JP2019044274A - Silver plated material and method for producing the same - Google Patents

Silver plated material and method for producing the same Download PDF

Info

Publication number
JP2019044274A
JP2019044274A JP2018230536A JP2018230536A JP2019044274A JP 2019044274 A JP2019044274 A JP 2019044274A JP 2018230536 A JP2018230536 A JP 2018230536A JP 2018230536 A JP2018230536 A JP 2018230536A JP 2019044274 A JP2019044274 A JP 2019044274A
Authority
JP
Japan
Prior art keywords
silver
plated product
plated
vickers hardness
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018230536A
Other languages
Japanese (ja)
Other versions
JP6694941B2 (en
Inventor
俊希 貞森
Toshiki Sadamori
俊希 貞森
久寿 荒木
Hisatoshi Araki
久寿 荒木
圭介 篠原
Keisuke Shinohara
圭介 篠原
宮澤 寛
Hiroshi Miyazawa
寛 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Metaltech Co Ltd
Original Assignee
Dowa Metaltech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Metaltech Co Ltd filed Critical Dowa Metaltech Co Ltd
Priority to JP2018230536A priority Critical patent/JP6694941B2/en
Publication of JP2019044274A publication Critical patent/JP2019044274A/en
Application granted granted Critical
Publication of JP6694941B2 publication Critical patent/JP6694941B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a silver plated material which can prevent increase in contact resistance while maintaining high hardness, and a method of producing the same.SOLUTION: A silver plated material is produced by a process in which: in a silver plating solution comprising silver 80-130 g/L, potassium cyanide 60-130 g/L, selenium 30-80 mg/L, and potassium carbonate 50-190 g/L, electroplating is performed at solution temperature of 10-50°C and in current density of 3-12A/dm, a surface layer comprising silver is formed on a material.SELECTED DRAWING: None

Description

本発明は、銀めっき材およびその製造方法に関し、特に、車載用や民生用の電気配線に使用されるコネクタ、スイッチ、リレーなどの接点や端子部品の材料として使用される銀めっき材およびその製造方法に関する。   The present invention relates to a silver-plated material and a method of manufacturing the same, and in particular, a silver-plated material used as a material of contacts and terminals such as connectors, switches and relays used for electrical wiring for vehicles and consumer On the way.

従来、コネクタやスイッチなどの接点や端子部品などの材料として、銅または銅合金やステンレス鋼などの比較的安価で耐食性や機械的特性などに優れた素材に、電気特性や半田付け性などの必要な特性に応じて、錫、銀、金などのめっきを施しためっき材が使用されている。   In the past, materials such as contacts and terminals such as connectors and switches need to be made of relatively inexpensive materials such as copper or copper alloy or stainless steel that are excellent in corrosion resistance and mechanical characteristics, such as electrical characteristics and solderability. Plating materials plated with tin, silver, gold, etc., are used according to their characteristics.

銅または銅合金やステンレス鋼などの素材に錫めっきを施した錫めっき材は、安価であるが、高温環境下における耐食性に劣っている。また、これらの素材に金めっきを施した金めっき材は、耐食性に優れ、信頼性が高いが、コストが高くなる。一方、これらの素材に銀めっきを施した銀めっき材は、金めっき材と比べて安価であり、錫めっき材と比べて耐食性に優れている。   Although tin plating material which tin-plated materials, such as copper or copper alloy and stainless steel, is cheap, it is inferior to corrosion resistance in a high temperature environment. Moreover, although the gold plating material which gave gold plating to these raw materials is excellent in corrosion resistance and has high reliability, cost becomes high. On the other hand, the silver plating material which silver-plated these materials is cheap compared with a gold plating material, and is excellent in corrosion resistance compared with a tin plating material.

また、コネクタやスイッチなどの接点や端子部品などの材料は、コネクタの挿抜やスイッチの摺動に伴う耐摩耗性も要求される。   In addition, materials such as contacts and terminal parts such as connectors and switches are also required to have wear resistance due to insertion and removal of connectors and sliding of switches.

しかし、銀めっき材では、再結晶により銀めっきの結晶粒径が増大し易く、この結晶粒径の増大により硬度が低くなって、耐摩耗性が低下するという問題がある(例えば、特許文献1参照)。   However, in the case of a silver-plated product, there is a problem that the crystal grain size of silver plating tends to increase due to recrystallization, and the hardness decreases due to the increase of this crystal grain size, resulting in a decrease in wear resistance (for example, Patent Document 1) reference).

このような銀めっき材の耐摩耗性を向上させるために、銀めっき中にアンチモンなどの元素を含有させることにより、銀めっき材の硬度を向上させる方法が知られている(例えば、特許文献2参照)。   In order to improve the wear resistance of such a silver plating material, there is known a method of improving the hardness of the silver plating material by containing an element such as antimony in the silver plating (for example, Patent Document 2) reference).

特開2008−169408号公報(段落番号0006)JP 2008-169408 A (paragraph number 0006) 特開2009−79250号公報(段落番号0003−0004)JP, 2009-79250, A (paragraph number 0003-0004)

しかし、銀めっき中にアンチモンなどの元素を含有させると、銀が合金化して硬度が向上するものの、銀の純度が低くなるため、接触抵抗が増加するという問題がある。   However, when an element such as antimony is contained in the silver plating, although the silver is alloyed to improve the hardness, the purity of the silver is lowered, so that there is a problem that the contact resistance is increased.

したがって、本発明は、このような従来の問題点に鑑み、高い硬度を維持したまま、接触抵抗の増加を防止することができる、銀めっき材およびその製造方法を提供することを目的とする。   Accordingly, in view of such conventional problems, it is an object of the present invention to provide a silver-plated product and a method of manufacturing the same, which can prevent an increase in contact resistance while maintaining high hardness.

