JP2019045402A - Fluorescent x-ray analyzer and method for analyzing fluorescent x-ray - Google Patents

Fluorescent x-ray analyzer and method for analyzing fluorescent x-ray Download PDF

Info

Publication number
JP2019045402A
JP2019045402A JP2017170813A JP2017170813A JP2019045402A JP 2019045402 A JP2019045402 A JP 2019045402A JP 2017170813 A JP2017170813 A JP 2017170813A JP 2017170813 A JP2017170813 A JP 2017170813A JP 2019045402 A JP2019045402 A JP 2019045402A
Authority
JP
Japan
Prior art keywords
ray
sample
irradiation
primary
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017170813A
Other languages
Japanese (ja)
Other versions
JP6994755B2 (en
Inventor
隆行 深井
Takayuki Fukai
隆行 深井
吉毅 的場
Yoshitake Matoba
吉毅 的場
真毅 大柿
Masatake Ogaki
真毅 大柿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Science Corp
Original Assignee
Hitachi High Tech Science Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Science Corp filed Critical Hitachi High Tech Science Corp
Priority to JP2017170813A priority Critical patent/JP6994755B2/en
Priority to KR1020180096739A priority patent/KR102517494B1/en
Priority to CN201811024591.0A priority patent/CN109459458B/en
Publication of JP2019045402A publication Critical patent/JP2019045402A/en
Application granted granted Critical
Publication of JP6994755B2 publication Critical patent/JP6994755B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/223Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/07Investigating materials by wave or particle radiation secondary emission
    • G01N2223/076X-ray fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

To provide a fluorescent X-ray analyzer and a method for analyzing a fluorescent X-ray that can measure elements with different analysis depths in the same sample container without changing the arrangement.SOLUTION: The fluorescent X-ray analyzer includes: a sample container 4 for containing a sample S; an X-ray source 2 for irradiating the sample with a primary X-ray X1; a detector 3 for detecting a fluorescent X-ray X2 generated from the sample irradiated with the primary X-ray; and an irradiation range changing mechanism 5 for changing the range of the emission of the primary X-ray to the sample in the sample container, the irradiation range changing mechanism being capable of switching between a partial irradiation of irradiating at least a sample near the wall surface of the sample container facing the detector with the primary X-ray and a wide irradiation of irradiating the sample in the sample container more widely with the primary X-ray than in the case of the partial irradiation.SELECTED DRAWING: Figure 1

Description

本発明は、食品や医療品等の試料中に含まれる金属元素等の検出が可能な蛍光X線分析装置及び蛍光X線分析方法に関する。   The present invention relates to a fluorescent X-ray analyzer and a fluorescent X-ray analysis method capable of detecting metal elements and the like contained in samples such as food and medical products.

蛍光X線分析は、X線源から出射されたX線を試料に照射し、試料から放出される元素固有のエネルギーを持つ蛍光X線をX線検出器で検出することで、そのエネルギーからスペクトルを取得し、試料の定性分析若しくは定量分析を行うものである。この蛍光X線分析は、試料を非破壊で迅速に分析可能なため、工程・品質管理などで広く用いられている。近年では、食品中のカドミウム(Cd)等の検出や定量などにも蛍光X線分析を用いることが検討されている。   X-ray fluorescence analysis irradiates X-rays emitted from an X-ray source to a sample and detects X-ray fluorescence X-rays with energy specific to the element emitted from the sample, from the energy to the spectrum To perform qualitative analysis or quantitative analysis of the sample. This fluorescent X-ray analysis is widely used in processes, quality control, etc. because the sample can be analyzed nondestructively and rapidly. In recent years, it has been considered to use fluorescent X-ray analysis for detection and quantification of cadmium (Cd) and the like in food.

米粒や米粉等の軽元素を主成分とする試料では、微量に含有されるカドミウム等の重金属を検出する場合、従来、ICP(誘導プラズマ発光分析)等が行われていたが、試料を溶液化する前処理が必要であり、測定するまでに手間と時間とがかかる上に、分析者によって分析結果にばらつきが生じてしまう問題があった。しかしながら、蛍光X線分析は、前処理せずとも測定が可能であり、分析結果もICPに比べて分析者によるばらつきが小さいという利点がある。このような蛍光X線分析でも、食品中のカドミウム含有量が規制値(例えば、米の場合は0.4mg/kg以下)に対して、蛍光X線分析の検出限界は1mg/kg程度であり、十分な検出限界が得られていない。   In the case of detecting heavy metals such as cadmium contained in a small amount in samples containing light elements such as rice grains and rice flour as the main components, ICP (Inductive Plasma Emission Spectrometry) etc. have been conventionally performed. In addition to the time and effort required to perform the measurement, there is a problem that the analysis results may vary in the analysis results. However, X-ray fluorescence analysis can be measured without pretreatment, and the analysis results also have the advantage of being less dispersed by the analyst than ICP. Even with such fluorescent X-ray analysis, the detection limit of fluorescent X-ray analysis is about 1 mg / kg, while the cadmium content in food is at a regulated value (for example, 0.4 mg / kg or less for rice). , Sufficient detection limit has not been obtained.

そこで、従来、食品等の軽元素を主成分とする試料の測定で、特にカドミウム等の比較的高エネルギーの蛍光X線を発生させる元素の規制値となる0.1mg/kgオーダーの検出限界を実現するために、試料容器に対してX線源及びX線検出器を対向するように配置させた蛍光X線分析装置が開発されている(特許文献1参照)。
この蛍光X線分析装置は、X線源及びX線検出器を試料容器により近づけることで取得するX線の感度を増加させ、さらに試料自体がX線を吸収しづらい軽元素を主成分としているため、試料容器の中でも最も感度良く測定できるX線検出器前面の領域にも十分な励起X線を照射すると共に試料容器全体も照射することで、比較的分析深さが深いカドミウム等の高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、感度及び検出限界の向上を実現している。ここで、分析深さとは試料中の着目元素の蛍光X線が検出される深さであり、着目元素(定量しようとする元素)の蛍光X線エネルギーと試料中の主成分となるマトリックス(共存元素)とに密接に関係しており、一般的に、着目元素の蛍光X線エネルギーが高いほど、また試料中のマトリックスの平均原子番号が低いほど、分析深さが深くなる。例えば、米粒や米粉が主成分としたときの分析深さは、カドミウムで数10 mm、ヒ素で1mm程度となる。
Therefore, conventionally, in the measurement of a sample mainly composed of light elements such as food, a detection limit of about 0.1 mg / kg, which is a regulation value of elements that generate relatively high energy fluorescent X-rays such as cadmium in particular In order to realize it, a fluorescent X-ray analyzer in which an X-ray source and an X-ray detector are disposed to be opposed to a sample container has been developed (see Patent Document 1).
This fluorescent X-ray analyzer increases the sensitivity of X-rays acquired by bringing the X-ray source and the X-ray detector closer to the sample container, and the sample itself is mainly composed of a light element which hardly absorbs X-rays. Therefore, by irradiating sufficient excitation X-rays to the area in front of the X-ray detector that can be measured with the highest sensitivity among the sample containers and irradiating the entire sample container, high energy such as cadmium, which has a relatively deep analysis depth X-ray fluorescence is detected also from the sample on the back side of the sample container to realize improvement in sensitivity and detection limit. Here, the analysis depth is the depth at which the fluorescent X-ray of the target element in the sample is detected, and the fluorescent X-ray energy of the target element (element to be quantified) and the matrix (coexistence with the main component in the sample) In general, the higher the fluorescent X-ray energy of the element of interest and the lower the average atomic number of the matrix in the sample, the deeper the analysis depth. For example, when rice grains and rice flour are the main components, the analysis depth is about 10 mm for cadmium and about 1 mm for arsenic.

また、カドミウム等よりも比較的低エネルギーの蛍光X線を発生させるヒ素(As)等の元素を測定する場合、試料容器の奥側の試料で発生した蛍光X線は試料容器内で吸収されて感度向上に寄与しない上、その蛍光X線より高エネルギーの散乱X線は吸収されずにX線検出器に入射してバックグラウンド強度を増加させてしまうノイズとなることから、試料容器及び配置を変更することで、カドミウム等よりも比較的低エネルギーの蛍光X線を発生させる元素を感度良く測定する蛍光X線分析装置が開発されている(特許文献2参照)。   When measuring an element such as arsenic (As) that generates fluorescent X-rays of relatively lower energy than cadmium etc., the fluorescent X-rays generated in the sample on the back side of the sample container are absorbed in the sample container Since it does not contribute to the improvement of sensitivity, it also becomes a noise that the scattered X-rays of higher energy than the fluorescent X-rays are not absorbed and enters the X-ray detector to increase the background intensity. A fluorescent X-ray analyzer has been developed which measures with high sensitivity an element that generates fluorescent X-rays of relatively lower energy than cadmium or the like by changing (see Patent Document 2).

特許第4874118号公報Patent 4874118 gazette 特許第4854005号公報Patent No. 4854005 gazette

上記従来の技術には、以下の課題が残されている。
すなわち、上記従来の蛍光X線分析装置では、例えば分析深さの異なる元素(例えば、カドミウムとヒ素)をどちらも感度良く測定しようとすると、互いに形状の異なるカドミウム用の試料容器とヒ素用の試料容器とを別々用意して、これら異なる試料容器に試料を充填して別々に測定する必要があった。そのため、必要となる試料量が多くなると共に、試料作製や測定試料の交換等の準備時間もかかってしまうという不都合があった。
The following problems remain in the above-mentioned prior art.
That is, in the above conventional X-ray fluorescence analyzer, for example, when trying to measure both elements having different analysis depths (for example, cadmium and arsenic) with high sensitivity, a sample container for cadmium and a sample for arsenic which have different shapes from each other It was necessary to prepare the container separately and to fill the samples in these different sample containers and to measure them separately. As a result, the amount of sample required increases, and the preparation time for sample preparation, exchange of the measurement sample, etc. also takes a disadvantage.

