JP2019045396A - Raman spectrometry device and method for raman spectrometry - Google Patents

Raman spectrometry device and method for raman spectrometry Download PDF

Info

Publication number
JP2019045396A
JP2019045396A JP2017170631A JP2017170631A JP2019045396A JP 2019045396 A JP2019045396 A JP 2019045396A JP 2017170631 A JP2017170631 A JP 2017170631A JP 2017170631 A JP2017170631 A JP 2017170631A JP 2019045396 A JP2019045396 A JP 2019045396A
Authority
JP
Japan
Prior art keywords
light
raman
excitation
monochromatic
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017170631A
Other languages
Japanese (ja)
Inventor
本間 敬之
Noriyuki Honma
敬之 本間
雅広 柳沢
Masahiro Yanagisawa
雅広 柳沢
美紀子 齋藤
Mikiko Saito
美紀子 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Original Assignee
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University filed Critical Waseda University
Priority to JP2017170631A priority Critical patent/JP2019045396A/en
Publication of JP2019045396A publication Critical patent/JP2019045396A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a Raman spectrometry device and a method for Raman spectrometry that can measure the shape of an inspection target object and can conduct Raman spectrometry at the same time.SOLUTION: The present invention relates to a Raman spectrometry device 1 for conducting Raman spectrometry based on a Raman scattered light 2c generated in an inspection target object 8, and the device 1 includes: a light emission unit for emitting an excitation light 2a which generates a Raman scattered light 2c in the inspection target object 8 and at least one single-color light 6a; a spectroscope 10 for dividing the Raman scattered light 2c generated in the inspection target object 8 and reflected light generated in the inspection target object 8 by single-color lights 3a, 4a, and 5a (single-color light 6a); and an optical system 7 for guiding the excitation light 2a and the single-color light 6a to the inspection target body 8 and guiding the Raman scattered light 2c and the reflected light 6b to the spectroscope 10. The device 1 measures the shape of the inspection target body 8 based on the intensity of the reflected light 6b.SELECTED DRAWING: Figure 1

Description

本発明は、ラマン分光測定装置及びラマン分光測定方法に関する。   The present invention relates to a Raman spectrometer and a Raman spectrometer.

ラマン分光法(ラマン分光測定)は、励起光を被検査体に照射し、励起光が照射された箇所から生じるラマン散乱光のスペクトルが、被検査体中に存在する化学種や分子によって異なるのを利用して、被検査体の化学構造を解析する手法である。このようなラマン分光法は、分子・結晶構造の精密解析方法として知られている(例えば、特許文献1参照)。   In Raman spectroscopy (Raman spectroscopy), the excitation light is irradiated to the test object, and the spectrum of Raman scattered light generated from the place where the excitation light is irradiated differs depending on the chemical species or molecules present in the test object. The method is used to analyze the chemical structure of the test object using Such Raman spectroscopy is known as a method for precise analysis of molecular and crystal structure (see, for example, Patent Document 1).

特開2006−214900号公報Unexamined-Japanese-Patent No. 2006-214900

しかしながら、ラマン分光測定では、被検査体の表面形状や厚さなどの形状を測定できない。そのため、従来は、被検査体の表面形状と化学構造とを分析する場合、ラマン分光測定の前か後に、被検査体の表面形状を測定する必要があった。特に、被検査体が微小な場合や表面形状が変わりやすい場合などでは、被検査体の表面形状の測定結果とラマン分光測定の結果とが対応しない場合もあり、被検査体の表面形状や厚さなどの形状の測定とラマン分光測定とを同時に行うことが求められている。   However, in Raman spectroscopy measurement, it is not possible to measure the shape such as the surface shape and thickness of the object to be inspected. Therefore, conventionally, when analyzing the surface shape and chemical structure of the test object, it has been necessary to measure the surface shape of the test object before or after the Raman spectroscopy measurement. In particular, when the object to be inspected is minute or the surface shape is easily changed, the measurement result of the surface shape of the object to be inspected may not correspond to the result of Raman spectroscopy, and the surface shape or thickness of the object to be inspected It is required to simultaneously measure the shape such as height and the Raman spectroscopy.

そこで、本発明は、上記のような問題に鑑みてなされたものであり、被検査体の形状の測定とラマン分光測定を同時にできるラマン分光測定装置及びラマン分光測定方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a Raman spectroscopy measuring apparatus and a Raman spectroscopy measuring method capable of simultaneously measuring the shape of a test object and Raman spectroscopy. Do.

本発明によるラマン分光測定装置は、被検査体で生じたラマン散乱光に基づいてラマン分光測定するラマン分光測定装置であって、前記被検査体に前記ラマン散乱光を生じさせる励起光と、少なくとも1つ以上の単色光とを出射する光出射部と、前記被検査体で生じた前記ラマン散乱光と、前記単色光によって前記被検査体で生じた反射光とを分光する分光器と、前記励起光と前記単色光とを前記被検査体に導き、前記ラマン散乱光と前記反射光とを前記分光器へと導く光学系とを備え、前記反射光の強度に基づいて前記被検査体の形状を測定する。   A Raman spectroscopy measuring device according to the present invention is a Raman spectroscopy measuring device that performs Raman spectroscopy measurement based on Raman scattering light generated in a test object, and at least excitation light for causing the Raman scattering light in the test object A light emitting unit that emits one or more monochromatic lights; a spectroscope that disperses the Raman scattered light generated in the test object; and reflected light generated in the test object by the monochromatic light; The optical system includes an optical system for guiding excitation light and the monochromatic light to the test object and guiding the Raman scattered light and the reflected light to the spectroscope, and based on the intensity of the reflected light, Measure the shape.

本発明によるラマン分光測定方法は、被検査体で生じたラマン散乱光に基づいてラマン分光測定するラマン分光測定方法であって、前記被検査体に前記ラマン散乱光を生じさせる励起光と、少なくとも1つ以上の単色光とを、前記被検査体に照射する照射工程と、前記ラマン散乱光と、前記単色光によって前記被検査体で生じた反射光とを分光する分光工程と、前記反射光の強度に基づいて前記被検査体の形状を測定する測定工程とを有する。   The Raman spectroscopy measurement method according to the present invention is a Raman spectroscopy measurement method of performing Raman spectroscopy measurement based on Raman scattering light generated in a test object, and at least excitation light for causing the Raman scattering light in the test object Irradiating the test object with one or more monochromatic light, dispersing the Raman scattered light, and separating the reflected light generated by the monochromatic light from the test object, and the reflected light And measuring the shape of the test object based on the strength of

本発明によれば、被検査体で生じたラマン散乱光と反射光とを分光し、ラマン散乱光に基づいてラマン分光測定すると共に、被検査体で生じた反射光の強度に基づいて被検査体の形状を測定するので、被検査体の形状の測定とラマン分光測定を同時にできる。   According to the present invention, the Raman scattered light and the reflected light generated in the inspection object are separated, and the Raman spectroscopic measurement is performed based on the Raman scattered light, and the inspection is performed based on the intensity of the reflected light generated in the inspection object Since the shape of the body is measured, measurement of the shape of the test object and Raman spectroscopy can be performed simultaneously.

第1実施形態のラマン分光測定装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the Raman spectroscopy measuring apparatus of 1st Embodiment. ラマン分光測定の結果を示すグラフである。It is a graph which shows the result of a Raman spectroscopy measurement. 反射光の強度に基づく表面形状の測定の原理を示す図である。It is a figure which shows the principle of the measurement of surface shape based on the intensity | strength of reflected light. 図4Aはプラズモンセンサと試料の隙間を測定する原理を説明する図であり、図4Bは、干渉縞を撮像した画像である。FIG. 4A is a view for explaining the principle of measuring the gap between the plasmon sensor and the sample, and FIG. 4B is an image obtained by imaging interference fringes. 他の実施形態のラマン分光測定装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the Raman spectroscopy measuring apparatus of other embodiment. 図6Aは、焦点位置が薄膜表面にあるときの反射光を示す図であり、図6Bは、焦点位置が金属基板表面にあるときの反射光を示す図であり、図6Cは、焦点位置が金属基板中にあるときの反射光を示す図である。FIG. 6A shows reflected light when the focal position is on the thin film surface, FIG. 6B shows reflected light when the focal position is on the metal substrate surface, and FIG. 6C shows the focal position It is a figure which shows reflected light when it exists in a metal substrate. 図7Aは、第1実施形態のノッチフィルタの配置を示す図であり、図7Bは、他の実施形態のノッチフィルタの配置を示す図であり、図7Cはノッチフィルタの傾きとノッチフィルタからの出射光の強度の関係を表すグラフである。FIG. 7A is a diagram showing the arrangement of notch filters of the first embodiment, FIG. 7B is a diagram showing the arrangement of notch filters of another embodiment, and FIG. 7C is the inclination of notch filters and the notch filter It is a graph showing the relation of intensity of outgoing radiation light. 図8Aは、白色光を光源としてシリコン基板の摩耗面をCCDカメラで撮像した画像であり、図8Bは、447nmのレーザ光を単色光としてシリコン基板の摩耗面をCCDカメラで撮像した画像である。FIG. 8A is an image obtained by imaging a worn surface of a silicon substrate with white light as a light source with a CCD camera, and FIG. 8B is an image obtained by imaging a worn surface of a silicon substrate with a 447 nm laser light as monochromatic light with a CCD camera. . 図9Aは、被検査体の構造を示す図であり、図9Bは、DLCのラマン散乱光像であり、図9Cは、DLCの反射光像である。FIG. 9A is a view showing the structure of the inspection object, FIG. 9B is a Raman scattered light image of DLC, and FIG. 9C is a reflected light image of DLC. 図10Aは、被検査体の構造を示す図であり、図10Bは、DLCの膜厚の測定結果を示すグラフである。FIG. 10A is a diagram showing the structure of the test object, and FIG. 10B is a graph showing the measurement results of the film thickness of DLC.

