JP2019037004A - 画像処理装置、その制御方法、プログラム - Google Patents

画像処理装置、その制御方法、プログラム Download PDF

Info

Publication number
JP2019037004A
JP2019037004A JP2018220674A JP2018220674A JP2019037004A JP 2019037004 A JP2019037004 A JP 2019037004A JP 2018220674 A JP2018220674 A JP 2018220674A JP 2018220674 A JP2018220674 A JP 2018220674A JP 2019037004 A JP2019037004 A JP 2019037004A
Authority
JP
Japan
Prior art keywords
virtual light
light source
shadow
subject
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018220674A
Other languages
English (en)
Other versions
JP6727276B2 (ja
Inventor
哲也 秦
Tetsuya Hata
哲也 秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2018220674A priority Critical patent/JP6727276B2/ja
Publication of JP2019037004A publication Critical patent/JP2019037004A/ja
Application granted granted Critical
Publication of JP6727276B2 publication Critical patent/JP6727276B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

【課題】リライティング処理に用いる仮想光源の位置を柔軟に制御して被写体の陰影を補正可能な画像処理装置およびその制御方法を提供する。【解決手段】陰影状態検出部207は、画像中の被写体領域について、陰影の状態を表す評価値を算出する。そして、仮想光源制御部208が、評価値に基づいて仮想光源を設定し、仮想光源が照射する仮想光の影響を仮想光付加部209で画像に反映させる。【選択図】図2