本発明は、前述の課題に鑑みてなされたもので、同一の試料容器で配置の変更無く分析深さの異なる元素を測定可能な蛍光X線分析装置及び蛍光X線分析方法を提供することを目的とする。   The present invention has been made in view of the above problems, and it is an object of the present invention to provide a fluorescent X-ray analyzer and a fluorescent X-ray analysis method capable of measuring elements having different analysis depths without changing the arrangement in the same sample container. To aim.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、第1の発明に係る蛍光X線分析装置は、試料を収納可能な試料容器と、前記試料に対して一次X線を照射するX線源と、前記一次X線を照射された前記試料から発生する蛍光X線を検出する検出器と、前記試料容器内の前記試料に対して前記一次X線を照射する範囲を変更可能な照射範囲変更機構とを備え、前記照射範囲変更機構が、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射と、前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射とに変更可能であることを特徴とする。   The present invention adopts the following configuration in order to solve the problems. That is, a fluorescent X-ray analyzer according to the first invention comprises a sample container capable of storing a sample, an X-ray source for irradiating the sample with primary X-rays, and the sample irradiated with the primary X-ray. A detector for detecting fluorescent X-rays generated from the light source, and an irradiation range changing mechanism capable of changing a range in which the primary X-ray is irradiated to the sample in the sample container, the irradiation range changing mechanism comprising Partial irradiation which irradiates the primary X-ray to the sample at least near the wall surface of the sample container facing the detector, and irradiation of the primary X-ray to the sample in the sample container in a region wider than the partial irradiation It is characterized in that it can be changed to a wide range irradiation.

この蛍光X線分析装置では、照射範囲変更機構が、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射とに変更可能であるので、着目元素の分析深さに応じて照射領域を広範囲照射と部分照射とに調整可能である。すなわち、蛍光X線エネルギーが高い着目元素を測定するときは、その分析深さに合わせた広範囲照射で行い、高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、蛍光X線エネルギーが低い着目元素を測定するときは、分析深さが浅くなるので、それに合わせて試料容器の検出器寄りの試料に部分照射を行うことで、低エネルギーの蛍光X線を検出器に近い試料から検出し、試料容器の奥側にある試料からのノイズ成分となる散乱X線を抑制し、着目元素の蛍光X線を効率よく検出することができる。   In this fluorescent X-ray analyzer, the irradiation range changing mechanism is at least partially irradiating the primary X-ray to the sample near the wall surface of the sample container facing the detector, and the sample in the sample container in an area wider than the partial irradiation. Since the irradiation can be changed to wide-area irradiation in which primary X-rays are irradiated, the irradiation area can be adjusted to wide-area irradiation and partial irradiation according to the analysis depth of the target element. That is, when measuring an element of interest having high fluorescent X-ray energy, it is performed in a wide range irradiation according to the analysis depth, and high-energy fluorescent X-rays are also detected from the sample on the back side of the sample container. When measuring the element of interest with low linear energy, the analysis depth becomes shallow, so by performing partial irradiation on the sample closer to the detector of the sample container according to it, low energy fluorescent X-rays are closer to the detector Scattered X-rays that are detected from the sample and that become noise components from the sample on the far side of the sample container can be suppressed, and fluorescent X-rays of the element of interest can be detected efficiently.

第2の発明に係る蛍光X線分析装置は、第1の発明において、前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な複数の透過窓を有するコリメータと、複数の前記透過窓のうち任意の一つに前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、前記コリメータが、前記透過窓として、前記部分照射の際に前記検出器に近い領域に前記一次X線を照射可能な部分用透過窓と、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な広範囲用透過窓とを有していることを特徴とする。
すなわち、この蛍光X線分析装置では、コリメータが、部分照射の際に検出器に近い領域に一次X線を照射可能な部分用透過窓と、広範囲照射の際に部分照射よりも広い領域で試料容器内の試料に一次X線を照射可能な広範囲用透過窓とを有しているので、コリメータ移動機構でコリメータを移動させ、一次X線を通す透過窓として広範囲用透過窓又は部分用透過窓を選択することで、広範囲照射と部分照射とを容易に切り替えることができる。
The fluorescent X-ray analyzer according to a second aspect of the present invention is the fluorescent X-ray analyzer according to the first aspect, wherein the irradiation range changing mechanism is disposed between the X-ray source and the sample container and is capable of transmitting the primary X-rays. A collimator having a transmission window, and a collimator moving mechanism capable of moving the collimator relative to the X-ray source so that the primary X-ray can be transmitted to any one of a plurality of the transmission windows; A partial transmission window capable of irradiating the primary X-ray in a region close to the detector at the time of the partial irradiation as the transmission window, and a region wider than the partial irradiation at the time of the wide region irradiation. The sample in the sample container is characterized by having a wide-area transmission window capable of irradiating the primary X-ray.
That is, in this fluorescent X-ray analyzer, the collimator is a partial transmission window capable of emitting primary X-rays to an area close to the detector at the time of partial irradiation, and a sample in a wider area than partial irradiation at the wide area irradiation. Since the sample in the container has a wide-area transmission window capable of irradiating the primary X-ray, the collimator is moved by the collimator moving mechanism, and the wide-area transmission window or partial transmission window is used as a transmission window through which the primary X-ray passes. By selecting, it is possible to easily switch between wide-area irradiation and partial irradiation.

第3の発明に係る蛍光X線分析装置は、第1の発明において、前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な透過窓を有するコリメータと、前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、前記コリメータ移動機構が、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な位置に前記透過窓を移動可能であると共に、前記部分照射の際に前記検出器に近い前記試料容器内の前記試料に前記広範囲照射よりも狭い範囲で前記一次X線を照射可能な位置に前記透過窓を移動可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、コリメータ移動機構が、広範囲照射の際に部分照射よりも広い領域で一次X線を照射可能な位置に透過窓を移動可能であると共に、部分照射の際に検出器に近く広範囲照射よりも狭い範囲で一次X線を照射可能な位置に透過窓を移動可能であるので、透過窓の位置を調整するだけで、広範囲照射と部分照射とを容易に行うことが容易にできる。
The fluorescent X-ray analyzer according to a third aspect of the invention is the transmission window according to the first aspect, wherein the irradiation range changing mechanism is disposed between the X-ray source and the sample container and can transmit the primary X-ray. And a collimator moving mechanism capable of moving the collimator relative to the X-ray source so as to be capable of transmitting the primary X-ray, and the collimator moving mechanism comprises the part during the wide-area irradiation. It is possible to move the transmission window to a position where the sample in the sample container can be irradiated with the primary X-ray in a region wider than irradiation, and in the sample container close to the detector at the time of the partial irradiation. It is characterized in that the transmission window can be moved to a position where the sample can be irradiated with the primary X-ray in a range narrower than the wide range irradiation.
That is, in this fluorescent X-ray analyzer, the collimator moving mechanism is capable of moving the transmission window to a position where primary X-rays can be irradiated in a wider area than partial irradiation at the time of wide area irradiation. Since the transmission window can be moved to a position near the detector where the primary X-rays can be irradiated within a narrower range than the wide-area radiation, it is easy to perform wide-area and partial irradiation simply by adjusting the position of the transmission window. Can be done easily.

第4の発明に係る蛍光X線分析装置は、第1から第3の発明のいずれかにおいて、前記照射範囲変更機構が、前記蛍光X線のうち着目する元素の分析深さに応じて前記広範囲照射と前記部分照射との前記一次X線の照射領域を調整可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、照射範囲変更機構が、蛍光X線のうち着目する元素の分析深さに応じて広範囲照射と部分照射との一次X線の照射領域を調整可能であるので、着目元素に適した照射範囲により、広範囲照射と部分照射とで高精度な分析が可能になる。
The fluorescent X-ray analyzer according to a fourth aspect of the present invention is the fluorescent X-ray analyzer according to any one of the first to third aspects, wherein the irradiation range changing mechanism corresponds to the wide range according to the analysis depth of the element of interest among the fluorescent X-rays. It is characterized in that the irradiation area of the primary X-ray of the irradiation and the partial irradiation can be adjusted.
That is, in this fluorescent X-ray analyzer, the irradiation range changing mechanism can adjust the irradiation area of the primary X-ray of the wide-area irradiation and the partial irradiation according to the analysis depth of the element of interest among the fluorescent X-rays The irradiation range suitable for the element of interest enables highly accurate analysis with a wide range of irradiation and partial irradiation.