(1)第1実施形態のラマン分光測定装置の全体構成
図1に示すように、本発明の第1実施形態のラマン分光測定装置1は、励起光源2及び単色光源6でなる光出射部と、光学系7と、第1ノッチフィルタ9と、分光器10と、第2ノッチフィルタ14と、筐体16と、撮像装置としてのCCD18と、被検査体8を載置するステージ19と、モニタ22とを備えている。ステージ19は、ステージ19に接続された制御装置20からの制御信号によりステージ19の位置を面内に動かすことで載置した被検査体8を移動させ、被検査体8の測定位置を変えることができる。また、ステージ19の位置を垂直方向に動かすことで載置した被検査体8を深さ方向に移動させ、後述する対物レンズ11からの励起光2a及び単色光6aの被検査体8に対する焦点位置を変えることができる。本実施形態では、被検査体8として、Fe基板上に形成されたダイアモンドライクカーボン(以下、DLCという)薄膜試料を用いている。
(1) Overall Configuration of Raman Spectrometer According to First Embodiment As shown in FIG. 1, a Raman spectrometer 1 according to a first embodiment of the present invention includes a light emitting portion comprising an excitation light source 2 and a monochromatic light source 6 , Optical system 7, first notch filter 9, spectroscope 10, second notch filter 14, housing 16, CCD 18 as an imaging device, stage 19 on which inspection object 8 is placed, monitor It has 22 and. The stage 19 moves the test object 8 placed by moving the position of the stage 19 in the plane according to a control signal from the control device 20 connected to the stage 19 to change the measurement position of the test object 8 Can. Further, the test object 8 placed is moved in the depth direction by moving the position of the stage 19 in the vertical direction, and the focal position of the excitation light 2a and the monochromatic light 6a from the objective lens 11 described later with respect to the test object 8 Can change. In the present embodiment, a diamond-like carbon (hereinafter referred to as DLC) thin film sample formed on an Fe substrate is used as the inspection object 8.

ステージ19の上部には筐体16が配置されており、筐体16に光学系7が設置されている。光学系7は、対物レンズ11と、ビームスプリッタ12と、ハーフミラー13とを備えている。対物レンズ11は、被検査体8と向かい合うように、筐体16の外壁に設けられている。筐体16には、対物レンズ11と被検査体8との距離を調節する対物レンズ11の位置調整機能が設けられており、対物レンズ11の焦点位置を調整できるようになっている。通常は、被検査体8の表面に焦点位置がくるように調整する。ハーフミラー13とビームスプリッタ12とは、対物レンズ11と直線状に配置されており、対物レンズ11を透過した光がビームスプリッタ12、ハーフミラー13をこの順に透過していく。   A housing 16 is disposed above the stage 19, and an optical system 7 is installed in the housing 16. The optical system 7 includes an objective lens 11, a beam splitter 12, and a half mirror 13. The objective lens 11 is provided on the outer wall of the housing 16 so as to face the test object 8. The housing 16 is provided with a position adjusting function of the objective lens 11 for adjusting the distance between the objective lens 11 and the inspection object 8 so that the focal position of the objective lens 11 can be adjusted. Usually, the focal position is adjusted to be on the surface of the object to be inspected 8. The half mirror 13 and the beam splitter 12 are disposed in line with the objective lens 11, and the light transmitted through the objective lens 11 passes through the beam splitter 12 and the half mirror 13 in this order.

筐体16の上面に設けられた窓部27bには、第2ノッチフィルタ14を介してCCDカメラ18が接続されている。ハーフミラー13を透過した光が第2ノッチフィルタ14を通過してCCDカメラ18のCCDに到達でき、CCDカメラ18は、被検査体8表面の画像を撮像できる。CCDカメラ18にはモニタ22が接続されており、モニタ22は、CCDカメラ18が撮像した被検査体8表面の画像を表示できる。なお、CCDカメラ18の撮像領域は、対物レンズ11の倍率を変えることで、適宜設定できる。また、本実施形態では、ノッチフィルタとして、例えばエドモンド・オプティクス製OD6ノッチフィルタ#67-110を用いている。CCDカメラ18は、動画も撮影することができ、表面形状の変化とラマン分光スペクトルの変化を同時に測定することもできる。   The CCD camera 18 is connected to the window 27 b provided on the top surface of the housing 16 via the second notch filter 14. The light transmitted through the half mirror 13 can pass through the second notch filter 14 to reach the CCD of the CCD camera 18, and the CCD camera 18 can capture an image of the surface of the inspection object 8. A monitor 22 is connected to the CCD camera 18, and the monitor 22 can display an image of the surface of the inspection object 8 captured by the CCD camera 18. The imaging area of the CCD camera 18 can be set as appropriate by changing the magnification of the objective lens 11. Further, in the present embodiment, for example, an OD 6 notch filter # 67-110 manufactured by Edmond Optics is used as the notch filter. The CCD camera 18 can also capture moving images, and can simultaneously measure changes in surface shape and changes in Raman spectrum.

励起光源2は、被検査体8にラマン散乱光を生じさせるための励起光2aを出射する光源であり、例えばレーザ光源などである。励起光2aの波長は、被検査体8に合わせて、すなわち、検出したい被検査体8の分子構造に合わせて適宜選択される。本実施形態では、被検査体8がDLCであるので、励起光源2として、532nmの波長のレーザ光(励起光2a)を出射するレーザ光源を用いている。励起光源2は、出射した励起光2aをミラー26で反射させ、筐体16の側面に設けられた窓部27cから筐体16内に設置されたハーフミラー13へと入射させる。励起光源2、ミラー26の位置は、励起光2aを光学系7のハーフミラー13に照射できるように配置されている。励起光2aは、ハーフミラー13においてビームスプリッタ12に向けて反射し、ビームスプリッタ12を透過して対物レンズ11に入射し、対物レンズ11によって被検査体8に集光される。   The excitation light source 2 is a light source that emits excitation light 2 a for causing the test object 8 to generate Raman scattered light, and is, for example, a laser light source or the like. The wavelength of the excitation light 2a is appropriately selected in accordance with the test object 8, that is, in accordance with the molecular structure of the test object 8 to be detected. In the present embodiment, since the inspection object 8 is DLC, a laser light source that emits a laser beam (excitation light 2a) having a wavelength of 532 nm is used as the excitation light source 2. The excitation light source 2 reflects the emitted excitation light 2 a by the mirror 26 and causes the excitation light 2 a to enter the half mirror 13 installed in the housing 16 from the window 27 c provided on the side surface of the housing 16. The positions of the excitation light source 2 and the mirror 26 are arranged so that the excitation light 2 a can be irradiated to the half mirror 13 of the optical system 7. The excitation light 2 a is reflected by the half mirror 13 toward the beam splitter 12, passes through the beam splitter 12, is incident on the objective lens 11, and is focused on the inspection object 8 by the objective lens 11.

本実施形態の単色光源6は、波長の異なるレーザ光を出射する3つのレーザ光源3、4、5でなる。レーザ光源3は、単色光3aとして波長が676nmのレーザ光を出射し、レーザ光源4は、単色光4aとして波長が657nmのレーザ光を出射し、レーザ光源5は、単色光5aとして波長が447nmのレーザ光を出射する。単色光3a、4a、5aの波長は、励起光2a波長とDLCのラマン散乱光の波長と異なるように選択している。   The monochromatic light source 6 of the present embodiment is composed of three laser light sources 3, 4 and 5 that emit laser light of different wavelengths. The laser light source 3 emits laser light having a wavelength of 676 nm as monochromatic light 3a, the laser light source 4 emits laser light having a wavelength of 657 nm as monochromatic light 4a, and the laser light source 5 has a wavelength of 447 nm as monochromatic light 5a. Emits laser light. The wavelengths of the monochromatic light 3a, 4a, 5a are selected to be different from the wavelength of the excitation light 2a and the wavelength of the Raman scattered light of DLC.

単色光源6は、ミラー15a、15d、及び、ハーフミラー15b、15cでなるミラー群15とビームエキスパンダ24とを備えている。ミラー15aは、単色光5aをハーフミラー15bに反射し、単色光5aをハーフミラー15bに入射させる。ハーフミラー15bは、単色光4aをハーフミラー15cに反射すると共に、入射した単色光5aを透過し、単色光4a、5aをハーフミラー15cに入射させる。ハーフミラー15cは、単色光3aをミラー15dに反射すると共に、入射した単色光4a、5aを透過し、単色光3a、4a、5aをミラー15dに入射させる。ミラー15dは、単色光3a、4a、5aをビームエキスパンダ24に反射し、単色光3a、4a、5aをビームエキスパンダ24へ入射させる。なお制御装置20によりステージ19及び被検査体8を面内又は垂直方向にスキャンをする測定の場合は、ビームエキスパンダ24は用いない。   The monochromatic light source 6 includes a mirror group 15 including mirrors 15a and 15d, half mirrors 15b and 15c, and a beam expander 24. The mirror 15a reflects the monochromatic light 5a to the half mirror 15b, and makes the monochromatic light 5a enter the half mirror 15b. The half mirror 15b reflects the monochromatic light 4a to the half mirror 15c, transmits the incident monochromatic light 5a, and makes the monochromatic lights 4a and 5a enter the half mirror 15c. The half mirror 15c reflects the monochromatic light 3a to the mirror 15d, transmits the incident monochromatic lights 4a and 5a, and makes the monochromatic lights 3a, 4a and 5a enter the mirror 15d. The mirror 15 d reflects the monochromatic light 3 a, 4 a, 5 a to the beam expander 24, and causes the monochromatic light 3 a, 4 a, 5 a to enter the beam expander 24. In the case of measurement in which the stage 19 and the inspection object 8 are scanned in the plane or in the vertical direction by the controller 20, the beam expander 24 is not used.

