JP2019033807A - Component monitoring method in dialysate preparation system - Google Patents

Component monitoring method in dialysate preparation system Download PDF

Info

Publication number
JP2019033807A
JP2019033807A JP2017155622A JP2017155622A JP2019033807A JP 2019033807 A JP2019033807 A JP 2019033807A JP 2017155622 A JP2017155622 A JP 2017155622A JP 2017155622 A JP2017155622 A JP 2017155622A JP 2019033807 A JP2019033807 A JP 2019033807A
Authority
JP
Japan
Prior art keywords
stock solution
dialysate
dialysis
passage
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017155622A
Other languages
Japanese (ja)
Other versions
JP6892602B2 (en
Inventor
信行 野里
Nobuyuki Nozato
信行 野里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibuya Corp
Original Assignee
Shibuya Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibuya Kogyo Co Ltd filed Critical Shibuya Kogyo Co Ltd
Priority to JP2017155622A priority Critical patent/JP6892602B2/en
Publication of JP2019033807A publication Critical patent/JP2019033807A/en
Application granted granted Critical
Publication of JP6892602B2 publication Critical patent/JP6892602B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

SOLUTION: A hemodialyzer 1 (dialysate preparation system) comprises supply chambers 11a, 12a (dialysate containers) of first and second dialysate chambers 11, 12, a dialysis water passage 5 for supplying dialysis water, and A stock solution passage and B stock solution passage 6, 7 (stock solution passages) for supplying A stock solution and B stock solution (dialysis stock solution) and being connected to the dialysis water passage 5. Conductivity of the B stock solution supplied from the stock solution passage is continuously measured for a unit time, and the sum of products of respective conductivities and the unit time in a period in which a prescribed amount of the B stock solution is supplied, is determined, then the sum is compared with a preset reference value.EFFECT: The conductivity of a dialysate stock solution is measured, for monitoring a component amount of the dialysate stock solution in a dialysate.SELECTED DRAWING: Figure 1

Description

本発明は透析液調製システムにおける成分監視方法に関し、詳しくは透析液容器において透析用水と透析原液とを混合して透析液を調製する透析液調製システムにおける成分監視方法に関する。   The present invention relates to a component monitoring method in a dialysate preparation system, and more particularly to a component monitoring method in a dialysate preparation system in which dialysate is mixed by mixing dialysis water and a dialysate stock solution in a dialysate container.

従来、血液透析治療に用いるための透析液を調製する透析液調製システムが知られ、透析用水と透析原液を混合するための透析液容器と、当該透析液容器に透析用水を供給する透析用水通路と、当該透析用水通路に接続されて透析用水通路を介して上記透析液容器に透析原液を供給する原液通路とを備えて構成されている。
上記構成を有する透析液調製システムでは、上記透析用水通路による透析用水の供給を停止した状態で、上記原液通路から透析液容器に所定量の透析原液を供給し、その後透析用水通路から透析液容器に透析用水を供給して透析原液と混合し、当該透析液容器で透析液を調製するようになっている(特許文献1)。
また同様に、透析液容器と透析用水通路と原液通路とを備えた透析液調製システムであって、所定流量で送液される透析用水に容積式ポンプで所定量の透析原液を供給し、透析液容器で混合して透析液を調製することも知られている(特許文献2)。このシステムにおいては、透析用水と透析原液を混合した後で電気伝導度を計測することにより、調製した透析液の濃度の良否を判定するようにしている。
Conventionally, a dialysate preparation system for preparing dialysate for use in hemodialysis treatment is known, a dialysate container for mixing dialysate water and a dialysate stock solution, and a dialysis water passage for supplying dialysate water to the dialysate container And a stock solution passage that is connected to the dialysis water passage and supplies the dialysis stock solution to the dialysate container through the dialysis water passage.
In the dialysate preparation system having the above-described configuration, a predetermined amount of dialysate is supplied from the stock solution passage to the dialysate container in a state in which the supply of dialysate water through the dialysis water passage is stopped, and then the dialysate container is supplied from the dialysate water passage. The dialysis fluid is supplied to the dialysis stock solution and mixed with the dialysis stock solution, and the dialysis fluid is prepared in the dialysis fluid container (Patent Document 1).
Similarly, a dialysis fluid preparation system comprising a dialysis fluid container, a dialysis water passage, and a stock solution passage, wherein a predetermined amount of dialysis stock solution is supplied to the dialysis water fed at a predetermined flow rate by a positive displacement pump, and dialysis is performed. It is also known to prepare a dialysate by mixing in a liquid container (Patent Document 2). In this system, the electrical conductivity is measured after mixing the dialysis water and the dialysis stock solution to determine the quality of the prepared dialysate.

特公平3−62108号公報Japanese Examined Patent Publication No. 3-62108 特許第5803543号公報Japanese Patent No. 5803543

上記特許文献1における透析液調製システムは血液透析装置に備えられ、調製された透析液はそのまま透析器に供給されて治療に使用される。透析液は適正な濃度で調製されている必要があり、上記特許文献1に記載された透析液調製システムに対し、上記特許文献2に記載された技術を用いることにより、調製された透析液の電気伝導度を計測して濃度の良否を判定し、透析液が適正に調製されていることを監視することが考えられる。
ここで、透析原液としては、塩化ナトリウムを主成分とするA原液と、炭酸水素ナトリウム水溶液からなるB原液とがあり、これらを透析用水と所定の比率で混合して透析液が調製されるが、透析液の状態で電気伝導度に影響するのは主にA原液であり、B原液の増減は電気伝導度として顕著には表れない。
すなわち、調製された透析液の電気伝導度からA原液の供給量が適正であるか否かを判定することはできるが、B原液についてはできない。上記特許文献2の透析液調製システムの場合は、送液される透析用水に所定量のB原液を供給した後にA原液を供給するよう構成されており、透析用水通路にはB原液の供給位置の下流側とA原液の供給位置の下流側にそれぞれ伝導度センサを設けて、透析用水で希釈された状態のB原液の電気伝導度を計測するとともに、これにA原液を加えた透析液について電気伝導度を計測するようになっている。
このため、透析液の電気伝導度としては異常がなくとも、何らかの原因でB原液の供給量に不足が生じた場合には、透析用水で希釈された状態のB原液の電気伝導度が低下することでこれを検出することができ、透析液におけるA原液とB原液の成分量を監視することができる。
これに対し、特許文献1の透析液調製システムの場合は、透析用水の供給を停止した状態でB原液を供給するため、B原液の供給量に不足が生じた場合であっても濃度は変化せず、特許文献2の構成のように電気伝導度を計測しても供給量の不足を検出することはできない。
このような問題に鑑み、本発明は供給される透析原液の電気伝導度を計測することで、透析液における透析原液の成分量を監視することが可能な透析液調製システムにおける成分監視方法を提供するものである。
The dialysate preparation system in Patent Document 1 is provided in a hemodialysis apparatus, and the prepared dialysate is supplied as it is to a dialyzer and used for treatment. The dialysate needs to be prepared at an appropriate concentration, and the dialysate preparation system described in Patent Document 1 is applied to the dialysate prepared by using the technique described in Patent Document 2 above. It is conceivable to measure the electrical conductivity to determine whether the concentration is good or not and to monitor that the dialysate is properly prepared.
Here, as the dialysis stock solution, there are A stock solution mainly composed of sodium chloride and B stock solution composed of aqueous sodium hydrogen carbonate solution, and these are mixed with dialysis water at a predetermined ratio to prepare a dialysis fluid. In the state of the dialysate, the electric conductivity is mainly influenced by the A stock solution, and the increase or decrease in the B stock solution does not appear remarkably as the electrical conductivity.
That is, it can be determined from the electrical conductivity of the prepared dialysate whether or not the supply amount of the A stock solution is appropriate, but the B stock solution cannot. In the case of the dialysate preparation system of Patent Document 2, the A stock solution is supplied after supplying a predetermined amount of the B stock solution to the dialysis water to be fed, and the supply position of the B stock solution is supplied to the dialysis water passage. Concentration sensors are provided on the downstream side of A and the downstream side of the supply position of A stock solution, respectively, and the electrical conductivity of B stock solution diluted with dialysis water is measured, and the dialysate obtained by adding A stock solution thereto Electrical conductivity is measured.
For this reason, even if there is no abnormality in the electrical conductivity of the dialysate, if the supply amount of the B stock solution is insufficient for some reason, the electrical conductivity of the B stock solution diluted with dialysis water decreases. This can be detected, and the component amounts of the A and B stock solutions in the dialysate can be monitored.
On the other hand, in the case of the dialysate preparation system of Patent Document 1, since the B stock solution is supplied in a state where the supply of dialysis water is stopped, the concentration changes even when the supply amount of the B stock solution is insufficient. However, even if the electrical conductivity is measured as in the configuration of Patent Document 2, the shortage of the supply amount cannot be detected.
In view of such problems, the present invention provides a component monitoring method in a dialysate preparation system capable of monitoring the amount of components of a dialysate solution in the dialysate by measuring the electrical conductivity of the supplied dialysate solution. To do.

