JP2019036371A - Spacer for using in magnetic disk device - Google Patents

Spacer for using in magnetic disk device Download PDF

Info

Publication number
JP2019036371A
JP2019036371A JP2017155559A JP2017155559A JP2019036371A JP 2019036371 A JP2019036371 A JP 2019036371A JP 2017155559 A JP2017155559 A JP 2017155559A JP 2017155559 A JP2017155559 A JP 2017155559A JP 2019036371 A JP2019036371 A JP 2019036371A
Authority
JP
Japan
Prior art keywords
stainless steel
spacer
magnetic disk
magnetic
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017155559A
Other languages
Japanese (ja)
Other versions
JP6467471B1 (en
Inventor
杉山 健
Takeshi Sugiyama
健 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Century Holdings Co Ltd
Original Assignee
Century Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Century Holdings Co Ltd filed Critical Century Holdings Co Ltd
Priority to JP2017155559A priority Critical patent/JP6467471B1/en
Priority to PCT/JP2018/013986 priority patent/WO2019030971A1/en
Application granted granted Critical
Publication of JP6467471B1 publication Critical patent/JP6467471B1/en
Publication of JP2019036371A publication Critical patent/JP2019036371A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/038Centering or locking of a plurality of discs in a single cartridge
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B23/00Record carriers not specific to the method of recording or reproducing; Accessories, e.g. containers, specially adapted for co-operation with the recording or reproducing apparatus ; Intermediate mediums; Apparatus or processes specially adapted for their manufacture

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

To provide a spacer for a magnetic desk, which is stacked alternately with a spacer, does not cause a deflection of a magnetic disk, has a small thermal expansion, has high accuracy, is difficult to work-harden and has good processing efficiency.SOLUTION: In a magnetic disk drive 1 having a structure in which a plurality of magnetic disks 4 are disposed around a spindle motor 2 and held by a pressing force of a clamp member, a spacer 10 is disposed so as to be sandwiched between magnetic disks and is formed by processing stainless steel into a ring shape by pressing. The stainless steel which is ferritic stainless steel is composed of in weight%, C≤0.12%, Si≤1.00%, Mn≤1.0%, P≤0.040%, S≤0.030%, and Cr:10.00 to 18.00%, and after reheating a slab consisting of iron and unavoidable impurities to 950 to 1100°C, rough rolling is performed at a temperature of 1100 to 900°C, and after rough rolling, finish rolling is performed at a temperature between Ar±30°C, and after a predetermined plate thickness by cold rolling, the remainder is obtained by performing annealing.SELECTED DRAWING: Figure 1

Description

本発明は、磁気ディスク装置に用いるスペーサに係り、より詳しくは、スペーサと交互に積層される磁気ディスクの振れを生じさせない熱膨張が少なくて精度が高く、加工硬化し難いため加工能率が良好な磁気ディスク装置に用いるスペーサに関する。 The present invention relates to a spacer used in a magnetic disk device. More specifically, the present invention relates to a spacer used in a magnetic disk device. More specifically, the present invention relates to a spacer that is stacked alternately with a spacer. The present invention relates to a spacer used in a magnetic disk device.

磁気ディスク装置では、薄型化、大容量化、高速化に対応するために複数のディスクの間にスペーサが挿入されて、磁気ディスク装置の特性を安定化させるようになっている。
スペーサとしては、ステンレス鋼(SUS)、アルミ、銅、チタンなどの金属のほか、ガラス、セラミックなども採用されている。
スペーサには、スピンドルモーターにディスクを固定する際、ディスクに変形(反り)が生じないよう高い剛性が要求とされる。
In a magnetic disk device, spacers are inserted between a plurality of disks in order to cope with a reduction in thickness, capacity, and speed, thereby stabilizing the characteristics of the magnetic disk device.
As the spacer, in addition to metals such as stainless steel (SUS), aluminum, copper, and titanium, glass, ceramic, and the like are also employed.
The spacer is required to have high rigidity so that the disk is not deformed (warped) when the disk is fixed to the spindle motor.

SUS製のスペーサは加工が容易であること、アルミニウムにNi−Pメッキを施した金属製ディスクと線膨張係数などの特性が類似している特徴があるが、反りなどの変形が生じ易い問題があった。
最近、磁気ディスク装置にガラス製基板が採用されることがあり、ガラス製のディスクにSUSスペーサを用いると、ディスクを固定する際に、スぺーサと磁気ディスクの特性が異なるため、剛性が低く弱く、ディスクの反りのほか、電気的特性の低下等の問題が生じていた。
SUS spacers are easy to process and have characteristics similar to the characteristics of linear expansion coefficient and the like of a metal disk with aluminum plated with Ni-P, but are prone to deformation such as warpage. there were.
Recently, a glass substrate is sometimes used in a magnetic disk device, and when a SUS spacer is used for a glass disk, the characteristics of the spacer and the magnetic disk are different when the disk is fixed, resulting in low rigidity. In addition to the warp of the disk, problems such as deterioration of electrical characteristics occurred.

