JP2019045063A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2019045063A
JP2019045063A JP2017168203A JP2017168203A JP2019045063A JP 2019045063 A JP2019045063 A JP 2019045063A JP 2017168203 A JP2017168203 A JP 2017168203A JP 2017168203 A JP2017168203 A JP 2017168203A JP 2019045063 A JP2019045063 A JP 2019045063A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
header
inlet
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017168203A
Other languages
Japanese (ja)
Inventor
崇裕 大城
Takahiro Oshiro
崇裕 大城
憲昭 山本
Kensho Yamamoto
憲昭 山本
健二 名越
Kenji Nagoshi
健二 名越
一彦 丸本
Kazuhiko Marumoto
一彦 丸本
拓也 奥村
Takuya Okumura
拓也 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017168203A priority Critical patent/JP2019045063A/en
Publication of JP2019045063A publication Critical patent/JP2019045063A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To improve a split flow balance under a condensation condition, in a heat exchanger that has the large number of refrigerant flow passages and a small hole diameter of the flow passage.SOLUTION: When a heat exchanger 1 functions as a condenser, an inner diameter of a header a6 on a side of a heat exchanger inlet/outlet a4 to be a condenser inlet is reduced to increase a refrigerant flow velocity on a side of the condenser inlet and an influence degree of the refrigerant flow velocity on the side of the condenser inlet relative to a refrigerant split flow is enhanced, whereby refrigerant reaches downstream of an inside of the header a6; thus, a split flow of the heat exchanger 1 is improved.SELECTED DRAWING: Figure 1

Description

本発明はプレート積層型熱交換器に関するものである   The present invention relates to a plate stack type heat exchanger

一般に家庭用空調機に使用されている熱交換器は、空気と熱交換器内部を流れる冷媒とが熱交換し、部屋の空調を行っている。この形態の熱交換器を高性能化するには、フィンや伝熱管内、伝熱管外の伝熱面積の増大、熱交換器外部を通過する空気の抵抗低減や、熱交換器内部を流れる冷媒の圧力損失を低減することが有効である。   In general, a heat exchanger used in a home air conditioner exchanges heat between air and a refrigerant flowing inside the heat exchanger to perform air conditioning in a room. In order to improve the performance of this type of heat exchanger, it is possible to increase the heat transfer area outside the heat transfer tubes, fins and heat transfer tubes, to reduce the resistance of air passing outside the heat exchanger, and to flow through the heat exchanger. It is effective to reduce the pressure loss of

冷媒圧力損失を低減する手段として、空気が流入するフィン群と、前記フィン群に挿入され、内部を冷媒が流動する伝熱管群と、前記伝熱管群の端部間を連結するヘッダとによって構成された熱交換器において、前記ヘッダを分割し、この分割されたヘッダ管を連結する連結管を設け、分割されたヘッダの一方のヘッダ径を他方のヘッダ径よりも大きくする手段が提案されている(例えば、特許文献1参照)。   As a means for reducing the pressure loss of the refrigerant, it comprises a fin group into which air flows in, a heat transfer pipe group inserted in the fin group and the refrigerant flowing inside, and a header connecting the ends of the heat transfer pipe group. In the heat exchanger, there is proposed a means for dividing the header, providing a connecting pipe for connecting the divided header pipes, and making the diameter of one of the divided headers larger than the diameter of the other header. (See, for example, Patent Document 1).

蒸発条件時に、気液二相の冷媒は、下流にいくにしたがってガス成分が多くなり、流速が増大し冷媒側の圧力損失が増大する。そこで、上記従来技術は、蒸発器出口側のヘッダ径を蒸発器入口側のヘッダ径よりも大きくし、蒸発器出口側の冷媒流速を小さくすることで、冷媒の圧力損失増大を低減している。また、凝縮条件時は、冷媒はガス冷媒として熱交換器に流入するが、蒸発条件時とは冷媒の流れ方向が逆になるため、ガス成分の多い凝縮器入口側のヘッダ径が大きくなり、凝縮器入口側の冷媒流速が減少するため、凝縮条件時も冷媒側の圧力損失を低減することが可能である。   Under the evaporation condition, the gas-liquid two-phase refrigerant has more gas components as it goes downstream, the flow velocity increases, and the pressure loss on the refrigerant side increases. Therefore, the above prior art reduces the increase in pressure loss of the refrigerant by making the header diameter on the evaporator outlet side larger than the header diameter on the evaporator inlet side and reducing the refrigerant flow rate on the evaporator outlet side. . In addition, the refrigerant flows into the heat exchanger as a gas refrigerant under condensation conditions, but the flow direction of the refrigerant is opposite to that under evaporation conditions, so the header diameter on the condenser inlet side with many gas components becomes large, Since the flow rate of refrigerant on the inlet side of the condenser decreases, it is possible to reduce the pressure loss on the refrigerant side even under condensation conditions.