すなわち請求項1の発明にかかる透析液調製システムにおける成分監視方法は、透析用水と透析原液を混合するための透析液容器と、当該透析液容器に透析用水を供給する透析用水通路と、当該透析用水通路に接続されて透析用水通路を介して上記透析液容器に透析原液を供給する原液通路とを備え、
上記透析用水通路による透析用水の供給を停止した状態で、上記原液通路から透析液容器に所定量の透析原液を供給し、その後透析用水通路から透析液容器に透析用水を供給して透析原液と混合し、当該透析液容器で透析液を調製する透析液調製システムにおける成分監視方法において、
上記透析用水通路に上記透析原液の電気伝導度を計測する伝導度計測手段を設け、上記原液通路から供給される透析原液の電気伝導度を単位時間毎に連続して計測し、上記所定量の透析原液が供給される間に計測された各電気伝導度と上記単位時間の積の和を求め、予め設定した基準値と比較することを特徴としている。
That is, the component monitoring method in the dialysate preparation system according to the invention of claim 1 includes a dialysate container for mixing dialysis water and a dialysate stock solution, a dialysis water passage for supplying dialysis water to the dialysate container, and the dialysis A stock solution passage connected to the water passage and supplying a dialysate stock solution to the dialysate container through the dialysis water passage,
With the supply of dialysis water through the dialysis water passage stopped, a predetermined amount of dialysis stock solution is supplied from the stock solution passage to the dialysate container, and then dialysate water is supplied from the dialysis water passage to the dialysate container. In the component monitoring method in the dialysate preparation system for mixing and preparing the dialysate in the dialysate container,
Conductivity measuring means for measuring the electrical conductivity of the dialysis stock solution is provided in the dialysis water passage, the electrical conductivity of the dialysis stock solution supplied from the stock solution passage is continuously measured every unit time, and the predetermined amount of It is characterized in that the sum of the products of the respective electrical conductivities measured while the dialysis stock solution is supplied and the unit time is obtained and compared with a preset reference value.

上記請求項1の発明によれば、供給される透析原液の電気伝導度を計測することにより、透析液における透析原液の成分量を監視することができる。   According to the first aspect of the present invention, the component amount of the dialysate solution in the dialysate can be monitored by measuring the electrical conductivity of the supplied dialysate solution.

第1実施例にかかる血液透析装置の構成図Configuration of hemodialysis apparatus according to the first embodiment 第1伝導度測定手段で測定される液体の電気伝導度に関するグラフGraph concerning electric conductivity of liquid measured by first conductivity measuring means 図2のグラフの内、B原液についての電気伝導度に関するグラフAmong the graphs in FIG. 2, a graph relating to the electrical conductivity of the B stock solution 第2実施例にかかる血液透析装置の構成図Configuration diagram of hemodialysis apparatus according to second embodiment

以下図示実施例について説明すると、図1は血液透析装置1を示しており、血液透析を行う透析器2と、透析器2に透析液を流通させる透析液回路3と、透析器2に血液を流通させる血液回路4とを備え、制御手段Cによって制御されるようになっている。
上記透析液回路3には、第1透析液チャンバ11と第2透析液チャンバ12が設けられている。これら第1透析液チャンバ11および第2透析液チャンバ12は、それぞれ内部が2枚のダイアフラムによって、新鮮な透析液を調製する供給室11a、12aと、使用済みの透析液を回収する回収室11b、12bと、これら供給室11a、12aと回収室11b、12bとの間に形成された可変容積室11c、12cとに区画されており、供給室11a、12aは、供給される所定量の透析用水と透析原液を混合するための透析液容器を構成している。
また、上記可変容積室11c、12cは、それぞれシリコーンオイル等の液体を収容するようになっており、接続された容積式ポンプ13A、13Bによって収容する液体を増減させることで、容積を変動させることが可能となっている。
なお、上記新鮮な透析液を調製する透析用水としてはRO水が使用され、透析原液としては、塩化ナトリウムを主成分とするA原液と、炭酸水素ナトリウム水溶液からなるB原液があり、これら透析用水とA原液とB原液とを所定の比率で混合することにより透析液が調製される。
In the following, the illustrated embodiment will be described. FIG. 1 shows a hemodialysis apparatus 1, a dialyzer 2 for hemodialysis, a dialysate circuit 3 for circulating dialysate through the dialyzer 2, and blood to the dialyzer 2. The blood circuit 4 to be circulated is provided and is controlled by the control means C.
The dialysate circuit 3 is provided with a first dialysate chamber 11 and a second dialysate chamber 12. The first dialysate chamber 11 and the second dialysate chamber 12 are each provided with supply chambers 11a and 12a for preparing fresh dialysate by two diaphragms inside, and a collection chamber 11b for collecting used dialysate. , 12b and variable volume chambers 11c, 12c formed between the supply chambers 11a, 12a and the recovery chambers 11b, 12b. The supply chambers 11a, 12a are supplied with a predetermined amount of dialysis. A dialysis fluid container for mixing water and dialysis stock solution is constructed.
The variable volume chambers 11c and 12c each contain a liquid such as silicone oil, and the volume is changed by increasing or decreasing the liquid accommodated by the connected positive displacement pumps 13A and 13B. Is possible.
In addition, RO water is used as the dialysis water for preparing the fresh dialysis solution, and the dialysis stock solution includes an A stock solution mainly composed of sodium chloride and a B stock solution composed of an aqueous sodium hydrogen carbonate solution. A dialysate is prepared by mixing the A stock solution and the B stock solution at a predetermined ratio.