Description

本発明は、画像処理装置、その制御方法、プログラムに関し、特には画像の明るさを補正する技術に関する。
従来、画像中の被写体に対して、仮想光の効果を適用することで、被写体の暗い部分の明るさを補正する技術が知られている(特許文献1)。これにより、環境光によって生じた被写体の陰影を、撮影後に調整することができる。
特開2010−135996号公報
被写体の陰影は、被写体の3次元形状と、被写体を照射する光の方向とによって決まる。また、被写体を照射する光の方向は、仮想光源と被写体との相対的な位置関係によって決まる。そのため、仮想光によって被写体の陰影を補正するリライティング処理では、仮想光源の位置を適切に決定する必要がある。しかし、特許文献1に記載された技術は、被写体の陰を低減させることを目的として環境光とは逆方向に被写体を照射するものであり、リライティング処理で実現可能な陰影の調整内容が制限される。
本発明はこのような従来技術の課題に鑑みてなされたものであり、リライティング処理に用いる仮想光源の位置を柔軟に制御して被写体の陰影を補正可能な画像処理装置およびその制御方法を提供することを目的とする。
上述の目的は、画像中の被写体領域について、陰影の状態を表す評価値を算出する算出手段と、評価値に基づいて仮想光源を設定する設定手段と、仮想光源が照射する仮想光の影響を画像に反映させる補正手段と、を有することを特徴とする画像処理装置によって達成される。
本発明によれば、リライティング処理に用いる仮想光源の位置を柔軟に制御して被写体の陰影を補正可能な画像処理装置およびその制御方法を提供することができる。
本発明におけるデジタルカメラの構成を示すブロック図 本発明における画像処理部の構成を示すブロック図 (a)は本発明の第1の実施形態における陰影状態検出部の処理を示すフローチャート、(b)は被写体および被写体領域の例を示す模式図 第1の実施形態における仮想光源制御部の処理を示すフローチャートである。 第1の実施形態における仮想光の照射方向の決定方法を説明するための模式図 第2の実施形態における被写体と仮想光源の関係を模式的に示す図 第2の実施形態における仮想光源制御部の処理を示すフローチャート
以下、添付図面を参照して、本発明の例示的な実施形態について詳細に説明する。
●(第1の実施形態)
図1は、本発明の第1の実施形態に係る画像処理装置の一例としてのデジタルカメラ100の構成例を示すブロック図である。本発明は撮影された画像に適用する画像処理、より具体的にはリライティング処理の方法に特徴を有する。従って、撮影や記録に関する構成は必須では無い。
図1において、レンズ群101は、フォーカスレンズを含むズームレンズである。絞り機能を備えるシャッター102が、レンズ群101と撮像部103との間に設けられている。撮像部103は、レンズ群101によって撮像面に形成される光学像を画素単位の電気信号に変換するCCD/CMOSイメージセンサを代表とする撮像素子を有する。A/D変換器104は、撮像部103が出力するアナログ信号をデジタル信号(画像データ)に変換する。
画像処理部105は、A/D変換器104から出力される画像データに対し、色補間(デモザイク)、ホワイトバランス調整、γ補正などの各種画像処理を行う。画像処理部105はまた、撮影された画像に対するリライティング処理を行う。画像メモリ106は画像データを一時的に記憶する。メモリ制御部107は、画像メモリ106の読み書きを制御する。D/A変換器108は、画像データをアナログ信号に変換する。表示部109はLCDや有機ELディスプレイ等の表示装置を有し、各種GUIやライブビュー画像、記録媒体112から読み出して再生した画像などを表示する。コーデック部110は、画像メモリ106に記憶されている画像データを記録媒体に記録するために予め定められた方法で符号化したり、画像ファイルに含まれる符号化画像データを例えば表示のために復号したりする。
インタフェース(I/F)111は、例えば半導体メモリカードやカード型ハードディスクなどの着脱可能な記録媒体112を、デジタルカメラ100と機械的および電気的に接続する。システム制御部50は例えばCPUやMPUなどのプログラマブルなプロセッサであってよい。システム制御部50は、例えば不揮発性メモリ121や内蔵する不揮発性メモリに記録されたプログラムを実行して必要なブロックや回路を制御することにより、デジタルカメラ100の機能を実現する。
顔検出部113は、撮影された画像に含まれる顔領域を検出し、検出された顔領域のそれぞれについて、位置、大きさ、信頼度などの顔情報を求める。なお、顔検出部113はニューラルネットワークに代表される学習を用いた手法、目、鼻、口などの特徴部位を、画像領域からテンプレートマッチングを用い探し出し類似度が高ければ顔とみなす手法など、任意の方法を用いて顔領域を検出することができる。
操作部120は、ユーザがデジタルカメラ100に各種の指示を入力するためのボタンやスイッチなどの入力デバイスをまとめて記載したものである。表示部109がタッチディスプレイである場合、タッチパネルは操作部120に含まれる。また、音声入力や視線入力など、非接触で指示を入力するタイプの入力デバイスが操作部120に含まれてもよい。
不揮発性メモリ121は電気的に消去・記録可能な、例えばEEPROM等であってよい。不揮発性メモリ121は、各種の設定値、GUIデータをはじめ、システム制御部50がMPUやCPUである場合には、システム制御部50が実行するためのプログラムが記録される。
システムメモリ122は、システム制御部50の動作用の定数、変数、不揮発性メモリ121から読みだしたプログラム等を展開するために用いる。
次に、デジタルカメラ100における撮影時の動作について説明する。
例えば撮像部103は、シャッター102が開いている際にレンズ群101が撮像面に形成する被写体像を撮像素子によって光電変換し、アナログ画像信号としてA/D変換器104へ出力する。A/D変換器104は撮像部103から出力されるアナログ画像信号をデジタル画像信号(画像データ)に変換し画像処理部105に出力する。
画像処理部105は、A/D変換器104からの画像データ、又は、メモリ制御部107からの画像データに対し、同時化処理(デモザイク処理)、γ補正などの各種画像処理を行う。
また、画像処理部105では、撮影で得られた画像データを用いて輝度やコントラストなどに関する所定の演算処理を行い、得られた演算結果に基づいてシステム制御部50が焦点調節や露光制御を行う。焦点検出や露出制御に顔検出部113の検出結果を考慮してもよい。このように、本実施形態のデジタルカメラ100では、TTL(スルー・ザ・レンズ)方式のAF(オートフォーカス)処理、AE(自動露出)処理を行う。画像処理部105ではさらに、撮影で得られた画像データを用いたオートホワイトバランス(AWB)調整も行う。
画像処理部105から出力された画像データは、メモリ制御部107を介して画像メモリ106に書き込まれる。画像メモリ106は、撮像部103から出力された画像データや、表示部109に表示するための画像データを格納する。
また、D/A変換器108は、画像メモリ106に格納されている画像表示用のデータをアナログ信号に変換して表示部109に供給する。表示部109は、LCD等の表示装置に、D/A変換器108からのアナログ信号に応じた表示を行う。
コーデック部110は、画像メモリ106に記録された画像データをJPEGやMPEGなどの規格に基づき符号化する。システム制御部50は符号化した画像データに対して予め定められたヘッダなどを付与して画像ファイルを形成し、インタフェース111を介して記録媒体112に記録する。
なお、現在のデジタルカメラでは、撮影スタンバイ状態においては動画撮影を行い、撮影された動画を表示部109に表示し続けることにより表示部109を電子ビューファインダ(EVF)として機能させるのが一般的である。この場合、シャッター102は開いた状態とし、撮像部103のいわゆる電子シャッターを用いて例えば30フレーム/秒の撮影を行う。
そして、操作部120に含まれるシャッターボタンが半押しされると上述のAF,AE制御が行われ、全押しされると本撮影により記録用の静止画撮影が実行され、記録媒体112に記録される。また、動画撮影ボタンなどにより動画撮影が指示された場合は、記録媒体112への動画記録を開始する。
図2は、画像処理部105の、リライティング処理に関係する機能構成例を示すブロック図である。なお、図2に示す機能ブロックの1つ以上は、マイクロプロセッサとソフトウェアの組み合わせよって実現されてもよいし、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)のようなハードウェアによって実現されてもよい。PLDにはFPGA(Field-Programmable Gate Array)、PLA(Programmable Logic Array)などが含まれる。