特開平4−268128号公報JP-A-4-268128

しかしながら、扁平管あるいはプレート積層型熱交換器のように冷媒流路の本数が非常に多くなると、凝縮条件時、凝縮器入口側のヘッダの径が大きくヘッダ内の冷媒流速が小さいと、冷媒はヘッダ上流側、すなわち入口側に近い冷媒流路から順に流れ、ヘッダ下流側、すなわち入口側から遠い冷媒流路に流れる冷媒量が減少し、温度の低いサブクール液がヘッダ上流側の冷媒流路に集中してしまい、空気と冷媒との熱交換量が減少してしまうという課題があった。   However, if the number of refrigerant channels is very large, as in a flat tube or plate-stacked heat exchanger, if the header on the condenser inlet side has a large diameter and the refrigerant flow velocity in the header is small under condensation conditions, the refrigerant The amount of refrigerant that flows from the refrigerant flow path closer to the header upstream side, that is, the inlet side sequentially, flows to the refrigerant flow path farther from the header downstream side, that is, the refrigerant flow path farther from the inlet side decreases. There is a problem that the concentration is concentrated, and the amount of heat exchange between the air and the refrigerant is reduced.

前記従来の課題を解決するために、本発明の熱交換器は、第1流体が流れる流路を有するプレートフィン積層体と、前記プレートフィン積層体の各層の間に第2流体を流し、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体には、前記流路の入口と出口とに接続され前記第1流体が流れる第1のヘッダ管と第2のヘッダ管が設置されており、前記第1流体が凝縮する条件において凝縮器入口である第1のヘッダ管の内径は、凝縮器出口である第2のヘッダ管の内径よりも小さくしたものである。   In order to solve the above-mentioned conventional problems, the heat exchanger according to the present invention flows a second fluid between a plate fin laminate having a flow path through which a first fluid flows, and each layer of the plate fin laminate, A heat exchanger for exchanging heat between a first fluid and the second fluid, wherein the plate fin laminate is connected to the inlet and the outlet of the flow passage, and the first fluid flows. A header pipe and a second header pipe are provided, and the inner diameter of the first header pipe which is a condenser inlet under the condition where the first fluid condenses is equal to the inner diameter of the second header pipe which is a condenser outlet. Too small.

このような構成をなすことにより、熱交換器のプレートフィン積層体の各層へ均等に冷媒が流れ、熱交換器の性能低下を抑制することが出来る。   With such a configuration, the refrigerant can flow evenly to each layer of the plate fin laminate of the heat exchanger, and the performance deterioration of the heat exchanger can be suppressed.

本発明の熱交換器は、ヘッダ上流側のプレートフィン積層体の層に流れやすい冷媒を、ヘッダ下流側のプレートフィン積層体の層にも流れやすくし、冷媒を前記各層に均等部分配でき、熱交換器全体としての熱交換能力の減少を抑制することができる。   The heat exchanger of the present invention facilitates the flow of the refrigerant that easily flows to the layer of the plate fin laminate on the upstream side of the header into the layer of the plate fin laminated on the downstream side of the header, and can evenly distribute the refrigerant to the layers. It is possible to suppress a decrease in the heat exchange capacity of the heat exchanger as a whole.