上記透析液回路3は、上記第1、第2透析液チャンバ11、12の供給室11a、12aに上記透析用水を供給する透析用水通路5と、当該透析用水通路5に接続されて透析用水通路5を介して上記供給室11a、12aにA原液を供給するA原液通路6と、同じく透析用水通路5に接続されて透析用水通路5を介して上記供給室11a、12aにB原液を供給するB原液通路7と、上記供給室11a、12aで調製された新鮮な透析液を透析器2に供給する透析液供給通路8と、透析器2を通過した使用済みの透析液を上記回収室11b、12bに回収する透析液回収通路9と、上記回収室11b、12bから使用済みの透析液を排液する排液通路10とを備えている。
上記血液回路4は、患者から透析器2に血液を送る動脈回路4Aと、透析器2から患者に血液を返す静脈回路4Bからなり、動脈回路4Aには血液ポンプBPが設けられている。
The dialysate circuit 3 includes a dialysis water passage 5 for supplying the dialysis water to the supply chambers 11a and 12a of the first and second dialysate chambers 11 and 12, and a dialysis water passage connected to the dialysis water passage 5. The A stock solution passage 6 for supplying the A stock solution to the supply chambers 11 a and 12 a through 5, and the B stock solution to the supply chambers 11 a and 12 a through the dialysis water passage 5 connected to the dialysis water passage 5. B stock solution passage 7, dialysate supply passage 8 for supplying fresh dialysate prepared in the supply chambers 11a and 12a to the dialyzer 2, and used dialysate that has passed through the dialyzer 2 are collected in the recovery chamber 11b. , 12b and a drainage passage 10 for draining used dialysate from the recovery chambers 11b and 12b.
The blood circuit 4 includes an arterial circuit 4A that sends blood from the patient to the dialyzer 2, and a venous circuit 4B that returns blood from the dialyzer 2 to the patient. The arterial circuit 4A is provided with a blood pump BP.

上記透析用水通路5には、上記透析用水を所定の温度に加温するヒータ21と、上記透析用水を送液する給液ポンプ22とが設けられ、また透析用水通路5の下流部分は2方向に分岐して上記第1、第2透析液チャンバ11、12の上記供給室11a、12aに接続されている。
また上記A原液通路6およびB原液通路7は上記給液ポンプ22と上記第1、第2透析液チャンバ11、12の間の区間で上記透析用水通路5に接続されており、上記A原液通路6は上記A原液を収容したA原液容器23に接続され、上記B原液通路7は上記B原液を収容したB原液容器24に接続されている。
本実施例では、A原液通路6をB原液通路7よりも上流側に設けており、A原液通路6の接続箇所とB原液通路7の接続箇所との間には所定量の透析用水を貯溜するバッファ容器25が設けられている。
なお、A原液およびB原液の供給については、血液透析装置1を設置した治療施設が備える給液設備や供給装置から行うこともでき、またB原液については、容器に収容した粉末剤をRO水で溶解させながら供給することもできる。
そして、上記透析用水通路5における給液ポンプ22とA原液通路6の接続箇所の間には第1開閉弁V1が、上記第1、第2透析液チャンバ11、12の供給室11a、12aへと分岐した通路には給液弁V2,V3がそれぞれ設けられており、また上記A原液通路6にはA原液供給弁V4が、上記B原液通路7にはB原液供給弁V5が設けられている。
ここで、第1開閉弁V1より下流の透析用水通路5については、透析用水、A原液、B原液を透析液容器に供給する共通通路5Aを構成しており、この共通通路5Aを介してA原液通路6およびB原液通路7から供給室11a、12aにA原液およびB原液を供給するようになっている。
そして、これら透析用水通路5および共通通路5Aと、A原液通路6およびB原液通路7と、第1、第2チャンバ11、12の供給室11a、12aとにより、本実施例における透析液調製システムが構成されている。
The dialysis water passage 5 is provided with a heater 21 for heating the dialysis water to a predetermined temperature and a feed pump 22 for feeding the dialysis water, and the downstream portion of the dialysis water passage 5 has two directions. And are connected to the supply chambers 11a and 12a of the first and second dialysate chambers 11 and 12, respectively.
The A stock solution passage 6 and the B stock solution passage 7 are connected to the dialysis water passage 5 in a section between the feed pump 22 and the first and second dialysate chambers 11 and 12, and the A stock solution passage. 6 is connected to an A stock solution container 23 containing the A stock solution, and the B stock solution passage 7 is connected to a B stock solution container 24 containing the B stock solution.
In this embodiment, the A stock solution passage 6 is provided upstream of the B stock solution passage 7, and a predetermined amount of dialysis water is stored between the connection location of the A stock solution passage 6 and the connection location of the B stock solution passage 7. A buffer container 25 is provided.
In addition, about supply of A stock solution and B stock solution, it can also carry out from the liquid supply equipment and supply apparatus with which the treatment facility which installed the hemodialysis apparatus 1 is equipped, and about B stock solution, the powder agent accommodated in the container is RO water. It can also be supplied while dissolving.
A first on-off valve V1 is connected to the supply chambers 11a and 12a of the first and second dialysate chambers 11 and 12 between the connection points of the feed fluid pump 22 and the A stock solution passage 6 in the dialysis water passage 5. The supply fluid valves V2 and V3 are respectively provided in the branched passages, the A concentrate solution supply valve V4 is provided in the A concentrate solution passage 6, and the B concentrate solution supply valve V5 is provided in the B concentrate solution passage 7. Yes.
Here, the dialysis water passage 5 downstream from the first on-off valve V1 constitutes a common passage 5A for supplying dialysis water, A stock solution, and B stock solution to the dialysis fluid container, and the A through the common passage 5A. A stock solution and B stock solution are supplied from the stock solution passage 6 and the B stock solution passage 7 to the supply chambers 11a and 12a.
Then, the dialysate preparation system in the present embodiment includes the dialysis water passage 5 and the common passage 5A, the A stock solution passage 6 and the B stock solution passage 7, and the supply chambers 11a and 12a of the first and second chambers 11 and 12. Is configured.