なお、リライティング処理は
・リライティング処理の実行が指定された状態で撮影された画像
・メニュー画面等からリライティング処理の実施が指示された、例えば記録媒体112に記録済の画像
に対して実施することができる。なお、リライティング処理において撮影時の情報が必要な場合、不揮発性メモリ121またはシステムメモリ122から読み出したり、画像ファイルのヘッダなどから取得したりするものとする。
リライティング処理部としての画像処理部105は、画像信号生成部201、WB増幅部202、ガンマ処理部203、デガンマ処理部204、仮想光付加部205、再ガンマ処理部206、陰影状態検出部207、仮想光源制御部208を有する。
図1のA/D変換器104から画像処理部105に入力された画像信号は、画像信号生成部201に入力される。画像信号生成部201は、画素あたり1色(R,G,Bのいずれか1つ)の情報を有する画像信号に同時化処理(デモザイク処理)を行い、各画素が3色(RGB)の情報を有する画像信号を生成する。画像信号生成部201は、生成した画像信号をWB増幅部202へ出力する。
WB増幅部202は、画像信号からホワイトバランスゲイン値を算出し、画像信号の色成分R,G,Bにホワイトバランスゲインを適用する。WB増幅部202は、ホワイトバランス調整後の画像信号R,G,Bをガンマ処理部203および陰影状態検出部207へ出力する。
陰影状態検出部207は、入力された画像信号R,G,Bに基づき、撮影時に被写体を照らしている環境光によって被写体領域に生じた陰影の状態を表す評価値を算出する。また、陰影状態検出部207は、環境光の照射方向を検出する。ここで、環境光とは、撮影時に被写体を照射した光源であり、太陽光や室内照明など、デジタルカメラ100の制御対象外の光源と、内蔵および/または外部フラッシュなど、デジタルカメラ100が制御する光源とを含む。陰影状態検出部207は、評価値と環境光の照射方向を陰影情報として、仮想光源制御部208へ出力する。陰影状態検出部207の動作の詳細については後述する。
仮想光源制御部208は、陰影情報に基づき、被写体をリライティングする仮想光の照射方向を決定し、仮想光源情報として仮想光付加部205へ出力する。仮想光の照射方向の決定方法の詳細については後述する。なお、本実施形態は、仮想光源の放射特性(点光源、線光源、面光源など)に依存しないため、仮想光の照射方向という表現を用いるが、例えば仮想光源が点光源であれば、仮想光の照射方向の延長線上に仮想点光源を配置することになる。従って、仮想光の照射方向の決定は、仮想点光源を配置する方向の決定と同義である。
一方、ガンマ処理部203は、画像信号R,G,Bにガンマ補正を適用し、補正後の画像信号R,G,Bを、デガンマ処理部204へ出力する。なお、リライティング処理を行わない撮影の場合、ガンマ処理部203は補正後の画像信号R,G,Bをメモリ制御部107を通じて画像メモリ106へ出力する。撮影画像にリライティング処理を適用するか否かは例えばユーザ設定に応じて決定されてよい。なお、ここでは撮影時にリライティング処理を行うものとして説明するが、記録後に記録媒体112から読み出した画像に対してリライティング処理を行うことも可能である。
デガンマ処理部204は、入力された画像信号R,G,Bに対し、デガンマ処理を行い、ガンマ補正前の画像信号R,G,Bを生成し、仮想光付加部205へ出力する。なお、リライティング処理を行う撮影の場合には、WB増幅部202から仮想光付加部205へ画像信号R,G,Bを直接入力するように構成してもよい。
仮想光付加部205では、仮想光源情報に基づいて仮想光源を配置し、入力された画像信号R,G,Bに対して仮想光の影響を反映させるリライティング処理を行う。仮想光付加部205は、リライティング処理後の画像信号R,G,Bを、再ガンマ処理部206へ出力する。再ガンマ処理部206では、入力されたリライティング後の画像信号に対して、ガンマ処理部203と同様のガンマ補正を適用し、メモリ制御部107を通じて画像メモリ106へ出力する。
次に、陰影状態検出部207が、環境光によって生じている被写体の陰影状態を表す評価値の算出と、環境光の照射方向の検出とを行う処理の詳細について、図3(a)に示すフローチャートを用いて説明する。
S301で陰影状態検出部207は、WB増幅部202から入力された画像信号R,G,Bのうち、リライティング処理の対象とする被写体領域に対応する画像信号を抽出する。例えば、顔検出部113で検出した人物の顔領域をリライティング処理の対象とする場合、陰影状態検出部207は顔検出部113から顔情報を取得し、対応する顔領域の画像信号R,G,Bを抽出する。リライティング処理の対象とする被写体領域に特に制限はなく、顔検出部113のように画像の特徴から自動検出される領域であってもよいし、ユーザが操作部120を通じて指定した領域であってもよい。以下では一例として、顔領域をリライティング処理の対象とする場合について説明する。
図3(b)は、人物被写体と顔領域の例を示し、斜線は陰になっている領域を表している。そして、検出された顔領域401は、陰の領域を含んでいる。
S302で陰影状態検出部207は、抽出した顔領域401に含まれる画像信号R,G,Bに基づいて、顔領域の明るさ情報を算出する。具体的には、図3(b)に示すように顔領域401を複数(例えば、縦8×横8=64個)のブロックに分割し、ブロックごとに画素の輝度平均値と、色平均値を算出する。なお、R,G,Bの信号値から輝度信号値および色信号値を求めるには、例えばRGB→YUV(YCbCr)やRGB→HSLなどの色空間変換処理を行えばよい。
S303で陰影状態検出部207は、リライティング処理の対象とする領域内の被写体の陰影状態を表す評価値として、色の近いブロック間のコントラスト値を算出する。例えば、陰影状態検出部207は、色平均値に基づいて、類似色を有するブロックをグループ化し、グループ内で平均輝度値が最大のブロック(ブロック402とする)と最小のブロック(ブロック403とする)を検出する。そして、最大平均輝度値と最小平均輝度値の比をコントラスト値として算出する。なお、類似色の判定条件については予め定めておくことができる。また、リライティング処理を行う領域の色が予め想定できる場合には、想定される色信号の範囲を予め定めておき、その範囲に該当する色信号値を有するブロックについてコントラスト値を算出するように構成してもよい。例えば顔領域に対してリライティング処理を行う場合、肌の色として想定される色信号の範囲を予め定めておき、その範囲に該当する色信号値を有するブロックについてコントラスト値を算出することができる。なお、複数のグループについてコントラスト値を算出した場合、陰影状態検出部207は1つを代表値として選択して出力してもよいし、全てを出力してもよい。代表値は例えば最大のコントラスト値であってよい。
S304で陰影状態検出部207は、環境光の照射方向を推定する。陰影状態検出部207は、公知の種々の方法を用いて環境光の照射方向を推定する。例えば、被写体の中で正反射が生じている(もっとも明るい)領域を検出して、その領域の法線ベクトルに対して視点位置と対称の位置からその領域に向かう方向を環境光の照射方向として推定してもよい。また、被写体領域が人物の顔領域であれば、鼻などの器官を検出し、その陰(shade)や影(shadow)の方向と逆の方向を環境光の照射方向と推定してもよい。陰影状態検出部207は、算出したコントラスト値と、推定した環境光の方向情報とを、陰影情報として仮想光源制御部208へ出力する。
次に、仮想光源制御部208が、陰影情報と環境光の照射方向の情報とに基づいて、仮想光の照射方向を決定する仮想光源制御処理について説明する。
図5は、リライティング処理を適用する被写体領域と、環境光および仮想光の照射方向の関係を、鉛直上方から俯瞰した様式で模式的に示す図である。ここでは、図3(b)と同様、顔領域401にリライティング処理を適用するものとする。
図5において、リライティング処理を適用する被写体領域である顔領域401は、簡単のため平面で表している。また、法線ベクトル602は、顔領域401の向きを表す代表的な法線ベクトルである。被写体領域の向きを表す法線ベクトルは、公知の方法を用いて算出することができる。例えば、被写体領域に含まれる被写体の距離情報から被写体の立体形状を推定し、法線ベクトルを算出することができる。被写体の距離情報は、例えば焦点検出処理において合焦距離を変えながら取得した複数の画像から、合焦部分と合焦距離との関係に基づいて取得したり、測距センサを用いて取得した距離画像から取得したりすることができるが、これらに限定されない。
また、被写体領域が人物の顔領域のように、向きによって特徴部位の大きさ、形状や、特徴部位間の位置関係が変化する特徴部位を有する領域の場合、特徴部位の検出結果に基づいて被写体の向きを推定し、代表的な法線ベクトルを算出することができる。例えば顔領域の場合、顔の輪郭や、目や鼻などの器官の検出結果を特徴部位として用いて顔の向きを推定し、代表的な法線ベクトルを算出することができる。