単色光3a、4a、5aは、ハーフミラー15bで単色光5a、4aが合波され、ハーフミラー15cで合波された単色光5a、4aと、単色光3aとが合波される。以下では、合波された単色光3a、4a、5aをまとめて単色光6aと称して発明を説明する。なお、図1では、便宜上、単色光5a、4a、3aを別々の光として示している。   In the monochromatic light 3a, 4a, 5a, the monochromatic light 5a, 4a is multiplexed by the half mirror 15b, and the monochromatic light 5a, 4a multiplexed by the half mirror 15c and the monochromatic light 3a are multiplexed. In the following, the combined monochromatic light 3a, 4a, 5a will be collectively referred to as monochromatic light 6a to describe the invention. In FIG. 1, for convenience, the monochromatic lights 5a, 4a and 3a are shown as separate lights.

ビームエキスパンダ24は、倍率が5倍に設定されており、単色光6aのビーム径が拡大し、単色光6aを筐体16の側面に設けられた窓部27aから筐体16内に設置されたビームスプリッタ12に入射させる。単色光源6は、単色光6aをビームスプリッタ12に入射できるように、レーザ光源3、4、5、ミラー群15、及び、ビームエキスパンダ24の位置が調整されている。単色光6aは、ビームスプリッタ12で対物レンズ11に向けて反射され、対物レンズ11によって被検査体8に集光される。このように、光学系7によって、励起光2aと単色光6aとが被検査体8に導かれる。   The magnification of the beam expander 24 is set to five times, the beam diameter of the monochromatic light 6 a is expanded, and the monochromatic light 6 a is installed in the housing 16 from the window 27 a provided on the side surface of the housing 16. To the beam splitter 12. In the monochromatic light source 6, the positions of the laser light sources 3, 4, 5, the mirror group 15, and the beam expander 24 are adjusted so that the monochromatic light 6 a can be incident on the beam splitter 12. The monochromatic light 6 a is reflected by the beam splitter 12 toward the objective lens 11 and collected by the objective lens 11 onto the subject 8. Thus, the excitation light 2 a and the monochromatic light 6 a are guided to the inspection object 8 by the optical system 7.

単色光6aは、ビームエキスパンダ24によってビーム径が拡大されているので、被検査体8表面上で励起光2aよりも大きな領域に照射される。そのため、単色光6aを、CCDカメラ18を用いて被検査体8表面の画像を撮像するときの照明光として利用できる。   Since the beam diameter of the monochromatic light 6a is expanded by the beam expander 24, the monochromatic light 6a is irradiated on a region larger than the excitation light 2a on the surface of the inspection object 8. Therefore, the monochromatic light 6 a can be used as illumination light when capturing an image of the surface of the inspection object 8 using the CCD camera 18.

励起光2aが被検査体8に照射されると、ラマン効果によりラマン散乱光2cが生じる。同時に被検査体8表面で励起光2aが反射し、反射光(以下、励起反射光2bという)が生じる。また、単色光6aが被検査体8表面に照射されると、反射光6bが生じる。ラマン散乱光2c、励起反射光2b、及び、反射光6bとは対物レンズ11、ビームスプリッタ12を透過して、ハーフミラー13へと入射する。ハーフミラー13は、ラマン散乱光2c、励起反射光2b、及び、反射光6bの一部を窓部27b方向に透過させ、第2ノッチフィルタ14を介してCCDカメラ18へ入射させ、ラマン散乱光2c、励起反射光2b、及び、反射光6bの一部を窓部27c方向に反射し、第1ノッチフィルタ9を介して分光器10に入射させる。このように、光学系7によって、ラマン散乱光2cと反射光6bとが分光器10へ導かれる。   When the excitation light 2a is irradiated to the inspection object 8, the Raman scattered light 2c is generated by the Raman effect. At the same time, the excitation light 2a is reflected on the surface of the inspection object 8, and a reflected light (hereinafter referred to as the excitation reflected light 2b) is generated. Further, when the monochromatic light 6a is irradiated to the surface of the inspection object 8, the reflected light 6b is generated. The Raman scattered light 2 c, the excitation reflected light 2 b, and the reflected light 6 b pass through the objective lens 11 and the beam splitter 12 and enter the half mirror 13. The half mirror 13 transmits a part of the Raman scattered light 2c, the excitation reflected light 2b, and the reflected light 6b in the direction of the window 27b, and enters the CCD camera 18 through the second notch filter 14 so that the Raman scattered light 2c, the excitation reflection light 2b, and part of the reflection light 6b are reflected in the direction of the window 27c, and enter the spectroscope 10 through the first notch filter 9. Thus, the Raman scattered light 2 c and the reflected light 6 b are guided to the spectroscope 10 by the optical system 7.

第1ノッチフィルタ9、第2ノッチフィルタ14は、励起光2aと同じ波長の光、すなわち、励起反射光2bのみを減衰させるように阻止波長帯域が設定される。本実施形態では、523.5nm〜540.5nmに阻止波長帯域を設定している。第1ノッチフィルタ9、第2ノッチフィルタ14で、励起反射光2bが減衰され(減衰工程)、分光器10、CCDカメラ18には、第1ノッチフィルタ9、第2ノッチフィルタ14を通過したラマン散乱光2c及び反射光6bのみが入射する。分光器10は、ラマン散乱光2c、反射光6bを分光して、光の波長毎に光の強度を記録した分光スペクトルを生成し、分光スペクトルをパーソナルコンピュータなどの演算装置21に送出する。演算装置21は、分光スペクトルに基づいて、横軸にラマンシフト(波数,cm−1)の大きさ、縦軸に光の強度を示すグラフを作成し、当該グラフをラマン分光測定の結果として、モニタ22に出力する。 In the first notch filter 9 and the second notch filter 14, the blocking wavelength band is set so as to attenuate only the light of the same wavelength as the excitation light 2a, that is, the excitation reflection light 2b. In the present embodiment, the blocking wavelength band is set to 523.5 nm to 540.5 nm. The reflected excitation light 2b is attenuated by the first notch filter 9 and the second notch filter 14 (attenuation step), and the spectroscope 10 and the CCD camera 18 are transmitted through the first notch filter 9 and the second notch filter 14 Only the scattered light 2c and the reflected light 6b are incident. The spectroscope 10 disperses the Raman scattered light 2c and the reflected light 6b to generate a spectral spectrum in which the intensity of light is recorded for each wavelength of light, and sends the spectral spectrum to an arithmetic unit 21 such as a personal computer. The arithmetic unit 21 creates a graph showing the magnitude of Raman shift (wave number, cm −1 ) on the horizontal axis and the intensity of light on the vertical axis, based on the spectral spectrum, and uses the graph as a result of Raman spectroscopy measurement. It outputs to the monitor 22.

図2は、ラマン分光測定の結果を表す上述のグラフである。図2には、1500カイザー(cm−1)付近のDLCのラマン散乱光のピークと、3つの単色光3a、4a、5aの波数に現れた反射光6bのピークとが観察された。単色光6aは、被検査体8で反射するとき、周波数がシフトしないので、反射光6bのピークが、単色光6aに含まれる3つの単色光3a、4a、5aの波数に現れる。図2中に示す領域25は、第1ノッチフィルタ9、第2ノッチフィルタ14の阻止波長帯域に対応する領域であり、検出された光の強度が小さくなっている。 FIG. 2 is the above-mentioned graph representing the results of Raman spectroscopy. In FIG. 2, a peak of Raman scattered light of DLC near 1500 Kaiser (cm −1 ) and a peak of reflected light 6 b appearing at wave numbers of three monochromatic lights 3 a, 4 a and 5 a were observed. Since the monochromatic light 6a is not shifted in frequency when it is reflected by the inspection object 8, the peak of the reflected light 6b appears in the wave numbers of the three monochromatic lights 3a, 4a, 5a included in the monochromatic light 6a. An area 25 shown in FIG. 2 is an area corresponding to the blocking wavelength band of the first notch filter 9 and the second notch filter 14, and the intensity of the detected light is small.

また、本実施形態では、単色光6aの波長を励起光2aの波長と異なるように選択しているので、反射光6bが第1ノッチフィルタ9、第2ノッチフィルタ14で減衰されることがなく、反射光6bを検出できる。さらに本実施形態では、単色光6aの波長をDLCのラマン散乱光2cの波長と異なるように選択しているので、ラマン散乱光2cのピークと反射光6bのピークが図2に示すように重ならず、ラマン散乱光2cの強度を用いてより正確にDLCを分析することができる。加えて、ラマン散乱光2cと反射光6bのピークが重なっていないので、ラマン散乱光2cのピークと反射光6bのピークとを分離する処理をする必要がなく、より容易にラマン分光測定をすることができる。   Further, in the present embodiment, the wavelength of the monochromatic light 6a is selected to be different from the wavelength of the excitation light 2a, so the reflected light 6b is not attenuated by the first notch filter 9 and the second notch filter 14. , Reflected light 6b can be detected. Furthermore, in the present embodiment, the wavelength of the monochromatic light 6a is selected to be different from the wavelength of the Raman scattered light 2c of DLC, so the peak of the Raman scattered light 2c and the peak of the reflected light 6b are heavy as shown in FIG. In addition, the DLC can be more accurately analyzed using the intensity of the Raman scattered light 2c. In addition, since the peaks of the Raman scattered light 2c and the reflected light 6b do not overlap, it is not necessary to separate the peak of the Raman scattered light 2c and the peak of the reflected light 6b, and Raman spectroscopy can be performed more easily. be able to.