上記透析液供給通路8の上流部分は2方向に分岐してそれぞれ上記第1、第2透析液チャンバ11、12の供給室11a、12aに接続され、下流側の端部は上記透析器2に接続されている。上記分岐部分にはそれぞれ供給弁V6、V7が設けられ、また透析器2との接続部近傍には第2開閉弁V8が設けられている。
また、透析液供給通路8と上記透析液回収通路9との間にはバイパス通路26が配設されるとともに、当該バイパス通路26には第3開閉弁V9が設けられている。上記バイパス通路26は、異常と判定された透析液を透析器2を介さずに透析液供給通路8から透析液回収通路9に流通させるものとなっている。
The upstream portion of the dialysate supply passage 8 branches in two directions and is connected to the supply chambers 11a and 12a of the first and second dialysate chambers 11 and 12, respectively, and the downstream end is connected to the dialyzer 2. It is connected. Supply valves V6 and V7 are provided at the branch portions, respectively, and a second on-off valve V8 is provided in the vicinity of the connection with the dialyzer 2.
Further, a bypass passage 26 is provided between the dialysate supply passage 8 and the dialysate recovery passage 9, and a third on-off valve V 9 is provided in the bypass passage 26. The bypass passage 26 allows the dialysate determined to be abnormal to flow from the dialysate supply passage 8 to the dialysate recovery passage 9 without going through the dialyzer 2.

上記透析液回収通路9は、上流側の端部が上記透析器2に接続され、下流部分が2方向に分岐してそれぞれ上記第1、第2透析液チャンバ11、12の回収室11b、12bに接続されている。また使用済み透析液を送液するための送液ポンプ27が設けられるとともに、上記分岐部分には回収弁V10、V11が設けられている。
そして上記排液通路10は、上流部分が2方向に分岐してそれぞれ上記第1、第2透析液チャンバ11、12の回収室11b、12bに接続され、下流側の端部は治療施設に敷設された排液管に接続されている。また上記分岐部分には排液弁V12、V13が設けられている。
The dialysate recovery passage 9 has an upstream end connected to the dialyzer 2 and a downstream portion bifurcated in two directions. The recovery chambers 11b and 12b of the first and second dialysate chambers 11 and 12, respectively. It is connected to the. In addition, a liquid feed pump 27 for feeding the used dialysate is provided, and recovery valves V10 and V11 are provided at the branch portion.
The drainage passage 10 is branched in two directions in the upstream portion and connected to the recovery chambers 11b and 12b of the first and second dialysate chambers 11 and 12, respectively, and the downstream end is laid in a treatment facility. Connected to the drainage pipe. Further, drainage valves V12 and V13 are provided at the branch portion.

上記共通通路5AにおけるB原液通路7の接続箇所の下流側には、接続箇所に接近させて透析原液の電気伝導度を計測する伝導度計測手段としての原液用伝導度センサ29が設けられ、主にB原液通路7から供給されるB原液の電気伝導度を計測するようになっている。また、この原液用伝導度センサ29の近傍には温度補正を行うための温度センサ28が設けられている。
さらに透析液供給通路8には、透析液の電気伝導度を計測する伝導度計測手段としての透析液用伝導度センサ31が設けられており、透析器2に供給される新鮮な透析液の電気伝導度を計測するようになっている。また、この透析液用伝導度センサ31の近傍にも温度補正用の温度センサ30が設けられている。
これら伝導度センサ29、31および温度センサ28、30の計測信号は、一定のパルスに従う単位時間毎に連続して制御手段Cに入力されるようになっている。
具体的に制御手段Cでは、当該原液用伝導度センサ29に基づく計測結果から、所定量のB原液が供給される間の単位時間毎の各電気伝導度と上記単位時間との積の和を求め、予め設定した基準値と比較して調製される透析液におけるB原液の成分量を監視するようになっている。
また、透析液用伝導度センサ31に基づく計測結果については、予め設定した基準値と比較することによって、調製された透析液の濃度異常を判定するようになっている。
上記原液用伝導度センサ29および透析液用伝導度センサ31による計測結果に異常が認められた場合、制御手段Cは透析液供給通路8の第2開閉弁V8を閉鎖して透析器2への透析液の供給を中止するとともに、バイパス通路26の第3開閉弁V9を開放して不良透析液を透析液回収通路9に流通させるようにする。
In the common passage 5A, on the downstream side of the connection location of the B stock solution passage 7, a stock solution conductivity sensor 29 is provided as a conductivity measuring means for measuring the electrical conductivity of the dialysis stock solution close to the connection location. The electrical conductivity of the B stock solution supplied from the B stock solution passage 7 is measured. Further, a temperature sensor 28 for performing temperature correction is provided in the vicinity of the stock solution conductivity sensor 29.
Further, the dialysate supply passage 8 is provided with a dialysate conductivity sensor 31 as a conductivity measuring means for measuring the electrical conductivity of the dialysate, and the electricity of the fresh dialysate supplied to the dialyzer 2 is provided. It is designed to measure conductivity. A temperature sensor 30 for temperature correction is also provided in the vicinity of the dialysate conductivity sensor 31.
The measurement signals of the conductivity sensors 29 and 31 and the temperature sensors 28 and 30 are continuously input to the control means C every unit time according to a certain pulse.
Specifically, in the control means C, from the measurement result based on the stock solution conductivity sensor 29, the sum of the product of each electrical conductivity per unit time and the unit time during which a predetermined amount of B stock solution is supplied is calculated. The component amount of the B stock solution in the dialysate prepared and compared with a preset reference value is monitored.
Moreover, about the measurement result based on the conductivity sensor 31 for dialysate, the density | concentration abnormality of the prepared dialysate is determined by comparing with the preset reference value.
When an abnormality is found in the measurement results of the stock solution conductivity sensor 29 and the dialysate conductivity sensor 31, the control means C closes the second on-off valve V8 of the dialysate supply passage 8 to the dialyzer 2. The supply of the dialysate is stopped, and the third on-off valve V9 of the bypass passage 26 is opened so that the defective dialysate flows through the dialysate recovery passage 9.