第5の発明に係る蛍光X線分析装置は、第1から第4の発明のいずれかにおいて、前記試料容器が、前記一次X線が透過可能な第1の壁面と前記蛍光X線が透過可能な第2の壁面とを有し、前記X線源が、前記第1の壁面に隣接配置されていると共に、前記検出器が、前記第2の壁面に隣接配置され、前記照射範囲変更機構が、前記部分照射の際に、前記第2の壁面の内面近傍に前記一次X線を照射することを特徴とする。
すなわち、この蛍光X線分析装置では、検出器が、第2の壁面に隣接配置され、照射範囲変更機構が、部分照射の際に、第2の壁面の内面近傍に一次X線を照射するので、試料容器の奥側の試料から散乱X線を発生させずに、第2の壁面の内面近傍にある試料から放射状に発生する蛍光X線のみを検出器が効率的に測定することができる。
The fluorescent X-ray analyzer according to a fifth aspect of the present invention is the fluorescent X-ray analyzer according to any one of the first to fourth aspects, wherein the sample container can transmit the first wall through which the primary X-ray can pass and the fluorescent X-ray And the X-ray source is disposed adjacent to the first wall, the detector is disposed adjacent to the second wall, and the irradiation range changing mechanism is At the time of the partial irradiation, the primary X-ray is irradiated near the inner surface of the second wall surface.
That is, in this fluorescent X-ray analyzer, the detector is disposed adjacent to the second wall, and the irradiation range changing mechanism irradiates the primary X-ray near the inner surface of the second wall at the time of partial irradiation. The detector can efficiently measure only fluorescent X-rays generated radially from the sample in the vicinity of the inner surface of the second wall without generating scattered X-rays from the sample on the back side of the sample container.

第6の発明に係る蛍光X線分析装置は、第1から第5の発明のいずれかにおいて、前記試料が、軽元素を主成分とし、前記照射範囲変更機構が、前記試料中の元素のうちCd,Sn,Sb,Baの少なくとも一つを検出する際に前記広範囲照射に切り替え、前記試料中の元素のうちAs,Pb,Hg,Brの少なくとも一つを検出する際に前記部分照射に切り替え可能であることを特徴とする。
すなわち、この蛍光X線分析装置では、照射範囲変更機構が、試料中の元素のうち比較的高エネルギーのCd,Sn,Sb,Baの少なくとも一つを検出する際に広範囲照射に切り替え、試料中の元素のうち前記Cd,Sn,Sb,Baよりも低エネルギーであるAs,Pb,Hg,Brの少なくとも一つを検出する際に部分照射に切り替え可能であるので、Cd,Sn,Sb,Baの少なくとも一つと、As,Pb,Hg,Brの少なくとも一つとを同一の試料容器で配置を変更することなく、感度良く測定することができる。
The fluorescent X-ray analyzer according to a sixth aspect of the invention is the fluorescent X-ray analyzer according to any one of the first to fifth aspects, wherein the sample contains a light element as a main component, and the irradiation range changing mechanism is one of elements in the sample. When detecting at least one of Cd, Sn, Sb, and Ba, switching to the wide-area irradiation is performed, and when detecting at least one of As, Pb, Hg, and Br among elements in the sample, switching to the partial irradiation is performed. It is characterized by being possible.
That is, in this X-ray fluorescence analyzer, the irradiation range changing mechanism switches to wide range irradiation when detecting at least one of relatively high energy Cd, Sn, Sb, and Ba among elements in the sample, Since it is possible to switch to partial irradiation when detecting at least one of As, Pb, Hg, and Br, which have lower energy than the Cd, Sn, Sb, and Ba among the elements of Cd, Sn, Sb, and Ba, And at least one of As, Pb, Hg, and Br can be measured with high sensitivity without changing the arrangement in the same sample container.

第7の発明に係る蛍光X線分析装置は、第1から第6の発明のいずれかにおいて、前記試料が、米粒,米粉,又は流動性の固体若しくは液体であることを特徴とする。
すなわち、この蛍光X線分析装置では、試料が、米粒,米粉,又は流動性の固体若しくは液体(例えば、お粥)である場合、米粒,米粉,又は流動性の固体若しくは液体に含まれる重金属のうち分析深さの異なる複数の元素を試料容器及び配置を変更することなく、感度良く測定することができる。
The fluorescent X-ray analyzer according to a seventh invention is characterized in that, in any one of the first to sixth inventions, the sample is rice grain, rice flour, or a fluid solid or liquid.
That is, in this fluorescent X-ray analyzer, when the sample is rice grain, rice flour, or fluid solid or liquid (for example, rice porridge), heavy metals contained in rice grain, rice flour, or fluid solid or liquid Among them, a plurality of elements with different analysis depths can be measured with high sensitivity without changing the sample container and the arrangement.

第8の発明に係る蛍光X線分析方法は、試料容器内の試料に対してX線源から一次X線を照射し前記試料から発生する蛍光X線を検出器で検出する蛍光X線分析方法であって、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射工程と、前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射工程とを有していることを特徴とする。
すなわち、この蛍光X線分析方法では、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射工程と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射工程とを有しているので、同一の試料容器のまま、広範囲照射工程で分析深さの深い元素を感度良く測定することができると共に、部分照射工程で分析深さの浅い元素を感度良く測定することができる。
The fluorescent X-ray analysis method according to the eighth invention is a fluorescent X-ray analysis method in which a sample in a sample container is irradiated with primary X-rays from an X-ray source and fluorescent X-rays generated from the sample are detected by a detector. A partial irradiation step of irradiating the primary X-ray onto the sample at least near the wall surface of the sample container facing the detector; and the sample in the sample container in a region wider than the partial irradiation. And a wide-area irradiation step of irradiating primary X-rays.
That is, in this fluorescent X-ray analysis method, the partial X-ray irradiation step of irradiating the primary X-ray to at least the sample near the wall surface of the sample container facing the detector; Since it has a wide-area irradiation process for irradiating a line, it is possible to sensitively measure elements deep in the analysis depth in the wide-area irradiation process with the same sample container, and at the same time Shallow elements can be measured with high sensitivity.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る蛍光X線分析装置及び蛍光X線分析方法によれば、少なくとも検出器に対向する試料容器の壁面寄りの試料に一次X線を照射する部分照射と、部分照射よりも広い領域で試料容器内の試料に一次X線を照射する広範囲照射とに変更可能であるので、分析深さの深い元素を測定するときは広範囲照射を行うことで、高エネルギーの蛍光X線を試料容器の奥側にある試料からも検出し、分析深さの浅い元素を測定するときは部分照射を行うことで、低エネルギーの蛍光X線を検出器に最も近い試料から検出し、試料容器の奥側からの高エネルギーの散乱X線の発生によるノイズを抑制して効率的に低エネルギーの蛍光X線を検出することができる。
したがって、本発明の蛍光X線分析装置及び蛍光X線分析方法では、試料容器及び配置の変更なく、分析深さの異なる複数の元素の測定が良好な感度で可能になり、必要となる試料量や測定の準備時間等を約半分に低減することができる。
According to the present invention, the following effects are achieved.
That is, according to the fluorescent X-ray analysis apparatus and the fluorescent X-ray analysis method according to the present invention, partial irradiation in which the primary X-ray is irradiated to at least the sample near the wall surface of the sample container facing the detector; Since it is possible to change to broad-area irradiation in which the sample in the sample container is irradiated with primary X-rays in the region, high-energy fluorescent X-rays can be detected by performing wide-area irradiation when measuring elements with deep analysis depth. The low energy X-ray fluorescence is detected from the sample closest to the detector by detecting it from the sample on the far side of the container and performing partial irradiation when measuring elements with a shallow analysis depth, and Noise due to the generation of high energy scattered X-rays from the back side can be suppressed to efficiently detect low energy fluorescent X-rays.
Therefore, with the fluorescent X-ray analysis apparatus and the fluorescent X-ray analysis method of the present invention, measurement of a plurality of elements with different analysis depths becomes possible with good sensitivity without changing the sample container and arrangement, and the required sample amount And measurement preparation time can be reduced to about half.

本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第1実施形態において、広範囲照射工程(a)及び部分照射工程(b)を示すX線光学系の模式図である。FIG. 1 is a schematic view of an X-ray optical system showing a wide range irradiation step (a) and a partial irradiation step (b) in the first embodiment of the fluorescent X-ray analysis device and the fluorescent X-ray analysis method according to the present invention. 第1実施形態において、コリメータを示す斜視図である。In 1st Embodiment, it is a perspective view which shows a collimator. 本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第2実施形態において、広範囲照射工程(a)及び部分照射工程(b)を示すX線光学系の模式図である。FIG. 7 is a schematic view of an X-ray optical system showing a wide range irradiation step (a) and a partial irradiation step (b) in the second embodiment of the fluorescent X-ray analysis device and the fluorescent X-ray analysis method according to the present invention.

以下、本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第1実施形態を、図1及び図2を参照しながら説明する。   Hereinafter, a first embodiment of a fluorescent X-ray analysis apparatus and a fluorescent X-ray analysis method according to the present invention will be described with reference to FIGS. 1 and 2.

本実施形態の蛍光X線分析装置1は、図1に示すように、粒体状又は粉体状の試料Sを収納可能な試料容器4と、試料Sに対して一次X線X1を照射するX線源2と、一次X線X1を照射された試料Sから発生する蛍光X線X2を検出する検出器3と、試料容器4内の試料Sに対して一次X線X1を照射する範囲を変更可能な照射範囲変更機構5とを備えている。   As shown in FIG. 1, the fluorescent X-ray analyzer 1 of the present embodiment irradiates the primary X-ray X1 to the sample container 4 capable of storing the granular or powdery sample S, and the sample S. The range in which the primary X-ray X1 is irradiated to the sample S in the sample container 4 is set as the X-ray source 2, the detector 3 for detecting the fluorescent X-ray X2 generated from the sample S irradiated with the primary X-ray X1. A changeable irradiation range changing mechanism 5 is provided.