さらに、単色光6aの波長は、励起光2aの波数より大きい波数領域をストークス領域とし、励起光2aの波数より小さい波数領域をアンチストークス領域とすると、ストークス領域及びアンチストークス領域(すなわち、励起光2aの波長以外の波長)から選択するのがよい。また、単色光6aの波長は、ストークス領域の分析対象のピーク(解析に用いる波数(波長))と重ならない波数から選ぶのが良い。又は、高波数側領域(3500cm−1〜4000cm−1)では、被検査体8の物質を種々変更してもラマン散乱光(ストークス光)のピークが現れることが少なく、アンチストークス領域では、ラマン散乱光(アンチストークス光)のピークが小さく、アンチストークス光のピークをラマン分光測定に用いることが少ないので、単色光6aの波長は、この波数領域から単色光6aの波数を選択するのがよい。 Further, assuming that the wavelength of the monochromatic light 6a is a wave number region larger than the wave number of the excitation light 2a as a Stokes region and the wave number region smaller than the wave number of the excitation light 2a is an anti-Stokes region, the Stokes region and the anti-Stokes region (ie, excitation light It is preferable to select from wavelengths other than the wavelength 2a. Further, the wavelength of the monochromatic light 6a is preferably selected from the wave number which does not overlap with the peak to be analyzed in the Stokes region (wave number (wavelength) used for analysis). Or, in the high wave number region (3500 cm -1 to 4000 cm -1 ), the peak of Raman scattered light (Stokes light) hardly appears even if the substance of the object 8 is changed variously, and in the anti-Stokes region Since the peak of scattered light (anti-Stokes light) is small and the peak of anti-Stokes light is rarely used for Raman spectroscopy, it is better to select the wave number of monochromatic light 6 a from this wave number region .

また、単色光6aの波長は、アンチストークス領域の波数から選択するのがより望ましい。図2に示すように、アンチストークス領域のバックグラウンド成分がストークス領域のバックグラウンド成分よりも小さいため、後述する反射光6bの強度を用いた表面形状測定などを、バックグラウンド成分の影響を受けずに、より精度よく行うことができるからである。   Further, the wavelength of the monochromatic light 6a is more preferably selected from the wave number in the anti-Stokes region. As shown in FIG. 2, since the background component in the anti-Stokes region is smaller than the background component in the Stokes region, surface shape measurement using the intensity of the reflected light 6b described later is not affected by the background component. Because it can be done more precisely.

実際には、第1ノッチフィルタ9によってアンチストークス領域の一部の波長の光も減衰しているので、第1ノッチフィルタ9の阻止波長帯域の下限よりも小さい波長の光を単色光6aとして選択することとなる。第1ノッチフィルタ9の阻止波長帯域は、大きすぎるとラマン散乱光2cも減衰させてしまう恐れがあり、小さすぎると励起光2aのスペクトルの裾部分の波長の光がラマン分光スペクトルに現れて、ラマン分光測定に影響を与える恐れがある。そのため、第1ノッチフィルタ9の阻止波長帯域は、上限を励起光2aの波長プラス当該波長の0.5〜3.0%、下限を励起光2aの波長マイナス当該波長の0.5〜3.0%にするのが良い。第2ノッチフィルタ14の阻止波長帯域についても同様である。   In fact, since light of a partial wavelength in the anti-Stokes region is also attenuated by the first notch filter 9, light of a wavelength smaller than the lower limit of the blocking wavelength band of the first notch filter 9 is selected as the monochromatic light 6a. It will be done. If the stop wavelength band of the first notch filter 9 is too large, the Raman scattered light 2c may be attenuated. If it is too small, light at a wavelength of the tail of the spectrum of the excitation light 2a appears in the Raman spectrum. It may affect Raman spectroscopy. Therefore, the upper limit of the blocking wavelength band of the first notch filter 9 is the wavelength of the excitation light 2a plus 0.5 to 3.0% of the wavelength, and the lower limit is the wavelength of the excitation light 2a minus 0.5 to 3. It is good to make it 0%. The same applies to the blocking wavelength band of the second notch filter 14.

したがって、単色光6aの波長は、第1ノッチフィルタの阻止波長帯域の下限である励起光2aの波長の99.5%より小さい波長の光から、被検査体の組成や光源の構成などを考慮して適宜選択するのが望ましい。なお、単色光6aの波長は、このようにして適宜選択すればよいので、その下限は特に限定されないが、波長の下限は、概ね、300nm程度である。これ以上波長が短いと紫外域になるので光学材料やCCD検出器の大幅な変更が必要となる。例えば、励起光2aの波長が532nmの場合、単色光6aの波長は529nm以下の波長から選択する。   Therefore, the wavelength of the monochromatic light 6a takes into consideration the composition of the object to be inspected, the configuration of the light source, etc. from light of a wavelength smaller than 99.5% of the wavelength of the excitation light 2a which is the lower limit of the blocking wavelength band of the first notch filter. It is desirable to select it appropriately. The lower limit of the wavelength of the monochromatic light 6a is not particularly limited because it may be appropriately selected in this manner, but the lower limit of the wavelength is about 300 nm. If the wavelength is shorter than this range, it will be in the ultraviolet region, and a drastic change of the optical material and the CCD detector is required. For example, when the wavelength of the excitation light 2a is 532 nm, the wavelength of the monochromatic light 6a is selected from the wavelengths of 529 nm or less.

第2ノッチフィルタ14を透過したラマン散乱光2c及び反射光6bは、CCDカメラ18に入射する。CCDカメラ18は、被検査体8表面で反射した反射光6bを受光する。なお、CCDカメラ18の前に第2ノッチフィルタ14を設置したのは、励起反射光2bの強度が反射光6bよりも大きく、CCDカメラ18のダイナミックレンジをこえているので、励起反射光2bを遮断しないと、反射光6bに基づいて画像を生成できないからである。ここで、図3に示すように、被検査体8の表面で単色光6aが反射すると、反射光6bのほとんどが単色光6aの入射方向、すなわち対物レンズ11の方向に垂直に反射する。CCDカメラ18で受光する反射光6bの強度は反射率100%とすれば単色光6aと同程度である。   The Raman scattered light 2 c and the reflected light 6 b transmitted through the second notch filter 14 enter the CCD camera 18. The CCD camera 18 receives the reflected light 6 b reflected on the surface of the inspection object 8. The reason why the second notch filter 14 is installed in front of the CCD camera 18 is that the intensity of the excitation reflected light 2 b is larger than that of the reflected light 6 b and exceeds the dynamic range of the CCD camera 18. This is because an image can not be generated based on the reflected light 6 b unless the light is blocked. Here, as shown in FIG. 3, when the monochromatic light 6a is reflected on the surface of the inspection object 8, most of the reflected light 6b is reflected perpendicularly to the incident direction of the monochromatic light 6a, that is, the direction of the objective lens 11. The intensity of the reflected light 6b received by the CCD camera 18 is about the same as that of the monochromatic light 6a if the reflectance is 100%.

一方で、被検査体8の表面にある突起8aやデブリ8bに単色光6aが入射すると、突起8aやデブリ8b又は凹部8cは表面が被検査体8の表面のよりも平坦ではないので、反射光6bが種々の方向に生じる。そのため、対物レンズ11の方向に反射する反射光6bが減り、CCDカメラ18で受光する反射光6bの強度は、被検査体8表面で単色光6aが反射して生じた反射光6bよりも小さい。このように、被検査体8の表面の形状によって、CCDカメラ18で受光する反射光6bの強度が異なるので、CCDカメラ18が被検査体8表面を撮像することで、被検査体8の表面形状を表す反射光像を生成できる。   On the other hand, when the monochromatic light 6a is incident on the projection 8a or debris 8b on the surface of the inspection object 8, the projection 8a, debris 8b or recess 8c is not flatter than the surface of the inspection object 8, Light 6b is produced in various directions. Therefore, the reflected light 6b reflected in the direction of the objective lens 11 decreases, and the intensity of the reflected light 6b received by the CCD camera 18 is smaller than the reflected light 6b generated by the monochromatic light 6a reflected on the surface of the inspection object 8 . As described above, the intensity of the reflected light 6 b received by the CCD camera 18 differs depending on the shape of the surface of the inspection object 8, so the CCD camera 18 images the surface of the inspection object 8 to obtain the surface of the inspection object 8 A reflected light image representing a shape can be generated.

以上のように本発明のラマン分光測定装置1は、ラマン分光測定と同時に、CCDカメラ18によって反射光像を作成できる。また、CCDカメラ18では、ラマン散乱光2cも受光しており、励起光2aのビーム径はビームエキスパンダで拡大されていないので、反射光像内にラマン散乱光2cが生じた位置が輝点として表れる。そのため、反射光像からラマン分光測定を行った箇所を特定できる。   As described above, the Raman spectrometry apparatus 1 of the present invention can create a reflected light image by the CCD camera 18 simultaneously with the Raman spectrometry. The CCD camera 18 also receives the Raman scattered light 2c, and the beam diameter of the excitation light 2a is not expanded by the beam expander, so the position where the Raman scattered light 2c is generated in the reflected light image is the bright spot. It appears as Therefore, it is possible to identify the place where the Raman spectroscopy measurement was performed from the reflected light image.

また、本実施形態のラマン分光測定装置1では、図4Aに示すように、試料上に特許第6179905号に開示されているプラズモンセンサ41を載置して、表面増強ラマン散乱により強度が増強されたラマン散乱光2cを生じさせるようにすることもできる。この場合、ラマン散乱光2cの強度が増加されるので、より精度よくラマン分光測定をすることができる。プラズモンセンサ41は、励起光2aと単色光6aを透過でき、半球形状に形成されて、球面部(以下、下面という)が被検査体8と向き合うように載置されている。そのため、特に、プラズモンセンサ41の周辺部では、試料との間に隙間が生じる。   Further, in the Raman spectroscopy measurement apparatus 1 of the present embodiment, as shown in FIG. 4A, the plasmon sensor 41 disclosed in Japanese Patent No. 6179905 is mounted on the sample, and the intensity is enhanced by surface enhanced Raman scattering. It is also possible to generate the Raman scattered light 2c. In this case, since the intensity of the Raman scattered light 2c is increased, it is possible to perform Raman spectroscopy measurement more accurately. The plasmon sensor 41 can transmit the excitation light 2a and the monochromatic light 6a, is formed in a hemispherical shape, and is mounted such that a spherical portion (hereinafter, referred to as a lower surface) faces the inspection object 8. Therefore, particularly in the peripheral portion of the plasmon sensor 41, a gap is generated with the sample.