本発明者らは、上記課題を解決するために鋭意研究した結果、80〜130g/Lの銀と、60〜130g/Lのシアン化カリウムと、30〜80mg/Lのセレンと、50〜190g/Lの炭酸カリウムとを含む銀めっき液中において、電気めっきを行って、素材上に銀からなる表層を形成することにより、高い硬度を維持したまま、接触抵抗の増加を防止することができる、銀めっき材を製造することができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that 80 to 130 g / L of silver, 60 to 130 g / L of potassium cyanide, 30 to 80 mg / L of selenium, and 50 to 190 g / L. In the silver plating solution containing potassium carbonate, electroplating is performed to form a surface layer made of silver on the material, thereby preventing an increase in contact resistance while maintaining high hardness. It has been found that a plating material can be produced, and the present invention has been completed.

すなわち、本発明による銀めっき材の製造方法は、80〜130g/Lの銀と、60〜130g/Lのシアン化カリウムと、30〜80mg/Lのセレンと、50〜190g/Lの炭酸カリウムとを含む銀めっき液中において、電気めっきを行うことによって、素材上に銀からなる表層を形成することを特徴とする。   That is, the method for producing a silver-plated product according to the present invention comprises 80 to 130 g / L of silver, 60 to 130 g / L of potassium cyanide, 30 to 80 mg / L of selenium, and 50 to 190 g / L of potassium carbonate In the silver plating solution containing it, it is characterized by forming the surface layer which consists of silver on a raw material by electroplating.

この銀めっき材の製造方法において、電気めっきが、電流密度3〜12A/dmで行われるのが好ましい。また、銀めっき液が、シアン化銀カリウムと、シアン化カリウムと、セレノシアン酸カリウムと、炭酸カリウムとを含む水溶液からなるのが好ましい。さらに、素材が銅または銅合金からなるのが好ましく、素材と表層との間にニッケルからなる下地層を形成するのが好ましい。 In this method for producing a silver-plated product, electroplating is preferably performed at a current density of 3 to 12 A / dm 2 . The silver plating solution is preferably composed of an aqueous solution containing potassium cyanide, potassium cyanide, potassium selenocyanate and potassium carbonate. Furthermore, the material is preferably made of copper or a copper alloy, and it is preferable to form an underlayer made of nickel between the material and the surface layer.

また、本発明による銀めっき材は、上記の銀めっき材の製造方法によって製造され、反射濃度が0.3以上、表層のAg純度が99.9質量%以上であり、大気中において50℃で168時間加熱する耐熱試験を行った後のビッカース硬さHvが110以上であることを特徴とする。この銀めっき材において、素材が銅または銅合金からなるのが好ましく、素材と表層との間にニッケルからなる下地層が形成されているのが好ましい。   The silver plating material according to the present invention is manufactured by the above method for manufacturing a silver plating material, and has a reflection density of 0.3 or more, an Ag purity of the surface layer of 99.9 mass% or more, and at 50 ° C. in the air. It is characterized in that the Vickers hardness Hv after the heat resistance test of heating for 168 hours is 110 or more. In this silver-plated product, the material is preferably made of copper or a copper alloy, and it is preferable that a base layer made of nickel be formed between the material and the surface layer.

また、本発明による接点または端子部品は、上記の銀めっき材を材料として用いたことを特徴とする。   The contact or terminal part according to the present invention is characterized by using the above-mentioned silver-plated material as a material.

本発明によれば、高い硬度を維持したまま、接触抵抗の増加を防止することができる、銀めっき材およびその製造方法を提供することができる。   According to the present invention, it is possible to provide a silver-plated product and a method of manufacturing the same, which can prevent an increase in contact resistance while maintaining high hardness.

本発明による銀めっき材の製造方法の実施の形態では、80〜130g/L(好ましくは90〜120g/L)の銀と、60〜130g/L(好ましくは65〜125g/L)のシアン化カリウムと、30〜80mg/L(好ましくは35〜75mg/L)のセレンと、50〜190g/L(好ましくは70〜170g/L)の炭酸カリウムとを含む銀めっき液中において、電気めっきを行うことによって、素材上に銀からなる表層を形成する。このようにして銀めっき材を製造することにより、銀めっき材の高い硬度を維持したまま、接触抵抗の増加を防止することができる。   In the embodiment of the method for producing a silver-plated product according to the present invention, 80 to 130 g / L (preferably 90 to 120 g / L) of silver and 60 to 130 g / L (preferably 65 to 125 g / L) of potassium cyanide Electroplating in a silver plating solution containing 30 to 80 mg / L (preferably 35 to 75 mg / L) selenium and 50 to 190 g / L (preferably 70 to 170 g / L) potassium carbonate Form a surface layer made of silver on the material. By producing the silver-plated product in this manner, an increase in contact resistance can be prevented while maintaining the high hardness of the silver-plated product.

この銀めっき材の製造方法の実施の形態において、電気めっきが、液温10〜50℃(好ましくは20〜40℃)で行われるのが好ましく、電流密度3〜12A/dmで行われるのが好ましい。また、銀めっき液が、シアン化銀カリウム(KAg(CN))と、シアン化カリウム(KCN)と、セレノシアン酸カリウム(KSeCN)と、炭酸カリウム(KCO)とを含む水溶液からなるのが好ましい。 In the embodiment of the method for producing a silver-plated product, electroplating is preferably performed at a solution temperature of 10 to 50 ° C. (preferably 20 to 40 ° C.), and is performed at a current density of 3 to 12 A / dm 2 . Is preferred. In addition, the silver plating solution is an aqueous solution containing silver potassium cyanide (KAg (CN) 2 ), potassium cyanide (KCN), potassium selenocyanate (KSeCN), and potassium carbonate (K 2 CO 3 ). preferable.

また、銀めっき材のビッカース硬さHvが110以上であるのが好ましく、120以上であるのがさらに好ましい。また、銀めっき材を耐熱試験として50℃で168時間加熱した後のビッカース硬さHvが110以上であるのが好ましく、120以上であるのがさらに好ましい。このようにビッカース硬さHvが110以上であれば、疵や打痕が付き難くなり、耐摩耗性に優れた銀めっき材になる。なお、耐熱試験前後のビッカース硬さHvは160程度以下でよい。   Further, the Vickers hardness Hv of the silver-plated product is preferably 110 or more, and more preferably 120 or more. Moreover, it is preferable that it is 110 or more, and, as for the Vickers hardness Hv after heating a silver plating material at 50 degreeC as a heat resistance test for 168 hours, it is more preferable that it is 120 or more. As described above, when the Vickers hardness Hv is 110 or more, it becomes difficult to form wrinkles and dents, and a silver-plated material having excellent wear resistance is obtained. The Vickers hardness Hv before and after the heat resistance test may be about 160 or less.