上記照射範囲変更機構5は、図1の(b)に示すように、少なくとも検出器3に対向する試料容器4の第2の壁面4b寄りの試料Sに一次X線X1を照射する部分照射と、図1の(a)に示すように、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射とに変更可能である。
なお、上記部分照射の際は、試料容器4内の試料Sのうち検出器3に近い領域A2に一次X線X1を照射する。
The irradiation range changing mechanism 5 performs partial irradiation to irradiate the primary X-ray X1 to the sample S near the second wall 4b of the sample container 4 facing at least the detector 3 as shown in (b) of FIG. As shown in FIG. 1A, it can be changed to wide-area irradiation in which the sample S in the sample container 4 is irradiated with the primary X-ray X1 in a region A1 wider than the partial irradiation.
In addition, in the case of the said partial irradiation, primary X-ray X1 is irradiated to area | region A2 near the detector 3 among the samples S in the sample container 4. FIG.

すなわち、照射範囲変更機構5は、図1及び図2に示すように、X線源2と試料容器4との間に配され一次X線X1を透過可能な複数の透過窓6a〜6cを有するコリメータ6と、複数の透過窓6a〜6cのうち任意の一つに一次X線X1を透過可能にコリメータ6をX線源2に対して相対的に移動可能なコリメータ移動機構7とを備えている。   That is, as shown in FIGS. 1 and 2, the irradiation range changing mechanism 5 has a plurality of transmission windows 6a to 6c disposed between the X-ray source 2 and the sample container 4 and capable of transmitting the primary X-ray X1. A collimator 6 and a collimator moving mechanism 7 capable of moving the collimator 6 relative to the X-ray source 2 so as to be capable of transmitting the primary X-ray X1 to any one of the plurality of transmission windows 6a to 6c There is.

上記コリメータ6は、一次X線X1が透過しないような元素や厚さの金属板で形成され、透過窓として、部分照射の際に検出器3に近い領域A2に一次X線X1を照射可能な部分用透過窓6bと、広範囲照射の際に部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射可能な広範囲用透過窓6aとを有している。なお、本実施形態では、部分照射よりも広い領域A1が試料容器2内の試料S全体に設定されている。   The collimator 6 is formed of a metal plate of an element or thickness which does not transmit the primary X-ray X1, and can transmit the primary X-ray X1 to the region A2 close to the detector 3 at the time of partial irradiation as a transmission window. It has a partial transmission window 6b and a wide area transmission window 6a capable of irradiating the sample S in the sample container 4 with the primary X-ray X1 in a region A1 wider than the partial irradiation in the wide area irradiation. In the present embodiment, a region A1 wider than the partial irradiation is set for the entire sample S in the sample container 2.

上記広範囲用透過窓6aは、X線源2からの一次X線X1が大きな立体角で試料容器4内の試料S全体に照射されるように開口径が設定され、上記部分用透過窓6bは、試料容器4内の試料Sに小さな立体角で部分的に一次X線X1が照射されるように広範囲用透過窓6aに比べて開口径が小さく設定されている。
広範囲用透過窓6aは、コリメータ6の軸線Cに中心軸が一致しているが、部分用透過窓6bは、中心軸を軸線Cからずらして形成されている。なお、コリメータ6の軸線Cは、一次X線X1の光軸と一致するように設定されている。また、コリメータ6の軸線Cは、図1の紙面上に対して垂直方向に広範囲用透過窓6aが奥側になるように設定されている。
The wide-area transmission window 6a has an opening diameter set so that the primary X-ray X1 from the X-ray source 2 is irradiated to the entire sample S in the sample container 4 at a large solid angle, and the partial transmission window 6b is The diameter of the opening is set smaller than the wide-area transmission window 6 a so that the primary X-ray X 1 is partially irradiated to the sample S in the sample container 4 at a small solid angle.
Although the central axis of the wide-area transmission window 6a coincides with the axis C of the collimator 6, the partial transmission window 6b is formed by shifting the central axis from the axis C. The axis C of the collimator 6 is set to coincide with the optical axis of the primary X-ray X1. Further, the axis C of the collimator 6 is set so that the wide-area transmission window 6a is on the back side in the direction perpendicular to the paper surface of FIG.

また、コリメータ6は、広範囲用透過窓6a及び部分用透過窓6bの他に、軸線Cからずれた位置に開口した透過窓6cが形成されている。
上記透過窓6a〜6cは、いずれも一次X線X1の照射領域や照射方向に対応して開口形状及び開口径や配置を設定した貫通孔である。
なお、これら透過窓6a〜6cに、バックグランド強度を低下させるためにバックグランドとなるエネルギー帯域の一次X線を吸収するMoやZr等の一次フィルタを設置しても構わない。
Further, the collimator 6 is formed with a transmission window 6c opened at a position shifted from the axis C, in addition to the wide-area transmission window 6a and the partial transmission window 6b.
Each of the transmission windows 6a to 6c is a through hole whose opening shape, opening diameter and arrangement are set corresponding to the irradiation region and irradiation direction of the primary X-ray X1.
In addition, in these transmission windows 6a to 6c, a primary filter such as Mo or Zr that absorbs primary X-rays of an energy band serving as a background to reduce background intensity may be provided.

上記コリメータ6は、試料容器4とX線源2との間で移動可能に設置されている。
上記コリメータ移動機構7は、モータ等で構成され、コリメータ6を軸線C方向に移動可能であると共に、コリメータ6とX線源2との距離を調整可能である。すなわち、コリメータ移動機構7は、コリメータ6を移動させて透過窓6a〜6cのいずれかをX線源2に対向配置することができる。
The collimator 6 is movably installed between the sample container 4 and the X-ray source 2.
The collimator moving mechanism 7 is composed of a motor or the like, and can move the collimator 6 in the direction of the axis C, and can adjust the distance between the collimator 6 and the X-ray source 2. That is, the collimator moving mechanism 7 can move the collimator 6 to place one of the transmission windows 6 a to 6 c opposite to the X-ray source 2.

上記試料容器4は、一次X線X1が透過可能な第1の壁面4aと蛍光X線X2が透過可能な第2の壁面4bとを有している。これら第1の壁面4aと第2の壁面4bとは、試料容器4のV字状の底面を構成している。
試料容器4は、比較的X線が透過し易いプラスチック等の有機材料やアルミニウム,シリコン,マグネシウム等の材質で形成されている。
なお、試料容器4は、図示しない試料台によって支持されている。例えば、試料台に開けられた設置孔に、試料容器4を上から挿入し、試料容器4の上部が設置孔に当接することで、第1の壁面4a及び第2の壁面4bが下方に露出した状態で試料容器4が設置される。
The sample container 4 has a first wall 4a through which the primary X-ray X1 can be transmitted and a second wall 4b through which the fluorescent X-ray X2 can be transmitted. The first wall surface 4 a and the second wall surface 4 b constitute a V-shaped bottom surface of the sample container 4.
The sample container 4 is formed of an organic material such as plastic, which is relatively easy to transmit X-rays, or a material such as aluminum, silicon, or magnesium.
The sample container 4 is supported by a sample stand (not shown). For example, the sample container 4 is inserted from above into the installation hole opened in the sample table, and the upper surface of the sample container 4 abuts on the installation hole, thereby exposing the first wall 4a and the second wall 4b downward. The sample container 4 is installed in the state as described above.

上記X線源2は、第1の壁面4aに対向で隣接配置されていると共に、検出器3が、第2の壁面4bに隣接配置されている。すなわち、X線源2は、第1の壁面4aの外面に近接して対向配置されていると共に、検出器3は、第2の壁面4bの外面に近接して対向配置され、それぞれ試料容器4の下方に配置されている。
このように第2の壁面4bに対向で検出器3が隣接配置されているので、照射範囲変更機構5は、部分照射の際に、第2の壁面4bの内面近傍に一次X線X1を照射するように設定されている。特に、第1の壁面4aと第2の壁面4bとがV字状底面を構成しているので、X線源2と検出器3とが干渉しないので、試料容器4の各壁面に近接して配置することができる。さらに、部分照射の際に、第1の壁面4a側から第2の壁面4bの内面近傍に向けて一次X線X1を部分的に照射し易い。
The X-ray source 2 is disposed adjacent to the first wall surface 4a so as to face the first wall surface 4a, and the detector 3 is disposed adjacent to the second wall surface 4b. That is, the X-ray source 2 is disposed so as to face the outer surface of the first wall 4a, and the detector 3 is disposed so as to face the outer surface of the second wall 4b. Is located below.
As described above, the detector 3 is disposed adjacent to the second wall surface 4b so that the irradiation range changing mechanism 5 irradiates the primary X-ray X1 in the vicinity of the inner surface of the second wall surface 4b at the time of partial irradiation. It is set to In particular, since the first wall surface 4a and the second wall surface 4b constitute a V-shaped bottom surface, the X-ray source 2 and the detector 3 do not interfere with each other. It can be arranged. Furthermore, at the time of partial irradiation, it is easy to partially irradiate the primary X-ray X1 toward the inner surface of the second wall 4b from the side of the first wall 4a.

本実施形態では、試料Sが、C,O,H,N等の軽元素を主成分としたものであり、例えば米粒又は米粉,小麦粉等の穀物や豆類等の食品,医療品,化学工業製品等である。
なお、軽元素は、一次X線X1が透過しやすい元素であり、原子番号が小さい元素ほどX線の透過率が高く、C,O,H,N又はAl,Mg等の元素や、有機材料も含むものである。
In the present embodiment, the sample S is mainly composed of light elements such as C, O, H, N, etc. For example, food such as rice grains or grains such as rice flour or flour, beans, etc., medical products, chemical industry products Etc.
The light element is an element that is easy to transmit the primary X-ray X1, and the element with the smaller atomic number has a higher X-ray transmittance, and an element such as C, O, H, N or Al, Mg, or an organic material Is also included.