このとき、単色光6aの一部(図4中の33a)は、プラズモンセンサ41の下面で反射し、反射光33bとなる。他の単色光6a(図4中の34a)は、プラズモンセンサ41を透過して試料の表面で反射し、反射光34bとなる。図4Aでは、説明の便宜上、単色光33a、34a、反射光33b、34bの光線の位置をずらして記載しているが、実際には、光線は重なっている。反射光33bと反射光34bとは干渉し、干渉した反射光33b、34bの強度から反射光33bと反射光34bとの光路長差を算出でき、プラズモンセンサ41の下面と試料の間の隙間の距離を算出できる。   At this time, a part (33a in FIG. 4) of the monochromatic light 6a is reflected by the lower surface of the plasmon sensor 41 to become a reflected light 33b. The other monochromatic light 6a (34a in FIG. 4) passes through the plasmon sensor 41 and is reflected on the surface of the sample to form a reflected light 34b. In FIG. 4A, for convenience of explanation, the positions of the light beams of the monochromatic light 33a and 34a and the reflected light 33b and 34b are described in a shifted manner, but the light beams actually overlap. The reflected light 33b and the reflected light 34b interfere with each other, and the difference in optical path length between the reflected light 33b and the reflected light 34b can be calculated from the intensities of the reflected lights 33b and 34b, and the gap between the lower surface of the plasmon sensor 41 and the sample The distance can be calculated.

図4Bは、プラズモンセンサ41を被検査体8上に載置した状態でCCDカメラ18によって撮像した画像である。プラズモンセンサ41は、半球形状をしており、周辺部に向かうほど、プラズモンセンサ41の下面と試料との間の隙間が大きくなるので、同心円状の干渉縞が観察される。このように、被検査体としてのプラズモンセンサ41の下面と試料との間の隙間の形状を測定できる。   FIG. 4B is an image captured by the CCD camera 18 in a state in which the plasmon sensor 41 is mounted on the inspection subject 8. The plasmon sensor 41 has a hemispherical shape, and the gap between the lower surface of the plasmon sensor 41 and the sample becomes larger toward the periphery, so that concentric interference fringes are observed. Thus, the shape of the gap between the lower surface of the plasmon sensor 41 as the inspection object and the sample can be measured.

(2)作用及び効果
以上の構成において、本実施形態のラマン分光測定装置1は、光出射部の励起光源2から出射した、被検査体8にラマン散乱光2cを生じさせる励起光2aと、光出射部の単色光源6から出射した少なくとも1つ以上の単色光3a、4a、5a(まとめて単色光6aという)とを、光学系7を介して被検査体8に照射し(照射工程)、ラマン散乱光2cと、単色光6aによって被検査体8に生じた反射光6bと光学系7を介して分光器10で受光し、ラマン散乱光2cと反射光6bとを分光し(分光工程)、反射光6bの強度に基づいて被検査体8の形状を測定する(測定工程)ように構成した。
(2) Operation and Effect In the above configuration, the Raman spectrometry apparatus 1 of the present embodiment includes the excitation light 2a emitted from the excitation light source 2 of the light emitting unit and causing the test object 8 to generate the Raman scattered light 2c; At least one or more monochromatic light 3a, 4a, 5a (collectively referred to as monochromatic light 6a) emitted from the monochromatic light source 6 of the light emitting portion is irradiated to the inspection object 8 through the optical system 7 (irradiation process) The Raman scattered light 2c, the reflected light 6b generated on the inspection object 8 by the monochromatic light 6a, and the light received by the spectroscope 10 through the optical system 7 to split the Raman scattered light 2c and the reflected light 6b And the measurement of the shape of the inspection object 8 based on the intensity of the reflected light 6 b (measurement step).

本実施形態のラマン分光測定装置1は、被検査体8で生じたラマン散乱光2cと反射光6bとを分光し、ラマン散乱光2cに基づいてラマン分光測定すると共に、被検査体8で生じた反射光6bの強度に基づいて被検査体8の表面形状を測定するので、被検査体の形状の測定とラマン分光測定を同時にできる。   The Raman spectrometry apparatus 1 of the present embodiment separates the Raman scattered light 2 c and the reflected light 6 b generated in the inspection object 8, and performs Raman spectroscopy measurement based on the Raman scattered light 2 c, and generates in the inspection object 8. Since the surface shape of the object to be inspected 8 is measured based on the intensity of the reflected light 6b, it is possible to simultaneously measure the shape of the object to be inspected and Raman spectroscopy.

(3)他の実施形態
図1と同じ構成には同じ符号を付した図5に他の実施形態のラマン分光測定装置101を示す。ラマン分光測定装置101は、単色光源60の構成が第1実施形態と異なる。他の構成は第1実施形態と同様であるので、ここでは、第2実施形態の単色光源60の構成を中心に説明する。単色光源60は、白色光源30と、筐体16内に設けられたバンドパスフィルタ31とでなる。白色光源30は、白色光30aを出射し、筐体16の窓部27aからバンドパスフィルタ31に白色光30aを照射する。
(3) Another Embodiment FIG. 5 shows a Raman spectrometer 101 according to another embodiment, in which the same reference numerals as in FIG. 1 denote the same parts. The Raman spectrometer 101 differs from the first embodiment in the configuration of the monochromatic light source 60. The other configuration is the same as that of the first embodiment, and therefore, the configuration of the monochromatic light source 60 of the second embodiment will be mainly described here. The monochromatic light source 60 is composed of a white light source 30 and a band pass filter 31 provided in the housing 16. The white light source 30 emits white light 30 a and irradiates the band pass filter 31 with white light 30 a from the window portion 27 a of the housing 16.

バンドパスフィルタ31は、白色光30aのうち、所定の波長の光を透過させ、他の波長の光を減衰することで、白色光30aを単色光60aにし、ビームスプリッタ12に照射する。本実施形態では、バンドパスフィルタ31の通過帯域の中心波長を441nmに設定しており、白色光30aを波長が441nmの単色光60aにする。単色光60aの波長は、バンドパスフィルタ31の通過帯域を適宜設定することで所望の波長に変えることができる。このように、バンドパスフィルタ31の通過帯域を適宜設定することで単色光60aの波長を適宜調整できるので、白色光源30とバンドパスフィルタ31を用いる方が、レーザ光源を用いる場合よりも、波長の選択性が良い。   The band pass filter 31 transmits light of a predetermined wavelength among the white light 30 a and attenuates light of another wavelength to turn the white light 30 a into monochromatic light 60 a and irradiates the beam splitter 12. In the present embodiment, the central wavelength of the pass band of the band pass filter 31 is set to 441 nm, and the white light 30a is changed to monochromatic light 60a having a wavelength of 441 nm. The wavelength of the monochromatic light 60a can be changed to a desired wavelength by appropriately setting the pass band of the band pass filter 31. As described above, since the wavelength of the monochromatic light 60a can be appropriately adjusted by appropriately setting the pass band of the band pass filter 31, the use of the white light source 30 and the band pass filter 31 has a wavelength higher than that of the laser light source. The selectivity of is good.

上記の実施形態では、3つの単色光3a、4a、5aを用いた場合について説明したが、本発明はこれに限られず、少なくとも1つ以上の単色光を用いればよい。特に、反射光を干渉させる場合は、複数の単色光を用いた方がより精度よく形状を測定することができる。また、単色光源として白色光源とバンドパスフィルタを用いる場合は、例えば、白色光源から出射した白色光を分波し、分波した白色光を、通過帯域の異なる複数のバンドパスフィルタに通すことで、複数の単色光を生成する。   Although the above-mentioned embodiment explained the case where three monochromatic lights 3a, 4a, and 5a were used, the present invention is not limited to this, and at least one or more monochromatic lights may be used. In particular, in the case of causing the reflected light to interfere, the shape can be measured more accurately by using a plurality of monochromatic lights. In the case of using a white light source and a band pass filter as a single color light source, for example, the white light emitted from the white light source is split, and the split white light is passed through a plurality of band pass filters having different passbands. , Generate multiple monochromatic lights.

上記の実施形態では、単色光6aを被検査体8の表面に照射して生じた反射光6bを用いて、被検査体8の表面形状を測定する場合について説明したが、本発明はこれに限られず、単色光6aを用いて、被検査体を深さ方向に分析すると共に、被検査体の形状として、被検査体の膜厚を測定することもできる。ここでは、図6に示すように、薄膜と、薄膜の下部に形成された層(例えば金属基板)との界面で単色光6aが反射することで生じる反射光6bを利用する。   In the above embodiment, the case where the surface shape of the inspection object 8 is measured using the reflected light 6 b generated by irradiating the surface of the inspection object 8 with the monochromatic light 6 a has been described, but the present invention Without being limited thereto, it is also possible to analyze the inspection object in the depth direction using the monochromatic light 6a and also to measure the film thickness of the inspection object as the shape of the inspection object. Here, as shown in FIG. 6, the reflected light 6b generated by reflecting the monochromatic light 6a at the interface between the thin film and a layer (for example, a metal substrate) formed under the thin film is used.

