JP2019039339A - Internal combustion engine cooling control device - Google Patents

Internal combustion engine cooling control device Download PDF

Info

Publication number
JP2019039339A
JP2019039339A JP2017161311A JP2017161311A JP2019039339A JP 2019039339 A JP2019039339 A JP 2019039339A JP 2017161311 A JP2017161311 A JP 2017161311A JP 2017161311 A JP2017161311 A JP 2017161311A JP 2019039339 A JP2019039339 A JP 2019039339A
Authority
JP
Japan
Prior art keywords
cylinder
cooling water
cylinder operation
flow rate
restable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017161311A
Other languages
Japanese (ja)
Other versions
JP6911634B2 (en
Inventor
亮 関口
Akira Sekiguchi
亮 関口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2017161311A priority Critical patent/JP6911634B2/en
Publication of JP2019039339A publication Critical patent/JP2019039339A/en
Application granted granted Critical
Publication of JP6911634B2 publication Critical patent/JP6911634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

To suppress a rise of an EGR gas temperature after changeover to a full-cylinder operation from a reduced-cylinder operation.SOLUTION: A cooling control device is employed to an engine 1 which has a normal flow passage 40a having a region which adjoins a normal cylinder 5a so as to be heat-exchangeable therewith, and making cooling water circulate in an EGR cooler 32, and a pausable flow passage 40b having a region which adjoins the pausable cylinder 5b so as to be heat-exchangeable therewith, and making cooling water circulate in the EGR cooler 32. The cooling control device sets a flow rate of cooling water flowing to the normal flow passage 40 to a first flow rate during a full-cylinder operation and a reduced-cylinder operation by using a cooling water opening/closing valve 43a which is arranged in the normal flow passage 40a, and when there arises a changeover requirement to the full-cylinder operation even during the reduced-cylinder operation, the cooling control device sets the flow rate to a second flow rate lower than the first flow rate over a prescribed standby time tw before a start of the combustion of the pausable cylinder 5b.SELECTED DRAWING: Figure 1

Description

本発明は、複数の気筒を有し且つその一部の気筒が作動を休止可能に構成されている内燃機関への冷却水の流通及び遮断を制御する内燃機関冷却制御装置に関する。   The present invention relates to an internal combustion engine cooling control apparatus that controls the flow and shut-off of cooling water to an internal combustion engine that has a plurality of cylinders and that some of the cylinders are configured to be able to stop operation.

一般に内燃機関では、運転温度を所定範囲内に維持するために、各気筒に隣接するシリンダブロック内のウォータジャケットに冷却水を流通させて、気筒を冷却するように構成されている。近年、燃費を向上させるために、車両走行中に一部の気筒の作動を休止させることが行われている。作動が休止している気筒では、燃料供給を停止すると共に、吸気弁及び排気弁を閉状態に保ち、気筒内で燃焼が起こらないようにしている。さらに、例えば特許文献1及び特許文献2に記載の内燃機関では、作動を休止できる気筒(以下適宜「休止可能気筒」という)が休止している間の無駄な冷却を回避しウォーターポンプの消費エネルギを抑制するために、ウォータジャケット内に隔壁を設けてこれを各気筒の周囲の領域ごとに区分すると共に、休止可能気筒に向けた冷却水の供給を遮断可能としている。そして、休止可能気筒内での燃焼が停止されている状態(以下適宜「減筒運転」という)では、休止可能気筒への冷却水の供給を停止させている。   In general, an internal combustion engine is configured to cool a cylinder by circulating cooling water through a water jacket in a cylinder block adjacent to each cylinder in order to maintain the operating temperature within a predetermined range. In recent years, in order to improve fuel efficiency, some cylinders are deactivated during vehicle travel. In the cylinders that are deactivated, the fuel supply is stopped and the intake and exhaust valves are kept closed so that combustion does not occur in the cylinders. Furthermore, for example, in the internal combustion engines described in Patent Document 1 and Patent Document 2, wasteful cooling is avoided while cylinders that can be deactivated (hereinafter referred to as “cylinders that can be deactivated as appropriate”) are deactivated, and energy consumption of the water pump is avoided. In order to suppress this, a partition wall is provided in the water jacket so as to be divided into regions around each cylinder, and the supply of cooling water to the restable cylinder can be shut off. In a state where combustion in the cylinder capable of resting is stopped (hereinafter referred to as “cylinder reduction operation” as appropriate), the supply of cooling water to the cylinder capable of resting is stopped.

特開2013−87758号公報JP 2013-87758 A 特開2013−87759号公報JP 2013-87759 A

休止可能気筒が休止している間は、気筒内で燃焼が生じない。特許文献1に記載の内燃機関では、減筒運転から、全ての気筒が運転している状態(以下適宜「全筒運転」という)に移行した際の休止可能気筒の燃焼室温度の上昇を妨げないようにするため、全筒運転への復帰直後も、休止可能気筒への冷却水の供給を遮断している。   While the resting cylinder is resting, no combustion occurs in the cylinder. In the internal combustion engine described in Patent Document 1, an increase in the combustion chamber temperature of the restable cylinder is prevented when a transition from reduced-cylinder operation to a state in which all cylinders are operating (hereinafter referred to as “all-cylinder operation” as appropriate) is prevented. In order to prevent this, the supply of cooling water to the cylinders that can be stopped is shut off immediately after returning to the all-cylinder operation.

他方、特許文献2に記載の内燃機関では、全筒運転に移行する前に休止可能気筒の燃焼室温度を上昇させておくために、全筒運転への復帰直前に、休止可能気筒への冷却水の供給を再開させている。   On the other hand, in the internal combustion engine described in Patent Document 2, in order to raise the temperature of the combustion chamber of the restable cylinder before shifting to the all-cylinder operation, the cooling to the restable cylinder is performed immediately before returning to the all-cylinder operation. The supply of water has been resumed.

ところで、特許文献1及び特許文献2に記載の内燃機関では、複数の気筒のうち休止可能気筒を除いた残余の気筒(以下適宜「通常気筒」という)への冷却水の水量を、休止可能気筒から独立して制御する構成は採用されていない。   By the way, in the internal combustion engines described in Patent Document 1 and Patent Document 2, the amount of cooling water to the remaining cylinders (hereinafter referred to as “normal cylinders” as appropriate) of the plurality of cylinders excluding the restable cylinder is used as the restable cylinder. The structure which controls independently from is not adopted.

しかし、通常気筒及び休止可能気筒と熱交換可能に隣接した領域を通じてEGRクーラに冷却水を流通させる流路を有する内燃機関では、気筒の作動状態がEGRクーラの冷却性能に影響しうる。具体的には、減筒運転から全筒運転への切替えの際には、排気ガス流量が急増する一方、減筒運転中に休止可能気筒に冷却水を供給しない場合には、全筒運転への切替え後に休止可能気筒を経由した低温の冷却水がEGRクーラに到達するまでに遅れが存在する。このため、減筒運転から全筒運転への切替えの直後にEGRクーラによる冷却が一時的に不足となり、EGRクーラ通過後のEGRガス温度が上昇し、吸気温度が上昇して気筒の壁体温度を上昇させてしまう。その結果、燃焼温度が過大となってディーゼルノックとNOxが増大してしまうという問題があった。   However, in an internal combustion engine having a flow path through which cooling water flows through the EGR cooler through a region adjacent to the normal cylinder and the restless cylinder so as to allow heat exchange, the operating state of the cylinder can affect the cooling performance of the EGR cooler. Specifically, when switching from reduced-cylinder operation to full-cylinder operation, the exhaust gas flow rate rapidly increases, but when cooling water is not supplied to the cylinders that can be stopped during reduced-cylinder operation, the operation proceeds to all-cylinder operation. There is a delay until the low-temperature cooling water that has passed through the cylinder capable of resting after reaching the EGR cooler. For this reason, immediately after switching from the reduced cylinder operation to the all cylinder operation, the cooling by the EGR cooler is temporarily insufficient, the EGR gas temperature after passing through the EGR cooler rises, the intake air temperature rises, and the cylinder wall temperature Will rise. As a result, there has been a problem that the combustion temperature becomes excessive and diesel knock and NOx increase.