また、素材が銅または銅合金からなるのが好ましい。また、表層の厚さは、厚過ぎるとコストが高くなるだけでなく割れ易くなって銀めっき材の加工性が低下し、薄過ぎると銀めっき材の耐摩耗性が低下するため、2〜10μmであるのが好ましく、3〜7μmであるのがさらに好ましく、4〜6μmであるのが最も好ましい。   Moreover, it is preferable that a raw material consists of copper or a copper alloy. In addition, if the thickness of the surface layer is too thick, not only the cost increases but also it becomes easy to break and the workability of the silver-plated material is reduced, and when it is too thin, the wear resistance of the silver-plated material is reduced. Is preferred, 3 to 7 μm is more preferred, and 4 to 6 μm is most preferred.

また、素材と銀からなる表層との間の密着性を向上させるために、素材と表層との間にニッケルからなる下地層を形成するのが好ましい。この下地層の厚さは、薄過ぎると素材と銀からなる表層との間の密着性を向上させるには十分でなく、厚過ぎると銀めっき材の加工性が低下するため、0.3〜2.0μmであるのが好ましく、0.5〜1.5μmであるのがさらに好ましい。この下地層と銀からなる表層との間の密着性を向上させるために、下地層と表層との間に銀ストライクめっきよる中間層を形成してもよい。また、銀めっき材の接触抵抗は、1.0mΩ以下であるのが好ましく、0.7mΩ以下であるのがさらに好ましい。この銀めっき材の接触抵抗の増加を防止するために、表層のAg純度が99質量%以上であるのが好ましく、99.5質量%以上であるのがさらに好ましい。   Further, in order to improve the adhesion between the material and the surface layer made of silver, it is preferable to form a base layer made of nickel between the material and the surface layer. If the thickness of the base layer is too thin, it is not sufficient to improve the adhesion between the material and the surface layer made of silver, and if it is too thick, the processability of the silver-plated product is lowered. The thickness is preferably 2.0 μm, and more preferably 0.5 to 1.5 μm. In order to improve the adhesion between the underlayer and the surface layer made of silver, an intermediate layer may be formed between the underlayer and the surface layer by silver strike plating. Further, the contact resistance of the silver-plated product is preferably 1.0 mΩ or less, and more preferably 0.7 mΩ or less. In order to prevent an increase in the contact resistance of the silver-plated product, the Ag purity of the surface layer is preferably 99% by mass or more, and more preferably 99.5% by mass or more.

上述した銀めっき材の製造方法の実施の形態により、素材上に銀からなる表層が形成された銀めっき材において、反射濃度が0.3以上(好ましくは1.0以上)、表層のAg純度が99.9質量%以上であり、大気中において50℃で168時間加熱する耐熱試験を行った後のビッカース硬さHvが110以上である銀めっき材を製造することができる。なお、反射濃度が0.3未満であると、銀めっき材の外観が(鏡面から白色に変わり)無光沢化して、プレス加工時などに表面に疵が付き易くなる。   In the silver plating material in which the surface layer made of silver is formed on the material according to the embodiment of the method for manufacturing a silver plating material described above, the Ag concentration of the surface layer is 0.3 or more (preferably 1.0 or more) Is 99.9% by mass or more, and a silver-plated product having a Vickers hardness Hv of 110 or more after heat resistance test of heating at 50 ° C. for 168 hours in the atmosphere can be manufactured. When the reflection density is less than 0.3, the appearance of the silver-plated product becomes non-glossy (mirror surface changes to white), and the surface is easily wrinkled during press processing or the like.

以下、本発明による銀めっき材およびその製造方法の実施例について詳細に説明する。   Hereinafter, examples of the silver-plated product and the method for producing the same according to the present invention will be described in detail.

[実施例1]
まず、素材(被めっき材)として67mm×50mm ×0.3mmの純銅からなる圧延板を用意し、この被めっき材とSUS板をアルカリ脱脂液に入れ、被めっき材を陰極とし、SUS板を陽極として、電圧5Vで30秒間電解脱脂を行い、15秒間水洗した後、3%硫酸中で15秒間酸洗し、15秒間水洗した。
Example 1
First, prepare a rolled plate consisting of pure copper of 67 mm x 50 mm x 0.3 mm as a material (material to be plated), put this material to be plated and a SUS plate in an alkaline degreasing solution, use the material to be plated as a cathode, As an anode, electrolytic degreasing was performed at a voltage of 5 V for 30 seconds, washed with water for 15 seconds, then pickled in 3% sulfuric acid for 15 seconds, and washed with water for 15 seconds.

次に、25g/Lの塩化ニッケルと35g/Lのホウ酸と540g/Lのスルファミン酸ニッケル四水和物を含む水溶液からなる無光沢ニッケルめっき液中において、被めっき材を陰極とし、ニッケル電極板を陽極として、スターラにより500rpmで撹拌しながら電流密度5A/dmで85秒間電気めっき(無光沢ニッケルめっき)を行って、厚さ1μmの無光沢ニッケルめっき皮膜を形成した後、15秒間水洗した。 Next, in a non-bright nickel plating solution comprising an aqueous solution containing 25 g / L of nickel chloride, 35 g / L of boric acid, and 540 g / L of nickel sulfamate tetrahydrate, the material to be plated is used as a cathode and a nickel electrode Using a plate as an anode, electroplating (matte nickel plating) is performed for 85 seconds at a current density of 5 A / dm 2 while stirring with a stirrer at 500 rpm to form a 1 μm thick non-tacky nickel plating film, and then washing for 15 seconds did.