上記照射範囲変更機構5は、特に、試料S中の元素のうち蛍光X線のエネルギーが比較的高い、例えば、20〜30 KeVあたりのエネルギーを発生させるCd,Sn,Sb,Ba等の元素の微量重金属を検出する際に広範囲に照射し、試料S中の元素のうち前記Cd等より低エネルギーである、例えば、10 KeVあたりのエネルギーを発生させるAs,Pb,Hg,Br等の元素の微量重金属を検出する際に検出器3寄りに狭めて部分照射することが可能である。
これらの検出対象である着目元素は、少なくとも主成分とする元素よりも大きなエネルギーの蛍光X線を発生する元素である。
Among the elements in the sample S, the irradiation range changing mechanism 5 is particularly an element such as Cd, Sn, Sb, or Ba that generates relatively high energy of fluorescent X-ray, for example, 20 to 30 KeV. When detecting trace heavy metals, it is irradiated in a wide range, and among elements in sample S, trace amounts of elements such as As, Pb, Hg, Br, etc. which generate energy per 10 KeV which is lower energy than the Cd etc. When detecting a heavy metal, it is possible to narrow and partially irradiate to the detector 3.
The noted elements to be detected are elements that generate fluorescent X-rays of energy greater than that of at least the element that is the main component.

上記X線源2は、一次X線X1を照射可能なX線管球2aを備え、管球2a内のフィラメント(陰極)から発生した熱電子がフィラメント(陰極)とターゲット(陽極)との間に印加された電圧により加速されターゲットのW(タングステン)、Mo(モリブデン)、Cr(クロム)などに衝突して発生したX線を一次X線X1としてベリリウム箔などの出射窓(図示略)から出射するものである。   The X-ray source 2 includes an X-ray tube 2a capable of irradiating a primary X-ray X1, and thermionic electrons generated from the filament (cathode) in the tube 2a are between the filament (cathode) and the target (anode) X-rays generated by collision with the W (tungsten), Mo (molybdenum), Cr (chromium) etc. of the target accelerated by the voltage applied to the target as primary X-rays X1 from an emission window (not shown) such as beryllium foil It is something to emit.

上記検出器3は、X線入射窓(図示略)を介して半導体検出素子(例えば、pin構造ダイオードであるSi(シリコン)素子)(図示略)を備え、蛍光X線X2が半導体検出素子にX線光子1個が入射すると、このX線光子1個に対応する電流パルスが発生するものである。この電流パルスの瞬間的な電流値が、入射した特性X線のエネルギーに比例している。また、検出器3は、半導体検出素子で発生した電流パルスを電圧パルスに変換、増幅し、信号として出力するように設定されている。
なお、試料容器4と検出器3との間には、X線源2からの一次X線X1が直接検出器3に入射しないようにシールド板8を備えている。
The detector 3 includes a semiconductor detection element (for example, a Si (silicon) element as a pin structure diode) (not shown) via an X-ray incident window (not shown), and the fluorescent X-ray X2 is a semiconductor detection element. When one X-ray photon is incident, a current pulse corresponding to the one X-ray photon is generated. The instantaneous current value of this current pulse is proportional to the energy of the incident characteristic X-ray. Further, the detector 3 is set to convert a current pulse generated by the semiconductor detection element into a voltage pulse, amplify it, and output it as a signal.
A shield plate 8 is provided between the sample container 4 and the detector 3 so that the primary X-ray X1 from the X-ray source 2 does not directly enter the detector 3.

また、本実施形態の蛍光X線分析装置1は、他に分析器(図示略)と制御部(図示略)とをさらに備えている。
上記分析器は、上記信号から電圧パルスの波高を得てエネルギースペクトルを生成する波高分析器(マルチチャンネルアナライザー)である。
上記制御部は、CPU等で構成されたコンピュータであり、ディスプレイ等にも接続され、分析結果をディスプレイに表示する機能を有している。
In addition, the fluorescent X-ray analyzer 1 of the present embodiment further includes an analyzer (not shown) and a control unit (not shown).
The analyzer is a wave height analyzer (multi-channel analyzer) that obtains wave heights of voltage pulses from the signal and generates an energy spectrum.
The control unit is a computer configured by a CPU or the like, is also connected to a display or the like, and has a function of displaying an analysis result on the display.

次に、本実施形態の蛍光X線分析装置1を用いた蛍光X線分析方法について、以下に説明する。   Next, a fluorescent X-ray analysis method using the fluorescent X-ray analyzer 1 of the present embodiment will be described below.

まず、上記試料容器4内に粒体状又は粉体状の試料S(例えば、米粒又は米粉)を適量充填し、試料Sが充填された試料容器4を試料台にセットする。
本実施形態の蛍光X線分析方法では、試料容器4内の試料Sのうち検出器3に最も近い領域A2に一次X線X1を照射する部分照射工程と、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射工程とを有し、部分照射工程と広範囲照射工程とを切り替えて分析を行う。
First, an appropriate amount of granular or powdery sample S (for example, rice grains or rice flour) is filled in the sample container 4 and the sample container 4 filled with the sample S is set on a sample table.
In the fluorescent X-ray analysis method of the present embodiment, the partial irradiation step of irradiating the primary X-ray X1 to the region A2 closest to the detector 3 among the samples S in the sample container 4 and the sample in the region A1 wider than the partial irradiation A wide range irradiation process of irradiating the sample S in the container 4 with the primary X-ray X1 is performed, and the analysis is performed by switching the partial irradiation process and the wide area irradiation process.

試料S中の元素のうち分析深さの深い元素、例えば、Cd,Sn,Sb,Ba等を着目元素として検出する際には、図1の(a)に示すように、広範囲照射工程により測定を行う。
すなわち、広範囲照射工程では、照射範囲変更機構5によりX線源2に広範囲用透過窓6aが対向し、出射窓を通して出射される一次X線X1の光軸XCが広範囲用透過窓6aの中心軸と同軸になるようにコリメータ6を移動させる。なお、検出器3の中心軸は、一次X線X1の光軸XCと直角に交差するように設定されている。
Among the elements in the sample S, when detecting an element having a deep analysis depth, such as Cd, Sn, Sb, Ba, etc., as an element of interest, as shown in (a) of FIG. I do.
That is, in the wide range irradiation process, the wide range transmission window 6a faces the X-ray source 2 by the irradiation range changing mechanism 5, and the optical axis XC of the primary X-ray X1 emitted through the emission window is the central axis of the wide range transmission window 6a. Move the collimator 6 so as to be coaxial with The central axis of the detector 3 is set to intersect the optical axis XC of the primary X-ray X1 at a right angle.

この状態で、X線源2から一次X線X1が出射されると、一次X線X1が広範囲用透過窓6aを通して第1の壁面4a全体に広い立体角を持って放射され、試料容器4内の試料S全体に照射される。特に、米粒などの軽元素を主成分とする試料Sでは、一次X線X1が内部深くまで透過され試料Sの内部全体に着目元素を含めて励起させて、蛍光X線X2を発生させる。そのため、試料容器4内の試料S全体から発生した蛍光X線X2が第2の壁面4bに隣接した検出器3に入射可能である。このとき、検出器3は、高エネルギーの蛍光X線X2を試料容器4の奥側にある試料Sからも検出することができる。   In this state, when the primary X-ray X1 is emitted from the X-ray source 2, the primary X-ray X1 is emitted through the wide area transmission window 6a to the entire first wall 4a with a wide solid angle. The entire sample S is irradiated. In particular, in the sample S mainly composed of light elements such as rice grains, the primary X-ray X1 is transmitted deep to the inside, and the entire inside of the sample S is excited including the element of interest to generate the fluorescent X-ray X2. Therefore, fluorescent X-rays X2 generated from the entire sample S in the sample container 4 can be incident on the detector 3 adjacent to the second wall 4b. At this time, the detector 3 can also detect the high-energy fluorescent X-ray X 2 from the sample S at the back of the sample container 4.

次に、試料S中の元素のうち分析深さの浅い元素、特にAs,Pb,Hg,Brの少なくとも一つを着目元素として検出する際には、図1の(b)に示すように、部分照射工程により測定を行う。
すなわち、部分照射工程では、照射範囲変更機構5によりX線源2に部分用透過窓6bが対向し、一次X線X1の光軸XCに対して部分用透過窓6bの中心軸がずれるようにコリメータ6を移動させる。このとき、コリメータ6とX線源2との位置関係は、広範囲照射工程と同じであるが、試料容器4に対して一次X線X1の照射方向と照射の立体角とが変わり、一次X線X1の照射方向は、部分用透過窓6bによって第2の壁面4bの内面近傍に向けられると共に、照射径は広範囲照射工程よりも絞られる。
Next, among the elements in the sample S, when detecting at least one of elements having a shallow analysis depth, in particular, As, Pb, Hg, and Br, as elements of interest, as shown in (b) of FIG. The measurement is performed by the partial irradiation process.
That is, in the partial irradiation step, the partial transmission window 6b is opposed to the X-ray source 2 by the irradiation range changing mechanism 5, and the central axis of the partial transmission window 6b deviates with respect to the optical axis XC of the primary X-ray X1. The collimator 6 is moved. At this time, the positional relationship between the collimator 6 and the X-ray source 2 is the same as in the wide range irradiation process, but the irradiation direction of the primary X-ray X1 and the solid angle of irradiation change with respect to the sample container 4 The irradiation direction of X1 is directed to the vicinity of the inner surface of the second wall 4b by the partial transmission window 6b, and the diameter of the irradiation is narrowed more than in the wide-area irradiation process.