上記問題に鑑み、本発明は、ウォータジャケットを経由してEGRクーラに冷却水を流通させるようにした内燃機関において、減筒運転から全筒運転への切替え後におけるEGRガス温度の上昇を抑制しうる内燃機関冷却制御装置を提供することを目的とする。   In view of the above problems, the present invention suppresses an increase in EGR gas temperature after switching from reduced-cylinder operation to all-cylinder operation in an internal combustion engine in which cooling water is circulated through an EGR cooler via a water jacket. An object of the present invention is to provide an internal combustion engine cooling control device.

上記課題を解決するための本発明に係る内燃機関冷却制御装置の特徴構成は、
複数の気筒を有し、全ての気筒内で混合気の燃焼が実施される全筒運転と、一部の気筒である休止可能気筒内での燃焼が停止され残余の気筒である通常気筒内で燃焼が実行される減筒運転との間で切り替え可能に構成され、かつ、排気ガスの一部を吸気通路に還流させるEGR通路内の排気ガスを冷却するためのEGRクーラと、前記通常気筒と熱交換可能に隣接した領域を有して前記EGRクーラに冷却水を流通させる通常流路と、前記休止可能気筒と熱交換可能に隣接した領域を有して前記EGRクーラに冷却水を流通させる休止可能流路と、を有する内燃機関に適用される冷却制御装置であって、
冷却水の流通を調節するように前記通常流路に設けられた通常流路調節部と、
前記通常流路調節部を制御する制御部と、を備え、
前記制御部は、前記通常流路への冷却水の流量を、全筒運転中及び減筒運転中には第1の流量とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、前記休止可能気筒の燃焼を開始させるよりも前の所定の待機時間にわたり、前記第1の流量よりも小さい第2の流量とするように構成されている点にある。
The characteristic configuration of the internal combustion engine cooling control device according to the present invention for solving the above problems
There are multiple cylinders, all cylinder operation in which combustion of the air-fuel mixture is carried out in all cylinders, and in the normal cylinders that are the remaining cylinders where combustion in the restable cylinders that are some cylinders is stopped An EGR cooler configured to switch between a reduced-cylinder operation in which combustion is performed, and for cooling the exhaust gas in the EGR passage that recirculates part of the exhaust gas to the intake passage; and the normal cylinder; A normal flow path that has a region adjacent to the EGR cooler so as to allow heat exchange and a coolant flow channel to the EGR cooler that has a region adjacent to the restable cylinder so as to allow heat exchange. A cooling control device applied to an internal combustion engine having a restable flow path,
A normal flow path adjusting portion provided in the normal flow path to adjust the flow of the cooling water,
A control unit for controlling the normal flow path adjustment unit,
The control unit sets the flow rate of the cooling water to the normal flow path to the first flow rate during all-cylinder operation and reduced-cylinder operation, and switches to all-cylinder operation even during reduced-cylinder operation. When there is a request, the second flow rate is set to be smaller than the first flow rate over a predetermined waiting time before starting the combustion of the restable cylinder. .

このような特徴構成とすれば、制御部は、通常流路への冷却水の流量を、全筒運転中及び減筒運転中には第1の流量とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、休止可能気筒の燃焼を開始させるよりも前の所定の待機時間にわたり、前記第1の流量よりも小さい第2の流量とするので、全筒運転の開始の直前に通常気筒を経由してEGRクーラに供給される高温の冷却水の流量が減少させられ、これによってEGRクーラ内の冷却水温の上昇が抑制される。したがって、全筒運転の開始後にEGRクーラを通過するガス流量が急増しても、EGRガス温度の上昇を抑制することができる。   With such a characteristic configuration, the control unit sets the flow rate of the cooling water to the normal flow path to the first flow rate during the all-cylinder operation and the reduced-cylinder operation, and during the reduced-cylinder operation. However, when there is a request to switch to all-cylinder operation, the second flow rate is smaller than the first flow rate over a predetermined waiting time before starting the combustion of the restable cylinder. Immediately before the start of cylinder operation, the flow rate of the high-temperature cooling water supplied to the EGR cooler via the normal cylinder is reduced, thereby suppressing an increase in the cooling water temperature in the EGR cooler. Therefore, even if the gas flow rate that passes through the EGR cooler rapidly increases after the start of all-cylinder operation, an increase in the EGR gas temperature can be suppressed.

また、本発明に係る内燃機関冷却制御装置においては、
前記内燃機関は、前記休止可能気筒と熱交換可能に隣接した領域を通じて前記EGRクーラに冷却水を流通させる休止可能流路を更に有し、
内燃機関冷却制御装置は、前記冷却水の流通を調節するように前記休止可能流路に設けられた休止可能流路調節部を更に備え、
前記制御部は、前記休止可能流路への冷却水の流量を、全筒運転中には第3の流量とし、減筒運転中には遮断状態とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、前記休止可能気筒の燃焼を開始させるよりも前の所定の増量時間にわたり、前記冷却水を前記遮断状態よりも大きい第4の流量とすると好適である。
In the internal combustion engine cooling control device according to the present invention,
The internal combustion engine further includes a restorable flow path for allowing cooling water to flow through the EGR cooler through a region adjacent to the restable cylinder so as to allow heat exchange.
The internal combustion engine cooling control device further includes a restorable flow path adjustment unit provided in the restable flow path so as to adjust the flow of the cooling water,
The control unit sets the flow rate of the cooling water to the restable flow path to the third flow rate during the all-cylinder operation, shuts off during the reduced-cylinder operation, and even during the reduced-cylinder operation. When there is a request to switch to all-cylinder operation, it is preferable that the cooling water has a fourth flow rate larger than that in the shut-off state over a predetermined increase time before starting combustion of the restable cylinder. It is.

このような構成にすれば、休止可能気筒の燃焼を開始させるよりも前の所定の増量時間にわたり、冷却水が増量されるので、全筒運転の開始後におけるEGRガス温度の上昇を更に効果的に抑制することができる。   With such a configuration, the cooling water is increased over a predetermined increase time before starting the combustion of the cylinders that can be deactivated. Therefore, it is more effective to increase the EGR gas temperature after the start of all-cylinder operation. Can be suppressed.

本発明によれば、ウォータジャケットを経由してEGRクーラに冷却水を流通させるようにした内燃機関において、減筒運転から全筒運転への切替え後におけるEGRガス温度の上昇を抑制することができる。   According to the present invention, in an internal combustion engine in which cooling water is allowed to flow through an EGR cooler via a water jacket, an increase in EGR gas temperature after switching from reduced-cylinder operation to all-cylinder operation can be suppressed. .

本発明の実施形態である内燃機関冷却制御装置の構成及び制御系を示す機能ブロック図である。1 is a functional block diagram showing a configuration and a control system of an internal combustion engine cooling control apparatus according to an embodiment of the present invention. 減筒運転及び全筒運転に係る各条件の成立から実行までの流れを示すフローチャートである。It is a flowchart which shows the flow from establishment to execution of each condition which concerns on reduced cylinder operation and all cylinder operation. 本実施形態の内燃機関冷却制御装置の制御状態とEGRクーラ内の冷却水温の推移を示すタイミングチャートである。It is a timing chart which shows transition of the control state of the internal-combustion-engine cooling control device of this embodiment, and the cooling water temperature in an EGR cooler.

以下、本発明の実施の形態を図面に基づいて説明する。図1は、本発明の実施形態に係る内燃機関冷却制御装置の構成及び制御系を示す。エンジン1は、車両(図示せず)に搭載された多気筒内燃機関である。本実施形態において、車両はトラック等の大型車両であり、これに搭載される車両動力源としてのエンジン1は直列4気筒ディーゼルエンジンである。しかしながら、車両および内燃機関の種類、形式、用途等に特に限定はなく、例えば車両は乗用車等の小型車両であってもよいし、エンジン1はガソリンエンジンであってもよい。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration and control system of an internal combustion engine cooling control apparatus according to an embodiment of the present invention. The engine 1 is a multi-cylinder internal combustion engine mounted on a vehicle (not shown). In the present embodiment, the vehicle is a large vehicle such as a truck, and the engine 1 as a vehicle power source mounted on the vehicle is an in-line four-cylinder diesel engine. However, there are no particular limitations on the types, types, applications, and the like of the vehicle and the internal combustion engine. For example, the vehicle may be a small vehicle such as a passenger car, and the engine 1 may be a gasoline engine.