本発明の実施の形態1における熱交換器の斜視図The perspective view of the heat exchanger in Embodiment 1 of this invention 本発明の実施の形態1におけるプレートフィンの正面図Front view of plate fins in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレートフィンの正面図Front view of plate fins in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレートフィンの正面図Front view of plate fins in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレートフィンの正面図Front view of plate fins in Embodiment 1 of the present invention 本発明の実施の形態1におけるプレート積層時の流路断面図Channel cross-sectional view at the time of plate lamination in Embodiment 1 of the present invention 本発明の実施の形態1における凝縮条件時の空気と冷媒の流れを示した図The figure which showed the flow of air and a refrigerant | coolant at the time of condensing conditions in Embodiment 1 of this invention 本発明の実施の形態1における蒸発条件時の空気と冷媒の流れを示した図The figure which showed the flow of air and a refrigerant | coolant at the time of evaporation conditions in Embodiment 1 of this invention. 本発明の効果を示した簡略図Simplified diagram showing the effect of the present invention 従来技術を示した簡略図Simplified diagram showing prior art

第1の発明は、第1流体が流れる流路を有するプレートフィン積層体と、前記プレートフィン積層体の各層の間に第2流体を流し、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体には、前記流路の入口と出口とに接続され前記第1流体が流れる第1のヘッダ管と第2のヘッダ管が設置されており、前記第1流体が凝縮する条件において凝縮器入口である第1のヘッダ管の内径は、凝縮器出口である第2のヘッダ管の内径よりも小さくしたものである。
この構成により、微小かつ非常に多くの冷媒流路を有する熱交換器において、凝縮条件時、冷媒を熱交換器全体に分配することができる。
According to a first aspect of the present invention, a second fluid is flowed between a plate fin laminate having a flow path through which the first fluid flows, and each layer of the plate fin laminate, and the first fluid and the second fluid are flowed. A heat exchanger for exchanging heat, wherein the plate fin laminate is provided with a first header pipe and a second header pipe which are connected to the inlet and the outlet of the flow path and through which the first fluid flows. The inner diameter of the first header pipe, which is the inlet of the condenser under the condition that the first fluid condenses, is smaller than the inner diameter of the second header pipe, which is the outlet of the condenser.
According to this configuration, in the heat exchanger having minute and very many refrigerant flow paths, the refrigerant can be distributed to the entire heat exchanger under condensing conditions.

第2の発明は、前記第1の発明において、第1のヘッダ管内部に、前記各プレートフィン積層体の冷媒分流を制御する分流制御管を挿入したものである。
この構成により、蒸発条件時に、熱交換器全体の冷媒分流に対する蒸発器出口側圧力損失の影響度を高め、分流制御管長手方向に設ける穴の大きさやピッチを調整することで、熱交換器の冷媒分流を制御しやすくできる。
According to a second invention, in the first invention, a flow dividing control pipe for controlling a refrigerant flow of each of the plate fin laminates is inserted into the first header pipe.
With this configuration, the influence of the pressure loss at the evaporator outlet side on the refrigerant split of the entire heat exchanger is enhanced under evaporation conditions, and the size and the pitch of the holes provided in the longitudinal direction of the split control pipe are adjusted. It is easy to control the refrigerant diversion.

以下、本発明の実施の形態について図面を参照しながら説明する。なお、この実施の形態意によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited by the embodiments.

(実施の形態1)
図1は実施の形態1における熱交換器の斜視図である。
Embodiment 1
FIG. 1 is a perspective view of the heat exchanger in the first embodiment.

図1において、熱交換器1は複数のプレートフィン51、52、53、54を積層して構成され、両端にエンドプレートa2とエンドプレートb3を備えている。エンドプレートa2には、冷媒が流入および流出する熱交換器出入口a4、熱交換器出入口b5を備えている。   In FIG. 1, the heat exchanger 1 is configured by laminating a plurality of plate fins 51, 52, 53, 54, and is provided with an end plate a2 and an end plate b3 at both ends. The end plate a2 is provided with a heat exchanger inlet / outlet a4 through which the refrigerant flows in and out, and a heat exchanger inlet / outlet b5.

図2、図3、図4、図5は実施の形態1における熱交換器1に使用されているプレートフィン51、52、53、54の正面図である。   2, 3, 4 and 5 are front views of plate fins 51, 52, 53, 54 used in the heat exchanger 1 in the first embodiment.