次に、3g/Lのシアン化銀カリウムと90g/Lのシアン化カリウムを含む水溶液からなる銀ストライクめっき液中において、被めっき材を陰極とし、白金で被覆したチタン電極板を陽極として、スターラにより500rpmで撹拌しながら電流密度2A/dmで10秒間電気めっき(銀ストライクめっき)を行った後、15秒間水洗した。 Next, in a silver strike plating solution consisting of an aqueous solution containing 3 g / L of silver cyanide potassium and 90 g / L of potassium cyanide, the material to be plated is a cathode and the titanium electrode plate coated with platinum is an anode, and 500 rpm by a stirrer. After electroplating (silver strike plating) was performed at a current density of 2 A / dm 2 for 10 seconds while stirring with water, the plate was washed with water for 15 seconds.

次に、203g/Lのシアン化銀カリウム(KAg(CN))と、70g/Lのシアン化カリウム(KCN)と、128mg/Lのセレノシアン酸カリウム(KSeCN)と、115g/Lの炭酸カリウム(KCO)とを含む水溶液からなる銀めっき液中において、被めっき材を陰極とし、銀電極板を陽極として、スターラにより500rpmで撹拌しながら液温24℃において電流密度10A/dmで銀めっき皮膜の厚さが5μmになるまで電気めっき(銀めっき)を行った後、15秒間水洗し、エアガンによる風圧で乾燥した。なお、使用した銀めっき液中のAg濃度は110g/L、KCN濃度は70g/L、Se濃度は70mg/L、炭酸カリウム濃度は115g/Lである。 Next, 203 g / L of silver potassium cyanide (KAg (CN) 2 ), 70 g / L of potassium cyanide (KCN), 128 mg / L of potassium selenocyanate (KSeCN), and 115 g / L of potassium carbonate (K In a silver plating solution consisting of an aqueous solution containing 2 CO 3 ), the material to be plated is a cathode and the silver electrode plate is an anode, and silver is stirred at a current density of 10 A / dm 2 at 24 ° C. After electroplating (silver plating) was performed until the thickness of the plating film became 5 μm, the plate was washed with water for 15 seconds and dried by an air gun. The Ag concentration in the silver plating solution used is 110 g / L, the KCN concentration is 70 g / L, the Se concentration is 70 mg / L, and the potassium carbonate concentration is 115 g / L.

このようにして得られた銀めっき材を乾燥機(アズワン社製のOF450)により大気中において50℃で168時間(1週間)加熱する耐熱試験を行った後、ビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは122であり、耐熱試験前より低くなったものの、十分に高かった。なお、銀めっき材のビッカース硬さHvは、微小硬さ試験機(株式会社ミツトヨ製のHM−221)を使用し、測定荷重10gfを10秒間加えて、JIS Z2244に準じて測定した。   A heat resistance test was conducted to heat the silver-plated product obtained in this manner with an oven (OF450 manufactured by As One Corporation) at 50 ° C. for 168 hours (one week) in the atmosphere, and then the Vickers hardness Hv was measured. The Vickers hardness Hv after the heat resistance test was 122, which was lower than before the heat resistance test, but was sufficiently high. The Vickers hardness Hv of the silver-plated product was measured according to JIS Z2244 using a microhardness tester (HM-221 manufactured by Mitutoyo Co., Ltd.) and applying a measurement load of 10 gf for 10 seconds.

また、電気接点シミュレータ(山崎精機研究所製のCRS−1)により、銀めっき材の板面上にR=1の半球形状にインデント加工した銀めっき材を荷重300gfで押し当てながら、摺動速度100mm/分で摺動距離5mmとして1回摺動させたときの接触抵抗を測定したところ、接触抵抗は0.6mΩ以下と低かった。   In addition, a sliding speed is applied while pressing a silver plating material indented into a hemispherical shape of R = 1 on a plate surface of a silver plating material with an electric contact simulator (CRS-1 manufactured by Yamazaki Seiki Laboratory) with a load of 300 gf When the contact resistance was measured at a sliding distance of 5 mm at a sliding distance of 5 mm at 100 mm / min, the contact resistance was as low as 0.6 mΩ or less.

また、銀めっき材の光沢度として、濃度計(日本電色株式会社製のデントシメーターND−1)を用いて、素材の圧延方向に対して平行に銀めっき材の反射濃度を測定したところ、1.67であり、光沢度は良好であった。   In addition, when the reflection density of the silver plating material was measured in parallel to the rolling direction of the material using a densitometer (Dentometer SI manufactured by Nippon Denshoku Co., Ltd.) as the glossiness of the silver plating material , 1.67 and the gloss was good.

また、銀めっき材の銀めっき皮膜を硝酸に溶かして液体にした後、溶液の濃度を調整し、ICP発光分光分析(ICP−OES)装置(セイコーインスツル株式会社製のSPS5100)を使用してプラズマ分光分析によりAg純度を求めたところ、99.9質量%以上であった。   In addition, after the silver plating film of the silver plating material is dissolved in nitric acid to make a liquid, the concentration of the solution is adjusted, and an ICP emission spectral analysis (ICP-OES) apparatus (SPS5100 manufactured by Seiko Instruments Inc.) is used. When Ag purity was calculated | required by plasma spectroscopy, it was 99.9 mass% or more.

[実施例2]
液温27℃で電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。
Example 2
The silver plating material was produced by the same method as Example 1 except having performed electroplating (silver plating) at 27 ° C of solution temperature.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは125であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 125. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.62であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 1.62, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例3]
液温30℃で電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。
[Example 3]
The silver plating material was produced by the same method as Example 1 except having performed electroplating (silver plating) at liquid temperature of 30 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは147であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv after the heat resistance test of the silver-plated material thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv after the heat resistance test is 147, which is before the heat resistance test. Although it was lower, it was high enough.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.24であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 1.24 and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例4]
液温33℃で電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。
Example 4
The silver plating material was produced by the same method as Example 1 except having performed electroplating (silver plating) at liquid temperature 33 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは142であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 142. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.39であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.39, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例5]
銀めっき液中の炭酸カリウムの量を150g/Lとした以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は110g/L、KCN濃度は70g/L、Se濃度は70mg/L、炭酸カリウム濃度は150g/Lである。
[Example 5]
A silver plating material was produced in the same manner as in Example 1 except that the amount of potassium carbonate in the silver plating solution was changed to 150 g / L. The Ag concentration in the silver plating solution used is 110 g / L, the KCN concentration is 70 g / L, the Se concentration is 70 mg / L, and the potassium carbonate concentration is 150 g / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは134であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 134. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.76であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. In addition, the reflection density of the silver-plated product was 1.76, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例6]
液温27℃で電気めっき(銀めっき)を行った以外は、実施例5と同様の方法により、銀めっき材を作製した。
[Example 6]
A silver-plated product was produced in the same manner as in Example 5 except that electroplating (silver plating) was performed at a solution temperature of 27 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは131であり、耐熱試験前より低くなったものの、十分に高かった   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 131. Although it was lower than before the heat resistance test, it was high enough