エンジン1は、エンジン本体2と、エンジン本体2に接続された吸気通路3および排気通路4と、ターボチャージャ14と、燃料噴射弁37とを備える。エンジン本体2は、シリンダヘッド、シリンダブロック、クランクケース等の構造部品と、その内部に収容されたピストン、クランクシャフト、バルブ等の可動部品とを含む。   The engine 1 includes an engine body 2, an intake passage 3 and an exhaust passage 4 connected to the engine body 2, a turbocharger 14, and a fuel injection valve 37. The engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts such as a piston, a crankshaft, and a valve housed therein.

吸気通路3は、エンジン本体2のシリンダヘッドに接続された吸気マニホールド10と、吸気マニホールド10の上流端に接続された吸気管11とにより主に画成される。吸気マニホールド10は、吸気管11から送られてきた吸気を各気筒の吸気ポートに分配供給する。吸気管11には、上流側から順に、エアクリーナ12、エアフローメータ13、ターボチャージャ14のコンプレッサ14C、インタークーラ15、および電子制御式の吸気スロットルバルブ16が設けられる。エアフローメータ13は、エンジン1の単位時間当たりの吸入空気量すなわち吸気流量を検出するためのセンサであり、マスエアフロー(MAF)センサ等とも称される。   The intake passage 3 is mainly defined by an intake manifold 10 connected to the cylinder head of the engine body 2 and an intake pipe 11 connected to the upstream end of the intake manifold 10. The intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder. The intake pipe 11 is provided with an air cleaner 12, an air flow meter 13, a compressor 14 </ b> C of the turbocharger 14, an intercooler 15, and an electronically controlled intake throttle valve 16 in order from the upstream side. The air flow meter 13 is a sensor for detecting an intake air amount per unit time of the engine 1, that is, an intake flow rate, and is also referred to as a mass air flow (MAF) sensor or the like.

排気通路4は、エンジン本体2(特にシリンダヘッド)に接続された排気マニホールド20と、排気マニホールド20の下流側に接続された排気管21とにより主に画成される。排気マニホールド20は、各気筒の排気ポートから送られてきた排気ガスを集合させる。排気管21、もしくは排気マニホールド20と排気管21の間には、ターボチャージャ14のタービン14Tが設けられる。タービン14Tより下流側の排気通路4には、排気スロットルバルブ17及び排気後処理装置22が設けられる。排気後処理装置の内部には、上流側から順に、酸化触媒、フィルタ、選択還元型NOx触媒(SCR)およびアンモニア酸化触媒が配置される。   The exhaust passage 4 is mainly defined by an exhaust manifold 20 connected to the engine body 2 (particularly a cylinder head) and an exhaust pipe 21 connected to the downstream side of the exhaust manifold 20. The exhaust manifold 20 collects exhaust gas sent from the exhaust port of each cylinder. A turbine 14 </ b> T of the turbocharger 14 is provided between the exhaust pipe 21 or between the exhaust manifold 20 and the exhaust pipe 21. An exhaust throttle valve 17 and an exhaust aftertreatment device 22 are provided in the exhaust passage 4 on the downstream side of the turbine 14T. An oxidation catalyst, a filter, a selective reduction type NOx catalyst (SCR), and an ammonia oxidation catalyst are arranged in that order from the upstream side inside the exhaust aftertreatment device.

エンジン1は更に、EGR装置30を備える。EGR装置30は、排気通路4内(特に排気マニホールド20内)の排気ガスの一部(EGRガスという)を吸気通路3内(特に吸気マニホールド10内)に還流させるためのEGR通路31と、EGR通路31を流れるEGRガスを冷却する水冷式のEGRクーラ32と、EGRガスの流量を調節するためのEGR弁33とを備える。   The engine 1 further includes an EGR device 30. The EGR device 30 includes an EGR passage 31 for returning a part of exhaust gas (referred to as EGR gas) in the exhaust passage 4 (especially in the exhaust manifold 20) to the intake passage 3 (particularly in the intake manifold 10), and EGR. A water-cooled EGR cooler 32 that cools the EGR gas flowing through the passage 31 and an EGR valve 33 for adjusting the flow rate of the EGR gas are provided.

エンジン本体2が有する4つのシリンダのうち、#1及び#4が通常気筒5aであり、#2及び#3が休止可能気筒5bである。本実施形態に係るエンジン1は、吸気弁及び排気弁(いずれも図示せず)の動作を制御するための可変動弁機構36を備えている。可変動弁機構36は、吸気弁及び排気弁の開弁時期及びリフト量を可変とする機能のほか、減筒運転の際に通常気筒5aの吸気弁及び排気弁の動作を維持しながら、休止可能気筒5bの吸気弁及び排気弁を閉状態で停止させる機能を有する。なお、2つの休止可能気筒5bは、互いに独立して休止及び再作動させることができるように構成しても良い。   Of the four cylinders included in the engine body 2, # 1 and # 4 are normal cylinders 5a, and # 2 and # 3 are restable cylinders 5b. The engine 1 according to the present embodiment includes a variable valve mechanism 36 for controlling operations of an intake valve and an exhaust valve (both not shown). The variable valve mechanism 36 has a function of changing the valve opening timing and the lift amount of the intake valve and the exhaust valve, and in addition, while maintaining the operation of the intake valve and the exhaust valve of the normal cylinder 5a during the reduced cylinder operation, It has a function of stopping the intake valve and the exhaust valve of the possible cylinder 5b in a closed state. Note that the two restable cylinders 5b may be configured to be deactivated and reactivated independently of each other.

各燃焼室で発生した燃焼エネルギの一部は、熱として壁体に残留する。壁体に残留する残留熱による壁体高熱化を防止するために、冷却水循環用流路(以下単に流路とも称する)40が設けられており、その内部には冷却水が流通されている。   Part of the combustion energy generated in each combustion chamber remains on the wall as heat. In order to prevent the wall body from becoming hot due to the residual heat remaining in the wall body, a cooling water circulation channel (hereinafter also simply referred to as a channel) 40 is provided, and cooling water is circulated therein.

エンジン本体2のシリンダブロックには、冷却水が内部に流通されるウォータジャケット41が設けられている。ウォータジャケット41は、各気筒と熱交換可能に形成されている。ウォータジャケット41の内部には、通常気筒5aと休止可能気筒5bとの間で冷却水の流通を遮断するように、隔壁42が設けられている。これら隔壁42によってウォータジャケット41内が、通常気筒5aと熱交換可能に隣接した領域と、休止可能気筒5bと熱交換可能な領域とに区分されている。なお本実施形態では2つの休止可能気筒5bの間には隔壁を設けていないが、これを設けても良い。   The cylinder block of the engine body 2 is provided with a water jacket 41 through which cooling water is circulated. The water jacket 41 is formed to be able to exchange heat with each cylinder. A partition wall 42 is provided inside the water jacket 41 so as to block the flow of the cooling water between the normal cylinder 5a and the restable cylinder 5b. The partition wall 42 divides the inside of the water jacket 41 into a region adjacent to the normal cylinder 5a so as to allow heat exchange and a region capable of heat exchange with the restable cylinder 5b. In this embodiment, no partition wall is provided between the two restable cylinders 5b, but this may be provided.