図2において、プレートフィンa51は、熱交換器出入口a4側に内径の小さいヘッダa6と、熱交換器出入口b5側に内径の大きいヘッダb7を有し、ヘッダa6とヘッダb
7との間に複数の冷媒流路8を備えている。また、冷媒が分流および合流するマニホールドa9、マニホールドb10、マニホールドc11を有している。凝縮条件時は、ヘッダ6が凝縮器入口側、ヘッダ7が凝縮器出口側となり、蒸発条件時は、冷媒の流れ方向が逆方向になるため、熱交換器出入口a4が蒸発器出口、熱交換器出入口b5が蒸発器入口となる。
In FIG. 2, the plate fin a51 has a header a6 with a small inside diameter on the heat exchanger inlet / outlet a4 side and a header b7 with a large inside diameter on the heat exchanger inlet / outlet port b5 side.
A plurality of refrigerant channels 8 are provided between them. In addition, it has a manifold a9, a manifold b10, and a manifold c11 in which the refrigerant is branched and merged. In the condensation condition, the header 6 is on the condenser inlet side, the header 7 is on the condenser outlet side, and in the evaporation condition, the refrigerant flow direction is reverse, so the heat exchanger inlet / outlet a4 is the evaporator outlet, heat exchange The inlet / outlet port b5 is the evaporator inlet.

図3のプレートフィンb52は、プレートフィンa51と対形状になっており、図4のプレートフィンc53と、図5のプレートフィンd54が対形状となっている。   The plate fin b52 of FIG. 3 is paired with the plate fin a51, and the plate fin c53 of FIG. 4 and the plate fin d54 of FIG. 5 are paired.

図6は実施の形態1におけるプレートフィン2を複数枚積層した状態の断面図を示したものである。   FIG. 6 shows a cross-sectional view of a state in which a plurality of plate fins 2 in Embodiment 1 are stacked.

図6において、プレートフィン51とプレートフィン52を合わせ、プレートフィン53とプレートフィン54を合わせ、それぞれ冷媒流路8を構成する。プレートフィン51とプレートフィン52、プレートフィン53とプレートフィン54を交互に積層し、空気流路12を形成し、空気13は、プレートフィン51、52、53、54の間を流れる。   In FIG. 6, the plate fins 51 and the plate fins 52 are put together, the plate fins 53 and the plate fins 54 are put together, and the refrigerant flow path 8 is configured respectively. The plate fins 51 and the plate fins 52, the plate fins 53 and the plate fins 54 are alternately stacked to form the air flow path 12, and the air 13 flows between the plate fins 51, 52, 53, 54.

図7は凝縮条件時の空気と冷媒の流れを図示したものである。   FIG. 7 illustrates the flow of air and refrigerant under condensing conditions.

図7において、空気13は、プレートフィン53の熱交換器出入口b5側から熱交換器へ流入し出入口a4側へと流出し、このあいだに冷媒流路8内を流れる冷媒14と熱交換する。一方、熱交換器出入口a4から流入した冷媒14はガス成分が多く、ヘッダa6軸方向に流れながらマニホールドa9から6本の冷媒流路8に分かれ、マニホールドb10で合流、2本の冷媒流路8に分かれ、マニホールドc11で合流し、ヘッダ7b軸方向から熱交換器出入口b5に流出する際は液単相の冷媒となっている。なお、本実施の形態では、熱交換器出入口a4側の冷媒流路9を6本、熱交換器出入口b5側の冷媒流路8を2本としたが、それぞれ何本であってもよい。   In FIG. 7, the air 13 flows into the heat exchanger from the heat exchanger inlet / outlet port b5 side of the plate fin 53 and flows out to the inlet / outlet port a4 side, and exchanges heat with the refrigerant 14 flowing in the refrigerant channel 8 during this time. On the other hand, the refrigerant 14 which has flowed in from the heat exchanger inlet / outlet a4 has many gas components and is divided into six refrigerant flow paths 8 from the manifold a9 while flowing in the axial direction of the header a6. When it joins to the manifold c11 and flows out to the heat exchanger inlet / outlet b5 from the axial direction of the header 7b, it is a liquid single phase refrigerant. In the present embodiment, although six refrigerant channels 9 on the heat exchanger inlet / outlet side a4 and two refrigerant channels 8 on the heat exchanger inlet / outlet port b5 side, any number of refrigerant channels may be used.