剛性の高いスペーサとしてセラミック製があるが、セラミック製スペーサを使用するとディスクに疵が発生する問題があり、この対策としてスペーサの外周部を保護皮膜で覆うことが行われている。
保護皮膜には、膜厚が50nmから5μmのタングステン、チタン、コバルト、鉄、クロム、ニッケル、ジルコニウム、タンタル、銅、銀、金等が用いられる。
保護皮膜方式は、表面塵埃除去や有機汚染除去が不十分であるので、これらが原因で膜剥がれを起こす。このためコーティング前に膜の密着性向上のために表面塵埃除去及び有機汚染除去を、また膜が剥がれてもディスクに傷が付かないように孔塵埃除去処理を十分に行う必要がある。
As a highly rigid spacer, there is a ceramic. However, when a ceramic spacer is used, there is a problem that a disc is wrinkled. As a countermeasure, the outer periphery of the spacer is covered with a protective film.
For the protective film, tungsten, titanium, cobalt, iron, chromium, nickel, zirconium, tantalum, copper, silver, gold or the like having a thickness of 50 nm to 5 μm is used.
In the protective film method, surface dust removal and organic contamination removal are insufficient, and these cause film peeling. For this reason, it is necessary to sufficiently remove surface dust and organic contamination to improve the adhesion of the film before coating, and to sufficiently remove the hole dust so that the disk is not damaged even if the film is peeled off.

ステンレス鋼(SUS)製スペーサに関しては、フェライト系ステンレス鋼のスペーサに関する特許第5486039号があり、圧延板材の表面硬度、結晶粒度、残留圧縮応力値のバラツキ等が規定されている。しかしながら、これらのバラツキを規定値内に収めるための手段については全く記載がない。また圧延板材でこのような値を確保するには、溶鋼から熱延を経て冷間圧延までの作業条件をコントロールする必要があるが、このような調整は極めて困難である問題を有している。しかもプレス工程での確保も当然のことながら困難である。   Regarding the stainless steel (SUS) spacer, there is Japanese Patent No. 5486039 relating to a spacer of ferritic stainless steel, and the surface hardness, crystal grain size, variation in residual compressive stress value, etc. of the rolled plate material are defined. However, there is no description about the means for keeping these variations within the specified values. Moreover, in order to ensure such a value with a rolled sheet material, it is necessary to control the working conditions from molten steel through hot rolling to cold rolling, but such adjustment has a problem that is extremely difficult. . Moreover, it is naturally difficult to secure in the pressing process.

特許第5486039号公報Japanese Patent No. 5486039

本発明は、上記問題点を解決するためになされたものであって、その目的とするところは、スペーサと交互に積層される磁気ディスクの振れを生じさせない熱膨張が少なくて精度が高く、加工硬化し難いため加工能率が良好な磁気ディスク装置に用いるスペーサを提供することである。 The present invention has been made to solve the above-described problems, and the object of the present invention is to reduce the thermal expansion that does not cause the vibration of the magnetic disk laminated alternately with the spacers, and to provide high accuracy. It is an object of the present invention to provide a spacer for use in a magnetic disk device that is hard to be cured and has a good processing efficiency.

本発明の磁気ディスク装置に用いるスペーサは、スピンドルモーターの周囲に複数枚の磁気ディスクが配置され、前記複数枚の磁気ディスクがクランプ部材の押圧力によって前記スピンドルモーターに保持される構造の磁気ディスク装置に用いられ、前記複数枚の磁気ディスクに挟まれて配置されるスペーサであって、ステンレス鋼をプレス加工によりリング状に加工してなることを特徴とする。   The spacer used in the magnetic disk apparatus of the present invention has a structure in which a plurality of magnetic disks are arranged around a spindle motor, and the plurality of magnetic disks are held by the spindle motor by a pressing force of a clamp member. The spacer is sandwiched between the plurality of magnetic disks and is formed by processing stainless steel into a ring shape by pressing.

本発明においては、前記ステンレス鋼はフェライト系ステンレス鋼であって、重量%で、C≦0.12%、Si≦1.00%、Mn≦1.0%、P≦0.040%、S≦0.030%、Cr:10.00〜18.00%、残部が鉄(Fe)及びその他不可避な不純物からなる組成のスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延し、粗圧延後Ar±30℃の間の温度で仕上げ圧延し、これを冷間圧延で所定の板厚にした後、焼鈍して得られることを特徴とする。 In the present invention, the stainless steel is a ferritic stainless steel, and by weight, C ≦ 0.12%, Si ≦ 1.00%, Mn ≦ 1.0%, P ≦ 0.040%, S ≦ 0.030%, Cr: 10.00 to 18.00%, the balance consisting of iron (Fe) and other unavoidable impurities is reheated to 950 to 1100 ° C., then 1100 to 900 ° C. It is characterized in that it is obtained by rough rolling at a temperature of Ar 3 ± 30 ° C. after rough rolling at a temperature between Ar 3 ± 30 ° C., making it a predetermined plate thickness by cold rolling, and then annealing.