また、被写体の向きを表す法線ベクトルは、被写体領域を分割した領域ごとに算出した法線ベクトルを平均化することで算出してもよい。または、リライティングの対象とする被写体領域の中心または重心位置での法線ベクトルを、被写体の向きを表す代表的な法線ベクトルとして用いてもよい。
環境光603が、代表的な法線ベクトル602と顔領域401とが交わる座標(画素)610を、陰影状態検出部207が推定した方向から照射している。604aは仮想点光源604a’から、604bは仮想点光源604b’から、座標610を照射する仮想光のイメージである。仮想点光源604a’と604b’は、法線ベクトル602に対して対称的な位置に配置されている。ここで、法線ベクトルと照射方向とがなす角度が、反時計回りに正の値を取るものとすると、仮想点光源604a’と仮想点光源604b’が法線ベクトルとなす角度は、絶対値が等しく、符号が逆となる。なお、仮想点光源604a’および604b’と、顔領域401との距離は、適宜定めればよい。
次に、図4のフローチャートを用いて、仮想光源制御部208の処理の詳細について説明する。
S501で仮想光源制御部208は、リライティング処理によって実現する、コントラスト値の目標値を例えばシステム制御部50から取得する。目標値は例えば不揮発性メモリ121に予め設定しておくことができる。なお、目標値はリライティング処理を行う被写体領域の種類に応じて異なる値が設定されていてもよい。
S502で仮想光源制御部208は、撮像画像から陰影状態検出部207が検出した、環境光によって生じたコントラスト値を取得する。
S503で仮想光源制御部208は、検出されたコントラスト値と目標値とを比較し、検出値が目標値より高い場合はS504へ、検出値が目標値以下の場合はS505へ、それぞれ処理を進める。
S504へ進むのは、環境光による被写体領域のコントラストが高いと判定された場合である。このため、S504で仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの符号が、環境光の照射方向が法線ベクトル602となす角βの符号とは逆となるように、仮想光の照射方向を決定する。なお、角αは、仮想光源の座標と法線ベクトルの始点(法線ベクトルと被写体領域との交点)とを結ぶ直線と、法線ベクトルとがなす角とも言える。同様に、角βは、環境光源の座標と法線ベクトルの始点(法線ベクトルと被写体領域との交点)とを結ぶ直線と、法線ベクトルとがなす角とも言える。
図5の例であれば、仮想光604bの照射方向を、法線ベクトル602に対して例えば−45度の方向(α=−45°)としたり、環境光と法線ベクトル602を挟んで対称となる方向(−β)としたりすることができる。ただし、これらは単なる例であり、被写体の陰の部分を仮想光によって明るく補正し、被写体領域のコントラストを下げることができれば、これらに限定されない。仮想光の照射方向を決定すると、仮想光源制御部208は処理をS508へ進める。
一方、S505へ進むのは、環境光による被写体領域のコントラストが低いと判定された場合である。そのため、仮想光源制御部208は、環境光と仮想光の照射範囲が重複するように仮想光源の配置を決定することで、コントラストを高める。
具体的には、S505で仮想光源制御部208は、検出されたコントラスト値が所定の下限閾値未満であるか否かを判定し、所定の下限閾値未満である場合はS506へ、所定の下限閾値以上の場合はS507へ、処理を進める。
S506へ進む場合は、環境光が被写体領域のほぼ正面から被写体領域をほぼ一様に照射していて、環境光による陰影がほとんど生じていない場合である。このような場合には、被写体の立体感に乏しいため、仮想光によるリライティング処理により被写体に自然な陰影を付加し、被写体の立体感を高めるようにする。従って、仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの符号が、環境光の照射方向が法線ベクトル602となす角βの同一符号となるように、仮想光の照射方向を決定する。特に、S506ではコントラストを大きく高めるため、仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの絶対値が、45°を中心とした所定の範囲内となるように、仮想光の照射方向を決定する。これは、一般的な被写体に対して、法線ベクトル602に対して45°の角度から照射すると、適切なコントラストとなる場合が多いことによる。具体的には、仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの絶対値が、45°±15°、好ましくは45°±10°、さらに好ましくは45°±5°の範囲内で決定することができる。もちろん、α=45°の固定値としてもよい。仮想光の照射方向を決定すると、仮想光源制御部208は処理をS508へ進める。
S507へ進む場合は、環境光によってある程度被写体に陰影が生じているが、目標のコントラストは得られていない場合である。このような場合も、仮想光によるリライティング処理により被写体に自然な陰影を付加し、被写体の立体感を高めるようにする。従って、仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの符号が、環境光の照射方向が法線ベクトル602となす角βの同一符号となるように、仮想光の照射方向を決定する。ただし、環境光によってある程度のコントラストは得られているため、S506の場合と異なり、角αの範囲は制限されない。
しかし、リライティング処理の対象とならない他の領域における陰影との調和という観点から、環境光の照射方向を基準として仮想光の照射方向を決定することができる。この場合、仮想光源制御部208は、仮想光の照射方向が法線ベクトル602となす角αの絶対値が、|β|±15°、好ましくは|β|±10°、さらに好ましくは|β|±5°の範囲内で決定することができる。あるいは、α=β、すなわち、環境光と同じ照射方向を仮想光の照射方向として決定してもよい。仮想光の照射方向を決定すると、仮想光源制御部208は処理をS508へ進める。
S508で仮想光源制御部208は、決定した仮想光の照射方向を、仮想光源情報として、仮想光付加部205へ出力する。なお、仮想光源制御部208は、仮想光源情報として、予め設定された、仮想光源の位置(被写体までの距離)の情報も仮想光付加部205へ出力してもよい。
次に、仮想光付加部205での、仮想光を反映させるリライティング処理について説明する。本実施形態では、仮想光付加部205は、仮想光によって照射された処理対象画素の出力RGB値(Rout,Gout,Bout)を、以下の式に従って算出する。
Rout=[Rt+A×cos(θ)×(1/D^2)×Rv]/M
Gout=[Gt+A×cos(θ)×(1/D^2)×Gv]/M
Bout=[Bt+A×cos(θ)×(1/D^2)×Bv]/M
ここで、(Rt,Gt,Bt)は処理対象の画素値、Aは仮想光源の強度を表す所定の定数、Dは仮想光源と、リライティング対象領域内の被写体との距離、(Rv,Gv,Bv)は光源反射色である。また、Mはリライティング後の出力RGB値を正規化するための予め設定された定数、角度θは、仮想光源制御部208が決定した仮想光の照射方向と、処理対象画素の被写体の法線ベクトルとがなす角度である。ここで、角度θは、リライティング対象領域の各画素に対して被写体の法線ベクトルを算出し、法線ベクトルの方向と仮想光の照射方向とから算出することができる。
あるいは、図3(b)に示したようにリライティング対象の被写体領域を複数のブロックに分割し、ブロックごとに法線ベクトルを算出して、ブロック単位で角度θを算出するようにしてもよい。または、リライティング対象の領域が人物の顔領域である場合のように、対象領域に含まれる被写体の3次元形状が予め想定される場合は、対象画素の領域内における位置から画素に対応する被写体の法線ベクトルを推定し、角度θを算出してもよい。
また、光源反射色(Rv,Gv,Bv)は、仮想光が被写体表面で反射した時の色を表し、予め設定された仮想光源色と、処理対象の画素の色から推定することができる。また、仮想光源の強度Aは、コントラスト値の検出値と目標値との差分に応じて決定すればよい。従って、コントラスト値の検出値がコントラスト下限閾値未満の場合と、コントラスト下限閾値以上の場合とでは、前者の方が仮想光源の強度Aが大きく決定される。コントラスト値の検出値と目標値との差分と強度Aとの具体的な関係については、予め定めておくことができる。