図8は蒸発条件時の空気と冷媒の流れを図示したものである。   FIG. 8 illustrates the flows of air and refrigerant under evaporation conditions.

蒸発条件と凝縮条件とでは、冷媒14の流れが逆方向となり、空気13の流れ方は凝縮条件時と変わらない。蒸発条件時は、熱交換器出入口b5から流入してきた冷媒はガスと液の混じった気液二相状態であり、冷媒流路8を流れる間に空気と熱交換し、熱交換器出入口a4から流出する際は、ガス成分の多い状態となっている。   In the evaporation condition and the condensation condition, the flow of the refrigerant 14 is in the opposite direction, and the flow of the air 13 is the same as that in the condensation condition. Under the evaporation condition, the refrigerant flowing from the heat exchanger inlet / outlet b5 is in a gas-liquid two-phase state in which gas and liquid are mixed, and while flowing through the refrigerant flow path 8, exchanges heat with air, and from the heat exchanger inlet / outlet a4 When it flows out, it has become a state with many gas components.

図9、図10は、本発明と従来技術の効果を説明する簡略図であり、図9は本発明と同じように凝縮器入口ヘッダ内径を小さくしたもの、図10は特許文献1のように凝縮器入口側のヘッダ内径が大きくしたものである。   FIGS. 9 and 10 are simplified diagrams for explaining the effects of the present invention and the prior art, and FIG. 9 is the one in which the inner diameter of the condenser inlet header is reduced similarly to the present invention, and FIG. The header inner diameter on the inlet side of the condenser is increased.

図10の熱交換器21は、内径の大きなヘッダa22を凝縮器入口24に、ヘッダc22より内径の小さいヘッダd23を凝縮器出口25に有し、ヘッダ22cとヘッダ23dの間には複数の冷媒流路26が接合されている。ここで熱交換器に流入する冷媒流量をQ、複数の冷媒流路の本数をn本とすると、すべての冷媒流路には、熱交換器に流入する冷媒流量Qを冷媒流路本数nで割ったQ/nの冷媒流量が均等に流れるのが理想的である。しかし、凝縮時の冷媒分流は、熱交換器に流入する冷媒流量、ヘッダ内流速や、ヘッダ内、冷媒流路内の圧力損失に影響されるため、すべての冷媒流路に均等に冷媒を分配するのは困難である。特に図10のような構成では、ヘッダc22の内径が大きく、冷媒流速が小さくなるため、冷媒分流における圧力損失の影響度が増大し、凝縮器入口24および凝縮器出口25に近く、圧力損失の小さいヘッダc22上流側の冷媒流路26に冷媒27が流れやすくなってしまう。その結果、ヘッダc22下流側の冷媒流路26に流れる冷媒2
7が不足し、凝縮能力が低下してしまう。
The heat exchanger 21 of FIG. 10 has a header a22 having a large inner diameter at the condenser inlet 24 and a header d23 having a smaller inner diameter than the header c22 at the condenser outlet 25. A plurality of refrigerants are provided between the header 22c and the header 23d. The flow path 26 is joined. Assuming that the flow rate of the refrigerant flowing into the heat exchanger is Q, and the number of the plurality of refrigerant flow paths is n, the refrigerant flow rate Q flowing into the heat exchanger is the number n of refrigerant flow paths in all the refrigerant flow paths. Ideally, the divided Q / n refrigerant flow should flow evenly. However, the refrigerant flow at the time of condensation is affected by the flow rate of the refrigerant flowing into the heat exchanger, the flow velocity in the header, the pressure loss in the refrigerant flow path in the header and in the header, and the refrigerant is distributed equally to all the refrigerant flow paths. It is difficult to do. Particularly in the configuration as shown in FIG. 10, since the inner diameter of the header c22 is large and the flow velocity of the refrigerant is small, the influence of pressure loss in the refrigerant branch increases, and the pressure loss of the pressure loss is close to the condenser inlet 24 and the condenser outlet 25 The refrigerant 27 easily flows in the refrigerant flow passage 26 on the upstream side of the small header c22. As a result, the refrigerant 2 flowing in the refrigerant channel 26 on the downstream side of the header c 22
The shortage of 7 will reduce the condensation capacity.