この状態で、X線源2から一次X線X1が出射窓を通して出射されると、一次X線X1が部分用透過窓6bを通して第1の壁面4aの第2の壁面4b寄りに狭い立体角を持って出射され、試料容器4内の第2の壁面4bから着目元素の分析深さに応じた領域A2にある試料Sに照射される。そのため、第2の壁面4bの内面近傍(領域A2)にある試料Sから発生した蛍光X線X2が、第2の壁面4bに隣接した検出器3に入射される。このとき、検出器3は、低エネルギーの蛍光X線X2を検出器3に近い試料Sから検出することができる。また、第2の壁面4bから離れた試料容器4の奥側には一次X線X1が照射されないので、その領域からの蛍光X線が発生せず、ノイズとなる高エネルギーの散乱X線を抑制することができる。   In this state, when the primary X-ray X1 is emitted from the X-ray source 2 through the emission window, the primary X-ray X1 passes through the partial transmission window 6b and a narrow solid angle near the second wall 4b of the first wall 4a. The sample S is emitted from the second wall 4b in the sample container 4 and is applied to the sample S in the area A2 according to the analysis depth of the element of interest. Therefore, the fluorescent X-rays X2 generated from the sample S in the vicinity (area A2) of the inner surface of the second wall 4b are incident on the detector 3 adjacent to the second wall 4b. At this time, the detector 3 can detect a low energy fluorescent X-ray X 2 from the sample S close to the detector 3. Moreover, since the primary X-ray X1 is not irradiated to the back side of the sample container 4 separated from the second wall surface 4b, the fluorescent X-ray from the area is not generated, and the high energy scattering X-ray becoming noise is suppressed. can do.

このように本実施形態の蛍光X線分析装置1では、照射範囲変更機構5が、少なくとも検出器3に対向する試料容器4の第2の壁面4b寄りの試料Sに一次X線X1を照射する部分照射と、部分照射よりも広い領域A1で試料容器4内の試料Sに一次X線X1を照射する広範囲照射とに変更可能であるので、着目元素の分析深さに応じて照射領域を広範囲照射と部分照射とに調整可能である。   As described above, in the fluorescent X-ray analyzer 1 of the present embodiment, the irradiation range changing mechanism 5 irradiates the primary X-ray X1 at least on the sample S near the second wall 4b of the sample container 4 facing the detector 3. Since the irradiation can be changed to partial irradiation and wide-area irradiation in which the sample S in the sample container 4 is irradiated with the primary X-ray X1 in the area A1 wider than the partial irradiation, the irradiation area can be made wide according to the analysis depth of the element of interest It can be adjusted to irradiation and partial irradiation.

すなわち、蛍光X線エネルギーが高い着目元素を測定するときは、その分析深さに合わせた広範囲照射で行い、高エネルギーの蛍光X線を試料容器4の奥側にある試料Sからも検出し、蛍光X線エネルギーが低い着目元素を測定するときは、分析深さが浅くなるので、それに合わせて試料容器4の検出器3寄りの試料Sに部分照射を行うことで、低エネルギーの蛍光X線X2を検出器3に近い試料Sから検出し、試料容器4の奥側にある試料Sからのノイズ成分となる散乱X線を抑制し、着目元素の蛍光X線X2を効率よく検出することができる。
このように、測定する元素の分析深さに合わせて照射領域を切り替えて一次X線X1のビームを照射することで、効率よく着目元素の蛍光X線X2を検出器3で効率的に検出することができる。
That is, when an element of interest having high fluorescence X-ray energy is measured, the irradiation is performed over a wide range according to the analysis depth, and high-energy fluorescence X-rays are also detected from the sample S at the back side of the sample container 4 When measuring the element of interest with low fluorescent X-ray energy, the analysis depth becomes shallow, so by performing partial irradiation on the sample S near the detector 3 of the sample container 4 accordingly, low-energy fluorescent X-ray Detecting X2 from the sample S near the detector 3 and suppressing scattered X-rays as noise components from the sample S on the far side of the sample container 4 to efficiently detect the fluorescent X-rays X2 of the target element it can.
As described above, by switching the irradiation area according to the analysis depth of the element to be measured and irradiating the beam of the primary X-ray X1, the fluorescent X-ray X2 of the target element is efficiently detected by the detector 3 be able to.

特に、照射範囲変更機構5が、試料S中の元素のうちCd,Sn,Sb,Ba等を検出する際に広範囲照射に切り替え、試料S中の元素のうちAs,Pb,Hg,Br等を検出する際に部分照射に切り替え可能であるので、Cd,Sn,Sb,Ba等と、As,Pb,Hg,Br等を同一の試料容器4で配置を変更することなく、感度良く測定することができる。   In particular, when the irradiation range changing mechanism 5 detects Cd, Sn, Sb, Ba, etc. among the elements in the sample S, the irradiation range switching mechanism 5 switches to wide-area irradiation, and among the elements in the sample S, As, Pb, Hg, Br, etc. Since partial irradiation can be switched in detection, Cd, Sn, Sb, Ba, etc. and As, Pb, Hg, Br, etc. can be measured with high sensitivity without changing the arrangement in the same sample container 4. Can.

このように照射範囲変更機構5が、蛍光X線X2のうち着目する元素の分析深さに応じて広範囲照射と部分照射との一次X線X1の照射領域を調整可能であるので、着目元素に適した照射範囲により、広範囲照射と部分照射とで高精度な分析が可能になる。
また、試料Sが、米粒,米粉,又は流動性の固体若しくは液体(例えば、お粥)である場合、米粒,米粉,又は流動性の固体若しくは液体に含まれる重金属のうち分析深さの異なる上記複数の元素を試料容器4及び配置を変更することなく、感度良く測定することができる。
As described above, since the irradiation range changing mechanism 5 can adjust the irradiation region of the primary X-ray X1 of the wide-area irradiation and the partial irradiation according to the analysis depth of the element of interest among the fluorescent X-rays X2, A suitable illumination range allows high accuracy analysis with a wide range of illumination and partial illumination.
In addition, when the sample S is rice grain, rice flour, or fluid solid or liquid (for example, rice bran), the heavy metals contained in rice grain, rice flour, or fluid solid or liquid have different analysis depths as described above. A plurality of elements can be measured with high sensitivity without changing the sample container 4 and the arrangement.

また、コリメータ6が、部分照射の際に検出器3に最も近い領域A2に一次X線X1を照射可能な部分用透過窓6bと、広範囲照射の際に部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射可能な広範囲用透過窓6aとを有しているので、コリメータ移動機構7でコリメータ6を移動させ、一次X線X1を通す透過窓として広範囲用透過窓6a又は部分用透過窓6bを選択することで、広範囲照射と部分照射とを容易に切り替えることができる。   In addition, a partial transmission window 6b capable of irradiating the primary X-ray X1 to the area A2 closest to the detector 3 at the time of partial irradiation, and the sample container 4 in a wider area than the partial irradiation at the time of wide area irradiation Since the sample S in the sample has the wide-area transmission window 6a capable of irradiating the primary X-ray X1, the collimator moving mechanism 7 moves the collimator 6 to transmit the primary X-ray X1. By selecting 6a or the partial transmission window 6b, it is possible to easily switch between wide-area irradiation and partial irradiation.

また、検出器3が、第2の壁面4bに隣接配置され、照射範囲変更機構5が、部分照射の際に、第2の壁面4bの内面近傍に一次X線X1を照射するので、第2の壁面4bの内面近傍にある試料Sから放射状に発生する蛍光X線X2を検出器3が効率的に測定することができる。
このように本実施形態の蛍光X線分析方法では、試料容器4内の試料Sのうち検出器3に最も近い領域A2に一次X線X1を照射する部分照射工程と、部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射する広範囲照射工程とを有し、部分照射工程と広範囲照射工程とを切り替えて分析を行うので、同一の試料容器4のまま、広範囲照射工程で分析深さの深い元素を感度良く測定することができると共に、部分照射工程で分析深さの浅い元素を感度良く測定することができる。
In addition, the detector 3 is disposed adjacent to the second wall 4b, and the irradiation range changing mechanism 5 irradiates the primary X-ray X1 to the vicinity of the inner surface of the second wall 4b at the time of partial irradiation. The detector 3 can efficiently measure the fluorescent X-rays X2 generated radially from the sample S near the inner surface of the wall surface 4b.
As described above, in the fluorescent X-ray analysis method of the present embodiment, the partial irradiation step of irradiating the primary X-ray X1 to the region A2 closest to the detector 3 among the samples S in the sample container 4 and the region wider than the partial irradiation Since the analysis is performed by switching the partial irradiation process and the wide area irradiation process by performing the wide area irradiation process of irradiating the sample S in the sample container 4 with the primary X-ray X1, the same sample container 4 remains as the wide area irradiation. Elements that are deep in analysis depth can be measured with high sensitivity in the process, and elements that are shallow in analysis depth can be measured with high sensitivity in the partial irradiation process.

次に、本発明に係る蛍光X線分析装置及び蛍光X線分析方法の第2実施形態について、図3を参照して以下に説明する。なお、以下の実施形態の説明において、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the fluorescent X-ray analyzer and the fluorescent X-ray analysis method according to the present invention will be described below with reference to FIG. In the following description of the embodiment, the same components as those described in the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、着目元素の分析深さに合わせた複数の透過窓6a〜6cを切り替える構成であるのに対し、第2実施形態の蛍光X線分析装置21では、図3に示すように、コリメータ26が透過窓として一つの広範囲用透過窓6aだけを有し、コリメータ移動機構25が、広範囲用透過窓6aの位置を変更して広範囲照射と部分照射との変更を行っている点である。   The second embodiment differs from the first embodiment in the configuration of switching the plurality of transmission windows 6a to 6c according to the analysis depth of the element of interest in the first embodiment, while the second embodiment is different from the first embodiment. In the fluorescent X-ray analyzer 21, as shown in FIG. 3, the collimator 26 has only one wide transmission window 6a as a transmission window, and the collimator moving mechanism 25 changes the position of the wide transmission window 6a. It is a point that changes between wide-area irradiation and partial irradiation are performed.