以下、上記構成を有する血液透析装置1における上記第1透析液チャンバ11の動作について説明する。なお第2透析液チャンバ12での動作は同様であるため説明は省略する。
まず、第1透析液チャンバ11において新鮮な透析液を透析器2へと供給しながら、透析器2から使用済み透析液を回収する際の動作について説明する。
このとき、第1透析液チャンバ11の供給室11aに接続する透析用水通路5(共通通路5A)の給液弁V2および回収室11bに接続する排液通路10の排液弁V12を閉鎖し、透析液供給通路8の供給弁V6および透析液回収通路9の回収弁V10を開放する。
この状態で、透析液回収通路9に設けた送液ポンプ27が、透析器2を流通した使用済み透析液を回収室11bに流入させる。すると回収室11bの容積が増大し、供給室11aの容積が減少するため、供給室11aからはそれまでに調製されていた新鮮な透析液が透析液供給通路8から透析器2へと供給される。
その際、透析器2を介して血液から所定量の除水を行う場合には、上記容積式ポンプ13Aを用いて可変容積室11cから液体を引き出して容積を減少させ、上記供給室11aからの新鮮な透析液の流出量よりも、回収室11bへの使用済み透析液の流入量が多くなるようにし、透析器2において差圧による除水が行われる。
そして、上記回収室11bに使用済み透析液が充満すると、上記供給室11aの容積がゼロとなり、新鮮な透析液が透析液供給通路8へと完全に排出されることとなる。
Hereinafter, the operation of the first dialysate chamber 11 in the hemodialysis apparatus 1 having the above configuration will be described. Since the operation in the second dialysate chamber 12 is the same, the description thereof is omitted.
First, the operation when collecting the used dialysate from the dialyzer 2 while supplying fresh dialysate to the dialyzer 2 in the first dialysate chamber 11 will be described.
At this time, the supply valve V2 of the dialysis water passage 5 (common passage 5A) connected to the supply chamber 11a of the first dialysate chamber 11 and the drain valve V12 of the drain passage 10 connected to the recovery chamber 11b are closed, The supply valve V6 of the dialysate supply passage 8 and the recovery valve V10 of the dialysate recovery passage 9 are opened.
In this state, the liquid feed pump 27 provided in the dialysate recovery passage 9 causes the used dialysate flowing through the dialyzer 2 to flow into the recovery chamber 11b. Then, the volume of the recovery chamber 11b increases and the volume of the supply chamber 11a decreases, so that fresh dialysate prepared so far is supplied from the supply chamber 11a to the dialyzer 2 from the dialysate supply passage 8. The
At that time, when a predetermined amount of water is removed from the blood via the dialyzer 2, the volume is reduced by pulling out the liquid from the variable volume chamber 11c using the positive displacement pump 13A, and the volume from the supply chamber 11a is reduced. The amount of the used dialysate flowing into the recovery chamber 11b is made larger than the amount of the fresh dialysate flowing out, and the dialyzer 2 performs water removal by differential pressure.
When the collection chamber 11b is filled with the used dialysate, the volume of the supply chamber 11a becomes zero, and the fresh dialysate is completely discharged into the dialysate supply passage 8.

次に、第1透析液チャンバ11において新鮮な透析液を調製しながら使用済み透析液を排液する際の動作について説明する。
まず、第1透析液チャンバ11の供給室11aに接続する給液弁V2および回収室11bに接続する排液弁V12を開放するとともに、供給弁V6および回弁V10を閉鎖する。このときA原液通路6のA原液供給弁V4およびB原液通路7のB原液供給弁V5は閉鎖されている。
この状態で、上記透析用水通路5の第1開閉弁V1を短時間だけ開放し、給液ポンプ22によって透析用水を少量だけ供給室11aに流入させる。その後、第1開閉弁V1を閉鎖して透析用水の供給を停止する。
なお、供給室11aに透析用水を流入させる際、先の工程において血液から除水を行っていた場合には、容積式ポンプ13Aによって減少していた可変容積室11cの容積を復帰させる。
Next, the operation when draining the used dialysate while preparing fresh dialysate in the first dialysate chamber 11 will be described.
First, the supply valve V2 connected to the supply chamber 11a of the first dialysate chamber 11 and the drain valve V12 connected to the recovery chamber 11b are opened, and the supply valve V6 and the rotary valve V10 are closed. At this time, the A stock solution supply valve V4 in the A stock solution passage 6 and the B stock solution supply valve V5 in the B stock solution passage 7 are closed.
In this state, the first on-off valve V1 of the dialysis water passage 5 is opened for a short time, and a small amount of dialysis water is caused to flow into the supply chamber 11a by the feed pump 22. Thereafter, the first on-off valve V1 is closed to stop the supply of dialysis water.
When the dialysis water is allowed to flow into the supply chamber 11a, if the water is removed from the blood in the previous step, the volume of the variable volume chamber 11c reduced by the positive displacement pump 13A is returned.

第1開閉弁V1を閉鎖したら、上記排液通路10の排液弁V12を閉鎖するとともに、上記B原液通路7のB原液供給弁V5を開放し、上記容積式ポンプ13Aが所定量の液体を引き出して可変容積室11cの容積を減少させる。
上記回収弁10および排液弁V12が閉鎖されているため、回収室11bの容積は変動しないことから、供給室11aの容積だけが増大する。これに伴って共通通路5Aに留まっている透析用水が供給室11aに引き込まれるとともに、B原液通路7から共通通路5AにB原液が引き込まれ、これが供給室11aに流入する。
その後、供給室11aの容積の増大が停止するとB原液の流動も停止し、これにより供給室11aの容積の増大分、すなわち容積式ポンプ13Aが引き出した液体の量に見合う量のB原液が、B原液通路7から供給されたことになる。
その際、B原液通路7から共通通路5Aに流出したB原液は、直ちに温度センサ28と原液用伝導度センサ29とを通過し、それらの計測信号が制御手段Cに入力される。
When the first on-off valve V1 is closed, the drainage valve V12 of the drainage passage 10 is closed, the B stock solution supply valve V5 of the B stock solution passage 7 is opened, and the positive displacement pump 13A supplies a predetermined amount of liquid. Withdrawing, the volume of the variable volume chamber 11c is reduced.
Since the recovery valve 10 and the drainage valve V12 are closed, the volume of the recovery chamber 11b does not vary, so only the volume of the supply chamber 11a increases. Accordingly, the dialysis water remaining in the common passage 5A is drawn into the supply chamber 11a, and the B stock solution is drawn into the common passage 5A from the B stock solution passage 7 and flows into the supply chamber 11a.
Thereafter, when the increase in the volume of the supply chamber 11a is stopped, the flow of the B stock solution is also stopped. As a result, the increase in the volume of the supply chamber 11a, that is, the amount of the B stock solution corresponding to the amount of liquid drawn out by the positive displacement pump 13A, B is supplied from the undiluted solution passage 7.
At that time, the B stock solution flowing out from the B stock solution passage 7 into the common passage 5A immediately passes through the temperature sensor 28 and the stock solution conductivity sensor 29, and these measurement signals are input to the control means C.