そこで、図9のように熱交換器31は、凝縮器入口34側の内径を小さくしたヘッダe32を備え、凝縮器入口34側の冷媒流速を増大させる。冷媒分流における入口側ヘッダ内流速の影響度が強まると、冷媒はヘッダe32長手方向に流れやすくなり、ヘッダe32下流側にも冷媒37を均等に分配可能となり、凝縮器能力を増大できる。   Therefore, as shown in FIG. 9, the heat exchanger 31 includes the header e32 in which the inner diameter on the condenser inlet 34 side is reduced, and increases the refrigerant flow rate on the condenser inlet 34 side. When the influence of the flow velocity in the inlet side header in the refrigerant diversion increases, the refrigerant easily flows in the longitudinal direction of the header e32, and the refrigerant 37 can be evenly distributed on the downstream side of the header e32, and the condenser capacity can be increased.

Figure 2019045063
Figure 2019045063

表1は、実施の形態における熱交換器において、凝縮器入口側のヘッダ内径がφ9.5mmと、φ6.0mmの凝縮能力を比較したものであり、φ9.5mmの能力を100%としたとき、φ6.0mmの能力は103%となっている。このように、凝縮器出口側のヘッダ径よりも凝縮入口側のヘッダ径を小さくした方が、ヘッダ下流側まで冷媒を分配可能となり、凝縮器能力が増大する。   Table 1 is a heat exchanger according to the embodiment, in which the inner diameter of the header on the inlet side of the condenser is φ 9.5 mm, and the condensation capacity of φ 6.0 mm is compared, assuming that the capacity of φ 9.5 mm is 100%. The φ 6.0 mm capacity is 103%. Thus, if the header diameter on the condensation inlet side is smaller than the header diameter on the condenser outlet side, the refrigerant can be distributed to the downstream side of the header, and the condenser capacity increases.

また、蒸発器条件時は凝縮条件時と流れが逆方向になり、凝縮器入口34が蒸発器出口、凝縮器出口35が蒸発器入口となる。蒸発条件時に、熱交換器全体の冷媒分流を制御するには、蒸発器入口と蒸発器出口のどちらかで実施する必要があるが、蒸発器入口から流入する冷媒は、ガスと液が混じった気液二相状態であり、ガスと液の比率や冷媒流速、流動様式、ヘッダと冷媒流路の圧力損失など、冷媒分流に影響するパラメータが多く、冷媒分流制御を行うのが困難である。本発明では、冷媒がガス単相となる蒸発器出口側において、ヘッダe32の内径が小さいので、蒸発器出口側で生じる冷媒圧力損失が増大し、冷媒分流に対する影響度を高めることができる。そして、分流制御管を蒸発器出口側に挿入し、かつ分流制御管長手方向に設けた穴の大きさやピッチを調整することで、蒸発器出口側において、冷媒分流制御をしやすくできる。   In the evaporator condition, the flow is reverse to that in the condensation condition, the condenser inlet 34 is the evaporator outlet, and the condenser outlet 35 is the evaporator inlet. It is necessary to carry out at the evaporator inlet or the evaporator outlet to control the refrigerant distribution of the entire heat exchanger under evaporation conditions, but the refrigerant flowing from the evaporator inlet is a mixture of gas and liquid There are many parameters that affect the refrigerant diversion, such as the gas-liquid two-phase state, the ratio of gas to liquid, the refrigerant flow velocity, the flow mode, and the pressure loss of the header and the refrigerant flow path. In the present invention, since the inner diameter of the header e32 is small on the evaporator outlet side where the refrigerant is in the gas single phase, the refrigerant pressure loss generated on the evaporator outlet side can be increased, and the degree of influence on the refrigerant distribution can be increased. And, by inserting the branch control pipe on the evaporator outlet side and adjusting the size and the pitch of the holes provided in the longitudinal direction of the branch control pipe, it is possible to easily control the refrigerant branch on the evaporator outlet side.