すなわち、第2実施形態では、コリメータ移動機構25が、広範囲照射の際に部分照射よりも広い領域で試料容器4内の試料Sに一次X線X1を照射可能な位置に透過窓6aを移動可能であると共に、部分照射の際に検出器3に近い試料容器4内の試料Sに広範囲照射よりも狭い範囲で一次X線X1を照射可能な位置に透過窓6aを移動可能である。   That is, in the second embodiment, the collimator moving mechanism 25 can move the transmission window 6a to a position where the sample S in the sample container 4 can be irradiated with the primary X-ray X1 in a region wider than the partial irradiation in wide area irradiation. In the partial irradiation, the transmission window 6a can be moved to a position where the sample S in the sample container 4 close to the detector 3 can be irradiated with the primary X-ray X1 in a narrower range than the wide area irradiation.

分析深さの深い元素を着目元素として広範囲照射を行う場合は、コリメータ移動機構25が、図3の(a)に示すように、広範囲用透過窓6aの中心軸がX線源2の光軸XCに一致するようにコリメータ26を移動させる。また、分析深さの浅い元素を着目元素として部分照射を行う場合は、コリメータ移動機構25が、図3の(b)に示すように、広範囲用透過窓6aの中心軸がX線源2の光軸XCからずれるように、図中の矢印Y方向にコリメータ26を移動させる。このとき、位置がずれた広範囲用透過窓6aによって一次X線X1の一部が遮断され、第2の壁面4bから離れた試料容器4の奥側にある試料Sには一次X線X1が照射されない。   When performing wide-area irradiation with an element of deep analysis depth as the element of interest, the collimator moving mechanism 25 is, as shown in FIG. 3A, the central axis of the wide-area transmission window 6a is the optical axis of the X-ray source 2. The collimator 26 is moved to match XC. When partial irradiation is performed using an element having a shallow analysis depth as the target element, the collimator moving mechanism 25 is configured such that the central axis of the wide-area transmission window 6a is X-ray source 2 as shown in FIG. The collimator 26 is moved in the arrow Y direction in the drawing so as to be offset from the optical axis XC. At this time, a part of the primary X-ray X1 is blocked by the wide-range transmission window 6a shifted in position, and the primary X-ray X1 irradiates the sample S on the back side of the sample container 4 away from the second wall 4b. I will not.

なお、この際、X線源2からの一次X線X1が試料容器4を通過しないで直接検出器3に入射しないように、X線源2と検出器3の間に障害板(図示略)を設けてもよい。
また、第2実施形態では、透過窓として一つの広範囲用透過窓6aだけを有したコリメータ26を用いているが、第1実施形態のように、複数の透過窓を有したコリメータを用い、複数の透過窓のうち広範囲用透過窓6aの位置を変更して広範囲照射だけでなく部分照射も行えるように設定しても構わない。
At this time, an obstacle plate (not shown) is provided between the X-ray source 2 and the detector 3 so that the primary X-ray X1 from the X-ray source 2 does not pass directly to the detector 3 without passing through the sample container 4 May be provided.
In the second embodiment, the collimator 26 having only one wide-range transmission window 6a is used as the transmission window. However, as in the first embodiment, a plurality of collimators having a plurality of transmission windows is used. Among the transmission windows, the position of the wide-range transmission window 6a may be changed so that not only the wide-range irradiation but also the partial irradiation can be performed.

このように第2実施形態の蛍光X線分析装置21では、コリメータ移動機構25が、広範囲照射の際に部分照射よりも広い領域で一次X線X1を照射可能な位置に透過窓(広範囲用透過窓6a)を移動可能であると共に、部分照射の際に検出器3に近く広範囲照射よりも狭い範囲で一次X線X1を照射可能な位置に透過窓(広範囲用透過窓6a)を移動可能であるので、透過窓の位置を調整するだけで、広範囲照射と部分照射とを容易に行うことが容易にできる。   As described above, in the fluorescent X-ray analyzer 21 according to the second embodiment, the collimator moving mechanism 25 transmits the primary X-ray X1 at a position wider than the partial irradiation in the wide area irradiation. It is possible to move the window 6a) and move the transmission window (wide-area transmission window 6a) to a position where it can irradiate the primary X-ray X1 in a narrower range closer to the detector 3 than the wide-area illumination Because of this, it is easy to easily perform wide-area illumination and partial illumination simply by adjusting the position of the transmission window.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.

例えば、上記各実施形態では、照射範囲変更機構として透過窓を有するコリメータを用いたが、照射範囲の異なるキャピラリを用いて照射範囲を変更可能にした照射範囲変更機構を採用しても構わない。例えば、着目元素が分析深さの深い元素の場合は、出射側で一次X線が平行になるような平行型ポリキャピラリを用い、分析深さの浅い元素の場合は、出射側で一次X線が試料容器の検出器に対向する壁面に向けて集束する集束型ポリキャピラリを用いてもよい。   For example, in each of the above embodiments, a collimator having a transmission window is used as the irradiation range changing mechanism, but an irradiation range changing mechanism may be adopted in which the irradiation range can be changed using capillaries having different irradiation ranges. For example, if the element of interest is an element with a deep analysis depth, use a parallel polycapillary such that the primary X-rays are parallel on the emission side, and if the element has a shallow analysis depth, the primary X-ray at the emission side A focusing polycapillary may be used which focuses towards the wall of the sample container facing the detector.

また、上記実施形態では、波高分析器でX線のエネルギーと強度とを測定するエネルギー分散方式の蛍光X線分析装置に適用したが、蛍光X線を分光結晶により分光し、X線の波長と強度を測定する波長分散方式の蛍光X線分析装置に適用しても構わない。   In the above embodiment, the present invention is applied to an energy dispersive fluorescent X-ray analyzer that measures the energy and intensity of X-rays with a pulse height analyzer, but fluorescent X-rays are dispersed by a dispersive crystal to obtain X-ray wavelengths and The present invention may be applied to a wavelength dispersive fluorescent X-ray analyzer that measures intensity.

1,21…蛍光X線分析装置、2…X線源、3…検出器、4…試料容器、4a…第1の壁面、4b…第2の壁面、5,25…照射範囲変更機構、6,26…コリメータ、6a…広範囲用透過窓、6b…部分用透過窓、7…コリメータ移動機構、S…試料、X1…一次X線、X2…蛍光X線   1, 21: X-ray fluorescence analyzer, 2: X-ray source, 3: detector, 4: sample container, 4a: first wall, 4b: second wall, 5, 25: irradiation range changing mechanism, 6 , 26: collimator, 6a: transmission window for wide area, 6b: transmission window for part, 7: collimator movement mechanism, S: sample, X1: primary X-ray, X2: fluorescent X-ray

Claims (8)