次に、透析用水通路5の第1開閉弁V1を閉鎖したまま、上記B原液通路7のB原液供給弁V5を閉鎖し、さらに上記A原液通路6のA原液供給弁V4を開放したら、さらに上記容積式ポンプ13Aが所定量の液体を引き出すことで、可変容積室11cの容積を減少させる。
これに伴って、共通通路5Aに留まっているB原液が供給室11aに引き込まれるとともに、バッファ容器25に貯留されている透析用水が引き出されて、A原液通路6から共通通路5AにA原液が引き込まれ、このA原液がバッファ容器25を通過して供給室11aに流入する。
その後、供給室11aの容積の増大が停止するとA原液の流動も停止し、これにより供給室11aの容積の増大分、すなわち容積式ポンプ13Aが引き出した液体の量に見合う量のA原液が、A原液通路6から供給されたことになる。
また、A原液通路6から共通通路5Aに流出したA原液は、バッファ容器25を通過すると続いて温度センサ28と原液用伝導度センサ29を通過し、それらの計測信号が制御手段Cに入力される。
上記B原液通路7の上流にバッファ容器25を設けたことにより、共通通路5Aの内部でA原液とB原液が直接接触することを防止し、結晶等の析出を防止するようになっている。
Next, with the first open / close valve V1 of the dialysis water passage 5 closed, the B stock solution supply valve V5 of the B stock solution passage 7 is closed and the A stock solution supply valve V4 of the A stock solution passage 6 is further opened. The positive displacement pump 13A draws a predetermined amount of liquid, thereby reducing the volume of the variable volume chamber 11c.
Along with this, the B stock solution remaining in the common passage 5A is drawn into the supply chamber 11a, and the dialysis water stored in the buffer container 25 is drawn, so that the A stock solution is transferred from the A stock solution passage 6 to the common passage 5A. The A stock solution is drawn into the buffer chamber 25 and flows into the supply chamber 11a.
Thereafter, when the increase in the volume of the supply chamber 11a is stopped, the flow of the A stock solution is also stopped, whereby an increase in the volume of the supply chamber 11a, that is, an amount of the A stock solution corresponding to the amount of liquid drawn out by the positive displacement pump 13A, A is supplied from the stock solution passage 6.
The A stock solution that has flowed out of the A stock solution passage 6 into the common passage 5A passes through the buffer container 25, and then passes through the temperature sensor 28 and the stock solution conductivity sensor 29, and these measurement signals are input to the control means C. The
By providing the buffer container 25 upstream of the B stock solution passage 7, it is possible to prevent the A stock solution and the B stock solution from coming into direct contact within the common passage 5A, and to prevent precipitation of crystals and the like.

最後に、上記A原液供給弁V4を閉鎖するとともに透析用水通路5の第1開閉弁V1を開放し、また閉鎖していた排液弁V12を開放する。これにより給液ポンプ22により供給される透析用水が共通通路5Aに流通し、留まっていたA原液が供給室11aに供給される。このような透析用水の供給は、回収室11bに収容されている使用済み透析液が全て排出されるまで続く。
その際、上記容積式ポンプ13Aは減少させていた可変容積室11cの容積をもとの容積に復帰させるようになっており、供給室11aへの透析用水の流入が停止した時点で所定量の透析用水が供給されたことになる。この透析用水の供給により、供給室11a内で透析用水とA原液、B原液が所定の比率で混合されて透析液が調製される。
その後は、上述した動作を第1、第2透析液チャンバ11、12によって交互に繰り返すことで、新鮮な透析液を調製しながら透析器2に透析液を供給し、また透析器2から使用済み透析液を回収しながらこれを排液するようになっている。
Finally, the A stock solution supply valve V4 is closed, the first on-off valve V1 of the dialysis water passage 5 is opened, and the closed drainage valve V12 is opened. As a result, the dialysis water supplied by the feed pump 22 flows through the common passage 5A, and the remaining A stock solution is supplied to the supply chamber 11a. Such supply of dialysis water continues until all the used dialysate contained in the recovery chamber 11b is discharged.
At that time, the positive displacement pump 13A returns the reduced volume of the variable volume chamber 11c to the original volume, and when the inflow of dialysis water into the supply chamber 11a is stopped, a predetermined amount is obtained. Dialysis water is supplied. By supplying the dialysis water, the dialysis water, the A stock solution, and the B stock solution are mixed at a predetermined ratio in the supply chamber 11a to prepare a dialysis solution.
Thereafter, the above-described operation is alternately repeated by the first and second dialysate chambers 11 and 12 to supply the dialysate 2 to the dialyzer 2 while preparing fresh dialysate and used from the dialyzer 2 The dialysate is collected while being drained.

図2は、上記原液用伝導度センサ29による、共通通路5Aを通過する透析用水、A原液、B原液の電気伝導度を計測した結果を示し、横軸は時間を、縦軸は電気伝導度をそれぞれ示している。
上述した様に、上記透析液を上記第1透析液チャンバ11の供給室11aで調製する際、共通通路5Aの原液用電導度センサ29には、透析用水が短時間だけ流通した後にB原液が流通し、その後バッファ容器25内の透析用水が流通してから、A原液が流通するようになっている。
従って、図2に示すように、最初に透析用水を示す電気伝導度がゼロの状態が計測され、続いてB原液を示す電気伝導度が検出された後、再び透析用水を示す電気伝導度がゼロの状態が検出されて、その後A原液を示す電気伝導度が計測される。
この図2の計測結果から明らかなように、A原液の電気伝導度がB原液の電気伝導度よりも遥かに高く、当該A原液、B原液を混合して調製した透析液について上記透析液用伝導度センサ31で計測する電気伝導度は、A原液の影響を大きく受けてしまうことが理解できる。
このため、何らかの原因によりB原液の供給量が不足していても、A原液が適正に供給されていれば、透析液としての電気伝導度に異常がないという判定結果が得られる場合が生じる。
FIG. 2 shows the results of measuring the electrical conductivity of the dialysis water, A stock solution, and B stock solution passing through the common passage 5A by the stock solution conductivity sensor 29, with the horizontal axis representing time and the vertical axis representing electrical conductivity. Respectively.
As described above, when the dialysate is prepared in the supply chamber 11a of the first dialysate chamber 11, the stock solution B is supplied to the stock solution conductivity sensor 29 in the common passage 5A after the dialysate water has circulated for a short time. Then, after the dialysis water in the buffer container 25 is circulated, the A stock solution is circulated.
Therefore, as shown in FIG. 2, first, the state where the electric conductivity indicating dialysis water is zero is measured, and then the electric conductivity indicating B stock solution is detected. A zero state is detected, and then the electrical conductivity representing the A stock solution is measured.
As is apparent from the measurement results of FIG. 2, the electrical conductivity of the A stock solution is much higher than that of the B stock solution, and the dialysate prepared by mixing the A stock solution and the B stock solution is used for the dialysate. It can be understood that the electrical conductivity measured by the conductivity sensor 31 is greatly influenced by the A stock solution.
For this reason, even if the supply amount of the B stock solution is insufficient for some reason, if the A stock solution is properly supplied, a determination result that there is no abnormality in the electrical conductivity as the dialysate may be obtained.

図3は図2に示した計測結果の一部分を拡大したものであり、上記原液用伝導度センサ29によって上記透析用水通路5を流通するB原液の電気伝導度を計測した結果を示した図となっている。
この図3のうち、図示左方の計測結果はB原液の供給量が正常だった場合を、図示右方の計測結果はB原液の供給量が正常値よりも少ない場合を示している。なお、これらの計測結果において、計測される電気伝導度の高さは同じであり問題ない。
正常な場合の波形と供給量が少ない場合の波形とを比較すると、少ない場合には一定の電気伝導度を示す時間が短くなり、正常な場合に比べて電気伝導度の増大および減少の割合が緩やかとなる。
FIG. 3 is an enlarged view of a part of the measurement results shown in FIG. 2, and shows a result of measuring the electrical conductivity of the B stock solution flowing through the dialysis water passage 5 by the stock solution conductivity sensor 29. It has become.
In FIG. 3, the measurement result on the left side in the figure shows the case where the supply amount of the B stock solution is normal, and the measurement result on the right side in the figure shows the case where the supply amount of the B stock solution is smaller than the normal value. In these measurement results, the height of the measured electrical conductivity is the same and there is no problem.
Comparing the waveform in the normal case with the waveform in the case where the supply amount is small, when the amount is small, the time for showing a certain electric conductivity is shortened, and the rate of increase and decrease in electric conductivity is lower than in the normal case. Be gentle.