又、本発明においては、前記ステンレス鋼はオーステナイト系ステンレス鋼であって、重量%で、C≦0.15%(以下同じ)、Si≦1.00%、Mn≦5.50〜7.50%、P≦0.060%、S≦0.030%、Ni≦3.5〜5.0%、Cr=16.00〜18.00%の組成であることを特徴とする。   Further, in the present invention, the stainless steel is an austenitic stainless steel, and in terms of% by weight, C ≦ 0.15% (hereinafter the same), Si ≦ 1.00%, Mn ≦ 5.50 to 7.50. %, P ≦ 0.060%, S ≦ 0.030%, Ni ≦ 3.5 to 5.0%, Cr = 16.00 to 18.00%.

さらに、本発明においては、前記ステンレス鋼はマルテンサイト系ステンレス鋼、二相系ステンレス鋼又は析出硬化系ステンレス鋼のいずれかであることを特徴とする。   Furthermore, in the present invention, the stainless steel is one of martensitic stainless steel, duplex stainless steel, or precipitation hardening stainless steel.

本発明によるステンレス鋼種は、18cr(クロム)と言われるCr系の代表鋼種であり磁性がある。18−8系より安価であるが、耐熱性、加工性に劣る。18%以上のクロムを含有し、安定したフェライト相を形成することで、熱硬化性は無い。 The stainless steel type according to the present invention is a Cr-based representative steel type called 18cr (chromium) and is magnetic. Although it is cheaper than the 18-8 system, it is inferior in heat resistance and workability. By containing 18% or more of chromium and forming a stable ferrite phase, there is no thermosetting.

スペーサと磁気ディスクの断面図である。It is sectional drawing of a spacer and a magnetic disc. ハードディスクの内部を示す図である。It is a figure which shows the inside of a hard disk.

図1及び図2は、本発明が適用される磁気ディスク装置1を示す。スピンドルモーター2のスピンドル軸3の周囲に複数枚の磁気ディスク4が配置されている。複数枚の磁気ディスク4は上部のクランプ部材の押圧力によってスピンドルモーター2に保持される。
磁気ディスク4との隣接位置には、ヘッドアセンブリ5が配置されている。ヘッドアセンブリ5は先端に磁気ヘッド6が取り付けられたアクセスアーム7を有しており、それぞれの磁気ディスク4は磁気ヘッド6の間を回転する。この回転によって磁気ディスク4への情報の読み取りや書き込みが行われる。スピンドル軸3に沿ってスペーサ10が配置されており、スペーサ10が磁気ディスク4の間に挟まれて配置されることにより磁気ディスク4の間隔が一定に保持される。
スペーサ10はステンレス鋼を平板の帯状に加工した後、板状のステンレス鋼からリング状にプレス加工することにより形成されるものである。
1 and 2 show a magnetic disk device 1 to which the present invention is applied. A plurality of magnetic disks 4 are arranged around the spindle shaft 3 of the spindle motor 2. The plurality of magnetic disks 4 are held by the spindle motor 2 by the pressing force of the upper clamp member.
A head assembly 5 is disposed at a position adjacent to the magnetic disk 4. The head assembly 5 has an access arm 7 having a magnetic head 6 attached to the tip thereof, and each magnetic disk 4 rotates between the magnetic heads 6. Information is read from or written to the magnetic disk 4 by this rotation. Spacers 10 are disposed along the spindle shaft 3, and the spacers 10 are sandwiched between the magnetic disks 4 so that the distance between the magnetic disks 4 is kept constant.
The spacer 10 is formed by processing stainless steel into a flat strip shape and then pressing the plate-shaped stainless steel into a ring shape.

本発明は、スピンドルモーター回転軸の周囲に複数枚の磁気ディスクが配置され、複数枚の磁気ディスクがクランプ部材のばね押圧力によってスピンドルモーターに保持される構造の磁気ディスク装置に用いられ、複数枚の磁気ディスクに挟まれて配置されるスペーサであって、ステンレス鋼をプレス加工によりリング状に加工してなる。ステンレス鋼としてはフェライト系ステンレス鋼、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼、二相系ステンレス鋼、析出硬化系ステンレス鋼の何れかを採用することができる。   The present invention is used in a magnetic disk device having a structure in which a plurality of magnetic disks are arranged around a spindle motor rotating shaft, and the plurality of magnetic disks are held by a spindle motor by a spring pressing force of a clamp member. These spacers are sandwiched between magnetic disks, and are formed by processing stainless steel into a ring shape by pressing. As the stainless steel, any of ferritic stainless steel, austenitic stainless steel, martensitic stainless steel, duplex stainless steel, and precipitation hardening stainless steel can be used.

フェライト系ステンレス鋼は、フェライト結晶の地に細かいクロム・カーバイド散らばったもので、加工しやすく、板、間、棒、鍛造品など家庭用器具、化学工業その他にも広く使用される。
鉄に18%前後のクロムを合金化したもので、殆どの鋼種が16%以上のクロムを含有し、安定したフェライト相を形成しているので熱処理しても硬化せず、一方耐食性・耐熱性はマルテンサイト系ステンレスよりも優れており、さらに常温で磁性を有している。
Ferritic stainless steel is made of fine chrome carbide scattered on the ground of ferrite crystals, is easy to process, and is widely used in household appliances such as plates, spaces, bars, forged products, chemical industry and others.
Iron is alloyed with about 18% chromium. Most steel types contain 16% or more chromium and form a stable ferrite phase, so it does not harden even when heat-treated, while corrosion resistance and heat resistance. Is superior to martensitic stainless steel and is magnetic at room temperature.

