定されている動作単位で対象ロボットの姿勢を制御する詳細制御モードとを切り替えることで、操作ロボットに対する作業者の操作に基づいて対象ロボットを教示する。   The teaching system detects the direct control mode for controlling the posture of the target robot so as to match the posture of the operating robot operated by the operator, and the magnitude and direction of the external force applied to the operating robot. By switching between the detailed control mode that controls the posture of the target robot in a preset motion unit in the direction of the external force detected when the magnitude exceeds a preset threshold value, The target robot is taught based on the operation.

詳細制御モードでは、操作ロボットに対する作業者の操作は、外力の大きさが閾値を超えていれば、予め設定されている動作単位として扱われる。つまり、詳細制御モードでは、操作ロボットは、作業者によって外力が加えられた方向を示す方向キーのように作動する。そのため、作業者が手動で操作ロボットを操作する際の力の大きさによらず、対象ロボットを一定の動作単位で姿勢を制御することが可能となる。   In the detailed control mode, the operation of the operator with respect to the operating robot is treated as a preset operation unit if the magnitude of the external force exceeds the threshold value. That is, in the detailed control mode, the operating robot operates like a direction key indicating a direction in which an external force is applied by the operator. Therefore, the posture of the target robot can be controlled in a certain unit of motion regardless of the magnitude of the force when the operator manually operates the operating robot.

このとき、動作単位を、例えば対象ロボットで制御可能な最小分解能に対応付けて設定しておけば、対象ロボットの姿勢を最小分解能で制御することができる。あるいは、最小分解能での制御までは必要ない場合には、動作単位を例えば最小分解能の整数倍等、必要な位置決め精度を出すことができる値に対応付けて設定しておけば、教示作業に必要とされる精度で位置決めを行うことができる。   At this time, if the motion unit is set in association with, for example, the minimum resolution that can be controlled by the target robot, the posture of the target robot can be controlled with the minimum resolution. Alternatively, if control up to the minimum resolution is not required, it is necessary for teaching work if the operation unit is set in association with a value that can provide the required positioning accuracy, such as an integer multiple of the minimum resolution. Positioning can be performed with the accuracy assumed.

これにより、作業者が手動によりロボットを操作して教示する場合であっても、高精度で位置決めを行うことができる。また、対象ロボットとは別に操作ロボットを設けていることから、操作ロボットから手を離すことなく、また、教示すること自体が困難になる状況や、大きなロボットアームを対象とする場合に作業性が悪くなる状況を回避することができる。   Thereby, even if it is a case where an operator teaches by operating a robot manually, positioning can be performed with high accuracy. In addition, since an operating robot is provided separately from the target robot, workability can be reduced without taking your hands off the operating robot, making it difficult to teach itself, and targeting large robot arms. You can avoid situations that get worse.

また、操作ロボットを操作して教示作業を行うことから、教示作業に不慣れな作業者であっても直感的に操作することができるというダイレクトティーチングのメリットを損なうこともない。したがって、教示作業中の作業者の安全の確保と作業性の向上とを両立させることができる。   Further, since the teaching work is performed by operating the operating robot, the merit of direct teaching that an operator who is unfamiliar with the teaching work can operate intuitively is not impaired. Therefore, it is possible to achieve both ensuring the safety of the worker during teaching work and improving workability.

また、アームを移動させる際の距離だけでなく、アームを移動させる際の方向においても、高精度な位置決めを行うことができる。さらに、対象ロボットについては、必ずしもダイレクトティーチング機能に対応している必要はなく、より広範囲のロボットに適用することができる。   Further, high-precision positioning can be performed not only in the distance when the arm is moved, but also in the direction when the arm is moved. Furthermore, the target robot does not necessarily support the direct teaching function, and can be applied to a wider range of robots.

請求項2記載の発明では、詳細制御モードにおいて、操作ロボットの姿勢と対象ロボットの姿勢とが乖離している場合、操作ロボットの姿勢と対象ロボットの姿勢とを一致させる。
詳細制御モードにおいて作業者が操作ロボットを操作した場合、力加減によっては操作ロボットの姿勢が変化することが予想される。このとき、操作ロボットの姿勢を変化したままにすると、対象ロボットの姿勢と乖離していることから、例えば手先の位置関係が操作ロボットと対象ロボットとで異なることで操作時に違和感を覚えたり、操作ロボット側で所望の方向に力を加えても、対象ロボット側では方向が微妙にずれたりするおそれがある。
そこで、操作ロボットの姿勢と対象ロボットの姿勢とを一致させることにより、操作時に違和感を覚えたり、対象ロボットが意図しない方向に移動したりするおそれを低減することができる。
According to the second aspect of the present invention, in the detailed control mode, when the attitude of the operating robot is different from the attitude of the target robot, the attitude of the operating robot and the attitude of the target robot are matched.
When the operator operates the operating robot in the detailed control mode, the attitude of the operating robot is expected to change depending on the force. At this time, if the posture of the operating robot is left unchanged, it will deviate from the posture of the target robot. For example, the positional relationship of the hand is different between the operating robot and the target robot. Even if a force is applied in a desired direction on the robot side, the direction may be slightly shifted on the target robot side.
Therefore, by matching the posture of the operating robot with the posture of the target robot, it is possible to reduce the possibility of feeling uncomfortable during the operation or moving the target robot in an unintended direction.

請求項3記載の発明では、操作ロボットの姿勢を、外力に基づく姿勢の制御が行われた対象ロボットの姿勢に一致させる。
これにより、作業者の操作により操作ロボットが行き過ぎた位置まで移動しても、その位置から対象ロボットの姿勢に一致するように移動するため、姿勢を一致させるのに要する時間を短縮することができる。
According to the third aspect of the present invention, the posture of the operating robot is matched with the posture of the target robot for which the posture control based on the external force is performed.
As a result, even if the operating robot moves to a position where the operator's operation has gone too far due to the operator's operation, the robot moves from that position so as to match the posture of the target robot. .

請求項4記載の発明では、操作ロボットの姿勢を、外力が検出される前の姿勢に一旦戻した後に、対象ロボットの姿勢に一致させる。
これにより、若干の時間は掛かるものの、基準位置からの姿勢の変化を作業者が目視にて確認することができるため、操作ロボットの姿勢の変化を観察することにより、所望の調整が行われたか否かを容易に把握することができる。なお、詳細制御モードでは微調整を行うことから、操作ロボットの姿勢が大きく変化することは少ないと考えられるため、実質的には時間的な無駄はごく僅かであると予想され、教示作業に大きく影響することは無いと考えられる。
In the invention according to claim 4, the posture of the operating robot is once returned to the posture before the external force is detected, and then matched with the posture of the target robot.
As a result, although it takes some time, the operator can visually confirm the change in the posture from the reference position, so that the desired adjustment was made by observing the change in the posture of the operating robot. It is possible to easily grasp whether or not. In addition, since fine adjustment is performed in the detailed control mode, the attitude of the operating robot is unlikely to change significantly. It is thought that there is no influence.

一方、対象ロボットが必ずしも作業者の目の届くところにばかりあるとは限らないこと、また、操作ロボットと対象ロボットを位置を調整する教示作業中に同時に見続けることも容易ではないことに鑑みれば、このように時間差ではあるものの作業者自身が行った対象ロボットへの教示作業の妥当性を作業者自身がチェックする事ができるようにすることは、作業の品質向上や作業効率改善に大きく役立つ。   On the other hand, in view of the fact that the target robot is not always within the reach of the operator's eyes, and it is not easy to keep watching the operating robot and the target robot at the same time during the teaching operation for adjusting the position. In this way, although it is a time difference, enabling the worker himself to check the validity of the teaching work to the target robot performed by the worker himself is greatly useful for improving the quality of the work and improving the work efficiency. .

請求項5記載の発明では、操作ロボットの姿勢を、外力に基づく姿勢の制御が行われたと仮定した状態の対象ロボットの姿勢に一致させた後に、対象ロボットの姿勢を制御する。
これにより、操作ロボットの姿勢が変化した後に対象ロボットの姿勢が制御されるようになり、作業者は、対象ロボットの姿勢の変化を目視にて確認することができ、所望の微調整が行われたか否かを容易に把握することができる。また、操作ロボットの姿勢の制御と対象ロボットの姿勢の制御とを個別に確認できるため、正しい距離や方向への制御が行われているか否かも確認することができる。
According to the fifth aspect of the present invention, the attitude of the target robot is controlled after the attitude of the operating robot is made to coincide with the attitude of the target robot in a state that the attitude control based on the external force is performed.
As a result, the posture of the target robot is controlled after the posture of the operating robot has changed, and the operator can visually confirm the change in the posture of the target robot and perform desired fine adjustment. It is possible to easily grasp whether or not. Further, since the control of the posture of the operating robot and the control of the posture of the target robot can be individually confirmed, it is also possible to confirm whether or not control in the correct distance and direction is being performed.

請求項6記載の発明では、制御部は、外力が閾値を超えている最中に、操作ロボットの姿勢を対象ロボットの姿勢に一致させる。
この場合、作業者が操作ロボットに力を加えている状態で、操作ロボットの姿勢が変化することになる。これにより、操作ロボットの姿勢変化によっていわゆるクリック感のように制御が行われていることを作業者が感覚的に把握することができ、微小距離で位置決めを行う際に、正しく微調整が行われていることを把握することができる。また、操作ロボットと対象ロボットとがほぼ同時期に姿勢が制御されるため、教示作業全体として見た場合において、作業時間の短縮化を図ることもできる。
In the invention according to claim 6, the control unit matches the posture of the operating robot with the posture of the target robot while the external force exceeds the threshold value.
In this case, the posture of the operating robot changes while the operator is applying force to the operating robot. As a result, the operator can intuitively understand that the control is performed like a so-called click feeling due to the change in the attitude of the operating robot, and the fine adjustment is performed correctly when positioning at a minute distance. I can grasp that. In addition, since the postures of the operation robot and the target robot are controlled almost at the same time, the work time can be shortened when viewed as the entire teaching work.

請求項7記載の発明では、教示する対象である対象ロボットを用い、対象ロボットを作業者の操作に応じて直接的に教示点を設定する直接制御モードと、検出部で検出した外力の大きさが予め設定されている閾値を超えた場合に、予め設定されている動作単位で検出した外力の方向に対象ロボットの姿勢を制御する詳細制御モードとを切り替えて、作業者の操作に基づいて対象ロボットを教示する。   According to the seventh aspect of the present invention, a direct control mode in which a target robot that is a target to be taught is used and a teaching point is set directly on the target robot in accordance with an operation of the operator, and the magnitude of the external force detected by the detection unit Is switched over to a detailed control mode that controls the posture of the target robot in the direction of the external force detected in a preset unit of motion when the threshold exceeds a preset threshold value. Teach the robot.

これにより、作業者が手動で操作ロボットを操作する際の力の大きさによらず、対象ロボットを一定の動作単位での姿勢の制御が可能となり、動作単位を例えば最小分解能に対応付けて設定しておけば対象ロボットの姿勢を最小分解能で制御することができる。したがって、作業者が手動により教示する場合であっても、高精度で位置決めを行うことができる。   This makes it possible to control the posture of the target robot in a fixed operation unit regardless of the magnitude of the force when the operator manually operates the operation robot, and sets the operation unit in association with the minimum resolution, for example. By doing so, the posture of the target robot can be controlled with the minimum resolution. Therefore, even when the operator teaches manually, positioning can be performed with high accuracy.