そこで本発明では、異常が生じた場合における波形で囲まれる部分の面積が小さくなることに着目し、単位時間毎のB原液の電気伝導度と単位時間との積を求めるとともに、上記算出した各積の合計を算出して和を求めるようになっている。
具体的には、透析用水の流通による電気伝導度がゼロの状態から、B原液の流通によって電気伝導度が計測されると、これを上記検出開始時点として、単位時間毎に検出される電気伝導度と当該単位時間との積を算出する。
これを透析用水の流通によって電気伝導度が再度ゼロとなる検出終了時点まで繰り返し、全ての積を合計して積の和を求めて、B原液の電気伝導度による波形で囲まれる部分の面積として算出する。
制御手段Cには、予め図示左方に示す正常な波形による面積の基準値が設定されて登録されており、算出した面積の値を上記基準値と比較して所定割合以上の乖離が見られた場合には、B原液の供給量が不足していると判定する。
Therefore, in the present invention, paying attention to the fact that the area of the portion surrounded by the waveform becomes smaller when an abnormality occurs, the product of the electrical conductivity of the B stock solution per unit time and the unit time is obtained, and each of the above calculated values The sum of products is calculated to find the sum.
Specifically, when the electrical conductivity is measured by the flow of the B stock solution from the state where the electrical conductivity by the flow of dialysis water is zero, the electrical conductivity detected every unit time is set as the above detection start time. The product of the degree and the unit time is calculated.
This is repeated until the end of detection when the electrical conductivity becomes zero again due to the flow of dialysis water, and the sum of all products is obtained to obtain the sum of the products as the area surrounded by the waveform of the electrical conductivity of the B stock solution. calculate.
In the control means C, the reference value of the area based on the normal waveform shown on the left side of the figure is set and registered in advance, and the calculated area value is compared with the reference value and a deviation of a predetermined ratio or more is observed. If it is determined that the supply amount of the B stock solution is insufficient.

以上のように、本実施例によれば、B原液の供給量の良否を当該B原液の電気伝導度によって判定することができ、調製された透析液におけるB原液の成分量を監視することが可能となる。
また上記原液用伝導度センサ29は、これまでも当該B原液の濃度の確認に用いられていたものであり、別途の設備を準備する必要がない。
As described above, according to the present embodiment, the quality of the supply amount of the B stock solution can be determined by the electrical conductivity of the B stock solution, and the component amount of the B stock solution in the prepared dialysate can be monitored. It becomes possible.
The stock solution conductivity sensor 29 has been used for confirming the concentration of the B stock solution so far, and it is not necessary to prepare a separate facility.

図4は第2実施例にかかる血液透析装置1の回路図を示している。なお、以下の説明を除いて、本実施例の血液透析装置1は上記第1実施例の血液透析装置と同様の構成を有しており、詳細な説明を省略するとともに各要素に対して同じ符号を用いて説明する。
本実施例の第1、第2透析液チャンバ11、12の内部は、それぞれ1枚のダイアフラムによって供給室11a、12aと回収室11b、12bに区画されており、可変容積室は備えていない。
その代わりに、透析液回収通路9と排液通路10との間に配設された除水通路41と、透析液回収通路9から排液通路10へ使用済み透析液を流す除水ポンプ42とを備えている。
また、A原液通路6にはA原液容器23への連通を開閉するA原液開閉弁V14が設けられ、このA原液開閉弁V14とA原液供給弁V4の間には、容積式ポンプからなるA原液ポンプ43が接続されている。
同様に、B原液通路7にはB原液容器24への連通を開閉するB原液開閉弁V15が設けられ、このB原液開閉弁V15とB原液供給弁V5の間には、容積式ポンプからなるB原液ポンプ44が接続されている。
本実施例の血液透析装置1も、第1実施例の血液透析装置1と同様、第1、第2透析液チャンバ11、12の供給室11a、12aで透析液を調製するようになっており、第1実施例と同じ順序で供給室11a、12aに透析用水、A原液およびB原液を供給するようになっている。
本実施例において供給室11a、12aにB原液を供給するには、最初にB原液供給弁V5を閉鎖しB原液開閉弁V15を開放した状態でB原液ポンプ44を作動させて、B原液容器24から所定量のB原液を吸い出す。
次に、B原液開閉弁V15を閉鎖しB原液供給弁V5を開放してB原液ポンプ44を作動させ、吸い出したB原液を共通通路5Aに放出する。これにより所定量のB原液が供給室11a、12aに供給される。
A原液を供給する場合についても同様に、A原液供給弁V4を閉鎖しA原液開閉弁V14を開放した状態でA原液ポンプ43を作動させて、A原液容器23から所定量のA原液を吸い出し、次に、A原液開閉弁V14を閉鎖しA原液供給弁V4を開放してA原液ポンプ43を作動させ、吸い出したA原液を共通通路5Aに放出する。これにより所定量のA原液が供給室11a、12aに供給される。
そしてこのような構成においても、共通通路5Aに放出されたB原液は、原液用伝導度センサ29を通過して単位時間毎に連続して電気伝導度が計測される。また、A原液についても同様にして、原液用伝導度センサ29を通過して単位時間毎に連続して電気伝導度が計測される。
FIG. 4 shows a circuit diagram of the hemodialysis apparatus 1 according to the second embodiment. Except for the following explanation, the hemodialysis apparatus 1 of the present embodiment has the same configuration as the hemodialysis apparatus of the first embodiment, and the detailed description is omitted and the same for each element. This will be described using reference numerals.
The insides of the first and second dialysate chambers 11 and 12 of the present embodiment are partitioned into supply chambers 11a and 12a and recovery chambers 11b and 12b, respectively, by a single diaphragm, and no variable volume chamber is provided.
Instead, a water removal passage 41 disposed between the dialysate recovery passage 9 and the drainage passage 10, and a water removal pump 42 for flowing the used dialysate from the dialysate recovery passage 9 to the drainage passage 10, It has.
The A stock solution passage 6 is provided with an A stock solution on-off valve V14 that opens and closes communication with the A stock solution container 23. Between the A stock solution on-off valve V14 and the A stock solution supply valve V4, there is a positive displacement pump A. A stock solution pump 43 is connected.
Similarly, the B stock solution passage 7 is provided with a B stock solution on-off valve V15 for opening and closing communication with the B stock solution container 24, and a positive displacement pump is provided between the B stock solution on-off valve V15 and the B stock solution supply valve V5. A B stock solution pump 44 is connected.
The hemodialysis apparatus 1 of the present embodiment also prepares the dialysate in the supply chambers 11a and 12a of the first and second dialysate chambers 11 and 12, as in the hemodialysis apparatus 1 of the first embodiment. The dialysis water, the A stock solution, and the B stock solution are supplied to the supply chambers 11a and 12a in the same order as in the first embodiment.
In this embodiment, in order to supply the B stock solution to the supply chambers 11a and 12a, first, the B stock solution pump 44 is operated with the B stock solution supply valve V5 closed and the B stock solution open / close valve V15 opened, Draw a predetermined amount of B stock solution from 24.
Next, the B stock solution opening / closing valve V15 is closed, the B stock solution supply valve V5 is opened, the B stock solution pump 44 is operated, and the sucked B stock solution is discharged to the common passage 5A. As a result, a predetermined amount of B stock solution is supplied to the supply chambers 11a and 12a.
Similarly, in the case of supplying the A stock solution, the A stock solution pump 43 is operated with the A stock solution supply valve V4 closed and the A stock solution on-off valve V14 opened, and a predetermined amount of A stock solution is sucked out from the A stock solution container 23. Next, the A stock solution opening / closing valve V14 is closed, the A stock solution supply valve V4 is opened, the A stock solution pump 43 is operated, and the sucked A stock solution is discharged to the common passage 5A. As a result, a predetermined amount of A stock solution is supplied to the supply chambers 11a and 12a.
Even in such a configuration, the B stock solution discharged into the common passage 5A passes through the stock solution conductivity sensor 29, and the electrical conductivity is continuously measured every unit time. Similarly, for the A stock solution, the electrical conductivity is continuously measured every unit time after passing through the stock solution conductivity sensor 29.