オーステナイトは多量の炭素を溶かす(結晶 内に取り込む)ことができるが、フェライトはごくわずかしか炭素 を溶かすことができない。このため冷却過程でオーステナイトから フェライトに変化(変態)するときに溶かすことができない余分な 炭素は追い出され、セメンタイト(鉄の炭化物)として析出する。 このような現象は窒素の場合でも同じである。 ステンレス鋼も鉄と同じで、ゆっくり冷却するとフェライトとクロムの炭化物や窒化物になる。これが「フェライト系ステンレス鋼」 である。フェライト系ステンレス鋼の汎用鋼種は、オーステナイト 系ほどの耐食性は発揮しないため、業務用厨房、建築内装、家具など、それほど腐食環境が厳しくない用途に適している。   Austenite can dissolve large amounts of carbon (incorporate into the crystal), while ferrite can only dissolve very little carbon. For this reason, excess carbon that cannot be dissolved when it changes (transforms) from austenite to ferrite during the cooling process is expelled and precipitated as cementite (iron carbide). Such a phenomenon is the same in the case of nitrogen. Stainless steel is the same as iron, and when cooled slowly, it becomes ferrite and chromium carbides and nitrides. This is “ferritic stainless steel”. Ferritic stainless steels are not suitable for corrosive environments such as commercial kitchens, architectural interiors, and furniture because they are not as corrosion resistant as austenitic steels.

オーステナイト系ステンレス鋼の代表鋼種には18−8ステンレス(18Cr−8Ni)といわれるSUS304がある。オーステナイト系のステンレスは、冷間加工だけで硬化し、熱処理を行っても硬化せずに、軟化する。このオーステナイト組織は、熱処理の状態では磁性はないが、冷間加工では少しの磁性を見せ、加工後でも磁性がないものもある。
500〜800℃に加熱すると結晶粒界にクロム炭化物が析出する欠点があり、粒界腐食(金属組織を構成する粒と粒の境界線から腐食していく)の原因となる。これを防ぐために、炭素量を減らしたり、チタンやニオブなどの安定化元素を添加して、クロムの代わりにこれらの物質と炭素を結び付けてクロム炭化物の生成を抑える方法がある。耐摩耗、耐食が必要な場合は、浸炭や窒化して用いる。
Niを含有しているので、常温でもオーステナイトの組織が安定し、またCrとNiの含有量が多いことから、耐食性、耐熱性に優れるほか、低温靱性にも優れる。応力腐食割れ感受性が高い欠点に対して、添加元素により改良される鋼種もある。
SUS304 called 18-8 stainless steel (18Cr-8Ni) is a representative steel type of austenitic stainless steel. Austenitic stainless steel is hardened only by cold working, and is softened without being hardened even when heat treatment is performed. This austenite structure does not have magnetism in the heat-treated state, but shows a little magnetism in the cold working, and there are some that do not have magnetism even after the processing.
When heated to 500 to 800 ° C., there is a defect that chromium carbide precipitates at the crystal grain boundary, which causes intergranular corrosion (corrosion from the boundary line between the grains constituting the metal structure). In order to prevent this, there is a method of reducing the amount of carbon or adding a stabilizing element such as titanium or niobium and combining these substances with carbon instead of chromium to suppress the formation of chromium carbide. If wear and corrosion resistance are required, use after carburizing or nitriding.
Since it contains Ni, the austenite structure is stable even at room temperature, and since it contains a large amount of Cr and Ni, it has excellent corrosion resistance and heat resistance, as well as excellent low-temperature toughness. Some steel grades are improved by additive elements against the disadvantage of high stress corrosion cracking susceptibility.

二相系ステンレス鋼材は、二相合金とも言われ、オーステナイト組織とフェライト組織が共存したステンレス鋼材である。二相系の最大の特徴は、オーステナイト系の欠点である応力腐食割れに強いという点である。フェライト系の組織も有するため、磁性がある。 熱膨張係数は、フェライト系とオーステナイト系の中間を示す。延性はフェライトに近い性質を示し、高強度、高耐食性、経済的と言われる材料で、化学プラント、受水槽、貯水地、油井管、ケミカルタンカー等に使われる。Nの添加が少ないと、溶接部などの靭性や耐食性の低下が問題となる。   The duplex stainless steel material is also called a duplex alloy, and is a stainless steel material in which an austenite structure and a ferrite structure coexist. The greatest feature of the two-phase system is that it is resistant to stress corrosion cracking, which is a defect of the austenite system. Since it has a ferrite structure, it is magnetic. The thermal expansion coefficient is intermediate between ferrite and austenite. Ductility is similar to ferrite, and is said to be high strength, high corrosion resistance, and economical. It is used in chemical plants, water tanks, reservoirs, oil well pipes, chemical tankers, etc. When there is little addition of N, the fall of toughness and corrosion resistance, such as a welded part, will become a problem.