流路40は、主にエンジン本体2のシリンダヘッドブロック内に配置され、ウォータジャケット41に向けて開口した流入口及び流出口を有する。流路40には、電動ポンプ43、ラジエータ44及びEGRクーラ32が設けられている。電動ポンプ43は不図示の電気モータを駆動源としており、エンジン1のクランクシャフトの回転とは無関係に駆動可能であるが、クランクシャフトからの動力によって駆動される機械式のものであっても良い。電動ポンプ43は、ラジエータ44に接続されている流路40を流れる冷却水を吸引して、ウォータジャケット41に供給する。冷却水は、ウォータジャケット41の内部を流通する際にシリンダ壁から熱を吸収してその水温を上昇させることにより、壁体温度を低下させる。また冷却水は、EGRクーラ32を通過する際にEGR通路31内の排気ガスから熱を吸収する。水温が上昇した冷却水はラジエータ44を流通する際に熱を放出してその水温を下げる。流路40には、ウォータジャケット41を通過した後の冷却水の温度を検出する冷却水温センサ45が設けられている。   The flow path 40 is disposed mainly in the cylinder head block of the engine body 2 and has an inlet and an outlet that open toward the water jacket 41. In the flow path 40, an electric pump 43, a radiator 44, and an EGR cooler 32 are provided. The electric pump 43 uses an electric motor (not shown) as a drive source and can be driven regardless of the rotation of the crankshaft of the engine 1, but may be a mechanical type driven by power from the crankshaft. . The electric pump 43 sucks the cooling water flowing through the flow path 40 connected to the radiator 44 and supplies it to the water jacket 41. When the cooling water flows through the water jacket 41, the cooling water absorbs heat from the cylinder wall and raises the water temperature, thereby lowering the wall temperature. Further, the cooling water absorbs heat from the exhaust gas in the EGR passage 31 when passing through the EGR cooler 32. The cooling water whose water temperature has risen releases heat when it flows through the radiator 44 and lowers its water temperature. The channel 40 is provided with a cooling water temperature sensor 45 that detects the temperature of the cooling water after passing through the water jacket 41.

流路40は、ウォータジャケット41と接続する流入口の上流側で分岐して、ウォータジャケット41と共に通常流路40a及び休止可能流路40bを形成している。通常流路40aを流通する冷却水は、ウォータジャケット41における各通常気筒5aと熱交換可能に隣接した領域を流通する。休止可能流路40bを流通する冷却水は、ウォータジャケット41における各休止可能気筒5bと熱交換可能に隣接した領域を流通する。通常流路40aと休止可能流路40bは、ウォータジャケット41と接続する流出口の下流側で合流して再び単一の流路40を形成する。なお、流路40a、40bは、冷却水の流れが平面視における各気筒5a,5bの両側面に向かうように、更に2つずつに分岐している。   The flow path 40 branches on the upstream side of the inflow port connected to the water jacket 41 and forms a normal flow path 40 a and a restable flow path 40 b together with the water jacket 41. The cooling water flowing through the normal flow path 40a flows through a region adjacent to each normal cylinder 5a in the water jacket 41 so that heat exchange is possible. The cooling water flowing through the restable flow path 40b flows through a region adjacent to each restable cylinder 5b in the water jacket 41 so as to be able to exchange heat. The normal flow path 40a and the restable flow path 40b merge at the downstream side of the outlet connected to the water jacket 41 to form a single flow path 40 again. The flow paths 40a, 40b are further branched into two so that the flow of the cooling water is directed to both side surfaces of the cylinders 5a, 5b in plan view.

通常気筒5aに隣接する通常流路40aにおけるウォータジャケット41の上流側には、冷却水のウォータジャケット41への流量が電気的に調節可能な冷却水開閉弁43aが設けられている。休止可能気筒5bに隣接する休止可能流路40bにおけるウォータジャケット41の上流側には、冷却水のウォータジャケット41への流量が電気的に調節可能な冷却水開閉弁43bが設けられている。冷却水開閉弁43a,43bは、それぞれ本発明における通常流路調節部及び休止可能流路調節部に相当し、モータあるいはソレノイドなどのアクチュエータを有する。冷却水開閉弁43aは、冷却水の流量を全開及び全閉(遮断)の間で無段階あるいは多段階に調節することができる。冷却水開閉弁43bは、全開及び全閉(遮断)の2位置で動作する。なお本実施形態では、冷却水開閉弁43a,43bは気筒5a,5bのウォータジャケット41の上流側に設けたが、これはウォータジャケット41に流入する前の低温の冷却水を開閉する方が、冷却水開閉弁43a,43bの耐熱性の観点でより好ましいからである。ただし、これら冷却水開閉弁43a,43bを気筒5a,5bのウォータジャケット41の下流側に設けてもよい。また冷却水開閉弁43a,43bはエンジン本体2の排気側に設けたが、吸気側に設けても良い。   A cooling water on / off valve 43a capable of electrically adjusting the flow rate of the cooling water to the water jacket 41 is provided on the upstream side of the water jacket 41 in the normal flow path 40a adjacent to the normal cylinder 5a. A cooling water on-off valve 43b that can electrically adjust the flow rate of the cooling water to the water jacket 41 is provided on the upstream side of the water jacket 41 in the restable flow path 40b adjacent to the restable cylinder 5b. The cooling water on / off valves 43a and 43b correspond to the normal flow path adjusting section and the restable flow path adjusting section in the present invention, respectively, and have an actuator such as a motor or a solenoid. The cooling water on-off valve 43a can adjust the flow rate of the cooling water in a stepless manner or a multi-step state between full open and full close (shut off). The cooling water on / off valve 43b operates in two positions, fully open and fully closed (shut off). In this embodiment, the cooling water on / off valves 43a and 43b are provided on the upstream side of the water jacket 41 of the cylinders 5a and 5b. However, this is because the low temperature cooling water before flowing into the water jacket 41 is opened and closed. This is because the cooling water on / off valves 43a and 43b are more preferable from the viewpoint of heat resistance. However, these cooling water on-off valves 43a and 43b may be provided on the downstream side of the water jacket 41 of the cylinders 5a and 5b. The cooling water on / off valves 43a and 43b are provided on the exhaust side of the engine body 2, but may be provided on the intake side.

この内燃機関冷却制御装置1で採用されている制御系の中核要素としての制御ユニット50は、ECUと称されるものであり、マイクロコンピュータを主体として構成され、内蔵されたROMに記憶されたプログラムを実行することで、エンジン1の制御に関する種々の機能を作り出す。上述したエアフローメータ13及び冷却水温センサ45に加え、不図示のクランクシャフトの近傍に設けられ回転速度を検出するクランク角センサ51、アクセルペダルの開度を検出するためのアクセル開度センサ52、不図示の駆動輪の近傍に設けられ車両の走行速度を検出する車速センサ53などの各種センサの検出信号が、制御ユニット50に入力される。また制御ユニット50は制御信号を出力し、可変動弁機構36、燃料噴射弁37、EGR弁33、吸気スロットルバルブ16、排気スロットルバルブ17を制御することに加え、さらに、電動ポンプ43、冷却水開閉弁43a,43bなどの動作を制御する。   A control unit 50 as a core element of a control system employed in the internal combustion engine cooling control apparatus 1 is called an ECU, and is composed mainly of a microcomputer and is a program stored in a built-in ROM. By executing the above, various functions relating to the control of the engine 1 are created. In addition to the air flow meter 13 and the coolant temperature sensor 45 described above, a crank angle sensor 51 provided in the vicinity of a crankshaft (not shown) for detecting the rotational speed, an accelerator opening sensor 52 for detecting the opening of the accelerator pedal, Detection signals from various sensors such as a vehicle speed sensor 53 provided in the vicinity of the illustrated driving wheel and detecting the traveling speed of the vehicle are input to the control unit 50. The control unit 50 outputs a control signal and controls the variable valve mechanism 36, the fuel injection valve 37, the EGR valve 33, the intake throttle valve 16 and the exhaust throttle valve 17, and further includes an electric pump 43, a cooling water The operation of the on-off valves 43a and 43b is controlled.