請求項8記載の発明では、詳細制御モードにおいて、検出された外力が閾値を超えている時間に応じて、動作単位での制御回数を増加させる。
これにより、例えば詳細制御モードに切り替えた時点での姿勢と目標姿勢とのずれが若干大きく、動作単位での制御を複数回実施する必要がある場合であっても、力を加え続けることにより制御回数を増加させることができる。したがって、操作性を向上させることができるとともに、ロボットから手を離す必要が無いことから入力方向が変わってしまうおそれを低減することもできる。
According to the eighth aspect of the invention, in the detailed control mode, the number of times of control in the operation unit is increased according to the time during which the detected external force exceeds the threshold value.
As a result, for example, even when the deviation between the posture and the target posture at the time of switching to the detailed control mode is slightly large and it is necessary to carry out the control in units of motion several times, the control is performed by continuously applying force. The number of times can be increased. Therefore, it is possible to improve operability and to reduce the possibility that the input direction changes because it is not necessary to remove the hand from the robot.

請求項9記載の発明では、詳細制御モードにおいて、検出された外力が閾値を超えている時間に関わらず、動作単位での制御回数を1回とする。
ロボットの姿勢を例えば最小分解能だけ制御したい場合等には、ロボットに触れたままの状態で意図せずに力が加わってしまうおそれがある。そのため、検出された外力が閾値を超えている時間に関わらず動作単位での制御回数を1回とすることにより、ロボットに触れたままであっても意図しない姿勢の制御が行われることを防止できる。
According to the ninth aspect of the present invention, in the detailed control mode, the number of times of control in the operation unit is set to one regardless of the time during which the detected external force exceeds the threshold value.
For example, when it is desired to control the posture of the robot by a minimum resolution, there is a possibility that a force may be applied unintentionally while touching the robot. Therefore, it is possible to prevent unintended posture control from being performed even when the robot is kept touched by setting the number of times of control per operation unit to one regardless of the time when the detected external force exceeds the threshold value. .

第1実施形態における教示システムの構成を模式的に示す図The figure which shows typically the structure of the teaching system in 1st Embodiment. 教示作業の全体的な流れを示す図Diagram showing the overall flow of teaching work 対象ロボット側の処理の流れを示す図Diagram showing the flow of processing on the target robot side 詳細制御モードにおける操作ロボット側の処理の流れを示す図The figure which shows the flow of the process by the operation robot side in detailed control mode 詳細制御モードから直接制御モードに復帰する処理の流れを示す図The figure which shows the flow of the processing which returns from detailed control mode to direct control mode 操作ロボットに加わる外力の一例を示す図The figure which shows an example of the external force applied to an operating robot 第2実施形態における教示システムの構成を模式的に示す図The figure which shows typically the structure of the teaching system in 2nd Embodiment. 詳細制御モードにおける処理の流れを示す図Diagram showing the flow of processing in detailed control mode

以下、複数の実施形態について図面を参照しながら説明する。なお、各実施形態において実質的に共通する部位については同一符号を付して説明する。
(第1実施形態)
以下、第1実施形態について、図1から図6を参照しながら説明する。
Hereinafter, a plurality of embodiments will be described with reference to the drawings. In addition, about the site | part substantially common in each embodiment, the same code | symbol is attached | subjected and demonstrated.
(First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 6.

図1に示すように、本実施形態のロボットの教示システム100は、教示する対象である対象ロボット1、対象ロボット1を制御する主体となる対象側コントローラ9、作業者による手動での操作によって姿勢を変更可能な操作ロボット11、操作ロボット11を制御する主体である操作側コントローラ19を備えている。以下、対象ロボット1を便宜的にスレーブ側とも称し、操作ロボット11を便宜的にマスター側とも称する。   As shown in FIG. 1, a robot teaching system 100 according to this embodiment includes a target robot 1 to be taught, a target controller 9 that is a main body that controls the target robot 1, and a posture by manual operation by an operator. And an operation side controller 19 which is a main body for controlling the operation robot 11. Hereinafter, the target robot 1 is also referred to as a slave side for convenience, and the operation robot 11 is also referred to as a master side for convenience.

対象ロボット1は、実際に稼動する場所に設置されており、いわゆる垂直多関節型ロボットとして周知の構成のものである。具体的には、この対象ロボット1は、ベース2上に、設置面に垂直な回転軸である第1軸(J1)を介してショルダ3が水平方向に回転可能に連結されている。ショルダ3には、設置面に平行な回転軸である第2軸(J2)を介して上方に延びる下アーム4の下端部が垂直方向に回転可能に連結されている。下アーム4の先端部には、設置面に平行な回転軸である第3軸(J3)を介して第一上アーム5が垂直方向に回転可能に連結されている。   The target robot 1 is installed at a place where it is actually operated, and has a configuration known as a so-called vertical articulated robot. Specifically, in the target robot 1, a shoulder 3 is connected to a base 2 via a first axis (J1) that is a rotation axis perpendicular to the installation surface so as to be rotatable in the horizontal direction. A lower end of a lower arm 4 extending upward is connected to the shoulder 3 via a second axis (J2) that is a rotation axis parallel to the installation surface so as to be rotatable in the vertical direction. A first upper arm 5 is connected to the tip of the lower arm 4 via a third axis (J3) which is a rotation axis parallel to the installation surface so as to be rotatable in the vertical direction.

第一上アーム5の先端部には、第3軸と直交する回転軸である第4軸(J4)を介して第二上アーム6が捻り回転可能に連結されている。第二上アーム6の先端部には、設置面に平行な回転軸である第5軸(J5)を介して手首7が垂直方向に回転可能に連結されている。手首7には、第5軸と直交する回転軸である第6軸(J6)を介してフランジ8が捻り回転可能に連結されている。   A second upper arm 6 is connected to the tip of the first upper arm 5 via a fourth axis (J4), which is a rotation axis orthogonal to the third axis, so as to be able to rotate. The wrist 7 is connected to the tip of the second upper arm 6 via a fifth axis (J5) that is a rotation axis parallel to the installation surface so as to be rotatable in the vertical direction. A flange 8 is connected to the wrist 7 via a sixth axis (J6) that is a rotation axis orthogonal to the fifth axis so as to be able to rotate.

対象ロボット1におけるアームの最先端となるフランジ8には、図示は省略するが、ワークを把持したり加工を施したりするハンドあるいはエンドエフェクタと称される治具が取り付けられる。また、対象ロボット1の各間接部には、図示は省略するが、アームを駆動するモータ、モータの駆動力を伝達する減速機等の伝達機構、および、モータの回転角度を検出するエンコーダ等が設けられている。   Although not shown in the drawing, a flange called a hand or an end effector for gripping or processing a workpiece is attached to the flange 8 at the forefront of the arm in the target robot 1. Although not shown in the drawings, each indirect portion of the target robot 1 includes a motor that drives the arm, a transmission mechanism such as a speed reducer that transmits the driving force of the motor, an encoder that detects the rotation angle of the motor, and the like. Is provided.

対象側コントローラ9は、マイクロコンピュータ等で構成された制御部9aを備えており、予め組み込まれているプログラムを制御部9aにて実行することにより、対象ロボット1の動作つまりは対象ロボット1の姿勢を制御する。また、対象側コントローラ9は、詳細は後述するが、本実施形態に関連して、操作側コントローラ19から送信される教示情報基づいて対象ロボット1の姿勢を制御する。   The target-side controller 9 includes a control unit 9a composed of a microcomputer or the like, and the control unit 9a executes a pre-installed program so that the operation of the target robot 1, that is, the posture of the target robot 1 is achieved. To control. Although the details will be described later, the target-side controller 9 controls the posture of the target robot 1 based on the teaching information transmitted from the operation-side controller 19 in relation to the present embodiment.

操作ロボット11は、本実施形態では対象ロボット1と同一構成の垂直多関節型ロボットを採用しており、ベース12、ショルダ13、下アーム14、第一上アーム15、第二上アーム16、手首17、フランジ18を備えている。また、操作ロボット11の各間接部には、図示は省略するが、アームを駆動するモータ、モータの駆動力を伝達する減速機等の伝達機構、および、モータの回転角度を検出するエンコーダ等が設けられている。   In this embodiment, the operation robot 11 employs a vertical articulated robot having the same configuration as that of the target robot 1, and includes a base 12, a shoulder 13, a lower arm 14, a first upper arm 15, a second upper arm 16, and a wrist. 17 and flange 18 are provided. Although not shown in the drawings, each indirect portion of the operating robot 11 includes a motor that drives the arm, a transmission mechanism such as a speed reducer that transmits the driving force of the motor, an encoder that detects the rotation angle of the motor, and the like. Is provided.

この操作ロボット11は、本実施形態では対象ロボット1とは異なる位置に、作業者が直接触れて操作可能に設けられている。ここで、作業者が直接触れて操作可能であるとは、操作ロボット11が作業者による操作が可能な形状や大きさであることに加えて、操作ロボット11に触れる作業者の安全が確保されている状態も含んでいる。   In this embodiment, the operation robot 11 is provided at a position different from the target robot 1 so that an operator can directly touch the operation robot 11. Here, the fact that the operator can directly touch and operate means that the operating robot 11 has a shape and size that can be operated by the operator, and the safety of the operator who touches the operating robot 11 is ensured. It includes the state that is.

この場合、操作ロボット11は、例えば、操作ロボット11を操作する作業者が対象ロボット1を視認可能な位置、対象ロボット1が作業者の意図しない姿勢になってもロボットアームが作業者にあたらない距離だけ離れた位置、対象ロボット1との間に防護柵等が存在する位置、あるいは、これらの条件が複数成立する位置に設けることが考えられる。   In this case, for example, the operating robot 11 does not hit the operator even if the operator operating the operating robot 11 is in a position where the target robot 1 can be visually recognized or the target robot 1 is not intended by the operator. It may be provided at a position separated by a distance, a position where a guard fence or the like exists between the target robot 1 or a position where a plurality of these conditions are satisfied.

操作側コントローラ19は、マイクロコンピュータ等で構成された制御部19a、および、作業者の操作によって操作ロボット11に加わる外力を検出する検出部19bを備えている。操作側コントローラ19は、予め組み込まれているプログラムを制御部19aにて実行することにより、操作ロボット11の動作つまりは姿勢の変更を制御する。   The operation-side controller 19 includes a control unit 19a composed of a microcomputer or the like, and a detection unit 19b that detects an external force applied to the operation robot 11 by an operator's operation. The operation-side controller 19 controls the operation of the operation robot 11, that is, the change in posture, by executing a preinstalled program in the control unit 19 a.