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.67であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. In addition, the reflection density of the silver-plated product was 1.67, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例7]
液温30℃で電気めっき(銀めっき)を行った以外は、実施例5と同様の方法により、銀めっき材を作製した。
[Example 7]
The silver plating material was produced by the same method as Example 5 except having performed electroplating (silver plating) at liquid temperature of 30 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは124であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 124. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.64であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. In addition, the reflection density of the silver-plated product was 1.64 and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例8]
液温33℃で電気めっき(銀めっき)を行った以外は、実施例5と同様の方法により、銀めっき材を作製した。
[Example 8]
The silver plating material was produced by the same method as Example 5 except having performed electroplating (silver plating) at liquid temperature 33 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは145であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated product after the heat test was measured by the same method as in Example 1 for the silver-plated product thus obtained. The Vickers hardness Hv after the heat test is 145. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は1.55であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 1.55, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例9]
液温36℃で電気めっき(銀めっき)を行った以外は、実施例5と同様の方法により、銀めっき材を作製した。
[Example 9]
A silver-plated product was produced in the same manner as in Example 5 except that electroplating (silver plating) was performed at a solution temperature of 36 ° C.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは137であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated product after the heat test was measured by the same method as in Example 1 for the silver-plated product thus obtained. The Vickers hardness Hv after the heat test is 137. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.42であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.42, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例10]
175g/Lのシアン化銀カリウムと、120g/Lのシアン化カリウムと、73mg/Lのセレノシアン酸カリウムと、92g/Lの炭酸カリウムとを含む水溶液からなる銀めっき液中において、液温24℃、電流密度5A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は120g/L、Se濃度は40mg/L、炭酸カリウム濃度は92g/Lである。
[Example 10]
In a silver plating solution composed of an aqueous solution containing 175 g / L of silver cyanide potassium, 120 g / L of potassium cyanide, 73 mg / L of potassium selenocyanate, and 92 g / L of potassium carbonate, the solution temperature is 24 ° C., the current except that a density 5A / dm 2 was electroplated (silver plating) is in the same manner as in example 1 to prepare a silver-plated material. The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 120 g / L, the Se concentration is 40 mg / L, and the potassium carbonate concentration is 92 g / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは130であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 130. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例11]
電流密度6A/dmで電気めっき(銀めっき)を行った以外は、実施例10と同様の方法により、銀めっき材を作製した。
[Example 11]
A silver-plated product was produced in the same manner as in Example 10 except that electroplating (silver plating) was performed at a current density of 6 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは133であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 133. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例12]
電流密度7A/dmで電気めっき(銀めっき)を行った以外は、実施例10と同様の方法により、銀めっき材を作製した。
[Example 12]
A silver-plated product was produced in the same manner as in Example 10 except that electroplating (silver plating) was performed at a current density of 7 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは128であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 128. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例13]
電流密度8A/dmで電気めっき(銀めっき)を行った以外は、実施例10と同様の方法により、銀めっき材を作製した。
[Example 13]
A silver-plated product was produced in the same manner as in Example 10 except that electroplating (silver plating) was performed at a current density of 8 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは124であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 124. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例14]
銀めっき液中の炭酸カリウムの量を138g/Lとし、電流密度4A/dmで電気めっき(銀めっき)を行った以外は、実施例10と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は120g/L、Se濃度は40mg/L、炭酸カリウム濃度は138g/Lである。
Example 14
A silver plating material was produced in the same manner as in Example 10 except that the amount of potassium carbonate in the silver plating solution was 138 g / L and electroplating (silver plating) was performed at a current density of 4 A / dm 2 . The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 120 g / L, the Se concentration is 40 mg / L, and the potassium carbonate concentration is 138 g / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは132であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated product after the heat test was measured by the same method as in Example 1 for the silver-plated product thus obtained. The Vickers hardness Hv after the heat test is 132. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例15]
電流密度5A/dmで電気めっき(銀めっき)を行った以外は、実施例14と同様の方法により、銀めっき材を作製した。
[Example 15]
A silver-plated product was produced in the same manner as in Example 14 except that electroplating (silver plating) was performed at a current density of 5 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは134であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 134. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例16]
電流密度6A/dmで電気めっき(銀めっき)を行った以外は、実施例14と同様の方法により、銀めっき材を作製した。
[Example 16]
A silver-plated product was produced in the same manner as in Example 14 except that electroplating (silver plating) was performed at a current density of 6 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは130であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated material after the heat test was measured by the same method as in Example 1 for the silver-plated material thus obtained, and the Vickers hardness Hv after the heat test is 130. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[実施例17]
電流密度7A/dmで電気めっき(銀めっき)を行った以外は、実施例14と同様の方法により、銀めっき材を作製した。
[Example 17]
A silver-plated product was produced in the same manner as in Example 14 except that electroplating (silver plating) was performed at a current density of 7 A / dm 2 .