本実施形態では、制御ユニット50は、エンジン1が作動しているときに、クランク角センサ51、アクセル開度センサ52、車速センサ53等の検出信号に基づいて、燃料噴射弁37の噴射量を制御し、かつ可変動弁機構36の動作を制御して休止可能気筒5bを休止状態あるいは作動状態にさせる。例えば、渋滞中に低速度で発進、停止を繰り返しているときのようにエンジン1に対する負荷トルクが小さいときや、一定速度での走行を一定時間以上継続しているときのように負荷トルクの変動が小さいときには、燃費を向上させるために、休止可能気筒5bが休止させられる。作動が休止している気筒では、吸気弁及び排気弁を閉状態に保ち、気筒内で燃焼が起こらないようにしている。   In the present embodiment, the control unit 50 determines the injection amount of the fuel injection valve 37 based on detection signals from the crank angle sensor 51, the accelerator opening sensor 52, the vehicle speed sensor 53, and the like when the engine 1 is operating. And the operation of the variable valve mechanism 36 is controlled to bring the restable cylinder 5b into a resting state or an operating state. For example, when the load torque on the engine 1 is small, such as when starting and stopping at low speeds in a traffic jam, or when running at a constant speed continues for a certain time or longer, the load torque fluctuates. When is small, the restable cylinder 5b is paused in order to improve fuel consumption. In a cylinder that is deactivated, the intake valve and the exhaust valve are kept closed so that combustion does not occur in the cylinder.

そして制御ユニット50は更に、冷却水開閉弁43a,43bの開閉を制御する。減筒運転中には、休止可能気筒5bへの冷却水の供給を停止させ、これによって、休止可能気筒5bが休止している間の無駄な冷却を回避してウォーターポンプ43の消費電力が抑制される。   The control unit 50 further controls the opening / closing of the cooling water on / off valves 43a and 43b. During the reduced-cylinder operation, the supply of the cooling water to the restable cylinder 5b is stopped, thereby avoiding useless cooling while the restable cylinder 5b is stopped and suppressing the power consumption of the water pump 43. Is done.

ところで、減筒運転から全筒運転への切替えの際に排気ガス流量が急増する一方、通常気筒及び休止可能気筒と熱交換可能に隣接した領域を通じてEGRクーラに冷却水を流通させる流路を有する内燃機関では、減筒運転中に休止可能気筒に冷却水を供給しない場合には、全筒運転への切替え後に休止可能気筒を経由した低温の冷却水がEGRクーラに到達するまでに遅れが存在する。このため、減筒運転から全筒運転への切替えの直後にEGRクーラによる冷却が一時的に不足となり、EGRクーラ通過後のEGRガス温度が上昇し、気筒の壁体温度を上昇させてしまう。その結果、燃焼温度が過大となってディーゼルノックとNOxが増大してしまうという問題があった。   By the way, the exhaust gas flow rate rapidly increases when switching from the reduced cylinder operation to the all cylinder operation, and has a flow path for circulating the cooling water to the EGR cooler through a region adjacent to the normal cylinder and the restable cylinder so that heat exchange is possible. In an internal combustion engine, when cooling water is not supplied to a cylinder that can be deactivated during reduced-cylinder operation, there is a delay until low-temperature cooling water that has passed through the cylinder that can be deactivated reaches the EGR cooler after switching to all-cylinder operation. To do. For this reason, immediately after switching from the reduced cylinder operation to the all cylinder operation, the cooling by the EGR cooler is temporarily insufficient, the EGR gas temperature after passing through the EGR cooler rises, and the wall temperature of the cylinder rises. As a result, there has been a problem that the combustion temperature becomes excessive and diesel knock and NOx increase.

そこで本実施形態では、通常流路40aへの冷却水の流量を、全筒運転時及び減筒運転時には第1の流量FR1とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、休止可能気筒5bの燃焼を開始させるよりも前の所定の待機時間twにわたり、前記第1の流量FR1よりも小さい第2の流量FR2とする。また、これと並行して、休止可能流路40bへの冷却水の流量を、全筒運転時には第3の流量FR3とし、減筒運転時には遮断状態とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、待機時間twにわたり、冷却水を全筒運転時と同じ流量FR3(第4の流量)とする。なお、本実施形態では本発明における第4の流量を第3の流量FR3と等しい値(すなわち、全開状態相当量)としている。   Therefore, in the present embodiment, the flow rate of the cooling water to the normal flow path 40a is set to the first flow rate FR1 during the all-cylinder operation and the reduced-cylinder operation, and is switched to the all-cylinder operation even during the reduced-cylinder operation. If there is a request, the second flow rate FR2 is set to be smaller than the first flow rate FR1 over a predetermined waiting time tw prior to the start of the combustion of the restable cylinder 5b. In parallel with this, the flow rate of the cooling water to the restable flow path 40b is set to the third flow rate FR3 during the all-cylinder operation, and is shut off during the reduced-cylinder operation, and even during the reduced-cylinder operation. When there is a request for switching to all-cylinder operation, the cooling water is set to the same flow rate FR3 (fourth flow rate) as that during all-cylinder operation over the standby time tw. In the present embodiment, the fourth flow rate in the present invention is set to a value equal to the third flow rate FR3 (that is, a fully open state equivalent amount).

以下、制御ユニット50において実行される冷却制御処理につき説明する。図2のフローチャートに係る処理は、制御ユニット50において所定の制御周期Δtごとに繰り返し実行される。   Hereinafter, the cooling control process executed in the control unit 50 will be described. The process according to the flowchart of FIG. 2 is repeatedly executed in the control unit 50 every predetermined control period Δt.

図2において、まず制御ユニット50は各センサの検出値を読み込む(S10)。ここで読み込まれる検出値には、クランク角センサ51、アクセル開度センサ52、車速センサ53等の検出値が含まれる。   In FIG. 2, the control unit 50 first reads the detection value of each sensor (S10). The detection values read here include detection values of the crank angle sensor 51, the accelerator opening sensor 52, the vehicle speed sensor 53, and the like.

次に制御ユニット50は、減筒運転条件が成立しているかを判断する(S20)。この減筒運転条件は、上述のとおり、例えば渋滞中に低速度で発進、停止を繰り返しているときのように内燃機関に対する負荷トルクが小さい場合や、一定速度での走行を一定時間以上継続しているときのように負荷トルクの変動が小さい場合に成立する。この判断は、クランク角センサ51、アクセル開度センサ52及び車速センサ53の検出信号に基づいて実行される。   Next, the control unit 50 determines whether the reduced-cylinder operation condition is satisfied (S20). As described above, this reduced-cylinder operation condition is, for example, when the load torque to the internal combustion engine is small, such as when starting and stopping at a low speed during a traffic jam, or when traveling at a constant speed is continued for a certain time or more. This is true when the load torque fluctuation is small, as in This determination is performed based on detection signals from the crank angle sensor 51, the accelerator opening sensor 52, and the vehicle speed sensor 53.

減筒運転条件が成立している場合には、ステップS20で肯定され、ステップS30〜S60の処理が行われる。まず、休止可能気筒5bに連なる冷却水開閉弁43bが全閉となるように制御出力が行われて、休止可能気筒5bへの冷却水が停止され(S30)、かつ、通常気筒5aに連なる冷却水開閉弁43aが全開となるように制御出力が行われて、通常気筒5aへの冷却水が流通状態とされる(S40)。そして、可変動弁機構36及び燃料噴射弁37への制御出力が行われて、休止可能気筒5bの動作が停止させられる(S50)。すなわち、休止可能気筒5bについては、燃料噴射弁37による燃料噴射が停止されると共に、可変動弁機構36により吸気弁及び排気弁が全閉状態で停止させられる。以上のとおり、減筒運転の開始の際には、休止可能気筒5bの動作の停止と、休止可能気筒5bへの冷却水の遮断とが、実質的に同時に行われる。そして、制御ユニット50における所定のメモリ領域に設けられた減筒フラグがセット(=1)される(S60)。   If the reduced-cylinder operation condition is satisfied, the determination in step S20 is affirmative, and the processes in steps S30 to S60 are performed. First, a control output is performed so that the cooling water on-off valve 43b connected to the stoppable cylinder 5b is fully closed, the cooling water to the stoppable cylinder 5b is stopped (S30), and the cooling connected to the normal cylinder 5a is stopped. Control output is performed so that the water on-off valve 43a is fully opened, and the cooling water to the normal cylinder 5a is made to flow (S40). Then, the control output to the variable valve mechanism 36 and the fuel injection valve 37 is performed, and the operation of the restable cylinder 5b is stopped (S50). That is, for the cylinder 5b that can be deactivated, fuel injection by the fuel injection valve 37 is stopped, and the intake valve and the exhaust valve are stopped by the variable valve mechanism 36 in a fully closed state. As described above, when the reduced-cylinder operation is started, the operation of the restable cylinder 5b is stopped and the cooling water to the restable cylinder 5b is cut off substantially simultaneously. Then, a reduced cylinder flag provided in a predetermined memory area in the control unit 50 is set (= 1) (S60).