なお、本発明の形態では、熱交換器をプレート積層型熱交換器としたが、2つのヘッダに接合された扁平菅を用いたパラレルフロー熱交換器であっても良い。   In the embodiment of the present invention, the heat exchanger is a plate laminated type heat exchanger, but it may be a parallel flow heat exchanger using a flat weir joined to two headers.

本発明によれば、2本のヘッダに接合された微小かつ本数の多い冷媒流路をもつ熱交換器において、凝縮条件時の冷媒分流を良化できるので性能の高い熱交換器を提供できる。このため、本発明の熱交換器は、家庭用の空気調和機のみならず、業務用た車両用の空気調和機に適用できる。   According to the present invention, in a heat exchanger having a small number and a large number of refrigerant flow paths joined to two headers, a refrigerant flow can be improved under condensing conditions, so a heat exchanger with high performance can be provided. For this reason, the heat exchanger of the present invention can be applied not only to household air conditioners but also to vehicle air conditioners for business use.

1熱交換器
2エンドプレートa
3エンドプレートb
4熱交換器出入口a
5熱交換器出入口b
6ヘッダa
7ヘッダb
8冷媒流路
9マニホールドa
10 マニホールドb
11マニホールドc
12空気流路
13空気
14冷媒
21熱交換器
22 ヘッダc
23 ヘッダd
24凝縮器入口
25凝縮器出口
26冷媒流路
27冷媒
31熱交換器
32ヘッダe
33ヘッダf
34凝縮器入口
35凝縮器出口
36冷媒流路
37冷媒
51プレートフィンa
52プレートフィンb
53プレートフィンc
54プレートフィンd
1 heat exchanger 2 end plate a
3 end plate b
4 heat exchanger entrance a
5 heat exchanger entrance b
6 header a
7 header b
8 Refrigerant channels 9 manifold a
10 Manifold b
11 manifold c
12 air flow path 13 air 14 refrigerant 21 heat exchanger 22 header c
23 header d
24 condenser inlet 25 condenser outlet 26 refrigerant flow path 27 refrigerant 31 heat exchanger 32 header e
33 header f
34 condenser inlet 35 condenser outlet 36 refrigerant flow channel 37 refrigerant 51 plate fin a
52 plate fins b
53 plate fin c
54 plate fin d

Claims (2)

第1流体が流れる流路を有するプレートフィン積層体と、前記プレートフィン積層体の各層の間に第2流体を流し、前記第1流体と前記第2流体との間で熱交換する熱交換器であって、前記プレートフィン積層体には、前記流路の入口と出口とに接続され前記第1流体が流れる第1のヘッダ管と第2のヘッダ管が設置されており、前記第1流体が凝縮する条件において凝縮器入口である第1のヘッダ管の内径は、凝縮器出口である第2のヘッダ管の内径よりも小さいことを特徴とした熱交換器。 A plate-fin stack having a flow path through which a first fluid flows, and a heat exchanger that flows a second fluid between the layers of the plate-fin stack and exchanges heat between the first fluid and the second fluid. A first header pipe and a second header pipe connected to the inlet and the outlet of the flow path and through which the first fluid flows are installed in the plate fin laminate; A heat exchanger characterized in that the inner diameter of a first header pipe which is a condenser inlet under the condition that A condenses is smaller than the inner diameter of a second header pipe which is a condenser outlet. 第1のヘッダ管内部に、前記各プレートフィン積層体の冷媒分流を制御する分流制御管を挿入したことを特徴とする請求項1記載の熱交換器。   The heat exchanger according to claim 1, wherein a flow control pipe for controlling a refrigerant flow of each of the plate fin laminates is inserted inside the first header pipe.
JP2017168203A 2017-09-01 2017-09-01 Heat exchanger Pending JP2019045063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017168203A JP2019045063A (en) 2017-09-01 2017-09-01 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017168203A JP2019045063A (en) 2017-09-01 2017-09-01 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2019045063A true JP2019045063A (en) 2019-03-22