マルテンサイト系ステンレス鋼の最大の特徴は、他の鉄鋼材料のように熱処理(焼入れ)をすることができる。この焼入れによってマルテンサイト組織が生じて硬化させることができ、成分だけでなく、熱処理によって変幻自在ともいえる多様な性質を持たせることができ、すべての状態で磁性がある。
マルテンサイトの組織自体は、硬くて脆いが、焼き戻しによって強度や硬さをさらにあげることができる。この系統のステンレスは組織が変態するという特色があるため、熱処理によって硬化させて利用されている。代表的な鋼種として、13Crステンレス(13クロムステンレス)がある。
このような性質から、高強度や高硬度が要求されるものや高温にさらされるものに使われるが、耐食性についてはマルテンサイト系は他の系統よりも劣る傾向がある。これは炭素の含有量が抑えてあることと関係がある。SUS403やブリネル硬さ500まで硬化させることができるとされるSUS420などこの系統のステンレスの際立った特徴は、「硬さ」である。ただ硬さとは、脆さとも表裏一体であり、硬く耐摩耗性に優れることから、刃物、工具、ノズル、タービンブレード、ブレーキディスク、などに使われる。
室温での強度は大きいが、溶接性は比較的悪く、耐食性はフェライト系、オーステナイト系よりも低い。
The greatest feature of martensitic stainless steel is that it can be heat-treated (quenched) like other steel materials. By this quenching, a martensite structure can be generated and hardened, and not only the components but also various properties that can be changed by heat treatment can be imparted, and all states are magnetic.
The martensite structure itself is hard and brittle, but the strength and hardness can be further increased by tempering. Since this type of stainless steel has the feature that the structure is transformed, it is hardened by heat treatment and used. A typical steel type is 13Cr stainless steel (13 chromium stainless steel).
Because of these properties, it is used for materials that require high strength and high hardness and those that are exposed to high temperatures, but martensite systems tend to be inferior to other systems in terms of corrosion resistance. This has something to do with the low carbon content. The distinguishing feature of this series of stainless steels, such as SUS403 and SUS420, which can be cured to a Brinell hardness of 500, is “hardness”. However, the term "hardness" means that both brittleness and front and back are integrated, and it is hard and has excellent wear resistance.
Although the strength at room temperature is large, the weldability is relatively poor, and the corrosion resistance is lower than that of ferrite and austenite.

析出硬化系ステンレスは、熱処理によって高硬度にしたステンレスである。元来、焼入によって硬化できないオーステナイト系ステンレス鋼材を熱処理によって強力化できるように改良した鋼種であり、クロムニッケル系の組成を持っている。このため、耐食性はオーステナイト系には及ばないが、クロム系よりは優れている。固溶化熱処理(S処理)によって成形加工して析出熱処理を施した鋼種で、金属組織上の特徴から3タイプある。   The precipitation hardening stainless steel is a stainless steel that has been hardened by heat treatment. Originally an austenitic stainless steel that cannot be hardened by quenching, it has been improved so that it can be strengthened by heat treatment, and has a chromium-nickel composition. For this reason, the corrosion resistance is not as good as that of the austenite system, but is superior to the chromium system. It is a steel type that is formed by solution heat treatment (S treatment) and subjected to precipitation heat treatment.

本発明におけるフェライト系ステンレス鋼は、重量%で、C≦0.12%、Si≦1.00%、Mn≦1.0%、P≦0.040%、S≦0.030%、Cr:10.00〜18.00%、残部が鉄(Fe)及びその他不可避な不純物からなるスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延し、粗圧延後Ar±30℃の間の温度で仕上げ圧延し、これを冷間圧延で所定の板厚にした後、焼鈍して得られる。
前記ステンレス鋼は帯状で供給され、プレス加工でリング状に加工されたものである。
本発明のスペーサには、C≦0.025重量%(以下同じ)、Si≦1.00、Mn≦1.0、P≦0.040、S≦0.030、Cr=20.00〜23.00、Cu=0.30〜0.80なる成分よりなる鋼を適用することもできる。
リング状のスペーサは、磁気ディスクに挟まれて配置され、磁気ディスクとの膨張係数の差が大きいと歪みの原因となるため、リング状のスペーサの熱膨張係数は、磁気ディスクの熱膨張係数の±10%の範囲にあることが好ましいとされている。
Cuを0.30〜0.80%添加したフェライト系ステンレス鋼は、オーステナイト系ステンレスであるSUS304と比較して熱膨張率が40%低くなっているほか、SUS304と比較して加工硬化しにくいので、せん断やプレス成型時の加工負荷が小さくなる。
The ferritic stainless steel according to the present invention is, by weight, C ≦ 0.12%, Si ≦ 1.00%, Mn ≦ 1.0%, P ≦ 0.040%, S ≦ 0.030%, Cr: A slab consisting of 10.00-18.00%, the balance being iron (Fe) and other inevitable impurities, is reheated to 950-1100 ° C., then roughly rolled at a temperature of 1100-900 ° C., and after rough rolling, Ar 3 It is obtained by finish rolling at a temperature between ± 30 ° C., annealing this to a predetermined plate thickness by cold rolling, and then annealing.
The stainless steel is supplied in a strip shape and processed into a ring shape by pressing.
In the spacer of the present invention, C ≦ 0.025 wt% (hereinafter the same), Si ≦ 1.00, Mn ≦ 1.0, P ≦ 0.040, S ≦ 0.030, Cr = 20.00 to 23 It is also possible to apply steel composed of components of 0.000, Cu = 0.30-0.80.
The ring-shaped spacer is disposed between magnetic disks, and a large difference in expansion coefficient from the magnetic disk causes distortion. Therefore, the thermal expansion coefficient of the ring-shaped spacer is the thermal expansion coefficient of the magnetic disk. It is considered preferable to be in the range of ± 10%.
Ferritic stainless steel with 0.30 to 0.80% Cu added has a 40% lower thermal expansion coefficient than SUS304, which is an austenitic stainless steel, and is harder to work harden than SUS304. , Processing load during shearing and press molding is reduced.