制御部19aは、詳細は後述するが、作業者が変更した操作ロボット11の姿勢に一致するように対象ロボット1の姿勢を制御する直接制御モードと、検出部19bで検出した外力に基づいて予め設定されている動作単位で対象ロボット1の姿勢を制御する詳細制御モードとを切り替え、操作ロボット11に対する作業者の操作に基づいて対象ロボット1を教示する処理を実行する。   Although details will be described later, the control unit 19a is preliminarily determined based on the direct control mode for controlling the posture of the target robot 1 so as to match the posture of the operation robot 11 changed by the operator and the external force detected by the detection unit 19b. The detailed control mode for controlling the posture of the target robot 1 in units of the set operation is switched, and processing for teaching the target robot 1 based on the operator's operation on the operation robot 11 is executed.

検出部19bは、作業者の操作によって操作ロボット11に加わる外力を検出する。より具体的には、検出部19bは、操作ロボット11に加わる外力の大きさおよび方向を検出する。本実施形態では、検出部19bは、モータの電流値を測定し、電流値に比例するトルクを算出することにより、外力の大きさと方向とを検出している。   The detection unit 19b detects an external force applied to the operation robot 11 by the operator's operation. More specifically, the detection unit 19b detects the magnitude and direction of the external force applied to the operating robot 11. In the present embodiment, the detection unit 19b detects the magnitude and direction of the external force by measuring the current value of the motor and calculating the torque proportional to the current value.

ただし、操作ロボット11に加わる外力の大きさおよび方向は、モータの電流値を測定する以外にも、モータにトルクセンサを設け、トルクセンサの値から取得する方法、制御モデルと実際の姿勢との差分から取得する方法等を適宜採用することができる。なお、制御モデルとは、制御入力を加えた際に各軸の回転角度、角速度、角加速度、トルク等のパラメータを特定可能なように動力学に基づいて設計されたモデルであり、ロボットをセンサレス制御する際に利用される。   However, the magnitude and direction of the external force applied to the operating robot 11 is not limited to the measurement of the current value of the motor, but a method in which a torque sensor is provided in the motor and obtained from the value of the torque sensor, the control model and the actual posture A method of acquiring from the difference can be appropriately adopted. A control model is a model designed based on dynamics so that parameters such as the rotation angle, angular velocity, angular acceleration, and torque of each axis can be specified when a control input is applied. Used when controlling.

次に、上記した構成の作用について説明する。
ロボットの教示は、基本的には通過する位置(以下、教示点と称する)を設定することによって行われる。しかし、対象ロボット1のように複数の関節部を備えるロボットの場合、前述したように、不慣れな作業者にとってはティーチングペンダントを用いて教示することが困難になったり、大きなロボットでは作業性が悪くなったりする問題がある。
Next, the operation of the above configuration will be described.
The teaching of the robot is basically performed by setting a passing position (hereinafter referred to as a teaching point). However, in the case of a robot having a plurality of joints, such as the target robot 1, as described above, it becomes difficult for an unfamiliar worker to teach using a teaching pendant, or a large robot has poor workability. There is a problem that becomes.

また、ダイレクトティーチングの手法を採用したとしても、前述のように、高精度の位置決めはそもそも困難であるという大きな問題もある。
そこで、教示システム100では、以下のようにして、作業者が手動により教示する場合であってもロボットの動作単位レベルでの位置決めを行うことができるようにしている。
Even if the direct teaching method is adopted, as described above, there is a big problem that high-precision positioning is difficult in the first place.
Therefore, in the teaching system 100, the robot can be positioned at the operation unit level even when the operator manually teaches as follows.

まず、教示システム100全体における教示作業の流れについて、図2および図3を参照しながら説明する。なお、図2の処理が開始される時点では、操作ロボット11は動作サイクルの起点となる初期位置の姿勢が既に設定されているものとする。   First, the flow of teaching work in the entire teaching system 100 will be described with reference to FIGS. At the time when the processing of FIG. 2 is started, it is assumed that the operation robot 11 has already set the posture of the initial position that is the starting point of the operation cycle.

対象ロボット1を教示する際、作業者は、教示システム100を直接制御モードに設定する。ここで、直接制御モードに設定する操作、あるいは後述する詳細制御モードに切り替える操作、詳細制御モードから復帰する操作、教示点として設定する操作等は、操作ロボット11あるいは操作側コントローラ19に設けられているスイッチ等の入力部から入力される。また、操作ロボット11の姿勢の変化、例えば、急激に比較的大きな動きを検出したことや、一端変化した姿勢が元の姿勢に戻ったことを検出したことを、上記の設定や切替の操作として判断する構成とすることもできる。   When teaching the target robot 1, the operator sets the teaching system 100 to the direct control mode. Here, an operation for setting to the direct control mode, an operation for switching to the detailed control mode to be described later, an operation for returning from the detailed control mode, an operation for setting as a teaching point, etc. are provided in the operation robot 11 or the operation side controller 19. Input from an input unit such as a switch. Further, the above-described setting and switching operations include a change in the posture of the operating robot 11, for example, that a relatively large movement has been detected suddenly, or that a changed posture has returned to the original posture. It can also be set as the structure to judge.

この場合、作業者の操作を入力する入力部としては、タッチパネルのように動作機構が無く、操作時に余分な力が発生し難いものを採用することで、操作ロボット11に余分な振動等を与えることなく操作を入力することができる。また、操作ロボット11から指を放す際や入力部を操作する際に意図せずに姿勢が変更されて教示点がずれてしまうことも防止することができる。   In this case, as the input unit for inputting the operation of the operator, an operation mechanism such as a touch panel that does not have an operation mechanism and does not easily generate an extra force during the operation is used, thereby giving an extra vibration or the like to the operation robot 11. Operation can be input without In addition, when the finger is released from the operation robot 11 or when the input unit is operated, it is possible to prevent the teaching point from being shifted due to unintentionally changing the posture.

これは、操作性を向上させるために最も触れる頻度が多く且つ意図せずロボットアームを揺らしてしまう可能性が高い手先位置付近に入力部を配置する場合に特に有意である。また、操作した感覚を作業者が把握できるようにプッシュボタン等の動作機構を含む入力部を設ける場合には、手先位置に影響を及ぼすことがないように、ベース2等に入力部を設けることができる。   This is particularly significant when the input unit is arranged near the hand position that is most frequently touched to improve operability and is likely to unintentionally shake the robot arm. In addition, when an input unit including an operation mechanism such as a push button is provided so that the operator can grasp the sense of operation, an input unit is provided on the base 2 or the like so as not to affect the hand position. Can do.

さて、教示システム100では、マスター側となる操作側コントローラ19を直接制御モードに設定した後(S1)、作業者の手によって操作ロボット11を目標姿勢まで移動する(S2)。つまり、操作ロボット11は、作業者が触れることによって、その姿勢が変更されながら目標姿勢まで各ロボットアームが移動する。ここで、目標姿勢とは、フランジ18の中心位置が設定対象の教示点に到達した状態、あるいは、設定対象の教示点の近傍に到達した状態における操作ロボット11の姿勢を意味する。以下、フランジ18の中心位置を便宜的に手先位置とも称する。   In the teaching system 100, after the operation side controller 19 on the master side is set to the direct control mode (S1), the operation robot 11 is moved to the target posture by the operator's hand (S2). That is, when the operator touches the operation robot 11, each robot arm moves to the target posture while changing its posture. Here, the target posture means the posture of the operating robot 11 in a state where the center position of the flange 18 has reached the teaching point to be set or in the vicinity of the teaching point to be set. Hereinafter, the center position of the flange 18 is also referred to as a hand position for convenience.

このとき、操作側コントローラ19は、作業者の手によって操作ロボット11の姿勢が変更された場合、操作ロボット11の姿勢を特定可能な各モータの回転角度等の情報を教示情報として対象側コントローラ9に適宜送信する。このとき送信される教示情報には、直接制御モードで教示中であることを示す情報も含まれている。   At this time, when the posture of the operation robot 11 is changed by the operator's hand, the operation-side controller 19 uses the information such as the rotation angle of each motor that can specify the posture of the operation robot 11 as teaching information, as the target-side controller 9. As appropriate. The teaching information transmitted at this time includes information indicating that teaching is being performed in the direct control mode.

一方、スレーブ側となる対象側コントローラ9は、マスター側で教示が開始されると、図3に示すように、マスター側から教示情報を受信したか否かを判定する(S11)。対象側コントローラ9は、教示情報を受信していなければ(S11:NO)、教示が完了したか否かを判定し(S13)、マスター側から完了の指令が通知されていない状態つまりは教示が完了していなければ(S13:NO)、ステップS11に移行して待機する。   On the other hand, when teaching is started on the master side, the target-side controller 9 serving as the slave side determines whether or not teaching information has been received from the master side as shown in FIG. 3 (S11). If the target side controller 9 has not received the teaching information (S11: NO), the target side controller 9 determines whether or not the teaching is completed (S13), and the master side has not received a completion instruction, that is, the teaching is not performed. If not completed (S13: NO), the process proceeds to step S11 and waits.

これに対して、対象側コントローラ9は、マスター側から教示情報を受信した場合には(S11:YES)、教示情報に基づいて対象ロボット1の姿勢を制御する(S12)。このとき、マスター側が直接制御モードで動作している場合には、作業者によって操作ロボット11の姿勢が変更されるごとに教示情報を受信することから、対象側コントローラ9は、操作ロボット11の姿勢の変化に追従するように、対象ロボット1の姿勢を変更することになる。   On the other hand, when receiving the teaching information from the master side (S11: YES), the target-side controller 9 controls the posture of the target robot 1 based on the teaching information (S12). At this time, when the master side operates in the direct control mode, the target controller 9 receives the teaching information every time the posture of the operating robot 11 is changed by the operator. The posture of the target robot 1 is changed so as to follow the change of

操作ロボット11を目標姿勢あるいはその近傍まで移動させると、作業者は、現在の操作ロボット11の姿勢で十分であるか、微調整つまりは詳細な位置決めが必要であるかを判断する。そして、作業者は、微調整が必要ないと判断した場合には、現在の操作ロボット11の姿勢を教示点として設定する。以下、現在の操作ロボット11の姿勢を、便宜的に現姿勢と称する。   When the operating robot 11 is moved to or near the target posture, the operator determines whether the current posture of the operating robot 11 is sufficient or whether fine adjustment, that is, detailed positioning is necessary. When the operator determines that fine adjustment is not necessary, the operator sets the current posture of the operating robot 11 as a teaching point. Hereinafter, the current posture of the operating robot 11 is referred to as a current posture for convenience.

このため、教示システム100は、作業者によって現姿勢を教示点に設定する旨の操作が入力された場合等、図2において微調整が必要ないと判定される場合には(S3:NO)、現姿勢を教示する(S4)。すなわち、操作ロボット11の現姿勢における手先位置が教示点として設定される。このとき、操作側コントローラ19からは、操作ロボット11の現姿勢、および現姿勢を教示点とする旨の情報が教示情報として対象側コントローラ9に送信される。   For this reason, the teaching system 100 determines that fine adjustment is not necessary in FIG. 2, such as when an operation to set the current posture as a teaching point is input by the operator (S3: NO), The current posture is taught (S4). That is, the hand position in the current posture of the operating robot 11 is set as the teaching point. At this time, the operating controller 19 transmits the current posture of the operating robot 11 and information indicating that the current posture is a teaching point to the target controller 9 as teaching information.