具体的には、対物レンズ11に設けられたピント調節機構(図示せず)を用いるか又はステージ19の位置を垂直方向に動かすことで載置した被検査体8を深さ方向に移動させて、対物レンズ11の焦点位置を薄膜と金属基板との界面に向けて移動させながら、反射光の強度を分光器10で測定する。焦点位置が薄膜表面よりも対物レンズ11側にあるときは、焦点位置が大気中にあるため、分光器10で検出される反射光6bの強度は弱い。図6Aに示すように、対物レンズ11のピント位置が被検査体8の薄膜表面にあるときは、薄膜表面で反射した反射光(図示せず)は対物レンズに入射するようになるが、薄膜を透過して金属基板表面で反射した反射光6bが対物レンズ11に入射しないので、反射光6bの強度は弱いままである。その後、焦点位置が薄膜中なると、大気中と薄膜中では屈折率が違う、その影響を受けて反射光6bの強度が変化する。   Specifically, by using a focusing mechanism (not shown) provided on the objective lens 11 or moving the position of the stage 19 in the vertical direction, the test object 8 placed is moved in the depth direction. The intensity of the reflected light is measured by the spectroscope 10 while moving the focal position of the objective lens 11 toward the interface between the thin film and the metal substrate. When the focal position is closer to the objective lens 11 than the thin film surface, the focal position is in the atmosphere, so the intensity of the reflected light 6b detected by the spectroscope 10 is weak. As shown in FIG. 6A, when the focus position of the objective lens 11 is on the thin film surface of the inspection object 8, the reflected light (not shown) reflected on the thin film surface comes to enter the objective lens. And the reflected light 6b reflected by the metal substrate surface does not enter the objective lens 11, the intensity of the reflected light 6b remains weak. After that, when the focal position is in the thin film, the refractive index is different in the atmosphere and in the thin film.

続いて、図6Bに示すように、焦点位置が薄膜と金属基板との界面になると、金属基板表面で反射した反射光6bも対物レンズ11に入射するようになり、分光器10で検出される反射光6bの強度が強くなる。その後、焦点位置が金属基板中に移動しても、図6Cに示すように、反射光6bが対物レンズ11に入射するので、反射光6bの強度は強いままである。以上のように、大気と薄膜の界面及び薄膜と金属基板の界面で、反射光6bの強度に変化が生じるので、焦点位置と反射光6bをプロットすることで、反射光6bの強度変化から薄膜の膜厚を測定することができる。このとき、同時にラマン分光測定もできるので、薄膜の化学構造を深さ方向に分析することができる。   Subsequently, as shown in FIG. 6B, when the focal position is at the interface between the thin film and the metal substrate, the reflected light 6b reflected on the surface of the metal substrate is also incident on the objective lens 11, and is detected by the spectroscope 10. The intensity of the reflected light 6b becomes strong. Thereafter, even if the focal position moves into the metal substrate, as shown in FIG. 6C, since the reflected light 6b is incident on the objective lens 11, the intensity of the reflected light 6b remains strong. As described above, the intensity of the reflected light 6b changes at the interface between the air and the thin film and the interface between the thin film and the metal substrate. Therefore, by plotting the focal position and the reflected light 6b, the thin film from the intensity change of the reflected light 6b Film thickness can be measured. At this time, since the Raman spectroscopy measurement can be performed at the same time, the chemical structure of the thin film can be analyzed in the depth direction.

上記の実施形態では、CCDカメラ18を用いて被検査体8の表面形状を測定した場合について説明したが、本発明はこれに限られず、分光器10で検出した反射光6bの強度を用いて被検査体8の表面形状を測定することもできる。この場合、ビームエキスパンダ24は用いずに、単色光6aを被検査体表面に照射する。そして、制御装置20がステージ19の位置を制御して被検査体8の位置を面内方向に移動させることで、被検査体8の表面を単色光6a及び励起光2aで走査する。走査で得られた単色光6aの照射位置と分光器10で検出した反射光強度の6とに基づいて、被検査体8の面内の反射光像を生成し、励起光2aの照射位置と分光器10で検出したラマン散乱光2cの強度に基づいて、ラマン散乱光像を生成する。このように、反射光像と同時にラマン散乱光像を生成することができ、被検査体の形状の測定とラマン分光測定を同時にできる。   Although the above embodiment has described the case where the surface shape of the inspection object 8 is measured using the CCD camera 18, the present invention is not limited thereto, and the intensity of the reflected light 6b detected by the spectroscope 10 is used. The surface shape of the inspection object 8 can also be measured. In this case, the beam expander 24 is not used, and the monochromatic light 6a is irradiated to the surface of the inspection object. Then, the control device 20 controls the position of the stage 19 to move the position of the inspection object 8 in the in-plane direction, thereby scanning the surface of the inspection object 8 with the monochromatic light 6 a and the excitation light 2 a. Based on the irradiation position of the monochromatic light 6a obtained by scanning and the reflected light intensity 6 detected by the spectroscope 10, a reflected light image in the plane of the inspection object 8 is generated, and the irradiation position of the excitation light 2a and Based on the intensity of the Raman scattered light 2 c detected by the spectrometer 10, a Raman scattered light image is generated. Thus, a Raman scattered light image can be generated simultaneously with the reflected light image, and measurement of the shape of the inspection object and Raman spectroscopy can be performed simultaneously.

上記の実施形態では、単色光源6を設け、単色光6aを被検査体8に照射して生じた反射光6bの強度に基づいて被検査体8の表面形状の画像を生成した場合について説明したが、本発明はこれに限らず、単色光源6を設けずに、励起光2aが単色光6aを兼ね、励起光源2から出射された励起光2aを単色光として用い、被検査体8で生じた励起反射光2bから、被検査体8の反射光像を生成してもよい。この場合、第2ノッチフィルタ14によって励起反射光2bをCCDカメラ18で検出できない程度まで減衰させるのではなく、励起反射光2bの強度をCCDカメラ18のダイナミックレンジ内に入るように減衰させる。例えば、下記に説明する方法で、励起反射光2bの強度を減衰させることができる。   In the above embodiment, the case where the monochromatic light source 6 is provided and the surface shape image of the inspection object 8 is generated based on the intensity of the reflected light 6 b generated by irradiating the inspection object 8 with the monochromatic light 6 a has been described. However, the present invention is not limited thereto, and the excitation light 2a serves as the monochromatic light 6a without providing the monochromatic light source 6, and the excitation light 2a emitted from the excitation light source 2 is used as the monochromatic light and occurs in the inspection object 8 A reflected light image of the inspection object 8 may be generated from the excited reflected light 2b. In this case, instead of attenuating the excitation reflection light 2b to the extent that the second notch filter 14 can not detect the excitation reflection light 2b, the intensity of the excitation reflection light 2b is attenuated so as to fall within the dynamic range of the CCD camera 18. For example, the intensity of the excitation reflected light 2b can be attenuated by the method described below.

通常は、図7Aに示すように、励起反射光2bが第2ノッチフィルタ14に垂直に入射するように第2ノッチフィルタ14を配置するが、この実施形態では、図7Bに示すように、励起反射光2bの光線に垂直な線14aから、第2ノッチフィルタ14の中心線14bを角度θだけ傾けて、第2ノッチフィルタ14を配置する。このようにすることで、第2ノッチフィルタ14での励起反射光2bの減衰度合いを調整することができ、励起反射光2bの強度をCCDカメラ18のダイナミックレンジ内に入るようにできる。   Normally, as shown in FIG. 7A, the second notch filter 14 is disposed so that the excitation reflected light 2b is perpendicularly incident on the second notch filter 14. In this embodiment, as shown in FIG. 7B, the excitation is The second notch filter 14 is disposed by inclining the center line 14b of the second notch filter 14 by an angle θ from the line 14a perpendicular to the ray of the reflected light 2b. By doing this, the attenuation degree of the excitation reflection light 2 b in the second notch filter 14 can be adjusted, and the intensity of the excitation reflection light 2 b can be made to fall within the dynamic range of the CCD camera 18.

図7Cは、励起反射光2bの光線に垂直な線14aと、第2ノッチフィルタ14の中心線14bとのなす角度θと第2ノッチフィルタ14の出射光の強度の関係を表すグラフである。図7Cでは、縦軸が上述の角度θ(°)、左縦軸が第2ノッチフィルタのカット効率(I/I)、右縦軸が第2ノッチフィルタ14の出射光の強度(cps、毎秒のカウント数)を表す。図7Cに示すように、角度θが大きくなるほど、出射光の強度が大きくなり、第2ノッチフィルタ14での励起反射光2bの減衰量が低下することがわかる。 FIG. 7C is a graph showing the relationship between the angle θ between the line 14a perpendicular to the ray of the excitation reflection light 2b and the center line 14b of the second notch filter 14 and the intensity of the light emitted from the second notch filter 14. In FIG. 7C, the vertical axis represents the above-mentioned angle θ (°), the left vertical axis represents the cut efficiency of the second notch filter (I / I 0 ), and the right vertical axis represents the intensity (cps, emitted light of the second notch filter 14). Represents the count number per second). As shown in FIG. 7C, it can be seen that the intensity of the emitted light increases as the angle θ increases, and the attenuation amount of the excitation reflected light 2b in the second notch filter 14 decreases.

本実施形態の場合、CCDカメラ18のダイナミックレンジの光強度は60000cpsであり、S/N比からみたCCDカメラ18で検出できる最小の光強度は10cps程度であるので、角度θは5°〜45°に設定するのが望ましい。このような角度範囲に角度θが入るように、第2ノッチフィルタ14の位置を調整することで、励起光2aを単色光として利用することができる。これにより、励起光2aを単色光として、隙間測定や深さ方向分析をすることもできる。また、第1ノッチフィルタ9も同様に傾けることで、分光器10で分光したスペクトル中に励起反射光2bを取得し、その強度に基づいて、反射光像を生成することもできる。   In the case of the present embodiment, the light intensity in the dynamic range of the CCD camera 18 is 60000 cps, and the minimum light intensity detectable by the CCD camera 18 viewed from the S / N ratio is about 10 cps. It is desirable to set it in degrees. By adjusting the position of the second notch filter 14 so that the angle θ falls in such an angle range, the excitation light 2a can be used as monochromatic light. Thereby, the gap measurement and the depth direction analysis can also be performed by using the excitation light 2a as monochromatic light. In addition, by similarly inclining the first notch filter 9, it is possible to acquire the excitation reflection light 2 b in the spectrum separated by the spectroscope 10 and to generate a reflection light image based on the intensity.