以上説明したように、本実施形態ではリライティング処理の対象とする被写体領域について陰影の状態を表す評価値を算出し、評価値が目標値に近づくように仮想光の照射方向を決定する。具体的には、評価値が目標値より低い場合には環境光による陰影を強めるように、評価値が目標値より高い場合には環境光による陰影を弱めるように、仮想光の照射方向を決定する。そのため、環境光による陰影を弱めるリライティング処理だけでなく、強めるリライティング処理も実現できる。さらに、陰影の少なさに応じて異なる方向を基準として照射方向を決定するため、効果的に陰影を増やすことを重視した調整や、環境光との調和を重視した調整を実現することができる。
なお、本実施形態ではリライティング処理の対象領域の陰影状態を表す評価値として、コントラストの情報を用いる場合について説明したが、他の評価値を用いることもできる。例えば、環境光によって生じた被写体の陰の領域を検出し、その領域の境界の特性を表す情報を陰影の状態を表す評価値として用いてもよい。具体的には、被写体の陰の領域の境界近傍における明るさの勾配を算出し、勾配が所定の目標より高い(低い)場合は、環境光による陰影を弱める(強める)ように、仮想光の照射方向を決定することができる。これにより、被写体の陰の境目がくっきりとしている場合には被写体の陰の領域の境界が目立たなくし、被写体の陰がぼんやりとしている場合には被写体の陰を強調するようなリライティング処理が可能であり、好ましい陰影の画像を得ることができる。
また、被写体領域中の陰の面積を算出し、その結果を被写体の陰影の状態を表す評価値として用いてもよい。具体的には、被写体領域中に占める陰の領域の割合を算出し、割合が所定の目標より高い場合は、環境光による陰影を弱めるように、仮想光の照射方向を決定することができる。また、割合が所定の目標より低い場合、仮想光源制御部208は、被写体領域の輝度を所定量低減して陰の面積(平均輝度値が予め定められた閾値以下である領域の面積)を増やす。そして、角αと角βの符号が同じで、角αの絶対値が角βの絶対値以上となるように仮想光の照射方向を決定することができる。これにより、被写体領域に陰が多い場合には陰の面積を減らし、被写体領域に陰が少ない場合には陰の面積を増やすようなリライティング処理が可能であり、好ましい陰影の画像を得ることができる。
また、被写体領域内の画素の輝度ヒストグラムを算出し、その度数分布の偏りに応じて、仮想光の照射方向を決定してもよい。具体的には、所定の閾値未満の輝度値範囲に対応する度数の合計を評価値として用い、評価値が所定の目標より高い場合は、環境光による陰影を弱めるように、仮想光の照射方向を決定することができる。また、評価値が所定の目標より低い場合、仮想光源制御部208は、被写体領域の輝度を所定量低減するとともに、角αと角βの符号が同じで、角αの絶対値が角βの絶対値以上となるように仮想光の照射方向を決定することができる。
また、本実施形態では、陰影の状態を表す評価値の目標値を予め定めておくものとして説明したが、目標値を動的に設定してもよい。例えば、画像の撮影時の撮影モードや、カメラパラメータに応じた目標値を設定してもよい。カメラパラメータに基づく目標値の動的設定の例としては、画像の記録時やガンマ処理部203で用いられたガンマカーブの特性に応じた目標値の設定がある。例えば、ガンマカーブの特性(形状)がコントラストを強く表現する特性であれば目標値を高く、ガンマカーブの特性(形状)がコントラストを弱く表現する特性であれば目標値を低く設定するようにすることができる。
また、リライティング処理の対象領域の背後、又は、周囲に位置する背景被写体のコントラストに応じて、目標値を設定するようにしてもよい。具体的には、背景被写体のコントラストが高い(低い)場合は目標値も高く(低く)設定することで、リライティング処理の対象とする被写体のコントラストを、周囲の被写体のコントラストと近づけることができる。これにより、リライティング処理による不自然さを抑制することができる
また、本実施形態では、評価値と目標値との比較結果に応じて仮想光の照射方向を決定する構成について説明した。しかし、被写体の陰影情報に基づいて仮想光の照射方向を決定する方法であれば、他の方法を用いても構わない。例えば、被写体領域のコントラスト値が所定の閾値以上(未満)であれば仮想光により環境光で得られた陰を弱める(強める)ように決定することができる。このようにすることで、評価値の目標値を定めない場合でも、リライティング処理を制御することができる。または、評価値と目標値との差分が、所定の閾値以下である場合には、リライティング処理を行わないよう制御してもよい。
また、リライティング処理の対象としない被写体に対しても、明るさの補正処理を行うようにしてもよい。具体的には、リライティング処理の対象とする被写体のリライティング後のコントラスト値を算出し、リライティング処理の対象としない被写体のコントラストが、その値に近づくよう明るさを補正する。このようにすることで、リライティング処理の対象となる被写体と、対象とならない被写体との間で生ずる違和感を低減することが可能となる。リライティング処理の対象外の被写体については、画素の明るさを一律に調整するようにしてよい。
また、本実施形態では、仮想光の照射方向を、リライティング処理の対象領域の代表的な法線ベクトルと仮想光の方向とが成す角度によって決定する構成を説明したが、他の方法で決定してもよい。例えば、リライティング処理の対象領域内の被写体に対して上下左右のどちらから照射するかを決定するようにしてもよい。
また、本実施形態では、リライティング処理の対象領域が1つの場合を説明したが、複数あってもよい。例えば、顔検出部113で複数の顔領域が検出された場合、個々の顔領域をリライティング処理の対象領域としてもよい。この場合、顔領域内の被写体の向きは個々に異なる可能性があるため、上述した陰影状態検出部207、仮想光源制御部208、および仮想光付加部205の処理を、個々の顔領域について実施する。ただし、陰影状態を表す評価値の種類と目標値は、全部の顔領域について共通とする。これによって、リライティング処理の被写体領域が複数ある場合でも、それぞれの陰影の状態を好ましい状態とするようリライティング処理することが可能となる。
または、複数の被写体が撮影された場合、その中で最も主要な被写体の陰影の状態を基準に仮想光源の位置を決め、他の被写体に対しても同一の位置の仮想光源を用いてリライティングするように制御してもよい。このようにすることで、同じ環境の中にいる被写体が、互いに異なる方向から照明されるような不自然さを防止することが可能となる。
また、本実施形態では、仮想光源を点光源として説明したが、仮想光源の特性は本発明に直接影響せず、他の特性の光源としてもよい。例えば、平行光を照射する仮想光源を用いてもよい。この場合、仮想光の照射方向が平行光の照射方向となる。
また、上述の説明においては簡単のために、法線ベクトルならびに環境光、仮想光の照射方向等を水平面内における2次元的な観点で説明した。しかし、実際にはこれらは3次元空間内のベクトルならびに方向として処理を行う。
●(第2の実施形態)
次に、図6および図7を参照して、本発明の第2の実施形態について説明する。第1の実施形態では、リライティング処理の対象とする領域内の被写体の陰影状態を表す評価値と環境光の照射方向とに基づいて、仮想光の照射方向を決定したが、本実施形態では、より詳細に仮想光の照射方向を決定する。
本実施形態も、第1の実施形態で説明したデジタルカメラ100および画像処理部105の構成を用いて実施可能である。そのため、第1の実施形態で説明した事項の説明は省略し、陰影状態検出部207、仮想光源制御部208、および仮想光付加部205の動作について説明する。
図6(a)は、第2の実施形態における被写体700と、リライティング処理の対象となる画像中の被写体領域701とを模式的に示している。
陰影状態検出部207は、被写体領域701を複数(縦8×横8=64個)のブロックに分割し、ブロックごとに画素の輝度平均値を算出する。
また、本実施形態では、陰影状態検出部207はさらに、被写体領域701に占める陰の領域の面積の割合(陰割合)も算出する。具体的には、陰影状態検出部207は、(平均輝度値が予め定められた閾値以下であるブロックの数)/(ブロック総数)として陰割合を算出する。さらに陰影状態検出部207は、ブロックごとに被写体の法線ベクトルの方向を算出する。
図6(b)は、図6(a)のブロックB1〜B8について算出した法線ベクトル702の例を、被写体700のA−A水平断面形状とともに模式的に示している。第1の実施形態では簡単のため、被写体表面の全体を1平面とみなして説明したが、本実施形態では、被写体表面を分割したブロック単位の平面として扱う点が異なる。
陰影状態検出部207は、算出したブロックごとの法線ベクトルの情報と、リライティング処理の対象とする領域内の被写体の陰影状態を表す評価値としての陰割合とを、仮想光源制御部208へ出力する。
次に、図7に示すフローチャートを用いて、第2の実施形態における仮想光源制御部208による仮想光源制御処理について説明する。
S801で仮想光源制御部208は、リライティング処理により実現する、被写体の陰影状態の目標値として、目標陰割合を例えばシステム制御部50から取得する。