このように作業者が手動でロボットを操作して教示点を設定する作業が、ダイレクトティーチングの主な流れとなる。このダイレクトティーチングは、作業者が直接的にロボットの姿勢を調整できることから教示作業を簡略化することができるとともに、例えば障害物を避けるような軌跡を教示する場合等、教示点を大まかに設定できればよい場合に特に有意である。   In this way, an operation in which an operator manually operates a robot to set a teaching point is a main flow of direct teaching. This direct teaching can simplify the teaching work because the operator can directly adjust the posture of the robot, and if the teaching point can be roughly set, for example when teaching a trajectory that avoids an obstacle, etc. It is particularly significant when good.

その一方で、ダイレクトティーチングは、作業者がロボットアームに触れて移動させることから、高精度な位置決めやロボットの最小分解能レベルでの微調整は困難である。そのため、教示システム100は、図2に示すように、目標位置まで作業者が手動で移動させた後(S2)、作業者によって詳細制御モードへの切り替え操作が入力された場合等、微調整が必要となった場合には(S3:YES)、操作側コントローラ19において詳細制御モードの処理を実行する(S4)。   On the other hand, in direct teaching, since the operator touches and moves the robot arm, it is difficult to perform highly accurate positioning and fine adjustment at the minimum resolution level of the robot. Therefore, as shown in FIG. 2, the teaching system 100 allows fine adjustments such as when the operator manually moves to the target position (S2) and then the operator inputs a switching operation to the detailed control mode. When it becomes necessary (S3: YES), processing in the detailed control mode is executed in the operation side controller 19 (S4).

詳細制御モードの場合、教示システム100は、検出部19bで検出した操作ロボット11に加えられた外力の大きさおよび方向を検出し、加えられた外力が予め設定されている閾値を超えた場合に、検出された外力の方向に対象ロボット1の姿勢を動作単位で制御する。   In the detailed control mode, the teaching system 100 detects the magnitude and direction of the external force applied to the operating robot 11 detected by the detection unit 19b, and when the applied external force exceeds a preset threshold value. Then, the posture of the target robot 1 is controlled in units of motion in the direction of the detected external force.

つまり、直接制御モードでは操作ロボット11に対する操作を対象ロボット1に対する操作とみなして直接的に対象ロボット1の姿勢を制御していたのに対して、詳細制御モードでは操作ロボット11に対する操作を動作単位に変換して間接的に対象ロボット1の姿勢を制御することになる。より平易に言えば、詳細制御モードは、操作ロボット11に加えられた外力の大きさと方向とから作業者が望む姿勢の変化を特定し、操作ロボット11を方向キーのように扱うことにより、対象ロボット1の姿勢を微小単位で制御可能にするモードである。   That is, in the direct control mode, the operation on the operation robot 11 is regarded as an operation on the target robot 1 and the posture of the target robot 1 is directly controlled. Therefore, the posture of the target robot 1 is indirectly controlled. To put it more simply, the detailed control mode specifies the change in posture desired by the operator from the magnitude and direction of the external force applied to the operating robot 11, and treats the operating robot 11 like a direction key. In this mode, the posture of the robot 1 can be controlled in minute units.

以下、詳細制御モードにおける処理の流れについて図4から図6を参照しながら説明する。これら図4および図5に示す処理は操作側コントローラ19にて実行されるものであり、このとき対象側コントローラ9は図3に示す処理を実行している。そのため、以下では、操作側コントローラ19を主体として説明する。   Hereinafter, the flow of processing in the detailed control mode will be described with reference to FIGS. The processes shown in FIGS. 4 and 5 are executed by the operation-side controller 19, and at this time, the target-side controller 9 executes the process shown in FIG. Therefore, the operation side controller 19 will be mainly described below.

操作側コントローラ19は、作業者によって詳細制御モードへの切り替え操作が入力された場合、操作ロボット11に加わる外力の検出を開始する。このとき、操作側コントローラ19は、予め定められたサンプリング周期(ts。図6参照)で外力の検出を繰り返し行う。   When the operator inputs a switching operation to the detailed control mode, the operation-side controller 19 starts detecting external force applied to the operation robot 11. At this time, the operation-side controller 19 repeatedly detects an external force at a predetermined sampling period (ts, see FIG. 6).

さて、詳細教示モードは微調整を行うためのモードであることから、作業者は、比較的弱い力で所望の方向に微小距離だけ移動させたり、所望の方向に向かって軽く叩いたりするような操作をすると考えられる。そのため、詳細制御モードにおける操作ロボット11には、図6に示すように、横軸を時間、縦軸を外力の大きさとすると、比較的短期間のうちにピークを迎える外力が加えられると考えられる、また、外力がピーク後に小さくなった時点あるいは無くなった時点で、1回の操作が終了したと考えられる。   Now, since the detailed teaching mode is a mode for performing fine adjustment, the operator moves a small distance in a desired direction with a relatively weak force or taps lightly in the desired direction. It is thought to operate. Therefore, as shown in FIG. 6, when the horizontal axis is time and the vertical axis is the magnitude of the external force, the operating robot 11 in the detailed control mode is considered to be applied with an external force that peaks in a relatively short period of time. In addition, it is considered that one operation is completed when the external force decreases or disappears after the peak.

ただし、作業者が操作ロボット11に触れている場合には、手の微妙な揺れも外力として検出されるおそれがある。そのため、操作側コントローラ19は、詳細制御モードにおいては、図4に示すように外力が閾値を超えたか否かを判定し(S21)、外力が閾値を超え廷内場合には(S21:NO)待機する。なお、外力が閾値を超えたとは、検出された外力の大きさが閾値を超えたことを意味し、後述する外力が閾値を下回ったとは、一旦閾値を超えた外力の大きさが閾値を下回ったことを意味する。   However, when the operator is touching the operating robot 11, a slight hand shake may be detected as an external force. Therefore, in the detailed control mode, the operation-side controller 19 determines whether or not the external force exceeds the threshold value as shown in FIG. 4 (S21). If the external force exceeds the threshold value and is in the courtroom (S21: NO) stand by. Note that the external force exceeding the threshold means that the detected external force has exceeded the threshold, and that the external force described below is below the threshold means that the external force once exceeded the threshold is below the threshold. Means that.

このように閾値を設定することにより、作業者が操作ロボット11に触れている状態であっても、意図しない揺れを外力の印加として誤検出してしまうことを抑制できる。換言すると、作業者は、直接制御モードから詳細制御モードに切り替えたとしても、操作ロボット11から手を離すことなく教示作業を継続することができる。   By setting the threshold value in this way, it is possible to suppress erroneous detection of unintentional shaking as application of external force even when the operator is touching the operating robot 11. In other words, even if the operator switches from the direct control mode to the detailed control mode, the worker can continue the teaching work without releasing his hand from the operation robot 11.

さて、図6に示すような外力が加えられた場合、操作側コントローラ19は、時刻(T0)において外力が閾値を超えると(S21:YES)、外力が閾値を下回ったか否かを判定する(S22)。このとき、外力が閾値を超えた直後であれば閾値を下回ることはないため(S22:NO)、カウント値を加算するとともに、外力の入力方向を記憶する(S23)。   When the external force as shown in FIG. 6 is applied, when the external force exceeds the threshold at time (T0) (S21: YES), the operation-side controller 19 determines whether or not the external force is below the threshold ( S22). At this time, if the external force has just exceeded the threshold value, it will not fall below the threshold value (S22: NO), so the count value is added and the input direction of the external force is stored (S23).

このカウント値は、微調整の操作が入力された回数、すなわち、作業者が動作単位での制御回数を何回希望しているかを示すものであり、詳細制御モードの開始時に初期化される。そのため、最初に外力が閾値を超えた場合には、1が記憶されることになる。また、カウント値は、外力の閾値を超えている状態においてサンプリング周期(ts)が経過するごとに加算される。すなわち、本実施形態では、検出された外力が閾値を超えている時間に応じて、動作単位での制御回数を増加させている。   This count value indicates the number of times the fine adjustment operation has been input, that is, how many times the operator desires the number of control operations, and is initialized at the start of the detailed control mode. Therefore, 1 is stored when the external force first exceeds the threshold value. The count value is added every time the sampling period (ts) elapses in a state where the threshold value of the external force is exceeded. That is, in the present embodiment, the number of times of control per operation unit is increased according to the time during which the detected external force exceeds the threshold value.

また、入力方向は、外力が加えられた方向つまりは作業者が希望する移動方向を示すものである。この入力方向は、作業者が手で操作していることから、例えば手先位置を上方に操作したとしても若干斜めになるおそれがある。また、最初は上方に移動させていても、その途中で斜めにずれたりするおそれもある。換言すると、操作側コントローラ19で検出した入力方向が、必ずしも作業者の意図する方向ではないおそれがある。   The input direction indicates a direction in which an external force is applied, that is, a moving direction desired by the worker. This input direction is slightly inclined even if the hand position is operated upward, for example, because the operator operates the hand by hand. Moreover, even if it is initially moved upward, there is a possibility that it may be shifted obliquely in the middle. In other words, the input direction detected by the operation-side controller 19 may not necessarily be the direction intended by the operator.

そのため、操作側コントローラ19は、以下に示す幾つかの手法を用いて入力方向を決定する。なお、上記したサンプリング周期(ts)は操作が行われた回数を判定するために設けられているものであり、作業者が回数を正しく入力できるように例えば0.5秒〜1秒程度に設定されている。一方、以下の手法において外力の方向を検出する周期は、外力が閾値を超えている最中に複数回の大きさおよび方向の検出が可能とするために、少なくともサンプリング周期(ts)よりも小さい値に設定されている。   Therefore, the operation side controller 19 determines an input direction using the several methods shown below. The sampling period (ts) described above is provided to determine the number of operations performed, and is set to, for example, about 0.5 seconds to 1 second so that the operator can input the number of times correctly. Has been. On the other hand, the period for detecting the direction of the external force in the following method is at least smaller than the sampling period (ts) in order to enable detection of the magnitude and direction multiple times while the external force exceeds the threshold. Is set to a value.

手法A:カウント値=1となる最初に検出した外力の方向を入力方向とする。
手法B:最後に検出した外力の方向を入力方向とする。
手法C:複数回検出した外力の方向を平均化して入力方向とする。
手法D:検出した外力の方向をある程度の分解能を持たせて区分けしてヒストグラムを作成し、最も投票数が多かった方向を入力方向とする。
手法E:検出した外力が最も大きかった方向を入力方向とする。
手法F:検出した外力を操作ロボット11のXYZ方向とXYZ軸回転方向とに分解し、それぞれの最も入力時間の長かった方向を入力方向とする。
Method A: The direction of the external force detected first when the count value = 1 is set as the input direction.
Method B: The direction of the external force detected last is set as the input direction.
Method C: The direction of the external force detected a plurality of times is averaged to obtain the input direction.
Method D: The direction of the detected external force is divided with a certain degree of resolution to create a histogram, and the direction with the largest number of votes is set as the input direction.
Method E: The direction in which the detected external force is the largest is taken as the input direction.
Method F: The detected external force is decomposed into the XYZ direction and the XYZ axis rotation direction of the operating robot 11, and the direction with the longest input time is set as the input direction.