試料を収納可能な試料容器と、
前記試料に対して一次X線を照射するX線源と、
前記一次X線を照射された前記試料から発生する蛍光X線を検出する検出器と、
前記試料容器内の前記試料に対して前記一次X線を照射する範囲を変更可能な照射範囲変更機構とを備え、
前記照射範囲変更機構が、少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射と、
前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射とに変更可能であることを特徴とする蛍光X線分析装置。
A sample container capable of storing a sample;
An X-ray source for irradiating the sample with primary X-rays;
A detector for detecting fluorescent X-rays generated from the sample irradiated with the primary X-rays;
And an irradiation range changing mechanism capable of changing a range in which the primary X-ray is irradiated to the sample in the sample container.
Partial irradiation in which the irradiation range change mechanism irradiates the primary X-ray to the sample near the wall surface of the sample container facing at least the detector;
A fluorescent X-ray analyzer characterized in that it can be changed to wide-area irradiation in which the sample in the sample container is irradiated with the primary X-ray in a region wider than the partial irradiation.
請求項1に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な複数の透過窓を有するコリメータと、
複数の前記透過窓のうち任意の一つに前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、
前記コリメータが、前記透過窓として、前記部分照射の際に前記検出器に近い領域に前記一次X線を照射可能な部分用透過窓と、
前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な広範囲用透過窓とを有していることを特徴とする蛍光X線分析装置。
In the fluorescent X-ray analyzer according to claim 1,
A collimator having a plurality of transmission windows disposed between the X-ray source and the sample container and capable of transmitting the primary X-rays;
A collimator moving mechanism capable of moving the collimator relative to the X-ray source so that the primary X-ray can be transmitted to any one of the plurality of transmission windows;
A partial transmission window capable of irradiating the primary X-ray in a region near the detector at the partial irradiation as the transmission window;
A fluorescent X-ray analyzer characterized in that it has a wide-area transmission window capable of irradiating the sample in the sample container with the primary X-ray in a region wider than the partial irradiation during the wide-area irradiation. .
請求項1に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記X線源と前記試料容器との間に配され前記一次X線を透過可能な透過窓を有するコリメータと、
前記一次X線を透過可能に前記コリメータを前記X線源に対して相対的に移動可能なコリメータ移動機構とを備え、
前記コリメータ移動機構が、前記広範囲照射の際に前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射可能な位置に前記透過窓を移動可能であると共に、
前記部分照射の際に前記検出器に近い前記試料容器内の前記試料に前記広範囲照射よりも狭い範囲で前記一次X線を照射可能な位置に前記透過窓を移動可能であることを特徴とする蛍光X線分析装置。
In the fluorescent X-ray analyzer according to claim 1,
A collimator having a transmission window disposed between the X-ray source and the sample container and capable of transmitting the primary X-ray;
A collimator moving mechanism capable of moving the collimator relative to the X-ray source so as to be capable of transmitting the primary X-ray;
The collimator moving mechanism is capable of moving the transmission window to a position where the sample in the sample container can be irradiated with the primary X-ray in a region wider than the partial irradiation during the wide-area irradiation.
It is characterized in that the transmission window can be moved to a position where the primary X-ray can be irradiated to the sample in the sample container near the detector in the partial irradiation in a narrower range than the wide area irradiation. X-ray fluorescence analyzer.
請求項1から3のいずれか一項に記載の蛍光X線分析装置において、
前記照射範囲変更機構が、前記蛍光X線のうち着目する元素の分析深さに応じて前記広範囲照射と前記部分照射との前記一次X線の照射領域を調整可能であることを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 3
The fluorescence range change mechanism is characterized in that the irradiation area of the primary X-ray of the wide-area irradiation and the partial irradiation can be adjusted according to the analysis depth of the element of interest among the fluorescent X-rays X-ray analyzer.
請求項1から4のいずれか一項に記載の蛍光X線分析装置において、
前記試料容器が、前記一次X線が透過可能な第1の壁面と前記蛍光X線が透過可能な第2の壁面とを有し、
前記X線源が、前記第1の壁面に隣接配置されていると共に、前記検出器が、前記第2の壁面に隣接配置され、
前記照射範囲変更機構が、前記部分照射の際に、前記第2の壁面の内面近傍に前記一次X線を照射することを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 4.
The sample container has a first wall through which the primary X-ray can be transmitted and a second wall through which the fluorescent X-ray can be transmitted.
The X-ray source is disposed adjacent to the first wall, and the detector is disposed adjacent to the second wall;
The fluorescent X-ray analyzer according to claim 1, wherein the irradiation range changing mechanism irradiates the primary X-ray near the inner surface of the second wall at the time of the partial irradiation.
請求項1から5のいずれか一項に記載の蛍光X線分析装置において、
前記試料が、軽元素を主成分とし、
前記照射範囲変更機構が、前記試料中の元素のうちCd,Sn,Sb,Baの少なくとも一つを検出する際に前記広範囲照射に切り替え、前記試料中の元素のうちAs,Pb,Hg,Brの少なくとも一つを検出する際に前記部分照射に切り替え可能であることを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 5,
The sample is mainly composed of a light element,
When the irradiation range changing mechanism detects at least one of Cd, Sn, Sb, and Ba among the elements in the sample, it switches to the wide-area irradiation, and among the elements in the sample, As, Pb, Hg, and Br The X-ray fluorescence analyzer according to claim 1, wherein the partial irradiation can be switched when detecting at least one of the two.
請求項1から6のいずれか一項に記載の蛍光X線分析装置において、
前記試料が、米粒,米粉,又は流動性の固体若しくは液体であることを特徴とする蛍光X線分析装置。
The fluorescent X-ray analyzer according to any one of claims 1 to 6
The fluorescent X-ray analyzer according to claim 1, wherein the sample is rice grain, rice flour, or a fluid solid or liquid.
試料容器内の試料に対してX線源から一次X線を照射し前記試料から発生する蛍光X線を検出器で検出する蛍光X線分析方法であって、
少なくとも前記検出器に対向する前記試料容器の壁面寄りの前記試料に前記一次X線を照射する部分照射工程と、
前記部分照射よりも広い領域で前記試料容器内の前記試料に前記一次X線を照射する広範囲照射工程とを有していることを特徴とする蛍光X線分析方法。
A fluorescent X-ray analysis method comprising: irradiating a primary X-ray from an X-ray source to a sample in a sample container and detecting the fluorescent X-ray generated from the sample with a detector;
Partial irradiation of irradiating the primary X-ray onto the sample at least near the wall surface of the sample container facing the detector;
A wide-area irradiation step of irradiating the sample in the sample container with the primary X-ray in a region wider than the partial irradiation;
JP2017170813A 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method Active JP6994755B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017170813A JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method
KR1020180096739A KR102517494B1 (en) 2017-09-06 2018-08-20 Fluorescent x-ray analyzer and fluorescent x-ray analysis method
CN201811024591.0A CN109459458B (en) 2017-09-06 2018-09-04 Fluorescent X-ray analysis device and fluorescent X-ray analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170813A JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method

Publications (2)

Publication Number Publication Date
JP2019045402A true JP2019045402A (en) 2019-03-22
JP6994755B2 JP6994755B2 (en) 2022-01-14

Family

ID=65606497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170813A Active JP6994755B2 (en) 2017-09-06 2017-09-06 Fluorescent X-ray analyzer and fluorescent X-ray analysis method

Country Status (3)

Country Link
JP (1) JP6994755B2 (en)
KR (1) KR102517494B1 (en)
CN (1) CN109459458B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992514B (en) * 2020-08-06 2022-03-25 北京霍里思特科技有限公司 Double-light-source signal acquisition unit and signal acquisition method of wide intelligent sorting equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078310A (en) * 1983-10-05 1985-05-04 Seiko Instr & Electronics Ltd Fluorescent x-ray film thickness gage
WO2006049051A1 (en) * 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JP2007225469A (en) * 2006-02-24 2007-09-06 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007292728A (en) * 2006-03-30 2007-11-08 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007315927A (en) * 2006-05-26 2007-12-06 Sii Nanotechnology Inc X-ray fluorescence analyzer
US20100278303A1 (en) * 2009-04-30 2010-11-04 Lee Grodzins Localization of an Element of Interest by XRF Analysis of Different Inspection Volumes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006003109A (en) * 2004-06-15 2006-01-05 Koichi Tsuji Fluorescent x-ray analyzer
JP4937670B2 (en) * 2006-03-30 2012-05-23 能美防災株式会社 Equal differential pressure control pilot valve and foam mixing apparatus having the same
JP2008203245A (en) * 2007-01-23 2008-09-04 Sii Nanotechnology Inc X-ray analysis apparatus and x-ray analysis method
JP2009002795A (en) * 2007-06-21 2009-01-08 Shimadzu Corp Fluorescent x-ray analyzer
JP5269521B2 (en) * 2008-08-22 2013-08-21 株式会社日立ハイテクサイエンス X-ray analyzer and X-ray analysis method
JP2014196925A (en) * 2013-03-29 2014-10-16 株式会社島津製作所 Fluorescent x-ray analyzer, and depth direction analysis method used for the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078310A (en) * 1983-10-05 1985-05-04 Seiko Instr & Electronics Ltd Fluorescent x-ray film thickness gage
WO2006049051A1 (en) * 2004-11-08 2006-05-11 Sii Nanotechnology Inc. Fluorescent x-ray analy sis device
JP2007225469A (en) * 2006-02-24 2007-09-06 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007292728A (en) * 2006-03-30 2007-11-08 Sii Nanotechnology Inc Fluorescent x-ray analyzer
JP2007315927A (en) * 2006-05-26 2007-12-06 Sii Nanotechnology Inc X-ray fluorescence analyzer
US20100278303A1 (en) * 2009-04-30 2010-11-04 Lee Grodzins Localization of an Element of Interest by XRF Analysis of Different Inspection Volumes

Also Published As

Publication number Publication date
JP6994755B2 (en) 2022-01-14
KR20190027316A (en) 2019-03-14
KR102517494B1 (en) 2023-04-03
CN109459458A (en) 2019-03-12
CN109459458B (en) 2023-07-04

Similar Documents

Publication Publication Date Title
US10634628B2 (en) X-ray fluorescence apparatus for contamination monitoring
US10514346B2 (en) X-ray fluorescence spectrometer
JP4874118B2 (en) X-ray fluorescence analyzer
RU2499252C2 (en) Apparatus and method for x-ray fluorescence analysis of mineral sample
JP4854005B2 (en) X-ray fluorescence analyzer
JP2008203245A (en) X-ray analysis apparatus and x-ray analysis method
Yao et al. Element Analysis Based on Energy‐Dispersive X‐Ray Fluorescence
JP2007218683A (en) Analysis method and analyzer for bromine compound
JP6851107B2 (en) X-ray analyzer
Szwedowski-Rammert et al. Laboratory based GIXRF and GEXRF spectrometers for multilayer structure investigations
JP6026936B2 (en) Foreign object detection device
KR20160067527A (en) Apparatus and method for fine pattern measuring Micro-XRF
KR100862332B1 (en) A X-ray Fluorescence Spectrometer
JP2018502307A (en) Three-dimensional scanning method and apparatus using fluorescence induced by electromagnetic radiation
JP6994755B2 (en) Fluorescent X-ray analyzer and fluorescent X-ray analysis method
US20230236143A1 (en) X-ray analysis system and method with multi-source design
JP2012150026A (en) Quantitative analysis method by element and quantitative analyzer by element by x-ray absorption edge method
CN115793031A (en) Beam limiting adjusting device for X-ray machine energy spectrum measurement
JP2014196925A (en) Fluorescent x-ray analyzer, and depth direction analysis method used for the same
WO2018100873A1 (en) X-ray fluorescence analyzer
US20240044821A1 (en) Combined xrf analysis device
JP6081260B2 (en) X-ray fluorescence analyzer
CN220188400U (en) X-ray diffraction and X-ray fluorescence spectrum synchronous combination system and device
KR101769709B1 (en) Method for aligning for spectrum module of wavelength dispersive x-ray fluorescence analyzer
CN116223547A (en) X-ray diffraction and X-ray fluorescence spectrum synchronous combination system and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6994755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150