S802で仮想光源制御部208は、撮影画像から陰影状態検出部207が算出した、被写体領域701のブロックごとの法線ベクトルの情報と、陰割合とを取得する。
S803で仮想光源制御部208は、陰割合を目標値と比較し、その差が所定の閾値範囲内であるか否か(すなわち、陰割合が目標範囲内であるか否か)を判定する。仮想光源制御部208は目標範囲内の陰割合が得られていればリライティング処理が不要であると判断して処理を終了し、画像を再ガンマ処理部206へ出力する。目標範囲内の陰割合が得られていない場合には処理をS804へ進める。
S804で仮想光源制御部208は、陰割合が目標範囲の上限値を超えているか否かを判定し、超えていれば処理をS805へ進め、超えていなければ(すなわち、目標割合の下限値未満であれば)処理をS806へ進める。
S805で仮想光源制御部208は、現在の陰領域(平均輝度値が閾値以下のブロック)の一部に仮想光が照射されるように仮想光源の位置の初期値を設定し、処理をS808へ進める。仮想光源の位置は、リライティング処理の中心(図6(b)の705、706に対応する)の座標と、その中心の点から仮想光源までの距離との2つの情報で規定するものとする。なお、仮想光が照射する範囲は、領域(ブロック)の法線ベクトルに対して90°度を超える方向からの光は到達しないことを利用し、仮想光源の位置と、被写体領域の各ブロックの法線ベクトルの方向から判別することができる。
一方、S806で仮想光源制御部208は、まず、陰割合が目標範囲の上限を超えるまで被写体領域の輝度を低下させる(輝度を一定量低下させ、陰影状態検出部207で陰割合を算出する処理を、陰割合が目標範囲の上限を超えるまで繰り返す)。
そして、S807で仮想光源制御部208は、輝度を低下させたことによって増加した陰領域(陰領域に相当する輝度になった領域)の一部が仮想光で照射されるように仮想光源の位置の初期値を設定し、処理をS808へ進める。
S808で仮想光源制御部208は、設定した仮想光源の位置を仮想光付加部205に出力してリライティング処理を行い、陰影状態検出部207で処理後の被写体領域について陰割合を算出する。具体的には、仮想光付加部205は、仮想光と法線ベクトルがなす角が90°以下の領域に含まれる画素(処理対象画素)の出力RGB値(Rout,Gout,Bout)を、以下の式に従って算出する。
Rout=[Rt+A×cos(θ_n)×(1/Dn^2)×Rv]/M
Gout=[Gt+A×cos(θ_n)×(1/Dn^2)×Gv]/M
Bout=[Bt+A×cos(θ_n)×(1/Dn^2)×Bv]/M
ここで、(Rt,Gt,Bt)は処理対象の画素値、Aは仮想光源の強度を表す所定の定数、Dは仮想光源と、リライティング対象領域内の被写体との距離、(Rv,Gv,Bv)は光源反射色である。また、Mはリライティング後の出力RGB値を正規化するための予め設定された定数である。θ_nは、n番目(nは1から64までの整数)のブロックの法線ベクトルと、法線ベクトルの始点(ブロックの中心)と仮想光源の位置とを結ぶ直線とがなす角度、Dnは、n番目のブロックの中心と仮想光源との距離である。
そして、仮想光源制御部208は、仮想光付加部205が算出した出力RGB値を取得して陰影状態検出部207に出力し、リライティング処理後の陰割合を求めさせる。具体的には、陰影状態検出部207は、分割したブロックのそれぞれに対して平均輝度値を算出し、(平均輝度値が所定の閾値を下回るブロックの総数)/分割数(64)としてリライティング処理後の陰割合を算出し、仮想光源制御部208に出力する。
S809で仮想光源制御部208は、算出したリライティング処理後の陰割合と目標値とから、S803と同様に判定を行う。仮想光源制御部208はリライティング処理後の陰割合が目標範囲内であれば処理を終了し、リライティング処理後の画像を再ガンマ処理部206へ出力する。一方、所定の閾値範囲外であれば仮想光源制御部208は処理をS811へ進める。
S811で仮想光源制御部208は、S804と同様に、リライティング後の陰割合が目標範囲の上限値を超えているか否かを判定し、超えていれば処理をS812へ進め、超えていなければ(すなわち、目標割合の下限値未満であれば)処理をS813へ進める。
S812で仮想光源制御部208は、陰領域のブロックの1部の平均輝度が増加するように仮想光源の位置を変更し、再設定して処理をS808に戻す。
S813で仮想光源制御部208は、陰領域のブロックの1部の平均輝度が減少するように仮想光源の位置を変更し、再設定して処理をS808に戻す。
ここで、S812とS813における仮想光源位置の変更方法について図6(b)を用いて説明する。図6(b)において707は、環境光源を模式的に示している。一般に、環境光源と仮想光源の特性が同一の場合、位置が同一であれば、仮想光と環境光の照射範囲が変わらないため、被写体領域の陰割合はリライティング処理の前後で変化しない。そして、環境光源と仮想光源とが離れるほど、リライティング処理による陰割合の低下は大きくなる。
例えば、図6(b)の仮想光源703からの仮想光はブロックB1〜B6の範囲に到達するが、ブロックB7、B8には到達しない。また、仮想光源704からの仮想光はブロックB3〜B8の範囲に到達するが、ブロックB1、B2には到達しない。したがって、仮想光源制御部208は、仮想光源の位置を適切に決めることにより、リライティング処理で明るく補正される被写体領域を制御することができるので、被写体の陰領域の面積割合を所定の目標値に近づけることが可能となる。特に、ブロックB1、B2のように、リライティング前には陰となっていた領域に仮想光が当たるようになると、リライティング後の陰割合は大きく減少する。このため、目標とする陰割合の値との差が大きければ、低輝度ブロックに仮想光が照射されるように仮想光源の位置を設定することで、効率的に陰割合を目標値に近づけることができる。
一方、陰割合を増やす必要がある場合、S806での輝度低下によって増加した陰領域について、前回のリライティング時よりも仮想光が照射する範囲を狭くするか、仮想光の光量が少なくなるように仮想光源の位置を変更する。これは、リライティング処理の中心位置の変更と、リライティングの中心位置からの距離の調整の少なくとも一方を調整することで実現できる。
このようにして、仮想光源制御部208は、リライティング後の被写体の陰割合が所定の閾値範囲内になるまでS808以降の処理を繰り返す。ただし、この繰り返し回数に上限を設け、上限に達した場合には処理を終了するように構成してもよい。
なお、本実施形態では被写体の陰影の状態を表す評価値として、陰割合を用いた場合について説明したが、第1の実施形態で説明したコントラスト値を用いても同様の制御を行うことができる。この場合、コントラスト値を高めたい場合には陰領域でない領域を仮想光で照射するように、コントラスト値を下げたい場合には陰領域を仮想光で照射するように仮想光源の位置を決定すればよい。また、照射範囲をS812,S813で調整することで所望の目標値の範囲を実現することができる。
なお、本実施形態では、陰割合が所定の目標範囲内になるまで、仮想光源の位置の再設定を繰り返す構成を説明したが、再設定は必須ではない。例えば、検出した陰割合と目標値との差分の大きさに基づいて、仮想光源の位置を1回で決めるようにしてもよい。例えば目標値より陰割合が大きいほど、陰領域のうち仮想光の照射範囲に含まれる面積が大きくなるように仮想光源の位置を決定することができる。また、目標値より陰割合が小さいほど、輝度低下で生じた陰領域のうち、仮想光の照射範囲に含まれる面積が小さくなるように仮想光源の位置を決定することができる。このようにすることで、仮想光源の配置を何度も決め直すことなく、目標とする陰影の状態に近づけるようリライティング処理を行うことが可能となる。
このように、本実施形態によれば、第1の実施形態と同様の効果に加え、仮想光源の位置をよりきめ細く調整することができ、柔軟な陰影状態の調整を実現することが可能になる。
(その他の実施形態)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
50…システム制御部、101…光学系、103…撮像部、105…画像処理部、106…画像メモリ、107…メモリ制御部、109…表示部、113…顔検出部、120…操作部、121…不揮発性メモリ、122…システムメモリ
上述の目的は、画像中の被写体領域について、陰影の状態を評価する評価手段と、被写体領域の法線ベクトルを特定する特定手段と、被写体領域に対して仮想的な光である仮想光を照射した効果を付与する補正手段と、評価手段により評価された陰影の状態と、特定手段により特定された被写体領域の法線ベクトルとに基づき、補正手段により付与される仮想光を照射した効果の度合いを決定する決定手段とを有する画像処理装置によって達成される。