さて、操作側コントローラ19は、外力が閾値を超えてからサンプリング周期(ts)が経過した時点で閾値を下回っていない場合には(S22:NO)、カウント値を加算し、入力方向を記憶つまりは更新する(S23)。   Now, the operation side controller 19 adds a count value and memorize | stores an input direction, when it is not less than a threshold value when the sampling period (ts) passes after an external force exceeds a threshold value (S22: NO). Is updated (S23).

一方、操作側コントローラ19は、外力が閾値を下回った場合には(S22:YES)、記憶しているカウント値と入力方向を教示情報としてスレーブ側つまりは対象側コントローラ9に送信する(S24)。そして、教示情報を受信した対象側コントローラ9は、カウント値によって示される回数分、入力方向によって示される方向に対象ロボット1を制御する。このように、外力の大きさと方向とに基づいて対象ロボット1の姿勢を制御することが、外力に基づく姿勢の制御である。   On the other hand, when the external force falls below the threshold value (S22: YES), the operation-side controller 19 transmits the stored count value and input direction as teaching information to the slave side, that is, the target-side controller 9 (S24). . Then, the target-side controller 9 that has received the teaching information controls the target robot 1 in the direction indicated by the input direction by the number of times indicated by the count value. In this way, controlling the posture of the target robot 1 based on the magnitude and direction of the external force is posture control based on the external force.

本実施形態では、詳細制御モードで対象ロボット1を制御する際の動作単位として、外力の方向において対象ロボット1が姿勢を制御可能な最小分解能が予め対応付けられている。つまり、対象ロボット1に対して1回の動作単位での制御を行った場合には、対象ロボット1の姿勢は外力の方向に最小分解能分だけ変化することになる。なお、最小分解能は、姿勢を変更する方向によって、つまりは、何れの関節部を駆動するかによって異なることがある。   In this embodiment, the minimum resolution with which the target robot 1 can control the posture in the direction of external force is associated in advance as an operation unit when controlling the target robot 1 in the detailed control mode. That is, when the target robot 1 is controlled in units of one operation, the posture of the target robot 1 changes in the direction of the external force by the minimum resolution. Note that the minimum resolution may vary depending on the direction in which the posture is changed, that is, depending on which joint is driven.

この動作単位との対応付けは、例えば操作側コントローラ19から作業者が任意に設定および変更可能に構成されている。そのため、1回の動作単位に対して最小分解能分の整数倍を対応付けることもできるし、教示作業の途中で対応付けを変更することもできる。ただし、安全性の観点から、対応付けを例えば大中小の3段階程度で予め用意しておき、その中から選択させるようにすることもできる。また、対応付けることができる倍率の上限値を設定することもできる。   The association with the operation unit is configured such that, for example, the operator can arbitrarily set and change from the operation side controller 19. Therefore, an integral multiple corresponding to the minimum resolution can be associated with one operation unit, and the association can be changed during the teaching work. However, from the viewpoint of safety, the correspondence can be prepared in advance in, for example, about three stages of large, medium, and small, and can be selected from them. It is also possible to set an upper limit value of the magnification that can be associated.

教示情報を送信すると、操作側コントローラ19は、カウント値と入力方向とを初期化した後(S25)、本実施形態では、操作ロボット11と対象ロボット1との姿勢の乖離があるかを判定し(S26)、姿勢の乖離があれば(S26:YES)、操作ロボット11の姿勢を対象ロボット1の姿勢に一致させた後(S27)、ステップS21に移行して次の外力の検出を待機する。   When the teaching information is transmitted, the controller 19 on the operation side initializes the count value and the input direction (S25), and in this embodiment, determines whether there is a deviation in posture between the operation robot 11 and the target robot 1. (S26) If there is a deviation of the posture (S26: YES), the posture of the operating robot 11 is matched with the posture of the target robot 1 (S27), and then the process proceeds to step S21 and waits for detection of the next external force. .

一方、操作側コントローラ19は、姿勢の乖離がなければ(S26:NO)、そのままステップS21に移行して次の外力の検出を待機する。このように操作ロボット11の姿勢を対象ロボット1の姿勢に一致させることにより、姿勢が異なることに起因する違和感を抑制することができる。また、操作ロボット11に所望の方向に力を加えても対象ロボット1では方向が微妙にずれたりすることも防止できる。   On the other hand, if there is no attitude deviation (S26: NO), the operation-side controller 19 proceeds to step S21 as it is and waits for detection of the next external force. Thus, by making the posture of the operating robot 11 coincide with the posture of the target robot 1, it is possible to suppress a sense of discomfort caused by the different postures. Further, even if a force is applied to the operation robot 11 in a desired direction, it is possible to prevent the direction of the target robot 1 from being slightly shifted.

操作側コントローラ19は、直接制御モードに復帰する旨の操作が入力されると、図5に示す復帰割り込みを実行し、操作ロボット11と対象ロボット1との姿勢の乖離があれば(S31:YES)、操作ロボット11の姿勢を対象ロボット1の姿勢に一致させた後(S32)、直接制御モードに復帰する。一方、操作側コントローラ19は、姿勢の乖離がなければ(S31:NO)そのまま直接制御モードに復帰して、図2に示すように現姿勢を教示する(S5)。   When an operation for returning to the direct control mode is input, the operation-side controller 19 executes a return interrupt shown in FIG. 5 and if there is a deviation in posture between the operation robot 11 and the target robot 1 (S31: YES) ) After making the posture of the operating robot 11 coincide with the posture of the target robot 1 (S32), the control robot 11 returns to the direct control mode. On the other hand, if there is no deviation in posture (S31: NO), the operation-side controller 19 directly returns to the control mode and teaches the current posture as shown in FIG. 2 (S5).

そして、教示システム100は、全ての教示が完了するまでの間は(S6:NO)、直接制御モードや詳細制御モードを実行して教示を繰り返し、全ての教示が完了すると(S6:YES)、処理を終了する。このとき、操作側コントローラ19からは、全ての教示が完了したことを示す情報が対象側コントローラ9に送信され、対象側コントローラ9は、教示が完了したことから(S13:YES)、処理を終了する。   The teaching system 100 repeats teaching by executing the direct control mode and the detailed control mode until all teaching is completed (S6: NO), and when all teaching is completed (S6: YES) End the process. At this time, information indicating that all teaching has been completed is transmitted from the operation-side controller 19 to the target-side controller 9, and the target-side controller 9 ends the processing because teaching has been completed (S13: YES). To do.

このように、教示システム100では、操作ロボット11に加えられた外力に基づいて、操作ロボット11に対する操作を対象ロボット1における動作単位の回数および方向に変換することにより、作業者が手動により操作ロボット11を操作しながらも、高精度な位置決めを可能としている。   As described above, in the teaching system 100, the operator manually operates the operation robot 11 by converting the operation on the operation robot 11 into the number and direction of the operation unit in the target robot 1 based on the external force applied to the operation robot 11. 11 is operated with high accuracy.

以上説明した教示システム100によれば、次のような効果をことができる。
教示システム100は、対象ロボット1と、操作ロボット11と、操作ロボット11に加わる外力の大きさおよび方向を検出する検出部19bと、上記した直接制御モードおよび詳細制御モードを切り替え可能であり、操作ロボット11に対する作業者の操作に基づいた対象ロボット1の姿勢の制御を行う制御部19aと、を備える。
According to the teaching system 100 described above, the following effects can be obtained.
The teaching system 100 can switch between the target robot 1, the operating robot 11, the detection unit 19b that detects the magnitude and direction of the external force applied to the operating robot 11, and the direct control mode and the detailed control mode described above. And a control unit 19a that controls the posture of the target robot 1 based on the operator's operation on the robot 11.

この詳細制御モードでは、操作ロボット11に対する作業者の操作は、外力の大きさが閾値を超えていれば、予め設定されている動作単位として扱われる。つまり、詳細制御モードでは、操作ロボット11は、あたかも方向キーのように作動するため、作業者が手動で操作ロボット11を操作する際の力の大きさによらず、対象ロボット1を一定の動作単位で姿勢を制御することが可能となる。   In this detailed control mode, the operation of the operator with respect to the operating robot 11 is handled as a preset operation unit if the magnitude of the external force exceeds the threshold value. That is, in the detailed control mode, the operating robot 11 operates as if it were a direction key, so that the target robot 1 operates in a certain manner regardless of the magnitude of the force when the operator manually operates the operating robot 11. The posture can be controlled in units.

そして、動作単位を例えば最小分解能に対応付けて設定しておけば対象ロボット1の姿勢を最小分解能で制御することができる。したがって、作業者が手動によりロボットを操作して教示する場合であっても、高精度で位置決めを行うことができる。   If the operation unit is set in association with the minimum resolution, for example, the posture of the target robot 1 can be controlled with the minimum resolution. Therefore, even when the operator manually teaches by operating the robot, positioning can be performed with high accuracy.

また、対象ロボット1とは別に操作ロボット11を設けているので、作業者の安全を確保した状態で、また、作業者が作業をし易い環境で教示作業を行うことができる。また、対象ロボット1が大型のロボットであっても、操作ロボット11を小型のものとすれば、作業性を改善することができる。   In addition, since the operation robot 11 is provided separately from the target robot 1, teaching work can be performed in an environment where the worker's safety is ensured and the worker can easily work. Even if the target robot 1 is a large robot, the workability can be improved if the operation robot 11 is small.

また、操作ロボット11を操作して教示作業を行うことから、教示作業に不慣れな作業者であっても直感的に操作することができるというダイレクトティーチングのメリットを損なうこともない。したがって、教示作業中の作業者の安全の確保と作業性の向上とを両立させることができる。   In addition, since the teaching work is performed by operating the operating robot 11, the advantage of direct teaching that an operator who is unfamiliar with the teaching work can operate intuitively is not impaired. Therefore, it is possible to achieve both ensuring the safety of the worker during teaching work and improving workability.

また、教示システム100は、詳細制御モードにおいて、操作ロボット11の姿勢と対象ロボット1の姿勢とが乖離している場合、操作ロボット11の姿勢と対象ロボット1の姿勢とを一致させる。これにより、操作ロボット11が対象ロボット1と同じ姿勢となり、操作する際の違和感を抑制することができる。
さらに、対象ロボット1については、必ずしもダイレクトティーチング機能に対応している必要はなく、より広範囲のロボットに適用することができる。
In addition, in the detailed control mode, the teaching system 100 matches the posture of the operating robot 11 and the posture of the target robot 1 when the posture of the operating robot 11 and the posture of the target robot 1 are deviated. Thereby, the operating robot 11 becomes the same posture as the target robot 1, and it is possible to suppress a sense of discomfort when operating.
Furthermore, the target robot 1 does not necessarily correspond to the direct teaching function, and can be applied to a wider range of robots.

また、教示システム100は、詳細制御モードにおいて、検出された外力が閾値を超えている時間に応じて、動作単位での制御回数を増加させる。これにより、例えば詳細制御モードに切り替えた時点での姿勢と目標姿勢とがずれており、複数回の微調整が必要な場合であっても、力を加え続けることにより制御回数を増加させることができることから、操作性を向上させることができる。また、手を離す必要が無いことから、入力方向が変わってしまうおそれを低減することができる。   Further, the teaching system 100 increases the number of times of control in the operation unit according to the time during which the detected external force exceeds the threshold value in the detailed control mode. As a result, for example, the posture at the time of switching to the detailed control mode and the target posture are deviated from each other, and the number of times of control can be increased by continuing to apply force even when fine adjustment is required multiple times. Therefore, the operability can be improved. Further, since it is not necessary to release the hand, the possibility that the input direction is changed can be reduced.