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは123であり、耐熱試験前より低くなったものの、十分に高かった。   The Vickers hardness Hv of the silver-plated product after the heat test was measured by the same method as in Example 1 for the silver-plated product thus obtained, and the Vickers hardness Hv after the heat test is 123. Although it was lower than before the heat resistance test, it was sufficiently high.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.3以上であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Further, the reflection density of the silver-plated product was 0.3 or more, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例1]
148g/Lのシアン化銀カリウムと70g/Lのシアン化カリウムと109mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温18℃、電流密度3A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は80g/L、KCN濃度は70g/L、Se濃度は60mg/Lである。
Comparative Example 1
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 148 g / L of silver potassium cyanide, 70 g / L of potassium cyanide and 109 mg / L of potassium selenocyanate, the liquid temperature is 18 ° C., the current density is 3 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 80 g / L, the KCN concentration is 70 g / L, and the Se concentration is 60 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは112であり、耐熱試験後のビッカース硬さHvは108であった。   When the Vickers hardness Hv before and after the heat resistance test was measured by the same method as in Example 1 for the silver-plated product thus obtained, the Vickers hardness Hv before the heat resistance test is 112, and after the heat resistance test The Vickers hardness Hv of was 108.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.14mΩと低かった。また、銀めっき材の反射濃度は0.07であり、光沢度は良好でなかった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.14 mΩ. In addition, the reflection density of the silver-plated product was 0.07, and the glossiness was not good. Moreover, Ag purity was 99.9 mass% or more.

[比較例2]
148g/Lのシアン化銀カリウムと160g/Lのシアン化カリウムと109mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温18℃、電流密度5A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は80g/L、KCN濃度は160g/L、Se濃度は60mg/Lである。
Comparative Example 2
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 148 g / L of silver potassium cyanide, 160 g / L of potassium cyanide and 109 mg / L of potassium selenocyanate, the liquid temperature is 18 ° C., the current density is 5 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 80 g / L, the KCN concentration is 160 g / L, and the Se concentration is 60 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは124であり、 耐熱試験後のビッカース硬さHvは95であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated material thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 124, and the heat resistance test is performed. The Vickers hardness Hv of was 95.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.44mΩと低かった。また、銀めっき材の反射濃度は1.58であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.44 mΩ. Further, the reflection density of the silver-plated product was 1.58, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例3]
148g/Lのシアン化銀カリウムと160g/Lのシアン化カリウムと109mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温18℃、電流密度7A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は80g/L、KCN濃度は160g/L、Se濃度は60mg/Lである。
Comparative Example 3
In a silver plating solution consisting of an aqueous solution (without potassium carbonate) containing 148 g / L of silver cyanide potassium, 160 g / L of potassium cyanide and 109 mg / L of potassium selenocyanate, the solution temperature is 18 ° C., the current density is 7 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 80 g / L, the KCN concentration is 160 g / L, and the Se concentration is 60 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは120であり、 耐熱試験後のビッカース硬さHvは104であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated product thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 120, and the heat resistance test is performed. The Vickers hardness Hv of was 104.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.19mΩと低かった。また、銀めっき材の反射濃度は1.65であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.19 mΩ. In addition, the reflection density of the silver-plated product was 1.65, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例4]
138g/Lのシアン化銀カリウムと140g/Lのシアン化カリウムと11mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温18℃、電流密度5A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は75g/L、KCN濃度は140g/L、Se濃度は6mg/Lである。
Comparative Example 4
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 138 g / L of silver potassium cyanide, 140 g / L of potassium cyanide and 11 mg / L of potassium selenocyanate, the solution temperature is 18 ° C., the current density is 5 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 75 g / L, the KCN concentration is 140 g / L, and the Se concentration is 6 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは131であり、 耐熱試験後のビッカース硬さHvは84であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated material thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 131, and after the heat resistance test The Vickers hardness Hv of was 84.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.12mΩと低かった。また、銀めっき材の反射濃度は1.63であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.12 mΩ. Moreover, the reflection density of the silver plating material was 1.63, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例5]
55g/Lのシアン化銀カリウムと150g/Lのシアン化カリウムと3mg/Lの二酸化セレンと1794mg/Lの三酸化アンチモンを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温15℃、電流密度3A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は30g/L、KCN濃度は150g/L、Se濃度は2mg/L、Sb濃度は750mg/Lである。
Comparative Example 5
The solution temperature is 15 in a silver plating solution consisting of an aqueous solution containing 55 g / L of silver cyanide potassium, 150 g / L of potassium cyanide, 3 mg / L of selenium dioxide and 1794 mg / L of antimony trioxide (without potassium carbonate). A silver-plated product was produced in the same manner as in Example 1 except that electroplating (silver plating) was performed at a current density of 3 A / dm 2 and a temperature of 3 ° C. The Ag concentration in the silver plating solution used is 30 g / L, the KCN concentration is 150 g / L, the Se concentration is 2 mg / L, and the Sb concentration is 750 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは161であり、 耐熱試験後のビッカース硬さHvは166であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated product thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 161, and the heat resistance test is performed. The Vickers hardness Hv of was 166.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は10.56mΩと高かった。また、銀めっき材の反射濃度は1.81であり、光沢度は良好であった。また、Ag純度は98.4質量%であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as high as 10.56 mΩ. Further, the reflection density of the silver-plated product was 1.81, and the glossiness was good. Moreover, Ag purity was 98.4 mass%.

[比較例6]
175g/Lのシアン化銀カリウムと70g/Lのシアン化カリウムと128mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温12℃、電流密度1A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は70g/L、Se濃度は70mg/Lである。
Comparative Example 6
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 175 g / L potassium silver cyanide, 70 g / L potassium cyanide and 128 mg / L potassium selenocyanate, the solution temperature is 12 ° C., the current density is 1 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 70 g / L, and the Se concentration is 70 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは121であり、 耐熱試験後のビッカース硬さHvは117であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated product thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 121, and the heat resistance test is performed. The Vickers hardness Hv of was 117.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.19mΩと低かった。また、銀めっき材の反射濃度は0.07であり、光沢度は良好でなかった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.19 mΩ. In addition, the reflection density of the silver-plated product was 0.07, and the glossiness was not good. Moreover, Ag purity was 99.9 mass% or more.