上記の実施形態では、Fe基板上のDLC薄膜の表面で反射した反射光の強度に基づいて、表面形状画像を測定した場合について説明したが、本発明はこれに限られず、反射光を干渉させて、被検査体表面の表面トポグラフィーを得ることもできる。この場合、干渉光の強度I(λ)は次式で表されるので膜厚または隙間量を測定することができる。
I(λ)=I1(λ)+I2(λ)±2sqrt(I1(λ)I2(λ))cos(4πnt/λ)
ここでλは干渉光の波長、nは屈折率、I1=I2=1/4でありtは膜の場合は膜厚で空気の場合は隙間量である。膜厚の場合は、I1(λ)とI2(λ)はそれぞれ膜表面からの反射光強度と膜の下地からの反射光強度であり、隙間の場合は、隙間上部からの反射強度と隙間下部からの反射光強度である。干渉光強度I(λ)はI1(λ)の反射光とI2(λ)の反射光の干渉である。
Although the above embodiment has described the case where the surface shape image is measured based on the intensity of the reflected light reflected on the surface of the DLC thin film on the Fe substrate, the present invention is not limited to this, and the reflected light is made to interfere Thus, the surface topography of the surface of the subject can also be obtained. In this case, since the intensity I (λ) of the interference light is expressed by the following equation, the film thickness or the gap amount can be measured.
I (λ) = I 1 (λ) + I 2 (λ) ± 2 sqrt (I 1 (λ) I 2 (λ)) cos (4πnt / λ)
Here, λ is the wavelength of interference light, n is the refractive index, I 1 = I 2 = 1/4, and t is the film thickness in the case of a film and the gap amount in the case of air. In the case of the film thickness, I 1 (λ) and I 2 (λ) are the reflected light intensity from the film surface and the reflected light intensity from the base of the film respectively, and in the case of the gap, the reflection intensity from the upper portion of the gap and It is the reflected light intensity from the lower part of the gap. The interference light intensity I (λ) is the interference between the reflected light of I 1 (λ) and the reflected light of I 2 (λ).

(4)検証試験
まず第1実施形態のラマン分光測定装置1を用いて、シリコン基板表面をサファイア半球摺動子で摺動して摩耗させた摩耗面の反射光像を作成した。図8Aに示すのは、光源として白色光源を用いて撮像した摩耗面の画像であり、図8Bに示すのは、第1実施形態のラマン分光測定装置1を用いて撮像した摩耗面の画像(波長が447nmのレーザ光を単色光6aとして撮像)であり、図8Aの画像と図8Bの画像とは同じ場所を撮像したものである。
(4) Verification Test First, a reflected light image of a worn surface was created by sliding a sapphire hemispherical slider on the surface of a silicon substrate and causing wear using the Raman spectrometer 1 of the first embodiment. FIG. 8A shows an image of a worn surface taken using a white light source as a light source, and FIG. 8B shows an image of a worn surface taken using a Raman spectrometer 1 according to the first embodiment The laser beam having a wavelength of 447 nm is imaged as the monochromatic light 6a), and the image of FIG. 8A and the image of FIG. 8B are obtained by imaging the same place.

両図を比較すると、ラマン分光測定装置1を用いて撮像した摩耗面の画像でも、表面形状を観察できることが確認できた。また、図8B中に矢印で示した位置に白色の輝点が存在する。これは、励起光2aによって生じたラマン散乱光2cであり、反射光像から、ラマン分光測定をしている位置を特定できることが確認できた。   When the two figures were compared, it could be confirmed that the surface shape can be observed even with the image of the worn surface taken using the Raman spectrometer 1. Also, a white bright spot is present at the position indicated by the arrow in FIG. 8B. This is the Raman scattered light 2c generated by the excitation light 2a, and it can be confirmed from the reflected light image that the position at which the Raman spectroscopy measurement is performed can be identified.

次に、9Aに示すFe基板上に形成したDLCを被検査体8として用い、ラマン分光測定装置1によって、DLCの表面を励起光2aと単色光6aとで走査し、ラマン散乱光像と反射光像とを作成した。図9Bに示すのがラマン散乱光像であり、図9Cに示すのが反射光像である。図9Bのラマン散乱光像の中心に白色部分がみられる。この白色部分は、この部分は他の部分と化学構造が異なっている、又は、表面に凹凸部が形成されていると考えられるが、ラマン散乱光像だけでは特定しにくい。   Next, the DLC formed on the Fe substrate shown in 9A is used as the inspection object 8, and the surface of the DLC is scanned with the excitation light 2a and the monochromatic light 6a by the Raman spectrometer 1, and the Raman scattered light image and reflection A light image was created. The Raman scattered light image is shown in FIG. 9B, and the reflected light image is shown in FIG. 9C. A white portion is seen at the center of the Raman scattered light image of FIG. 9B. This white portion is considered to have a chemical structure different from that of the other portion or to have an uneven portion formed on the surface, but it is difficult to identify with a Raman scattered light image alone.

ここで、図9Cの反射光像を見ると、表面が平坦であり、ラマン散乱光像の白色部分に対応する位置に凹凸部が形成されていないことが確認できる。このように、同じ領域を撮像したラマン散乱光像と反射光像とを観察することで、ラマン分光像の白色部分が、化学構造が他と異なる部分であることを特定できる。以上のように、ラマン散乱光像と反射光像とを同時に作成できることが確認でき、ラマン散乱光像と反射光像とにより被検査体の表面形状を考慮しつつその化学構造を分析できる。   Here, when the reflected light image in FIG. 9C is seen, it can be confirmed that the surface is flat and no concavo-convex portion is formed at the position corresponding to the white portion of the Raman scattered light image. As described above, by observing the Raman scattered light image and the reflected light image obtained by imaging the same region, it can be identified that the white portion of the Raman spectral image is a portion different in chemical structure from the other. As described above, it can be confirmed that the Raman scattered light image and the reflected light image can be created simultaneously, and the chemical structure can be analyzed by considering the surface shape of the inspection object by the Raman scattered light image and the reflected light image.

最後に、図10Aに示すFe基板上に膜厚が0.9μmのDLCを形成した被検査体8として用い、ラマン分光測定装置1によって、被検査体8の深さ方向の分析を行った。分析は、対物レンズ11の焦点位置を対物レンズ11側からFe基板方向に移動させていきつつ、反射光6bの強度と、ラマン散乱光2cの強度とを測定した。図10Bは、深さ方向の分析を示すグラフであり、横軸が深さ方向の距離を表し、左縦軸がラマン散乱光2cの強度(図10B中の53)、最右の縦軸が反射光6bの強度(図10B中の52)、反射光6bの強度の左隣の縦軸がラマン散乱光2cの1次微分線の強度(図10B中の51)を表している。1次微分線51は、ラマン散乱光2cの強度の測定結果に基づいて算出した。   Finally, the analysis in the depth direction of the test object 8 was performed by the Raman spectroscopy measurement device 1 using the test object 8 in which a DLC film having a thickness of 0.9 μm was formed on the Fe substrate shown in FIG. 10A. In the analysis, the intensity of the reflected light 6 b and the intensity of the Raman scattered light 2 c were measured while moving the focal position of the objective lens 11 from the side of the objective lens 11 toward the Fe substrate. FIG. 10B is a graph showing analysis in the depth direction, the horizontal axis represents the distance in the depth direction, the left vertical axis is the intensity of the Raman scattered light 2c (53 in FIG. 10B), and the rightmost vertical axis is the vertical axis. The intensity of the reflected light 6b (52 in FIG. 10B) and the vertical axis next to the intensity of the reflected light 6b represent the intensity of the first derivative of the Raman scattered light 2c (51 in FIG. 10B). The first derivative line 51 was calculated based on the measurement result of the intensity of the Raman scattered light 2c.

1次微分線51のピーク位置からDLCは、図10B中の2本線で挟まれた領域であり、その領域の右隣がFe基板で、その領域の左隣が大気である。DLCの膜厚は、約0.9μmであることが確認できる。ここで、1次微分線51の強度が最大値になったとき、反射光の強度が減少し、1次微分線51が最低値になったとき、反射光の強度が増加していることがわかる。このように、大気と薄膜の界面及び薄膜と金属基板の界面で、反射光6bの強度に変化が生じることが確認できた。反射光6bの強度が変化した位置と、大気とDLCの界面及びDLCとFeの界面の位置とが対応しており、反射光6bの強度変化から薄膜の膜厚および薄膜表面の位置および金属基板の位置を測定することができた。   From the peak position of the first derivative line 51, DLC is a region sandwiched by two lines in FIG. 10B, the Fe substrate is on the right of the region, and the air is on the left of the region. It can be confirmed that the film thickness of DLC is about 0.9 μm. Here, the intensity of the reflected light decreases when the intensity of the first derivative line 51 reaches the maximum value, and the intensity of the reflected light increases when the first derivative line 51 reaches the lowest value. Recognize. Thus, it has been confirmed that the intensity of the reflected light 6 b changes at the interface between the air and the thin film and the interface between the thin film and the metal substrate. The position where the intensity of the reflected light 6b has changed corresponds to the position of the interface between the atmosphere and DLC and the interface between DLC and Fe, and the thickness change of the thin film and the position of the thin film surface and the metal substrate It was possible to measure the position of

1 ラマン分光測定装置
2 励起光源
6 単色光源
7 光学系
8 被検査体
9 第1ノッチフィルタ
10 分光器
14 第2ノッチフィルタ
DESCRIPTION OF SYMBOLS 1 Raman spectroscopy measurement apparatus 2 excitation light source 6 monochromatic light source 7 optical system 8 test object 9 1st notch filter 10 spectrometer 14 2nd notch filter

Claims (10)