その一方で、対象ロボット1の姿勢を最小分解能だけ制御したい場合には、対象ロボット1を見ながら操作ロボット11を操作すると、操作ロボット11に触れたままの状態で意図せずに力が加わってしまうおそれがある。そのため、上記した実施形態とは異なり、詳細制御モードにおいて、検出された外力が閾値を超えている時間に関わらず動作単位での制御回数を1回とすることもできる。これにより、対象ロボット1を意図しない姿勢に制御してしまうおそれを低減することができる。   On the other hand, when it is desired to control the posture of the target robot 1 with the minimum resolution, if the operating robot 11 is operated while looking at the target robot 1, force is applied unintentionally while touching the operating robot 11. There is a risk that. Therefore, unlike the above-described embodiment, in the detailed control mode, the number of times of control in the operation unit can be set to one regardless of the time during which the detected external force exceeds the threshold value. Thereby, the possibility of controlling the target robot 1 to an unintended posture can be reduced.

(第2実施形態)
以下、第2実施形態について説明する。第2実施形態は、詳細制御モードにおいて操作ロボット11の姿勢と対象ロボット1の姿勢とを一致させる際の複数の態様について説明する。
(Second Embodiment)
Hereinafter, a second embodiment will be described. 2nd Embodiment demonstrates the several aspect at the time of making the attitude | position of the operation robot 11 and the attitude | position of the target robot 1 correspond in detailed control mode.

第1実施形態では、詳細制御モードにおいて操作ロボット11の姿勢と対象ロボット1の姿勢とが乖離している場合に単に両者を一致させると説明した(図4のステップS26、S27参照)。このとき、操作ロボット11の姿勢と対象ロボット1の姿勢とを一致させる場合には、使い勝手等を考慮すると幾つかの異なる態様が考えられる。以下、それぞれの態様について説明する。なお、第1実施形態は態様Aを採用している。   In the first embodiment, it has been described that when the posture of the operating robot 11 and the posture of the target robot 1 are different in the detailed control mode, they are simply matched (see steps S26 and S27 in FIG. 4). At this time, when the posture of the operation robot 11 and the posture of the target robot 1 are matched, several different modes can be considered in consideration of usability and the like. Each aspect will be described below. The first embodiment employs aspect A.

<態様A>
態様Aの場合、教示システム100は、現在の操作ロボット11の姿勢を直接的に対象ロボット1の姿勢に一致させる。つまり、操作ロボット11の姿勢を、動作単位での制御が行われた状態の対象ロボット1の姿勢に一致させる。
この場合、1回の制御が完了したことが明示的に作業者に示されること、また、余計な経路を通らずに直接的に対象ロボット1の姿勢に一致させることができることから、短時間で一致させることができる。
<Aspect A>
In the case of aspect A, the teaching system 100 directly matches the current posture of the operating robot 11 with the posture of the target robot 1. That is, the posture of the operation robot 11 is made to coincide with the posture of the target robot 1 in a state where control is performed in units of motion.
In this case, it is clearly indicated to the worker that one control is completed, and since it can be directly matched with the posture of the target robot 1 without passing through an extra route, Can be matched.

<態様B>
態様Bでは、教示システム100は、現在の操作ロボット11の姿勢を、外力が検出される前の姿勢に一旦戻した後に、対象ロボット1の姿勢に一致させる。つまり、外力が検出される前の操作ロボット11の姿勢を基準姿勢として、対象ロボット1の姿勢を一旦基準姿勢に戻した後に対象ロボット1の姿勢に一致させる。
<Aspect B>
In aspect B, the teaching system 100 temporarily returns the current posture of the operating robot 11 to the posture before the external force is detected, and then matches the posture of the target robot 1. That is, with the posture of the operating robot 11 before the external force is detected as the reference posture, the posture of the target robot 1 is once returned to the reference posture and then matched with the posture of the target robot 1.

この場合、多少の時間の増加が想定されるものの、基準位置からの姿勢の変化を作業者が目視にて確認することができるため、操作ロボット11の姿勢の変化に基づいて所望の微調整が行われたか否かを容易に把握することができる。また、詳細制御モードでは微調整を行うことから、操作ロボット11の姿勢が大きく変化することは少ないと考えられるため、実質的には時間的なロスはごく僅かであると予想され、教示作業に大きく影響することは無いと考えられる。   In this case, although a slight increase in time is assumed, the operator can visually confirm the change in the posture from the reference position, so that the desired fine adjustment can be performed based on the change in the posture of the operating robot 11. It is possible to easily grasp whether or not it has been performed. Further, since fine adjustment is performed in the detailed control mode, it is considered that the posture of the operating robot 11 does not change greatly. Therefore, it is expected that the time loss is practically very small. It is considered that there is no significant influence.

<態様C>
態様Cでは、教示システム100は、操作ロボット11の姿勢を外力に基づく制御が行われと仮定した状態における対象ロボット1の姿勢に一致させた後に、対象ロボット1の姿勢を制御する。この態様Cは、図4のステップS26、S27の処理を、ステップS22とステップS24との間に実行する流れに相当する。なお、対象ロボット1の姿勢を制御するまでの間には若干の待機時間を設けることができる。
<Aspect C>
In the aspect C, the teaching system 100 controls the posture of the target robot 1 after matching the posture of the operating robot 11 with the posture of the target robot 1 in a state where it is assumed that control based on external force is performed. This mode C corresponds to the flow of executing the processing of steps S26 and S27 in FIG. 4 between step S22 and step S24. A slight waiting time can be provided until the posture of the target robot 1 is controlled.

この場合、操作ロボット11の姿勢が変化した後に対象ロボット1の姿勢が制御されることから、作業者は、目視にて対象ロボット1の姿勢の変化を確認することができ、所望の微調整が行われたか否かを容易に把握することができる。また、操作ロボット11の制御と対象ロボット1の制御を個別に把握できるため、正しい制御が行われているかを確認することができる。   In this case, since the posture of the target robot 1 is controlled after the posture of the operating robot 11 is changed, the operator can visually confirm the change in the posture of the target robot 1 and perform a desired fine adjustment. It is possible to easily grasp whether or not it has been performed. Further, since the control of the operating robot 11 and the control of the target robot 1 can be grasped individually, it is possible to confirm whether correct control is being performed.

<態様D>
態様Dでは、教示システム100は、外力が閾値を超えている最中に、操作ロボット11の姿勢を対象ロボット1の姿勢に一致させる。この態様Dは、図4のステップS26、S27の処理を、ステップS22とS23のループ中に挿入した流れに相当する。
<Aspect D>
In aspect D, the teaching system 100 matches the posture of the operating robot 11 with the posture of the target robot 1 while the external force exceeds the threshold value. This mode D corresponds to a flow in which the processing of steps S26 and S27 in FIG. 4 is inserted into the loop of steps S22 and S23.

この場合、作業者が操作ロボット11に力を加えている状態で操作ロボット11の姿勢が変化することから、いわゆるクリック感のように動作していることを感覚的に把握することができる。また、操作ロボット11と対象ロボット1とがほぼ同時期に姿勢の制御が行われるため、全体として作業時間の短縮化を図ることができる。また、態様Bあるいは態様Cと組み合わせることもできる。   In this case, since the posture of the operation robot 11 changes while the operator is applying force to the operation robot 11, it can be sensibly grasped that the operation is like a click feeling. Further, since the posture of the control robot 11 and the target robot 1 is controlled almost at the same time, it is possible to shorten the work time as a whole. Further, it can be combined with the mode B or the mode C.

(第3実施形態)
以下、第3実施形態について、図7および図8を参照しながら説明する。第3実施形態では、対象ロボット1を直接制御モードと詳細制御モードとで制御することにより、対象ロボット1単体での教示を可能にしている点において第1実施形態と異なっている。なお、教示作業の主な流れは第1実施形態と共通するので、図2、図4および図5も参照しながら説明する。
(Third embodiment)
Hereinafter, the third embodiment will be described with reference to FIGS. 7 and 8. The third embodiment is different from the first embodiment in that the target robot 1 can be taught in a single control mode by controlling the target robot 1 in the direct control mode and the detailed control mode. The main flow of the teaching work is the same as that of the first embodiment, and will be described with reference to FIGS.

図7に示すように、本実施形態の教示システム100は、対象ロボット1と、対象側コントローラ9とを備えている。対象ロボット1の基本的な構成は第1実施形態と共通するため詳細な説明は省略する。   As shown in FIG. 7, the teaching system 100 of this embodiment includes a target robot 1 and a target-side controller 9. Since the basic configuration of the target robot 1 is the same as that of the first embodiment, detailed description thereof is omitted.

対象側コントローラ9は、制御部9aと検出部9bとを備えている。制御部9aは、対象ロボット1を作業者の操作に応じて直接的に教示点を設定する直接制御モードと、検出部9bで検出した外力の大きさが予め設定されている閾値を超えた場合に、予め設定されている動作単位で検出した外力の方向に対象ロボット1の姿勢を制御する詳細制御モードとを切り替えて、作業者の操作に基づいて対象ロボット1を教示する処理を実行する。   The target-side controller 9 includes a control unit 9a and a detection unit 9b. When the control unit 9a directly sets a teaching point in response to the operation of the operator by the operator 9 and the magnitude of the external force detected by the detection unit 9b exceeds a preset threshold value In addition, a process for teaching the target robot 1 based on the operator's operation is performed by switching the detailed control mode for controlling the posture of the target robot 1 in the direction of the external force detected in a preset operation unit.

検出部9bは、対象ロボット1に加わる外力の大きさおよび方向を検出する。このとき、検出部9bは、第1実施形態の検出部19bと同様にモータの電流値を測定し、電流値に比例するトルクを算出することにより、外力の大きさと方向とを検出している。ただし、検出部9bは、第1実施形態と同様に、トルクセンサで構成したり、制御モデルを使用する構成としたりすることができる。   The detection unit 9 b detects the magnitude and direction of the external force applied to the target robot 1. At this time, the detection unit 9b detects the magnitude and direction of the external force by measuring the current value of the motor in the same manner as the detection unit 19b of the first embodiment and calculating the torque proportional to the current value. . However, the detection part 9b can be comprised by a torque sensor similarly to 1st Embodiment, or can be set as the structure which uses a control model.

さて、教示システム100は、図4に示したように、直接教示モードが設定されると(S1)、作業者が対象ロボット1を手動で操作することにより、目標姿勢まで移動させる(S2)。そして、教示システム100は、微調整が必要なければ現姿勢を教示する一方(S3:NO、S5)、微調整が必要であれば詳細教示モードに切り替える(S3:YES、S4)。   As shown in FIG. 4, when the direct teaching mode is set (S1), the teaching system 100 moves the target robot 1 to the target posture by manually operating the target robot 1 (S2). The teaching system 100 teaches the current posture if fine adjustment is not necessary (S3: NO, S5), and switches to the detailed teaching mode if fine adjustment is necessary (S3: YES, S4).