[比較例7]
175g/Lのシアン化銀カリウムと95g/Lのシアン化カリウムと100mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温12℃、電流密度8A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は95g/L、Se濃度は55mg/Lである。
Comparative Example 7
In a silver plating solution composed of an aqueous solution (containing no potassium carbonate) containing 175 g / L potassium silver cyanide, 95 g / L potassium cyanide and 100 mg / L potassium selenocyanate, the liquid temperature is 12 ° C., the current density 8 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 95 g / L, and the Se concentration is 55 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは138であり、 耐熱試験後のビッカース硬さHvは95であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated material thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 138, and the heat resistance test is performed. The Vickers hardness Hv of was 95.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.25mΩと低かった。また、銀めっき材の反射濃度は0.6であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.25 mΩ. Moreover, the reflection density of the silver plating material was 0.6, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例8]
175g/Lのシアン化銀カリウムと70g/Lのシアン化カリウムと128mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温24℃、電流密度6A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は70g/L、Se濃度は70mg/Lである。
Comparative Example 8
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 175 g / L of silver potassium cyanide, 70 g / L of potassium cyanide and 128 mg / L of potassium selenocyanate, the liquid temperature 24 ° C., current density 6 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 70 g / L, and the Se concentration is 70 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは120であり、 耐熱試験後のビッカース硬さHvは109であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated product thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 120, and the heat resistance test is performed. The Vickers hardness Hv of was 109.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.25mΩと低かった。また、銀めっき材の反射濃度0.09であり、光沢度は良好でなかった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.25 mΩ. In addition, the reflection density of the silver-plated product was 0.09, and the glossiness was not good. Moreover, Ag purity was 99.9 mass% or more.

[比較例9]
175g/Lのシアン化銀カリウムと95g/Lのシアン化カリウムと100mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温24℃、電流密度12A/dmで電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は95g/L、KCN濃度は95g/L、Se濃度は55mg/Lである。
Comparative Example 9
In a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 175 g / L potassium silver cyanide, 95 g / L potassium cyanide and 100 mg / L potassium selenocyanate, the liquid temperature is 24 ° C., the current density 12 A / dm A silver plating material was produced in the same manner as in Example 1 except that the electroplating (silver plating) was performed in 2 . The Ag concentration in the silver plating solution used is 95 g / L, the KCN concentration is 95 g / L, and the Se concentration is 55 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験前後のビッカース硬さHvを測定したところ、耐熱試験前のビッカース硬さHvは135であり、 耐熱試験後のビッカース硬さHvは106であった。   The Vickers hardness Hv before and after the heat resistance test of the silver-plated material thus obtained was measured by the same method as in Example 1. The Vickers hardness Hv before the heat resistance test is 135, and the heat resistance test is performed. The Vickers hardness Hv of was 106.

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.45mΩと低かった。また、銀めっき材の反射濃度は1.58であり、光沢度は良好であった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.45 mΩ. Further, the reflection density of the silver-plated product was 1.58, and the glossiness was good. Moreover, Ag purity was 99.9 mass% or more.

[比較例10]
203g/Lのシアン化銀カリウムと70g/Lのシアン化カリウムと128mg/Lのセレノシアン酸カリウムを含む(炭酸カリウムを含まない)水溶液からなる銀めっき液中において、液温33℃で電気めっき(銀めっき)を行った以外は、実施例1と同様の方法により、銀めっき材を作製した。なお、使用した銀めっき液中のAg濃度は110g/L、KCN濃度は70g/L、Se濃度は70mg/Lである。
Comparative Example 10
Electroplating at a temperature of 33 ° C. (silver plating) in a silver plating solution consisting of an aqueous solution (containing no potassium carbonate) containing 203 g / L of silver potassium cyanide, 70 g / L of potassium cyanide and 128 mg / L of potassium selenocyanate The silver plating material was produced by the same method as Example 1 except having carried out. The Ag concentration in the silver plating solution used is 110 g / L, the KCN concentration is 70 g / L, and the Se concentration is 70 mg / L.

このようにして得られた銀めっき材について、実施例1と同様の方法により、耐熱試験後の銀めっき材のビッカース硬さHvを測定したところ、耐熱試験後のビッカース硬さHvは112であった。   The Vickers hardness Hv of the silver-plated product after the heat test was measured by the same method as in Example 1 for the silver-plated product thus obtained. The Vickers hardness Hv after the heat test is 112. The

また、実施例1と同様の方法により、銀めっき材の接触抵抗および反射濃度を測定するとともに、Ag純度を求めた。その結果、銀めっき材の接触抵抗は0.6mΩ以下と低かった。また、銀めっき材の反射濃度は0.04であり、光沢度は良好でなかった。また、Ag純度は99.9質量%以上であった。   Further, the contact resistance and the reflection density of the silver-plated product were measured by the same method as in Example 1, and the Ag purity was determined. As a result, the contact resistance of the silver-plated product was as low as 0.6 mΩ or less. Moreover, the reflection density of the silver plating material was 0.04, and the glossiness was not good. Moreover, Ag purity was 99.9 mass% or more.

これらの実施例および比較例の銀めっき材の製造条件および特性を表1〜表2に示す。   The manufacturing conditions and characteristics of the silver-plated products of these examples and comparative examples are shown in Tables 1 and 2.

Figure 2019044274
Figure 2019044274

Figure 2019044274
Figure 2019044274

表1〜表2からわかるように、実施例1〜17で製造した銀めっき材は、高い硬度を維持したまま、接触抵抗の増加を防止することができる。   As can be seen from Tables 1 and 2, the silver-plated products manufactured in Examples 1 to 17 can prevent an increase in contact resistance while maintaining high hardness.