Family

ID=65816348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017168203A Pending JP2019045063A (en) 2017-09-01 2017-09-01 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2019045063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205732A1 (en) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 Air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119154U (en) * 1976-03-09 1977-09-09
JPH0331266U (en) * 1989-07-31 1991-03-27
JPH03195873A (en) * 1989-12-26 1991-08-27 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH0443772U (en) * 1990-08-03 1992-04-14
JPH04155194A (en) * 1990-10-17 1992-05-28 Nippondenso Co Ltd Heat exchanger
JPH0526539A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Heat-exchanger
JPH09280778A (en) * 1996-04-16 1997-10-31 Showa Alum Corp Laminated type heat exchanger
JP2003287321A (en) * 2002-03-28 2003-10-10 Daikin Ind Ltd Plate type heat exchanger, and refrigerating machine having the same
JP2005249330A (en) * 2004-03-05 2005-09-15 Calsonic Kansei Corp Heat exchanger
US20110203780A1 (en) * 2010-02-22 2011-08-25 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat exchanger
JP2016151392A (en) * 2015-02-18 2016-08-22 有限会社和氣製作所 Heat exchanger

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119154U (en) * 1976-03-09 1977-09-09
JPH0331266U (en) * 1989-07-31 1991-03-27
JPH03195873A (en) * 1989-12-26 1991-08-27 Matsushita Refrig Co Ltd Refrigerant flow divider
JPH0443772U (en) * 1990-08-03 1992-04-14
JPH04155194A (en) * 1990-10-17 1992-05-28 Nippondenso Co Ltd Heat exchanger
JPH0526539A (en) * 1991-07-19 1993-02-02 Hitachi Ltd Heat-exchanger
JPH09280778A (en) * 1996-04-16 1997-10-31 Showa Alum Corp Laminated type heat exchanger
JP2003287321A (en) * 2002-03-28 2003-10-10 Daikin Ind Ltd Plate type heat exchanger, and refrigerating machine having the same
JP2005249330A (en) * 2004-03-05 2005-09-15 Calsonic Kansei Corp Heat exchanger
US20110203780A1 (en) * 2010-02-22 2011-08-25 Danfoss Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Heat exchanger
JP2016151392A (en) * 2015-02-18 2016-08-22 有限会社和氣製作所 Heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205732A1 (en) * 2020-04-07 2021-10-14 パナソニックIpマネジメント株式会社 Air conditioner
JP7403046B2 (en) 2020-04-07 2023-12-22 パナソニックIpマネジメント株式会社 air conditioner

Similar Documents

Publication Publication Date Title
US10060685B2 (en) Laminated header, heat exchanger, and air-conditioning apparatus
JP6584514B2 (en) Laminated header, heat exchanger, and air conditioner
WO2012176336A1 (en) Plate heater and refrigeration cycle device
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
JP6138263B2 (en) Laminated header, heat exchanger, and air conditioner
JP6080982B2 (en) Laminated header, heat exchanger, and air conditioner
JP6479195B2 (en) Distributor, stacked header, heat exchanger, and air conditioner
EP2865983A1 (en) Heat-exchanger header and heat exchanger provided therewith
US10330398B2 (en) Heat exchanger
JPWO2019073610A1 (en) Stacked header, heat exchanger, and refrigeration cycle device
JP2018096636A (en) Heat exchanger and refrigeration system using the same
JP2018189352A (en) Heat exchanger
JP6188926B2 (en) Laminated header, heat exchanger, and air conditioner
US6814135B2 (en) Stacked-type evaporator
JP2009257708A (en) Heat exchanger unit
WO2019167909A1 (en) Heat exchanger unit and air conditioner using same
EP2982924A1 (en) Heat exchanger
JP2019045063A (en) Heat exchanger
JP6120998B2 (en) Laminated header, heat exchanger, and air conditioner
JP7134250B2 (en) Heat exchanger and refrigeration cycle equipment
WO2020090015A1 (en) Refrigerant distributor, heat exchanger, and air conditioning device
US20220136785A1 (en) Heat exchanger
JP2023097857A (en) Plate for heat exchanger, plate laminate for heat exchanger, and microchannel heat exchanger
JP2000320996A (en) Heat exchanger
JP2019152379A (en) Heat exchanger

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210817