被検査体で生じたラマン散乱光に基づいてラマン分光測定するラマン分光測定装置であって、
前記被検査体に前記ラマン散乱光を生じさせる励起光と、少なくとも1つ以上の単色光とを出射する光出射部と、
前記被検査体で生じた前記ラマン散乱光と、前記単色光によって前記被検査体で生じた反射光とを分光する分光器と、
前記励起光と前記単色光とを前記被検査体に導き、前記ラマン散乱光と前記反射光とを前記分光器へと導く光学系と
を備え、
前記反射光の強度に基づいて前記被検査体の形状を測定する
ラマン分光測定装置。
A Raman spectrometer which performs Raman spectroscopy on the basis of Raman scattered light generated in a subject
A light emitting unit that emits excitation light that causes the test object to generate the Raman scattered light, and at least one or more monochromatic light;
A spectroscope which disperses the Raman scattered light generated in the inspection object and the reflected light generated in the inspection object by the monochromatic light;
And an optical system for guiding the excitation light and the monochromatic light to the inspection object and guiding the Raman scattered light and the reflected light to the spectroscope.
The Raman spectroscopy measuring apparatus which measures the shape of the said to-be-inspected object based on the intensity | strength of the said reflected light.
前記光学系と前記分光器との間に配置され、前記励起光によって前記被検査体で生じた励起反射光を減衰するノッチフィルタをさらに備える
請求項1に記載のラマン分光測定装置。
The Raman spectrometer according to claim 1, further comprising a notch filter disposed between the optical system and the spectroscope, for attenuating the excitation reflection light generated in the inspection object by the excitation light.
前記単色光の波長は、前記励起光及び/又は前記ラマン散乱光のうち解析に用いる波長とは異なる
請求項1又は2に記載のラマン分光測定装置。
The Raman spectroscopic measurement device according to claim 1, wherein a wavelength of the monochromatic light is different from a wavelength used for analysis among the excitation light and / or the Raman scattered light.
前記単色光の波長は、前記ノッチフィルタの阻止波長帯域の下限より小さい
請求項2に記載のラマン分光測定装置。
The Raman spectrometer according to claim 2, wherein the wavelength of the monochromatic light is smaller than the lower limit of the stop wavelength band of the notch filter.
前記単色光の波長は、前記励起光の波長の99.5%より小さい
請求項1〜4のいずれか1項に記載のラマン分光測定装置。
The Raman spectrometer according to any one of claims 1 to 4, wherein the wavelength of the monochromatic light is smaller than 99.5% of the wavelength of the excitation light.
前記光学系を介して前記被検査体の表面を撮像する撮像装置をさらに備える
請求項1〜5のいずれか1項に記載のラマン分光測定装置。
The Raman spectroscopy measuring apparatus of any one of Claims 1-5 further equipped with the imaging device which images the surface of the said to-be-tested object via the said optical system.
前記励起光が前記単色光を兼ねる
請求項1又は2に記載のラマン分光測定装置。
The Raman spectrometer according to claim 1, wherein the excitation light also serves as the monochromatic light.
被検査体で生じたラマン散乱光に基づいてラマン分光測定するラマン分光測定方法であって、
前記被検査体に前記ラマン散乱光を生じさせる励起光と、少なくとも1つ以上の単色光とを、前記被検査体に照射する照射工程と、
前記ラマン散乱光と、前記単色光によって前記被検査体で生じた反射光とを分光する分光工程と、
前記反射光の強度に基づいて前記被検査体の形状を測定する測定工程と
を有する
ラマン分光測定方法。
A Raman spectroscopy measurement method of performing Raman spectroscopy measurement based on Raman scattering light generated in a test object, comprising:
Irradiating the test object with excitation light that causes the test object to generate the Raman scattered light and at least one or more monochromatic light;
A spectroscopy step of splitting the Raman scattered light and the reflected light produced in the inspection object by the monochromatic light;
Measuring the shape of the inspection object based on the intensity of the reflected light.
前記励起光によって前記被検査体に生じた励起反射光を減衰する減衰工程をさらに備え、
前記励起反射光を減衰した後に、前記ラマン散乱光と前記反射光とを分光する
請求項8に記載のラマン分光測定方法。
The method further comprises an attenuation step of attenuating the excitation reflection light generated in the test object by the excitation light,
The Raman spectroscopy measuring method according to claim 8, wherein the Raman scattered light and the reflected light are separated after the excitation reflected light is attenuated.
前記励起光が前記単色光を兼ねる
請求項8又は9に記載のラマン分光測定方法。
The Raman spectroscopy measurement method according to claim 8, wherein the excitation light doubles as the monochromatic light.
JP2017170631A 2017-09-05 2017-09-05 Raman spectrometry device and method for raman spectrometry Pending JP2019045396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017170631A JP2019045396A (en) 2017-09-05 2017-09-05 Raman spectrometry device and method for raman spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017170631A JP2019045396A (en) 2017-09-05 2017-09-05 Raman spectrometry device and method for raman spectrometry

Publications (1)

Publication Number Publication Date
JP2019045396A true JP2019045396A (en) 2019-03-22

Family

ID=65814095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017170631A Pending JP2019045396A (en) 2017-09-05 2017-09-05 Raman spectrometry device and method for raman spectrometry

Country Status (1)

Country Link
JP (1) JP2019045396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982949A (en) * 2020-08-19 2020-11-24 东华理工大学 Method for separating EDXRF spectrum overlapping peak by combining fourth derivative with three-spline wavelet transform
JP2022528951A (en) * 2019-03-27 2022-06-16 威朋(蘇州)医療器械有限公司 Coherent anti-Stoke Raman scattering microscope imaging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085471A (en) * 1994-06-16 1996-01-12 Hitachi Ltd Method and device for measuring stress
JPH11190695A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Semiconductor stress measuring raman spectrophotometer
US6069690A (en) * 1998-11-13 2000-05-30 Uniphase Corporation Integrated laser imaging and spectral analysis system
JP2001215193A (en) * 1999-11-26 2001-08-10 Jeol Ltd Raman microspectroscopic system
JP2008256711A (en) * 2008-06-09 2008-10-23 Photon Design:Kk Method and apparatus for measuring distortion in thin-film semiconductor crystal layer
JP2013525838A (en) * 2010-04-19 2013-06-20 ウィテック ウイッセンシャフトリッヒエ インストルメンテ ウント テヒノロジー ゲーエムベーハー Device for imaging the sample surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085471A (en) * 1994-06-16 1996-01-12 Hitachi Ltd Method and device for measuring stress
JPH11190695A (en) * 1997-12-26 1999-07-13 Hitachi Ltd Semiconductor stress measuring raman spectrophotometer
US6069690A (en) * 1998-11-13 2000-05-30 Uniphase Corporation Integrated laser imaging and spectral analysis system
JP2001215193A (en) * 1999-11-26 2001-08-10 Jeol Ltd Raman microspectroscopic system
JP2008256711A (en) * 2008-06-09 2008-10-23 Photon Design:Kk Method and apparatus for measuring distortion in thin-film semiconductor crystal layer
JP2013525838A (en) * 2010-04-19 2013-06-20 ウィテック ウイッセンシャフトリッヒエ インストルメンテ ウント テヒノロジー ゲーエムベーハー Device for imaging the sample surface

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528951A (en) * 2019-03-27 2022-06-16 威朋(蘇州)医療器械有限公司 Coherent anti-Stoke Raman scattering microscope imaging device
JP7203464B2 (en) 2019-03-27 2023-01-13 威朋(蘇州)医療器械有限公司 Coherent anti-Stokes Raman scattering microscope imaging system
CN111982949A (en) * 2020-08-19 2020-11-24 东华理工大学 Method for separating EDXRF spectrum overlapping peak by combining fourth derivative with three-spline wavelet transform
CN111982949B (en) * 2020-08-19 2022-06-07 东华理工大学 Method for separating EDXRF spectrum overlapping peak by combining fourth derivative with three-spline wavelet transform

Similar Documents

Publication Publication Date Title
JP5199539B2 (en) Multispectral technique for defocus detection
JP2008502929A (en) Inspection apparatus or inspection method for fine structure by reflected or transmitted infrared light
CN109001207B (en) Method and system for detecting surface and internal defects of transparent material
JP2005530144A (en) Single structure optical measurement
CN105008982B (en) Spectrum control system
KR102120524B1 (en) Determining information for defects on wafers
JP2022533246A (en) Optical diagnosis of semiconductor processes using hyperspectral imaging
TW201800720A (en) Optical system and method of surface and internal surface profilometry using the same
JP2008039771A (en) Apparatus and method for measuring height profile of structural substrate
CN106546334A (en) Space autofocusing confocal laser Raman spectroscopic detection method and apparatus
JP2022541364A (en) Spectral confocal measurement device and measurement method
JP2024515421A (en) MEASUREMENT APPARATUS AND METHOD FOR MEASURING ROUGHNESS AND/OR DEFECTS ON A SURFACE - Patent application
JP5957825B2 (en) Raman spectroscope and Raman spectroscopic measurement method
JP5985502B2 (en) Systems and methods for imaging by complex techniques used for chemical, biological or biochemical analysis of samples
JP2019045396A (en) Raman spectrometry device and method for raman spectrometry
KR101632672B1 (en) Confocal spectrogram microscope
JPS6017340A (en) Device for measuring optical characteristic of paper
JP4672498B2 (en) Concrete degradation factor detection method and detection apparatus
WO2016174963A1 (en) Microscope device
JP7318868B2 (en) Sample measuring device, measuring method and program
JPH08500432A (en) Acousto-optically harmonious filter-based surface scanning device and method
JP2013122393A (en) Defect inspection device and defect inspection method
US20210318243A1 (en) Device and method for detecting and/or evaluating articles or products
JP2021051074A (en) Spectroscopic analyzer
JP2006326604A6 (en) Laser processing equipment

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211018

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118