Cu添加のフェライト系ステンレス鋼は、 21Cr−0.4Cu−Ti−極低(C,N)の省資源型高耐食フェライト系ステンス鋼 JFE443CT(SUS443J1)であり、クロム(Cr)を21%に高め、耐食性を向上させる銅(Cu)とチタ(Ti)を添加した、 ニッケル、モリブデン無添加鋼であり、主成分として高価なニッケルやモリブデンを加工していないのでステンレスの代表鋼種SUS304とSUS430と比較して安く入手でき、ニッケルやモリブンの価格が高騰しても影響を受けず、SUS304とSUS430に続く汎用性を持つので入手も比較的容易である。 クロム量を21%まで高めているので、SUS304(クロム量18%)と 同等以上の耐錆性を有し、加工硬化しにくいので、せん断時の加工負荷が小さくなる。
比重はSUS304が7.93に対して、JFE443CTは7.74であるため約2%軽くなり、軽量化がはかれる。
The Cu-added ferritic stainless steel is 21Cr-0.4Cu-Ti-extremely low (C, N) resource-saving, high corrosion-resistant ferritic stainless steel JFE443CT (SUS443J1), increasing chromium (Cr) to 21% Compared with SUS304 and SUS430, which are stainless steels with no added nickel or molybdenum as the main component, and with the addition of copper (Cu) and tita (Ti) to improve corrosion resistance. It can be obtained cheaply, and even if the price of nickel or molybun rises, it is not affected, and since it has versatility following SUS304 and SUS430, it is relatively easy to obtain. Since the chromium content is increased to 21%, it has rust resistance equivalent to or better than SUS304 (chromium content 18%) and is hard to work harden, so the processing load during shearing is reduced.
The specific gravity is 7.93 for SUS304, and 7.74 for JFE443CT, so it is about 2% lighter and lighter.

前記オーステナイト系ステンレス鋼では、SUS200番系(201、202)がオーステナイト系組織を有し、非磁性である。耐食性は304に比べ落ちるが、Niを節約しMnを添加したために加工性が良好で安価な特徴を有する。
成分構成は、C≦0.15重量%(以下同じ)、Si≦1.00、Mn≦5.50〜7.50、P≦0.060、S≦0.030、Ni≦3.5〜5.0、Cr=16.00〜18.00、である。
代表的な機械特性は、比重[g/cm3] 7.93、耐力[N/mm2] 275、引張強さ[N/mm2] 520である。
In the austenitic stainless steel, SUS200 series (201, 202) has an austenitic structure and is nonmagnetic. Although the corrosion resistance is lower than that of 304, it has the characteristics of good workability and low cost because Ni is saved and Mn is added.
Component composition is C ≦ 0.15 wt% (hereinafter the same), Si ≦ 1.00, Mn ≦ 5.50 to 7.50, P ≦ 0.060, S ≦ 0.030, Ni ≦ 3.5 to 5.0, Cr = 16.00-18.00.
Typical mechanical properties are specific gravity [g / cm3] 7.93, yield strength [N / mm2] 275, tensile strength [N / mm2] 520.

本発明のスペーサは、帯状で供給されるステンレス鋼をプレス加工でリング状にするか、図には記載していないがパイプ状の素材を輪切りにしてリング状のスペーサを得る。
プレス加工後のスペーサに残留応力が発生し、品質上の問題が予想される場合は低温焼き鈍しにより除去することも可能である。
As for the spacer of the present invention, a ring-shaped spacer is obtained by making stainless steel supplied in a band shape into a ring shape by pressing, or although not shown in the drawing, a pipe-shaped material is cut into rings.
In the case where residual stress is generated in the spacer after pressing and a problem in quality is expected, it can be removed by low-temperature annealing.