さて、本実施形態の場合、作業者は対象ロボット1を操作することから、詳細制御モードにおいて作業者が触れることにより、位置決めの対象となっている対象ロボット1の姿勢が変化してしまうおそれがある。その際、また、対象ロボット1の姿勢が変化しないように気をつかって作業することは、作業者の負担の増加を招くおそれがある。   In the case of the present embodiment, since the operator operates the target robot 1, there is a possibility that the posture of the target robot 1 that is a positioning target is changed when the operator touches in the detailed control mode. is there. At that time, working with care so that the posture of the target robot 1 does not change may increase the burden on the operator.

そのため、教示システム100は、図8に示すように、詳細教示モードに切り替えられたとき、まず、対象ロボット1の現姿勢を基準姿勢として記憶した後(S41)、対象ロボット1に加えられた外力が閾値を超えたかを判定する(S42)。なお、外力が閾値を超えたか否かの判定、および、以下の外力が閾値を下回ったか否かの判定は、第1実施形態で示したいずれかの手法を採用することで実施できる。また、詳細教示モードにおける動作単位は、第1実施形態と同様に、対象ロボット1が姿勢を制御可能な最小分解能、あるいは最小分解能の整数倍といった対応付けが予め行われている。   Therefore, as shown in FIG. 8, when the teaching system 100 is switched to the detailed teaching mode, first, after storing the current posture of the target robot 1 as a reference posture (S41), the external force applied to the target robot 1 is stored. It is determined whether or not the threshold value is exceeded (S42). The determination as to whether or not the external force exceeds the threshold value and the determination as to whether or not the following external force is below the threshold value can be performed by employing any of the methods described in the first embodiment. Further, as in the first embodiment, the operation unit in the detailed teaching mode is associated in advance with a minimum resolution at which the target robot 1 can control the posture, or an integer multiple of the minimum resolution.

教示システム100は、外力が閾値を下回るまでの期間において、サンプリング周期(ts)ごとにカウント値の加算および入力方向の記憶を繰り返し(S44)、外力が閾値を下回った場合には(S43:YES)、基準姿勢から姿勢を変更する(S45)。つまり、教示システム100は、カウント値と入力方向とに基づいて、換言すると検出部9bで検出した外力の大きさと方向とに基づいて基準姿勢から移動させるべき距離と方向とを特定し、対象ロボット1の姿勢を制御する。   In the period until the external force falls below the threshold, the teaching system 100 repeats addition of the count value and storage of the input direction every sampling period (ts) (S44), and when the external force falls below the threshold (S43: YES) ), The posture is changed from the reference posture (S45). That is, the teaching system 100 specifies the distance and direction to be moved from the reference posture based on the count value and the input direction, in other words, based on the magnitude and direction of the external force detected by the detection unit 9b, and the target robot 1's attitude is controlled.

このとき、対象ロボット1の姿勢は予め設定されている動作単位で制御されることから、詳細制御モード中に作業者が対象ロボット1の姿勢を基準姿勢からずらしてしまっても、対象ロボット1は、作業者が意図したように基準姿勢から姿勢が変化することになる。すなわち、対象ロボット1単体で、且つ、作業者が手動で操作して教示する場合であっても、対象ロボット1の最小分解能レベルでの高精度な位置決めを行うことができる。   At this time, since the posture of the target robot 1 is controlled in units of motion set in advance, even if the operator shifts the posture of the target robot 1 from the reference posture during the detailed control mode, the target robot 1 The posture changes from the reference posture as intended by the operator. That is, even if the target robot 1 is a single unit and the operator manually operates and teaches, the target robot 1 can be positioned with high accuracy at the minimum resolution level.

続いて、教示システム100は、詳細教示モードを終了するか否かを判定し(S47)、作業者が詳細教示モードを終了する旨の操作が入力されず、詳細教示モードを終了しない場合には(S47:NO)、ステップS41に移行して、姿勢が瀬領された後の現姿勢を新たな基準姿勢として記憶し、上記した処理を繰り返す。一方、教示システム100は、詳細教示モードを終了する場合には(S47:YES)、直接教示モードにリターンする。   Subsequently, the teaching system 100 determines whether or not to end the detailed teaching mode (S47), and when the operator does not input an operation to end the detailed teaching mode and does not end the detailed teaching mode. (S47: NO), the process proceeds to step S41, the current posture after the posture is cleared is stored as a new reference posture, and the above-described processing is repeated. On the other hand, when the detailed teaching mode is ended (S47: YES), the teaching system 100 returns directly to the teaching mode.

以上説明した教示システム100によれば、次のような効果を得ることができる。
教示システム100は、対象ロボット1と、対象ロボット1に加わる外力の大きさおよび方向を検出する検出部9bと、対象ロボット1を作業者の操作に応じて直接的に教示点を設定する直接制御モード、および、検出部9bで検出した外力の大きさが予め設定されている閾値を超えた場合に、予め設定されている動作単位で検出した外力の方向に対象ロボット1の姿勢を制御する詳細制御モードを切り替えて、作業者の操作に基づいて対象ロボット1を教示する制御部9aと、を備える。
According to the teaching system 100 described above, the following effects can be obtained.
The teaching system 100 includes a target robot 1, a detection unit 9 b that detects the magnitude and direction of an external force applied to the target robot 1, and direct control that directly sets the teaching point of the target robot 1 in accordance with the operation of the operator. Details of controlling the posture of the target robot 1 in the direction of the external force detected in a preset operation unit when the mode and the magnitude of the external force detected by the detection unit 9b exceed a preset threshold value A control unit 9a for switching the control mode and teaching the target robot 1 based on the operation of the operator.

これにより、作業者が手動で対象ロボット1を操作する際の力の大きさによらず、対象ロボット1を一定の動作単位での姿勢の制御が可能となり、動作単位を例えば最小分解能に対応付けて設定しておけば対象ロボット1の姿勢を最小分解能で制御することができる。したがって、作業者が手動により教示する場合であっても、高精度で位置決めを行うことができる。   This makes it possible to control the posture of the target robot 1 in a fixed operation unit regardless of the magnitude of the force when the operator manually operates the target robot 1, and associates the operation unit with, for example, the minimum resolution. If set, the posture of the target robot 1 can be controlled with the minimum resolution. Therefore, even when the operator teaches manually, positioning can be performed with high accuracy.

また、実際の稼動場所に設置されている対象ロボット1を用いて教示作業を行うため、教示作業中に障害物に接触したり無理な姿勢を教示したりするおそれを低減することができる。   In addition, since the teaching work is performed using the target robot 1 installed in the actual operating place, it is possible to reduce the possibility of touching an obstacle or teaching an unreasonable posture during the teaching work.

この場合、教示システム100は、外力が閾値を超えている最中に、対象ロボット1の姿勢を制御することもできる。これにより、閾値を超える毎、あるいは、サンプリング周期(ts)が経過する毎に対象ロボット1が姿勢を変更してクリック感を得ることができ、微調整が動作していることを把握することができ、動作単位での制御を必要な回数分だけ容易に行うことができる。   In this case, the teaching system 100 can also control the posture of the target robot 1 while the external force exceeds the threshold value. Thereby, every time the threshold value is exceeded or every time the sampling cycle (ts) elapses, the target robot 1 can change the posture to obtain a click feeling, and can grasp that the fine adjustment is operating. In other words, the control in units of operation can be easily performed as many times as necessary.

また、教示システム100では、詳細制御モードを開始したときの姿勢を基準姿勢として記憶し、検出部9bで検出した外力の大きさおよび方向に基づいて変更すべき距離と方向とを特定しているので、基準姿勢に対して姿勢を制御することができ、正確に所望の手先位置を位置決めすることができる。   In addition, the teaching system 100 stores the posture when the detailed control mode is started as the reference posture, and specifies the distance and direction to be changed based on the magnitude and direction of the external force detected by the detection unit 9b. Therefore, the posture can be controlled with respect to the reference posture, and the desired hand position can be accurately positioned.

また、教示システム100は、詳細制御モードにおいて、検出された外力が閾値を超えている時間に応じて、動作単位での制御回数を増加させるため、第1実施形態と同様に、操作性を向上させることができるとともに、入力方向が変わってしまうおそれを低減することができる。   In addition, in the detailed control mode, the teaching system 100 increases the number of times of control in the unit of operation according to the time when the detected external force exceeds the threshold, so that the operability is improved as in the first embodiment. It is possible to reduce the possibility that the input direction changes.

また、第1実施形態と同様に、詳細制御モードにおいて、検出された外力が閾値を超えている時間に関わらず動作単位での制御回数を1回とすることもできる。これにより、対象ロボット1を意図しない姿勢に制御してしまうおそれを低減することができる。   Similarly to the first embodiment, in the detailed control mode, the number of times of control per operation unit can be set to one regardless of the time during which the detected external force exceeds the threshold value. Thereby, the possibility of controlling the target robot 1 to an unintended posture can be reduced.

(その他の実施形態)
本発明は、各実施形態にて例示したものに限定されることなく、その要旨を逸脱しない範囲で適宜変形あるいは拡張することができる。
(Other embodiments)
The present invention is not limited to those exemplified in each embodiment, and can be appropriately modified or expanded without departing from the gist thereof.

各実施形態では6軸の垂直多関節型ロボットを例示したが、7軸の垂直多関節型ロボットや4軸の水平多関節型ロボットであっても各実施形態で示した構成を適用できるとともに、各実施形態と同様の効果を得ることができる。   Each embodiment exemplifies a 6-axis vertical articulated robot, but the configuration shown in each embodiment can be applied to a 7-axis vertical articulated robot or a 4-axis horizontal articulated robot. The same effect as each embodiment can be acquired.

第1実施形態では操作ロボット11を制御する操作側コントローラ19と、対象ロボット1を制御する対象側コントローラ9とを設ける構成を示したが、1つのコントローラにより操作ロボット11と対象ロボット1とを制御する構成とすることができる。また、操作ロボット11としては、対象ロボット1と同じロボットに限らず、外力の検出を可能に設計された教示作業専用のロボットを採用することができる。   In the first embodiment, the configuration in which the operation-side controller 19 that controls the operation robot 11 and the target-side controller 9 that controls the target robot 1 has been shown. However, the operation robot 11 and the target robot 1 are controlled by one controller. It can be set as the structure to do. The operation robot 11 is not limited to the same robot as the target robot 1, and a dedicated robot for teaching work designed to detect external force can be used.

実施形態ではカウント値と方向とを教示情報として対象側コントローラ9に送信する例を示したが、操作側コントローラ19にて対象ロボット1が到達すべき姿勢を決定し、その姿勢を取ることができる情報を対象側コントローラ9に教示情報として送信する構成とすることもできる。   In the embodiment, the count value and the direction are transmitted to the target controller 9 as teaching information. However, the operation controller 19 can determine the posture to be reached by the target robot 1 and take the posture. The information may be transmitted to the target controller 9 as teaching information.