減筒運転条件が成立しなくなった場合には、ステップS20で否定され、全筒運転への切替え要求があったものとして、ステップS70〜S130の処理が行われる。まず、休止可能気筒5bに連なる冷却水開閉弁43bが全開となるように制御出力が行われて、休止可能気筒5bへの冷却水が流通状態とされる(S70)。   If the reduced-cylinder operation condition is no longer satisfied, the result of step S20 is negative and the processing of steps S70 to S130 is performed assuming that there is a request for switching to all-cylinder operation. First, a control output is performed so that the cooling water on-off valve 43b connected to the resting cylinder 5b is fully opened, and the cooling water to the resting cylinder 5b is made to flow (S70).

次に制御ユニット50は、上述した減筒フラグを参照し、同フラグがセットされているかを判断する(S80)。そして同フラグがセットされていない(=0)場合には、通常気筒5aに連なる冷却水開閉弁43aが全開となるように制御出力が行われて、通常気筒5aへの冷却水が流通状態とされる(S120)。そして、可変動弁機構36及び燃料噴射弁37への制御出力が行われて、休止可能気筒5bが作動させられる(S130)。すなわち、通常気筒5aだけでなく休止可能気筒5bについても、燃料噴射弁37による燃料噴射が実行されると共に、可変動弁機構36により吸気弁及び排気弁が動作させられる。   Next, the control unit 50 refers to the above-described reduced cylinder flag and determines whether the flag is set (S80). When the flag is not set (= 0), a control output is performed so that the cooling water on / off valve 43a connected to the normal cylinder 5a is fully opened, and the cooling water to the normal cylinder 5a is in a flow state. (S120). Then, a control output to the variable valve mechanism 36 and the fuel injection valve 37 is performed, and the restable cylinder 5b is operated (S130). That is, not only the normal cylinder 5a but also the restable cylinder 5b, fuel injection by the fuel injection valve 37 is executed and the intake valve and the exhaust valve are operated by the variable valve mechanism 36.

他方、ステップS80において減筒フラグがセットされている状態は、減筒運転中に全筒運転への切替え要求があったときに生じる。この場合には、次に制御ユニット50は、全筒運転条件の成立時点から予め定められた待機時間twが経過したかを判断する(S90)。このステップS90で否定、すなわち待機時間twが経過していない間は、通常気筒5aに連なる冷却水開閉弁43aが、全開と全閉との間である抑制位置となるように制御出力が行われて、通常気筒5aへの冷却水が流量FR2に抑制される(S100)。この抑制状態は、待機時間tw(S90)が経過するまで継続される。   On the other hand, the state in which the reduced cylinder flag is set in step S80 occurs when there is a request for switching to the all cylinder operation during the reduced cylinder operation. In this case, the control unit 50 next determines whether or not a predetermined standby time tw has elapsed from the time when the all-cylinder operation condition is satisfied (S90). While this step S90 is negative, that is, while the standby time tw has not elapsed, the control output is performed so that the cooling water on-off valve 43a connected to the normal cylinder 5a is in the suppression position between fully open and fully closed. Thus, the cooling water to the normal cylinder 5a is suppressed to the flow rate FR2 (S100). This suppression state is continued until the standby time tw (S90) elapses.

全筒運転条件の成立時点から待機時間twが経過すると、ステップS90で肯定され、減筒フラグがリセット(=0)されると共に(S110)、通常気筒5aに連なる冷却水開閉弁43aが全開となるように制御出力が行われて、通常気筒5aへの冷却水が流通状態とされる(S120)。そして、可変動弁機構36及び燃料噴射弁37への制御出力が行われて、休止可能気筒5bが作動させられる(S130)。すなわち、休止可能気筒5bについて燃料噴射弁37による燃料噴射が実行されると共に、可変動弁機構36により吸気弁及び排気弁が動作させられる。   When the standby time tw elapses from the time when the all-cylinder operation condition is satisfied, the result is affirmative in step S90, the reduced cylinder flag is reset (= 0) (S110), and the cooling water on-off valve 43a connected to the normal cylinder 5a is fully opened. Thus, the control output is performed, and the cooling water to the normal cylinder 5a is made to flow (S120). Then, a control output to the variable valve mechanism 36 and the fuel injection valve 37 is performed, and the restable cylinder 5b is operated (S130). That is, fuel injection by the fuel injection valve 37 is executed for the restable cylinder 5b, and the intake valve and the exhaust valve are operated by the variable valve mechanism 36.

以上の処理の結果、図3に示されるように、減筒運転条件の成立前(=a)には、ステップS20及びS80での否定を経て、通常流路40a及び休止可能流路40bがいずれも全開(流量FR1,FR3)とされ、かつ休止可能気筒5bが運転状態にされる(S70,S120,S130)。   As a result of the above processing, as shown in FIG. 3, before the reduced-cylinder operation condition is satisfied (= a), after the negative in steps S20 and S80, which of the normal flow path 40a and the restable flow path 40b is Are fully opened (flow rates FR1, FR3), and the incapable cylinder 5b is put into operation (S70, S120, S130).

他方、減筒運転条件が成立すると(t1=ステップS20で肯定)、休止可能気筒5bへの冷却水が停止され(b=S30)、かつ、通常気筒5aへの冷却水が流通状態とされる(c=S40)。そして、休止可能気筒5bの動作が停止させられる(d=S50)。すなわち、休止可能気筒5bについては、燃料噴射弁37による燃料噴射が停止されると共に、可変動弁機構36により吸気弁及び排気弁が全閉状態で停止させられる。以上のとおり、減筒運転の開始の際には、休止可能気筒5bの動作の停止と、休止可能気筒5bへの冷却水の遮断とが実質的に同時(t1)に行われる。   On the other hand, when the reduced-cylinder operation condition is satisfied (t1 = Yes in step S20), the cooling water to the restable cylinder 5b is stopped (b = S30), and the cooling water to the normal cylinder 5a is made to flow. (C = S40). Then, the operation of the restable cylinder 5b is stopped (d = S50). That is, for the cylinder 5b that can be deactivated, fuel injection by the fuel injection valve 37 is stopped, and the intake valve and the exhaust valve are stopped by the variable valve mechanism 36 in a fully closed state. As described above, when the reduced-cylinder operation is started, the operation of the restable cylinder 5b is stopped and the coolant to the restable cylinder 5b is cut off substantially simultaneously (t1).