Cuを0.30〜0.80%添加したフェライト系ステンレス鋼は、オーステナイト系ステンレスであるSUS304と比較して熱膨張率が40%低くなっているほか、SUS304と比較して加工硬化しにくいので、せん断やプレス成型時の加工負荷が小さくなる。
また、クロム(Cr)を21%に高め、耐食性を向上させる銅(Cu)とチタ(Ti)を添加した、 ニッケル、モリブデン無添加鋼であり、主成分として高価なニッケルやモリブデンを添加していないのでステンレスの代表鋼種SUS304とSUS430と比較して安く入手でき、ニッケルやモリブンの価格が高騰しても影響を受けず、SUS304とSUS430に続く汎用性を持つので入手も比較的容易である。 クロム量を21%まで高めているので、SUS304(クロム量18%)と 同等以上の耐錆製を有し、加工硬化しにくいので、せん断時の加工負荷が小さくなる。
比重はSUS304が7.93に対して、7.74であるため約2%軽くなり、軽量化もはかれる。
また、オーステナイト系ステンレス鋼のSUS200番系(201、202)は、オーステナイト系組織を有し、非磁性である。耐食性は304に比べ落ちるが、Niを節約しMnを添加したために加工性が良好で安価な特徴を有する。
Ferritic stainless steel with 0.30 to 0.80% Cu added has a 40% lower thermal expansion coefficient than SUS304, which is an austenitic stainless steel, and is harder to work harden than SUS304. , Processing load during shearing and press molding is reduced.
Also, it is a nickel and molybdenum-free steel with copper (Cu) and tita (Ti) added to increase chromium (Cr) to 21% and improve corrosion resistance, and expensive nickel and molybdenum as main components. Therefore, it can be obtained at a lower price than the representative stainless steel types SUS304 and SUS430, and even if the price of nickel or molybdenum is increased, it is not affected. Since the chromium content is increased to 21%, it has a rust resistance equivalent to or better than SUS304 (chromium content 18%) and is hard to work harden, so the processing load during shearing is reduced.
Since the specific gravity is 7.74 compared to 7.93 for SUS304, it is about 2% lighter and lighter.
Further, SUS200 series (201, 202) of austenitic stainless steel has an austenitic structure and is nonmagnetic. Although the corrosion resistance is lower than that of 304, it has the characteristics of good workability and low cost because Ni is saved and Mn is added.

Claims (4)

スピンドルモーターの周囲に複数枚の磁気ディスクが配置され、前記複数枚の磁気ディスクがクランプ部材の押圧力によって前記スピンドルモーターに保持される構造の磁気ディスク装置に用いられ、前記複数枚の磁気ディスクに挟まれて配置されるスペーサであって、
ステンレス鋼をプレス加工によりリング状に加工してなることを特徴とする磁気ディスク装置に用いるスペーサ。
A plurality of magnetic disks are arranged around a spindle motor, and the plurality of magnetic disks are used in a magnetic disk device having a structure in which the spindle motor is held by a pressing force of a clamp member. A spacer that is sandwiched between
A spacer used in a magnetic disk device, wherein stainless steel is processed into a ring shape by pressing.
前記ステンレス鋼はフェライト系ステンレス鋼であって、
重量%で、C≦0.12%、Si≦1.00%、Mn≦1.0%、P≦0.040%、S≦0.030%、Cr:10.00〜18.00%、残部が鉄(Fe)及びその他不可避な不純物からなる組成のスラブを950〜1100℃に再加熱した後、1100〜900℃の温度で粗圧延し、粗圧延後Ar±30℃の間の温度で仕上げ圧延し、これを冷間圧延で所定の板厚にした後、焼鈍して得られることを特徴とする請求項1記載の磁気ディスク装置に用いるスペーサ。
The stainless steel is ferritic stainless steel,
% By weight, C ≦ 0.12%, Si ≦ 1.00%, Mn ≦ 1.0%, P ≦ 0.040%, S ≦ 0.030%, Cr: 10.00 to 18.00%, After reheating the slab composed of iron (Fe) and other inevitable impurities to 950 to 1100 ° C., rough rolling at a temperature of 1100 to 900 ° C., and after rough rolling, a temperature between Ar 3 ± 30 ° C. 2. The spacer used in the magnetic disk drive according to claim 1, wherein the spacer is obtained by performing finish rolling at a predetermined thickness by cold rolling and then annealing the resultant to a predetermined plate thickness.
前記ステンレス鋼はオーステナイト系ステンレス鋼であって、
重量%で、C≦0.15%(以下同じ)、Si≦1.00%、Mn≦5.50〜7.50%、P≦0.060%、S≦0.030%、Ni≦3.5〜5.0%、Cr=16.00〜18.00%の組成であることを特徴とする請求項1記載の磁気ディスク装置に用いるスペーサ。
The stainless steel is an austenitic stainless steel,
% By weight, C ≦ 0.15% (the same applies hereinafter), Si ≦ 1.00%, Mn ≦ 5.50-7.50%, P ≦ 0.060%, S ≦ 0.030%, Ni ≦ 3 2. A spacer used in a magnetic disk drive according to claim 1, wherein the composition is 0.5 to 5.0% and Cr is 16.00 to 18.00%.
前記ステンレス鋼はマルテンサイト系ステンレス鋼、二相系ステンレス鋼又は析出硬化系ステンレス鋼のいずれかであることを特徴とする請求項1記載の磁気ディスク装置に用いるスペーサ。   2. The spacer used in a magnetic disk drive according to claim 1, wherein the stainless steel is one of martensitic stainless steel, duplex stainless steel, or precipitation hardening stainless steel.
JP2017155559A 2017-08-10 2017-08-10 Spacer for magnetic disk drive Active JP6467471B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017155559A JP6467471B1 (en) 2017-08-10 2017-08-10 Spacer for magnetic disk drive
PCT/JP2018/013986 WO2019030971A1 (en) 2017-08-10 2018-03-30 Spacer used in magnetic disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155559A JP6467471B1 (en) 2017-08-10 2017-08-10 Spacer for magnetic disk drive