Claims (3)

  1. 画像中の被写体領域について、陰影の状態を表す評価値を算出する算出手段と、
    前記評価値に基づいて仮想光源を設定する設定手段と、
    前記仮想光源が照射する仮想光の影響を前記画像に反映させる補正手段と、
    を有することを特徴とする画像処理装置。
  2. 画像処理装置の制御方法であって、
    前記画像処理装置の算出手段が、画像中の被写体領域について、陰影の状態を表す評価値を算出する算出工程と、
    前記画像処理装置の設定手段が、前記評価値に基づいて仮想光源を設定する設定工程と、
    前記画像処理装置の補正手段が、前記仮想光源が照射する仮想光の影響を前記画像に反映させる補正工程と、
    を有することを特徴とする画像処理装置の制御方法。
  3. コンピュータを、請求項1に記載の画像処理装置が有する各手段として機能させるためのプログラム。
JP2018220674A 2018-11-26 2018-11-26 画像処理装置、その制御方法、プログラム Active JP6727276B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018220674A JP6727276B2 (ja) 2018-11-26 2018-11-26 画像処理装置、その制御方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220674A JP6727276B2 (ja) 2018-11-26 2018-11-26 画像処理装置、その制御方法、プログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014197506A Division JP6442209B2 (ja) 2014-09-26 2014-09-26 画像処理装置およびその制御方法