このような減筒運転中において、減筒運転条件が成立しなくなった場合には(t2)、全筒運転への切替え要求があったものとして、ステップS20で否定され、休止可能気筒5bへの冷却水が流通状態とされる(e=S70)。減筒運転中であった場合(減筒フラグ=1)には、まず待機時間twが経過するまでの間にわたり、通常気筒5aに連なる冷却水開閉弁43aが、全開と全閉との間である抑制位置となるように制御出力が行われて、通常気筒5aへの冷却水が全開位置の場合の流量FR1よりも小さい流量FR2に抑制される(f=S100)。その結果、本発明による改良前、すなわち(A)全筒運転への切替え要求の前後で通常流路への流量を変更せず、且つ(B)全筒運転への切替え要求があると同時に休止可能気筒の動作を開始する場合には、EGRクーラ32内の冷却水温Tが符号gのように上昇していたのに対し、本実施形態では符号hのように、EGRクーラ32内の冷却水温を抑制することができる。   If the reduced-cylinder operation condition is no longer satisfied during such reduced-cylinder operation (t2), it is determined that there is a request for switching to all-cylinder operation, and the result is negative in step S20, and the cylinder is stopped. Cooling water is put into a circulation state (e = S70). When the reduced cylinder operation is being performed (reduced cylinder flag = 1), the cooling water on / off valve 43a connected to the normal cylinder 5a is first between fully open and fully closed until the standby time tw elapses. Control output is performed so as to reach a certain suppression position, and the cooling water to the normal cylinder 5a is suppressed to a flow rate FR2 that is smaller than the flow rate FR1 in the fully open position (f = S100). As a result, before the improvement according to the present invention, that is, (A) the flow rate to the normal flow path is not changed before and after the request for switching to the all-cylinder operation, and (B) there is a request for switching to the all-cylinder operation. When the operation of the possible cylinder is started, the cooling water temperature T in the EGR cooler 32 has risen as indicated by symbol g, whereas in this embodiment, the cooling water temperature in the EGR cooler 32 as indicated by symbol h. Can be suppressed.

そして、全筒運転条件の成立時点から待機時間twが経過すると(t3)、ステップS90で肯定され、通常気筒5aへの冷却水が流通状態とされ(i=S120)、休止可能気筒5bが作動させられることになる(j=S130)。   Then, when the waiting time tw elapses from the time when the all-cylinder operation condition is satisfied (t3), the result in step S90 is affirmative, the cooling water to the normal cylinder 5a is made to flow (i = S120), and the restable cylinder 5b is activated. (J = S130).

以上のとおり、本実施形態では、制御ユニット50は、通常流路40aへの冷却水の流量を、全筒運転中及び減筒運転中には第1の流量FR1とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、休止可能気筒5bの燃焼を開始させるよりも前の所定の待機時間twにわたり、前記第1の流量FR1よりも小さい第2の流量FR2とする。その結果、全筒運転の開始の直前に通常気筒5aを経由してEGRクーラ32に供給される高温の冷却水の流量が減少させられ、これによってEGRクーラ32内の冷却水温Tの上昇が抑制される。したがって、全筒運転の開始後にEGRクーラ32を通過するガス流量が急増しても、EGRガス温度の上昇を抑制することができる。   As described above, in this embodiment, the control unit 50 sets the flow rate of the cooling water to the normal flow path 40a to the first flow rate FR1 during the all-cylinder operation and the reduced-cylinder operation, and during the reduced-cylinder operation. However, when there is a request for switching to the all-cylinder operation, the second flow rate smaller than the first flow rate FR1 over a predetermined waiting time tw before starting the combustion of the cylinder 5b that can be stopped. The flow rate is FR2. As a result, the flow rate of the high-temperature cooling water supplied to the EGR cooler 32 via the normal cylinder 5a immediately before the start of all-cylinder operation is reduced, thereby suppressing an increase in the cooling water temperature T in the EGR cooler 32. Is done. Therefore, even if the gas flow rate that passes through the EGR cooler 32 suddenly increases after the start of all-cylinder operation, an increase in the EGR gas temperature can be suppressed.

また、本実施形態では、制御ユニット50は、休止可能流路40bへの冷却水の流量を、全筒運転中には第3の流量FR3とし、減筒運転中には遮断状態とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、休止可能気筒5bの燃焼を開始させるよりも前の所定の増量時間(本実施形態では、待機時間tw)にわたり、冷却水を流通状態(流量FR3:本発明における第4の流量)としたので、休止可能気筒流路40bへの冷却水が増量されることにより、全筒運転の開始後におけるEGRガス温度の上昇を更に効果的に抑制することができる。   Further, in the present embodiment, the control unit 50 sets the flow rate of the cooling water to the restable flow path 40b to the third flow rate FR3 during the all-cylinder operation and shuts off during the reduced-cylinder operation. If there is a request to switch to all-cylinder operation even during the reduced-cylinder operation, over a predetermined increase time (in this embodiment, the standby time tw) prior to starting combustion of the restable cylinder 5b. Since the cooling water is in a circulation state (flow rate FR3: the fourth flow rate in the present invention), the amount of cooling water to the restable cylinder flow path 40b is increased, so that the EGR gas temperature after the start of all cylinder operation is increased. The rise can be more effectively suppressed.

なお、上記実施形態では、減筒運転中に全筒運転への切替え要求があった場合に、休止可能気筒5bへの冷却水を流通状態(流量FR3)とする増量時間を、通常流路40aへの冷却水の流量を抑制させる待機時間twと等しく設定したが、増量時間は待機時間twよりも長くても短くても良い。また、待機時間tw内における通常流路40aへの冷却水の流量を、第1の流量FR1よりも抑制された範囲内で変化させても良い。   In the above-described embodiment, when there is a request for switching to the all-cylinder operation during the reduced-cylinder operation, the increase time in which the cooling water to the restable cylinder 5b is in the circulation state (flow rate FR3) is set as the normal flow path 40a. However, the increase time may be longer or shorter than the waiting time tw. Further, the flow rate of the cooling water to the normal flow path 40a within the standby time tw may be changed within a range that is less than the first flow rate FR1.

また、上記実施形態では、減筒運転中に全筒運転への切替え要求があった場合に、休止可能気筒5bの燃焼を開始させるよりも前の所定の増量時間(本実施形態では、待機時間tw)にわたり、冷却水を流通状態(流量FR3)としたが、この増量時間における流量は全開状態に相当する流量FR3であることは必ずしも必要でなく、遮断状態(流量0)よりも大きい第4の流量であれば良いものであって、その限りにおいて所期の効果を得ることができる。   Further, in the above embodiment, when there is a request for switching to the all cylinder operation during the reduced cylinder operation, a predetermined increase time before starting the combustion of the restable cylinder 5b (in this embodiment, the standby time) Although the cooling water is in the circulation state (flow rate FR3) over tw), the flow rate during this increase time is not necessarily the flow rate FR3 corresponding to the fully open state, and is larger than the cutoff state (flow rate 0). As long as the flow rate is sufficient, the desired effect can be obtained.

また、上記実施形態では、全筒運転への切替え要求があった場合に、休止可能気筒5bの作動開始に先立って、通常流路40aの流量の抑制に加えて、休止可能流路40bの流量をも変更(供給開始)することとしたが、休止可能気筒5bの作動開始に先立つ休止可能流路40bへの供給開始は行わない構成としても良い。また、休止可能気筒5bの作動開始に先立つ休止可能流路40bへの供給開始の有無を、エンジン負荷や冷却水温Tなどの運転状態に応じて決定することとしても良い。例えば、冷却水温Tやエンジン負荷が所定の基準値よりも大きい場合にのみ、増量時間中の休止可能流路40bへの冷却水供給を実行することとしても良い。   Further, in the above embodiment, when there is a request for switching to all-cylinder operation, in addition to the suppression of the flow rate of the normal flow path 40a, the flow rate of the restable flow path 40b prior to the start of operation of the restable cylinder 5b. However, it may be configured not to start the supply to the restable flow path 40b prior to the start of the operation of the restable cylinder 5b. In addition, it may be determined whether or not to start supply to the stoppable flow path 40b prior to the start of operation of the stoppable cylinder 5b according to the operating state such as the engine load and the cooling water temperature T. For example, only when the cooling water temperature T or the engine load is larger than a predetermined reference value, the cooling water supply to the restable flow path 40b during the increase time may be executed.

また、冷却水温Tやエンジン負荷が所定の基準値よりも大きい場合には、通常気筒5aの冷却を優先させるために、全筒運転への切替え要求があった場合における休止可能気筒5bの作動開始に先立つ通常流路40aの流量の抑制を行わないこととしても良い。   When the coolant temperature T and the engine load are larger than a predetermined reference value, the operation of the restable cylinder 5b is started when a request for switching to all-cylinder operation is given to prioritize cooling of the normal cylinder 5a. It is good also as not suppressing the flow volume of the normal flow path 40a prior to.