Publications (2)

Publication Number Publication Date
JP6467471B1 JP6467471B1 (en) 2019-02-13
JP2019036371A true JP2019036371A (en) 2019-03-07

Family

ID=65271352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155559A Active JP6467471B1 (en) 2017-08-10 2017-08-10 Spacer for magnetic disk drive

Country Status (2)

Country Link
JP (1) JP6467471B1 (en)
WO (1) WO2019030971A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022071512A1 (en) * 2020-09-30 2022-04-07

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354782A (en) * 1989-07-21 1991-03-08 Hitachi Ltd Magnetic disk device
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
JP2003247049A (en) * 2002-02-20 2003-09-05 Daido Steel Co Ltd Austenite-containing free cutting stainless steel
JP2013222487A (en) * 2012-04-17 2013-10-28 Ordeal Enterprise (Es) Private Ltd Spacer for use in magnetic disk unit and magnetic disk unit
JP6284666B1 (en) * 2017-03-17 2018-02-28 日新製鋼株式会社 Manufacturing method of hard disk spacer parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0354782A (en) * 1989-07-21 1991-03-08 Hitachi Ltd Magnetic disk device
JPH11343535A (en) * 1998-05-29 1999-12-14 Kawasaki Steel Corp Coating/baking hardening type high tensile strength steel plate and its production
JP2003247049A (en) * 2002-02-20 2003-09-05 Daido Steel Co Ltd Austenite-containing free cutting stainless steel
JP2013222487A (en) * 2012-04-17 2013-10-28 Ordeal Enterprise (Es) Private Ltd Spacer for use in magnetic disk unit and magnetic disk unit
JP6284666B1 (en) * 2017-03-17 2018-02-28 日新製鋼株式会社 Manufacturing method of hard disk spacer parts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022071512A1 (en) * 2020-09-30 2022-04-07
WO2022071512A1 (en) * 2020-09-30 2022-04-07 Hoya株式会社 Spacer and hard disk drive device
JP7349583B2 (en) 2020-09-30 2023-09-22 Hoya株式会社 Spacer and hard disk drive device

Also Published As

Publication number Publication date
WO2019030971A1 (en) 2019-02-14
JP6467471B1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
CN100348738C (en) Method for making an abrasion resistant steel plate and plate obtained
CN100348739C (en) Method for making an abrasion resistant steel plate and plate obtained
JP6302722B2 (en) High-strength duplex stainless steel wire excellent in spring fatigue characteristics, its manufacturing method, and high-strength duplex stainless steel wire excellent in spring fatigue characteristics
CN102046828A (en) A bearing component
US10308996B2 (en) Hot stamping steel and producing method thereof
JP2013147705A (en) Ferritic stainless steel wire rod and steel wire, and method for producing them
US6793744B1 (en) Martenstic stainless steel having high mechanical strength and corrosion
JPWO2014148015A1 (en) Stainless steel sheet
CN101258255B (en) Martensitic stainless steel sheet for heat-resistant disc brake having excellent hardenability
JP6467471B1 (en) Spacer for magnetic disk drive
JP4645307B2 (en) Wear-resistant steel with excellent low-temperature toughness and method for producing the same
WO2015133470A1 (en) Age hardening non-heat treated bainitic steel
CN109321829A (en) A kind of yield strength 900MPa grades of stainless steel plates and manufacturing method
US4793875A (en) Abrasion resistant casting alloy for corrosive applications
JP2003293093A (en) Method of producing stainless steel formed article having excellent shape precision
JPH05171366A (en) Martensite stainless steel body and method of producing same
JP2006291236A (en) Middle and high carbon steel sheet with high-strength superior in stampability
JP2000282147A (en) Manufacture of high strength dual-phase stainless steel strip excellent in resistance to stress corrosion crack sensitivity, and steel strip
JP4073844B2 (en) Stainless steel for motorcycle brake disc
JP5887896B2 (en) Precipitation hardening type stainless steel and its manufacturing method
JPH0814005B2 (en) Manufacturing method of high ductility and high strength dual phase chromium stainless steel strip with excellent intergranular corrosion resistance
Adi et al. Impact of Sensitization on the Weight Loss of Austenitic Stainless Steel (Type 304) In Fresh Water
Panfilova et al. Development of high-strength corrosion-resistant steel for submersible centrifugal electric pump shafts
Okpala et al. Effect of sensitization on the corrosion of austenitic stainless steel in fresh water
JP4548760B2 (en) High-strength stainless steel with excellent corrosion resistance and wear resistance

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190111

R150 Certificate of patent or registration of utility model

Ref document number: 6467471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250