Publications (2)

Publication Number Publication Date
JP2019037004A true JP2019037004A (ja) 2019-03-07
JP6727276B2 JP6727276B2 (ja) 2020-07-22

Family

ID=65637928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220674A Active JP6727276B2 (ja) 2018-11-26 2018-11-26 画像処理装置、その制御方法、プログラム

Country Status (1)

Country Link
JP (1) JP6727276B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230550A (ja) * 2000-11-29 2002-08-16 Giken Torasutemu Kk 物体像識別方法
JP2008009849A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 人物追跡装置
JP2008033897A (ja) * 2006-06-29 2008-02-14 Matsushita Electric Ind Co Ltd 画像処理装置、画像処理方法、プログラム、記録媒体および集積回路
JP2009053748A (ja) * 2007-08-23 2009-03-12 Nikon Corp 画像処理装置、画像処理プログラムおよびカメラ
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2013235537A (ja) * 2012-05-11 2013-11-21 Nikon Corp 画像作成装置、画像作成プログラム、及び記録媒体
JP2014166298A (ja) * 2013-01-31 2014-09-11 Olympus Corp 内視鏡用画像処理装置、内視鏡装置、画像処理方法及び画像処理プログラム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002230550A (ja) * 2000-11-29 2002-08-16 Giken Torasutemu Kk 物体像識別方法
JP2008033897A (ja) * 2006-06-29 2008-02-14 Matsushita Electric Ind Co Ltd 画像処理装置、画像処理方法、プログラム、記録媒体および集積回路
JP2008009849A (ja) * 2006-06-30 2008-01-17 Matsushita Electric Ind Co Ltd 人物追跡装置
JP2009053748A (ja) * 2007-08-23 2009-03-12 Nikon Corp 画像処理装置、画像処理プログラムおよびカメラ
JP2010135996A (ja) * 2008-12-03 2010-06-17 Olympus Imaging Corp 撮像装置、ライティング処理装置、ライティング処理方法およびライティング処理用プログラム
JP2013235537A (ja) * 2012-05-11 2013-11-21 Nikon Corp 画像作成装置、画像作成プログラム、及び記録媒体
JP2014166298A (ja) * 2013-01-31 2014-09-11 Olympus Corp 内視鏡用画像処理装置、内視鏡装置、画像処理方法及び画像処理プログラム

Also Published As

Publication number Publication date
JP6727276B2 (ja) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6442209B2 (ja) 画像処理装置およびその制御方法
JP6445844B2 (ja) 撮像装置および撮像装置で実行される方法
US9699386B2 (en) Image processing apparatus and method
JP6412386B2 (ja) 画像処理装置およびその制御方法、プログラムならびに記録媒体
JP7292905B2 (ja) 画像処理装置及び画像処理方法、及び撮像装置
JP6718253B2 (ja) 画像処理装置及び画像処理方法
US11019254B2 (en) Image processing apparatus, control method for image processing apparatus, and storage medium having correction of effect of virtual light source
JP2019145097A (ja) 設定装置及び方法、プログラム、記憶媒体
JP2017138927A (ja) 画像処理装置、撮像装置およびそれらの制御方法、それらのプログラム
JP6921606B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP6727276B2 (ja) 画像処理装置、その制御方法、プログラム
JP6541416B2 (ja) 画像処理装置及び画像処理方法、プログラム、記憶媒体
JP6663246B2 (ja) 画像処理装置、撮像装置およびこれらの制御方法ならびにプログラム
US11842467B2 (en) Image processing apparatus, image processing method and storage medium
JP7356255B2 (ja) 画像処理装置及びその処理方法、撮像装置、プログラム、記憶媒体
JP6675461B2 (ja) 画像処理装置およびその制御方法、ならびにプログラム
JP2018190257A (ja) 画像処理装置
JP2021064884A (ja) 画像処理装置、撮像装置、制御方法、プログラム及び撮像システム
JP2021108023A (ja) 画像処理装置および画像処理方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200210

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R151 Written notification of patent or utility model registration

Ref document number: 6727276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151