また、上記実施形態では、待機時間tw、この待機時間tw中における通常流路40aの流量FR2、及び増量時間中の休止可能流路40bの流量FR3をいずれも固定値としたが、これらの少なくともいずれかを、冷却水温Tやエンジン負荷などの運転状態を示すパラメータに基づいて補正・変更ないし動的に設定することとしても良い。例えば、冷却水温Tやエンジン負荷が大きいほど、待機時間twを長く、流量FR2を小さく、又は流量FR3を大きく設定することができる。なお、休止可能気筒5bが休止している間の冷却水温Tは、例えば制御ユニット50により、エアフローメータ13、吸気温センサ42、クランク角センサ51、スロットル開度センサ46、車速センサ53等の検出信号に基づいて推定することができる。   In the above embodiment, the standby time tw, the flow rate FR2 of the normal flow path 40a during the standby time tw, and the flow rate FR3 of the restable flow path 40b during the increase time are all fixed values. Any one of them may be corrected / changed or dynamically set based on a parameter indicating an operation state such as the cooling water temperature T or the engine load. For example, the standby time tw can be set longer, the flow rate FR2 can be set smaller, or the flow rate FR3 can be set larger as the cooling water temperature T and the engine load are larger. Note that the cooling water temperature T while the inactive cylinder 5b is inactive is detected by, for example, the control unit 50 using the air flow meter 13, the intake air temperature sensor 42, the crank angle sensor 51, the throttle opening sensor 46, the vehicle speed sensor 53, and the like. It can be estimated based on the signal.

本発明は、複数の気筒を有し且つその一部の気筒が作動休止可能に構成されている内燃機関への冷却水の流通・遮断ないし流量を制御する内燃機関冷却制御装置に広く適用することができる。   INDUSTRIAL APPLICABILITY The present invention is widely applied to an internal combustion engine cooling control device that controls the flow / blocking or flow rate of cooling water to / from an internal combustion engine that has a plurality of cylinders and that some of the cylinders are configured to be inoperative. Can do.

1 内燃機関
5a 通常気筒
5b 休止可能気筒
32 EGRクーラ
40a 通常流路
40b 休止可能流路
41 ウォータジャケット
43a,43b 冷却水開閉弁
50 制御ユニット
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 5a Normal cylinder 5b Stoppable cylinder 32 EGR cooler 40a Normal flow path 40b Stoppable flow path 41 Water jacket 43a, 43b Cooling water on-off valve 50 Control unit

Claims (2)

複数の気筒を有し、全ての気筒内で混合気の燃焼が実施される全筒運転と、一部の気筒である休止可能気筒内での燃焼が停止され残余の気筒である通常気筒内で燃焼が実行される減筒運転との間で切り替え可能に構成され、かつ、排気ガスの一部を吸気通路に還流させるEGR通路内の排気ガスを冷却するためのEGRクーラと、前記通常気筒と熱交換可能に隣接した領域を有して前記EGRクーラに冷却水を流通させる通常流路と、前記休止可能気筒と熱交換可能に隣接した領域を有して前記EGRクーラに冷却水を流通させる休止可能流路と、を有する内燃機関に適用される冷却制御装置であって、
冷却水の流通を調節するように前記通常流路に設けられた通常流路調節部と、
前記通常流路調節部を制御する制御部と、を備え、
前記制御部は、前記通常流路への冷却水の流量を、全筒運転中及び減筒運転中には第1の流量とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、前記休止可能気筒の燃焼を開始させるよりも前の所定の待機時間にわたり、前記第1の流量よりも小さい第2の流量とするように構成されていることを特徴とする内燃機関冷却制御装置。
There are multiple cylinders, all cylinder operation in which combustion of the air-fuel mixture is carried out in all cylinders, and in the normal cylinders that are the remaining cylinders where combustion in the restable cylinders that are some cylinders is stopped An EGR cooler configured to switch between a reduced-cylinder operation in which combustion is performed, and for cooling the exhaust gas in the EGR passage that recirculates part of the exhaust gas to the intake passage; and the normal cylinder; A normal flow path that has a region adjacent to the EGR cooler so as to allow heat exchange and a coolant flow channel to the EGR cooler that has a region adjacent to the restable cylinder so as to allow heat exchange. A cooling control device applied to an internal combustion engine having a restable flow path,
A normal flow path adjusting portion provided in the normal flow path to adjust the flow of the cooling water,
A control unit for controlling the normal flow path adjustment unit,
The control unit sets the flow rate of the cooling water to the normal flow path to the first flow rate during all-cylinder operation and reduced-cylinder operation, and switches to all-cylinder operation even during reduced-cylinder operation. When there is a request, the second flow rate is configured to be smaller than the first flow rate over a predetermined waiting time before the combustion of the restable cylinder is started. An internal combustion engine cooling control device.
請求項1に記載の内燃機関冷却制御装置であって、
冷却水の流通を調節するように前記休止可能流路に設けられた休止可能流路調節部を更に備え、
前記制御部は、前記休止可能流路への冷却水の流量を、全筒運転中には第3の流量とし、減筒運転中には遮断状態とすると共に、減筒運転中であっても全筒運転への切替え要求があった場合には、前記休止可能気筒の燃焼を開始させるよりも前の所定の増量時間にわたり、前記冷却水を前記遮断状態よりも大きい第4の流量とするように構成されていることを特徴とする内燃機関冷却制御装置。
The internal combustion engine cooling control device according to claim 1,
A pause capable flow path adjusting portion provided in the pause capable flow path so as to regulate the flow of cooling water;
The control unit sets the flow rate of the cooling water to the restable flow path to the third flow rate during the all-cylinder operation, shuts off during the reduced-cylinder operation, and even during the reduced-cylinder operation. When there is a request for switching to all-cylinder operation, the cooling water is set to a fourth flow rate larger than that in the shut-off state over a predetermined increase time before starting the combustion of the restable cylinder. An internal combustion engine cooling control device comprising:
JP2017161311A 2017-08-24 2017-08-24 Internal combustion engine cooling control device Active JP6911634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161311A JP6911634B2 (en) 2017-08-24 2017-08-24 Internal combustion engine cooling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161311A JP6911634B2 (en) 2017-08-24 2017-08-24 Internal combustion engine cooling control device

Publications (2)

Publication Number Publication Date
JP2019039339A true JP2019039339A (en) 2019-03-14
JP6911634B2 JP6911634B2 (en) 2021-07-28

Family

ID=65726005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161311A Active JP6911634B2 (en) 2017-08-24 2017-08-24 Internal combustion engine cooling control device

Country Status (1)

Country Link
JP (1) JP6911634B2 (en)

Also Published As

Publication number Publication date
JP6911634B2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
JP6417315B2 (en) Cooling device for internal combustion engine for vehicle
JP6378055B2 (en) Cooling control device for internal combustion engine
JP6123841B2 (en) Control device for internal combustion engine
JP6473105B2 (en) Cooling device for internal combustion engine for vehicle and control method for cooling device
JP5403171B2 (en) Engine cooling system
JP2011047305A (en) Internal combustion engine
JP2005188288A (en) Exhaust gas circulating device of internal combustion engine
JP4292888B2 (en) Engine cooling system
JP2006214279A (en) Cooling device of engine
JP2017036695A (en) Control device of diesel engine
JP5565283B2 (en) Cooling device for internal combustion engine
WO2013011768A1 (en) Engine cooling circuit
JP2020180574A (en) Cooling device for internal combustion engine
JP6911634B2 (en) Internal combustion engine cooling control device
JP2004084526A (en) Internal combustion engine
JP2019044593A (en) Controller of internal combustion engine
JP2013087758A (en) Internal combustion engine cooling control device
JP2017089586A (en) Cooling device for vehicle
JP5880325B2 (en) Control device for internal combustion engine
JP5994450B2 (en) Control device for variable flow pump
JP2014125974A (en) Internal combustion engine
JP7472846B2 (en) Engine System
JP7273572B2 (en) warming device
JP2010151095A (en) Control method of compression self-ignition engine and device thereof
JPS5974345A (en) Cylinder-number controlling apparatus for engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170824

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150