Claims (9)

80〜130g/Lの銀と、60〜130g/Lのシアン化カリウムと、30〜80mg/Lのセレンと、50〜190g/Lの炭酸カリウムとを含む銀めっき液中において、電気めっきを行うことによって、素材上に銀からなる表層を形成することを特徴とする、銀めっき材の製造方法。 By electroplating in a silver plating solution containing 80 to 130 g / L of silver, 60 to 130 g / L of potassium cyanide, 30 to 80 mg / L of selenium, and 50 to 190 g / L of potassium carbonate A method for producing a silver-plated product, comprising forming a surface layer made of silver on a material. 前記電気めっきが、電流密度3〜12A/dmで行われることを特徴とする、請求項1に記載の銀めっき材の製造方法。 The method for producing a silver-plated product according to claim 1, wherein the electroplating is performed at a current density of 3 to 12 A / dm 2 . 前記銀めっき液が、シアン化銀カリウムと、シアン化カリウムと、セレノシアン酸カリウム、炭酸カリウムとを含む水溶液からなることを特徴とする、請求項1または2に記載の銀めっき材の製造方法。 The method according to claim 1 or 2, wherein the silver plating solution comprises an aqueous solution containing potassium cyanide, potassium cyanide, potassium selenocyanate, and potassium carbonate. 前記素材が銅または銅合金からなることを特徴とする、請求項1乃至3のいずれかに記載の銀めっき材の製造方法。 The said raw material consists of copper or a copper alloy, The manufacturing method of the silver plating material in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. 前記素材と前記表層との間にニッケルからなる下地層を形成することを特徴とする、請求項1乃至4のいずれかに記載の銀めっき材の製造方法。 The base layer which consists of nickel is formed between the said raw material and the said surface layer, The manufacturing method of the silver plating material in any one of the Claims 1 thru | or 4 characterized by the above-mentioned. 請求項1乃至5のいずれかに記載の銀めっき材の製造方法によって製造され、素材上に銀からなる表層が形成された銀めっき材において、反射濃度が0.3以上、表層のAg純度が99.9質量%以上であり、大気中において50℃で168時間加熱する耐熱試験を行った後のビッカース硬さHvが110以上であることを特徴とする、銀めっき材。 A silver-plated product manufactured by the method for manufacturing a silver-plated product according to any one of claims 1 to 5 and having a surface layer made of silver formed on the material, wherein the Ag concentration of the reflection density is 0.3 or more and the Ag purity of the surface layer is A silver-plated product characterized by having a Vickers hardness Hv of at least 99.9 mass% and having a Vickers hardness Hv of 110 or more after a heat resistance test of heating at 50 ° C for 168 hours in the atmosphere. 前記素材が銅または銅合金からなることを特徴とする、請求項6に記載の銀めっき材。 The silver-plated product according to claim 6, wherein the material is made of copper or a copper alloy. 前記素材と前記表層との間にニッケルからなる下地層が形成されていることを特徴とする、請求項6または7に記載の銀めっき材。 The silver-plated product according to claim 6 or 7, wherein a base layer made of nickel is formed between the material and the surface layer. 請求項6乃至8のいずれかに記載の銀めっき材を材料として用いたことを特徴とする、接点または端子部品。 A contact or terminal part characterized in that the silver-plated product according to any one of claims 6 to 8 is used as a material.
JP2018230536A 2018-12-10 2018-12-10 Silver plated material and manufacturing method thereof Active JP6694941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018230536A JP6694941B2 (en) 2018-12-10 2018-12-10 Silver plated material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018230536A JP6694941B2 (en) 2018-12-10 2018-12-10 Silver plated material and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015090177A Division JP6450639B2 (en) 2015-04-27 2015-04-27 Silver plating material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2019044274A true JP2019044274A (en) 2019-03-22
JP6694941B2 JP6694941B2 (en) 2020-05-20

Family

ID=65816207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018230536A Active JP6694941B2 (en) 2018-12-10 2018-12-10 Silver plated material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6694941B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012202A (en) * 2015-01-30 2020-01-23 Dowaメタルテック株式会社 Silver plating material and method for producing the same
WO2020184227A1 (en) 2019-03-11 2020-09-17 キヤノン株式会社 Image decoder, image decoding method, and program
US11211730B2 (en) * 2019-05-16 2021-12-28 Autonetworks Technologies, Ltd. Connector terminal, electrical wire with terminal, and terminal pair

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249977A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Surface treatment liquid for silver plated material and surface treatment using the same
JP2013076127A (en) * 2011-09-30 2013-04-25 Dowa Metaltech Kk Silver plating material and production method therefor
JP2013189681A (en) * 2012-03-14 2013-09-26 Dowa Metaltech Kk Silver plating material
JP6395560B2 (en) * 2013-11-08 2018-09-26 Dowaメタルテック株式会社 Silver plating material and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249977A (en) * 1996-03-13 1997-09-22 Nikko Kinzoku Kk Surface treatment liquid for silver plated material and surface treatment using the same
JP2013076127A (en) * 2011-09-30 2013-04-25 Dowa Metaltech Kk Silver plating material and production method therefor
JP2013189681A (en) * 2012-03-14 2013-09-26 Dowa Metaltech Kk Silver plating material
JP6395560B2 (en) * 2013-11-08 2018-09-26 Dowaメタルテック株式会社 Silver plating material and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020012202A (en) * 2015-01-30 2020-01-23 Dowaメタルテック株式会社 Silver plating material and method for producing the same
WO2020184227A1 (en) 2019-03-11 2020-09-17 キヤノン株式会社 Image decoder, image decoding method, and program
US11211730B2 (en) * 2019-05-16 2021-12-28 Autonetworks Technologies, Ltd. Connector terminal, electrical wire with terminal, and terminal pair

Also Published As

Publication number Publication date
JP6694941B2 (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP6810229B2 (en) Silver plating material and its manufacturing method
US10597791B2 (en) Silver-plated product and method for producing same
JP6450639B2 (en) Silver plating material and method for producing the same
US9905951B2 (en) Silver-plated product
JP5667543B2 (en) Silver plating material and method for producing the same
JP2019044274A (en) Silver plated material and method for producing the same
EP2977489B1 (en) Silver-plated material
US20230097787A1 (en) Silver-plated product and method for producing same
WO2016121312A1 (en) Silver-plated member and method for manufacturing same
US10072348B2 (en) Silver-plated product
JP5209550B2 (en) Silver plating material manufacturing method
JP7455634B2 (en) Silver plating material and its manufacturing method, and terminal parts
JP6532323B2 (en) Silver plating material and method for manufacturing the same
WO2021181901A1 (en) Silver-plated material and method for manufacturing same
JP7083662B2 (en) Plating material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200420

R150 Certificate of patent or registration of utility model

Ref document number: 6694941

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250