実施形態では外力を閾値で判定する例を示したが、この閾値は、作業者により任意に設定および変更可能な構成とすることができる。このように閾値を可変とする構成にすることにより、作業者によって力加減が異なっていたとしても、自身に適切な閾値に設定することにより、意図しない操作を受け付けないようにすることや、より繊細な操作をすることが可能となり、作業性をさらに向上させることができる。   In the embodiment, the example in which the external force is determined by the threshold value has been described. However, the threshold value can be arbitrarily set and changed by the operator. By configuring the threshold value to be variable in this way, even if the force is different depending on the operator, setting an appropriate threshold value for itself prevents unintended operations from being accepted, and more It becomes possible to perform delicate operations, and workability can be further improved.

図面中、1は対象ロボット、9は対象側コントローラ(制御部、検出部)、9aは制御部、9bは検出部、11は操作ロボット、19は操作側コントローラ(制御部、検出部)、19aは制御部、19bは検出部、100は教示システムを示す。   In the drawings, 1 is a target robot, 9 is a target side controller (control unit, detection unit), 9a is a control unit, 9b is a detection unit, 11 is an operation robot, 19 is an operation side controller (control unit, detection unit), 19a Is a control unit, 19b is a detection unit, and 100 is a teaching system.

Claims (9)

教示する対象である対象ロボットと、
作業者による手動での操作によって姿勢を変更可能に設けられている操作ロボットと、
前記操作ロボットに加わる外力の大きさおよび方向を検出する検出部と、
作業者が操作した前記操作ロボットの姿勢に一致するように前記対象ロボットの姿勢を制御する直接制御モードと、前記検出部で検出した外力の大きさが予め設定されている閾値を超えた場合に、検出した外力の方向に予め設定されている動作単位で前記対象ロボットの姿勢を制御する詳細制御モードとを切り替え、前記操作ロボットに対する作業者の操作に基づいて前記対象ロボットを教示する処理を実行する制御部と、
を備えることを特徴とするロボットの教示システム。
A target robot to be taught;
An operation robot provided so that the posture can be changed by manual operation by an operator;
A detection unit for detecting the magnitude and direction of an external force applied to the operating robot;
When the direct control mode for controlling the posture of the target robot to match the posture of the operating robot operated by an operator and when the magnitude of the external force detected by the detection unit exceeds a preset threshold value Switching between the detailed control mode for controlling the posture of the target robot in units of motion set in advance in the direction of the detected external force, and executing processing for teaching the target robot based on the operation of the operator with respect to the operation robot A control unit,
A robot teaching system comprising:
前記制御部は、前記詳細制御モードにおいて、前記操作ロボットの姿勢と前記対象ロボットの姿勢とが乖離している場合、前記操作ロボットの姿勢と前記対象ロボットの姿勢とを一致させることを特徴とする請求項1記載のロボットの教示システム。   In the detailed control mode, the control unit matches the posture of the operating robot with the posture of the target robot when the posture of the operating robot is deviated from the posture of the target robot. The robot teaching system according to claim 1. 前記制御部は、前記操作ロボットの姿勢を、外力に基づく姿勢の制御が行われた前記対象ロボットの姿勢に一致させることを特徴とする請求項2記載のロボットの教示システム。   The robot teaching system according to claim 2, wherein the control unit matches the posture of the operating robot with the posture of the target robot that has been subjected to posture control based on an external force. 前記制御部は、前記操作ロボットの姿勢を、外力が検出される前の姿勢に一旦戻した後に、前記対象ロボットの姿勢に一致させることを特徴とする請求項2記載のロボットの教示システム。   The robot teaching system according to claim 2, wherein the controller is configured to match the posture of the target robot after temporarily returning the posture of the operating robot to a posture before an external force is detected. 前記制御部は、前記操作ロボットの姿勢を、外力に基づく姿勢の制御が行われたと仮定した状態の前記対象ロボットの姿勢に一致させた後に、前記対象ロボットの姿勢を制御することを特徴とする請求項2記載のロボットの教示システム。   The control unit controls the posture of the target robot after making the posture of the operating robot coincide with the posture of the target robot in a state that the posture control based on an external force is performed. The robot teaching system according to claim 2. 前記制御部は、外力が閾値を超えている最中に、前記操作ロボットの姿勢を前記対象ロボットの姿勢に一致させることを特徴とする請求項2記載のロボットの教示システム。   3. The robot teaching system according to claim 2, wherein the control unit matches the posture of the operating robot with the posture of the target robot while an external force exceeds a threshold value. 教示する対象である対象ロボットと、
前記対象ロボットに加わる外力の大きさおよび方向を検出する検出部と、
前記対象ロボットを作業者の操作に応じて直接的に教示点を設定する直接制御モードと、前記検出部で検出した外力の大きさが予め設定されている閾値を超えた場合に、予め設定されている動作単位で検出した外力の方向に前記対象ロボットの姿勢を制御する詳細制御モードとを切り替えて、作業者の操作に基づいて前記対象ロボットを教示する処理を実行する制御部と、
を備えることを特徴とするロボットの教示システム。
A target robot to be taught;
A detection unit for detecting the magnitude and direction of an external force applied to the target robot;
A direct control mode for directly setting the teaching point of the target robot according to the operation of the operator and a preset value when the magnitude of the external force detected by the detection unit exceeds a preset threshold value. A control unit that switches between a detailed control mode for controlling the posture of the target robot in the direction of the external force detected in a unit of motion being performed, and executes processing for teaching the target robot based on an operation of an operator;
A robot teaching system comprising:
前記制御部は、前記詳細制御モードにおいて、検出された外力が前記閾値を超えている時間に応じて、前記動作単位での制御回数を増加させることを特徴とする請求項1から7のいずれか一項記載のロボットの教示システム。   8. The control unit according to claim 1, wherein, in the detailed control mode, the control unit increases the number of times of control in the operation unit according to a time during which the detected external force exceeds the threshold value. The robot teaching system according to one item. 前記制御部は、前記詳細制御モードにおいて、検出された外力が前記閾値を超えている時間に関わらず、前記動作単位での制御回数を1回とすることを特徴とする請求項1から7のいずれか一項記載のロボットの教示システム。   8. The control unit according to claim 1, wherein, in the detailed control mode, the number of times of control in the operation unit is set to one time regardless of a time during which the detected external force exceeds the threshold value. The robot teaching system according to claim 1.
JP2017181394A 2017-09-21 2017-09-21 Robot teaching system Active JP7074962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017181394A JP7074962B2 (en) 2017-09-21 2017-09-21 Robot teaching system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017181394A JP7074962B2 (en) 2017-09-21 2017-09-21 Robot teaching system

Publications (2)

Publication Number Publication Date
JP2019055458A true JP2019055458A (en) 2019-04-11
JP7074962B2 JP7074962B2 (en) 2022-05-25

Family

ID=66106842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017181394A Active JP7074962B2 (en) 2017-09-21 2017-09-21 Robot teaching system

Country Status (1)

Country Link
JP (1) JP7074962B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10913152B2 (en) * 2019-06-07 2021-02-09 Robert Bosch Gmbh Robot device controller, robot device arrangement and method for controlling a robot device
WO2022000283A1 (en) * 2020-06-30 2022-01-06 西门子(中国)有限公司 Demonstrator, robot, and robot control method and device
CN113905857A (en) * 2019-05-24 2022-01-07 川崎重工业株式会社 Teaching system
DE102023100737A1 (en) 2022-01-19 2023-07-20 Denso Wave Incorporated Primary and secondary robotic system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271980A (en) * 1988-09-05 1990-03-12 Hitachi Ltd Master slave manipulator
JPH03123907A (en) * 1989-10-06 1991-05-27 Hitachi Constr Mach Co Ltd Direct teaching device and method of robot
JPH05237784A (en) * 1992-02-28 1993-09-17 Matsushita Electric Ind Co Ltd Direct teaching device of articulated robot
JPH0890461A (en) * 1994-09-21 1996-04-09 Nippondenso Co Ltd Device and method for controlling robot
JP2009297853A (en) * 2008-06-16 2009-12-24 Denso Wave Inc Direct teach control device of robot
JP2017052031A (en) * 2015-09-08 2017-03-16 株式会社デンソーウェーブ Robot operation device and robot operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271980A (en) * 1988-09-05 1990-03-12 Hitachi Ltd Master slave manipulator
JPH03123907A (en) * 1989-10-06 1991-05-27 Hitachi Constr Mach Co Ltd Direct teaching device and method of robot
JPH05237784A (en) * 1992-02-28 1993-09-17 Matsushita Electric Ind Co Ltd Direct teaching device of articulated robot
JPH0890461A (en) * 1994-09-21 1996-04-09 Nippondenso Co Ltd Device and method for controlling robot
JP2009297853A (en) * 2008-06-16 2009-12-24 Denso Wave Inc Direct teach control device of robot
JP2017052031A (en) * 2015-09-08 2017-03-16 株式会社デンソーウェーブ Robot operation device and robot operation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113905857A (en) * 2019-05-24 2022-01-07 川崎重工业株式会社 Teaching system
US10913152B2 (en) * 2019-06-07 2021-02-09 Robert Bosch Gmbh Robot device controller, robot device arrangement and method for controlling a robot device
WO2022000283A1 (en) * 2020-06-30 2022-01-06 西门子(中国)有限公司 Demonstrator, robot, and robot control method and device
CN115884851A (en) * 2020-06-30 2023-03-31 西门子(中国)有限公司 Demonstrator, robot, and method and device for controlling robot
DE102023100737A1 (en) 2022-01-19 2023-07-20 Denso Wave Incorporated Primary and secondary robotic system

Also Published As

Publication number Publication date
JP7074962B2 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP6839085B2 (en) Robot system
JP7074962B2 (en) Robot teaching system
US10814484B2 (en) Method, control system and movement setting means for controlling the movements of articulated arms of an industrial robot
KR102284918B1 (en) Robot system and method for controlling a robot system
JP4962424B2 (en) Robot direct teach controller
JP6907853B2 (en) Robot teaching system
US11701770B2 (en) Robot system and method of controlling robot system
JP2015511544A (en) Manual control aid for robots
JP2013034830A (en) Surgical assistant device
US20220388156A1 (en) Maintaining free-drive mode of robot arm for period of time
JP2017074669A (en) Manipulator control device, manipulator drive device, and robot system
EP3473386A1 (en) Controller for end portion control of multi-degree-of-freedom robot, method for controlling multi-degree-of-freedom robot by using controller, and robot operated thereby
US20210038335A1 (en) Robot Assisted Surgical System with Clutch Assistance
JP4873254B2 (en) Robot direct teaching device
JP2017052031A (en) Robot operation device and robot operation method
JP2019512785A (en) System and method for spatially moving an object using a manipulator
US20220379468A1 (en) Robot arm with adaptive three-dimensional boundary in free-drive
JP7178994B2 (en) gripping system
JP7185749B2 (en) ROBOT SYSTEM AND ROBOT SYSTEM CONTROL METHOD
US20210401519A1 (en) Association processes and related systems for manipulators
KR101479077B1 (en) Robot system having intuitive operation manual handlers
AU2022224765B2 (en) Camera control
CN109834696B (en) Robot teaching system, control device, and manual guide unit
JP7069610B2 (en) Remote control device
JP2016068237A (en) Robot operation device, robot system, and robot operation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7074962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150