本実施例の構成においても、第1実施例と同様、原液用伝導度センサ29では図2に示すような波形、すなわち最初に透析用水を示す電気伝導度がゼロの状態が計測され、続いてB原液を示す電気伝導度が計測された後、再び透析用水を示す電気伝導度がゼロの状態が計測されて、その後A原液を示す電気伝導度が計測されることとなる。
そして上記実施例と同様、単位時間毎に計測される電気伝導度と当該単位時間との積を算出し、さらに上記算出した各積の和を求めることで、B原液の電気伝導度による波形の面積を算出し、B原液の供給量の判定を行うことができる。
Also in the configuration of this embodiment, as in the first embodiment, the stock solution conductivity sensor 29 measures a waveform as shown in FIG. 2, that is, a state where the electrical conductivity indicating dialysis water is zero first, After the electrical conductivity indicating the B stock solution is measured, the state where the electrical conductivity indicating the dialysis water is zero is measured again, and then the electrical conductivity indicating the A stock solution is measured.
And like the said Example, the product of the electrical conductivity measured every unit time and the said unit time is calculated, Furthermore, by calculating | requiring the sum of each said calculated product, the waveform by the electrical conductivity of B undiluted | stock solution is obtained. The area can be calculated and the supply amount of the B stock solution can be determined.

なお、本発明は第1、第2実施例に示す血液透析装置1に用いることに限定されず、透析液を調製するための透析液容器と、当該透析液容器に透析用水を供給する透析用水通路と、当該透析液容器に透析原液を供給する透析原液通路とを備えた透析液調整システムに適用することが可能となっている。
また上記実施例では透析原液としてB原液の電気伝導度から当該B原液の成分量を監視するようになっているが、A原液の電気伝導度から当該A原液の成分量も監視するようにしてもよい。
The present invention is not limited to use in the hemodialysis apparatus 1 shown in the first and second embodiments, but a dialysis fluid container for preparing a dialysis fluid and dialysis water for supplying dialysis water to the dialysis fluid container. The present invention can be applied to a dialysate adjustment system including a passage and a dialysate solution passage for supplying a dialysate stock solution to the dialysate container.
In the above embodiment, the component amount of the B stock solution is monitored from the electrical conductivity of the B stock solution as a dialysis stock solution. However, the component amount of the A stock solution is also monitored from the electrical conductivity of the A stock solution. Also good.

1 血液透析装置 2 透析器
3 透析液回路 4 血液回路
5 透析用水通路 6 A原液通路
7 B原液通路 11 第1透析液チャンバ
12 第2透析液チャンバ 11a、12a 供給室(透析液容器)
11b、12b 回収室 11c、12c 可変容積室
13A、13B 容積式ポンプ 29 原液用伝導度センサ
DESCRIPTION OF SYMBOLS 1 Hemodialysis apparatus 2 Dialyzer 3 Dialysate circuit 4 Blood circuit 5 Water passage for dialysis 6 A undiluted solution channel 7 B undiluted solution channel 11 1st dialysate chamber 12 2nd dialysate chamber 11a, 12a Supply chamber (dialysate container)
11b, 12b Recovery chamber 11c, 12c Variable volume chamber 13A, 13B Positive displacement pump 29 Conductivity sensor for stock solution

Claims (2)

透析用水と透析原液を混合するための透析液容器と、当該透析液容器に透析用水を供給する透析用水通路と、当該透析用水通路に接続されて透析用水通路を介して上記透析液容器に透析原液を供給する原液通路とを備え、
上記透析用水通路による透析用水の供給を停止した状態で、上記原液通路から透析液容器に所定量の透析原液を供給し、その後透析用水通路から透析液容器に透析用水を供給して透析原液と混合し、当該透析液容器で透析液を調製する透析液調製システムにおける成分監視方法において、
上記透析用水通路に上記透析原液の電気伝導度を計測する伝導度計測手段を設け、上記原液通路から供給される透析原液の電気伝導度を単位時間毎に連続して計測し、上記所定量の透析原液が供給される間に計測された各電気伝導度と上記単位時間の積の和を求め、予め設定した基準値と比較することを特徴とする透析液調製システムにおける成分監視方法。
Dialysis solution container for mixing dialysis water and dialysis stock solution, dialysis water passage for supplying dialysis water to the dialysis solution container, and dialysis to the dialysis solution container connected to the dialysis water passage through the dialysis water passage A stock solution passage for supplying the stock solution,
With the supply of dialysis water through the dialysis water passage stopped, a predetermined amount of dialysis stock solution is supplied from the stock solution passage to the dialysate container, and then dialysate water is supplied from the dialysis water passage to the dialysate container. In the component monitoring method in the dialysate preparation system for mixing and preparing the dialysate in the dialysate container,
Conductivity measuring means for measuring the electrical conductivity of the dialysis stock solution is provided in the dialysis water passage, the electrical conductivity of the dialysis stock solution supplied from the stock solution passage is continuously measured every unit time, and the predetermined amount of A component monitoring method in a dialysate preparation system, characterized in that a sum of products of each electrical conductivity and unit time measured while a dialysate stock solution is supplied is compared with a preset reference value.
上記透析液は、上記透析用水と、塩化ナトリウムを主成分とするA原液と、炭酸水素ナトリウム水溶液からなるB原液とを所定の比率で混合することで調製され、
上記計測された各電気伝導度と単位時間の積の和を求めて、予め設定した基準値と比較することを、少なくとも上記B原液について行うことを特徴とする請求項1に記載の透析液調製システムにおける成分監視方法。
The dialysis solution is prepared by mixing the dialysis water, the A stock solution mainly composed of sodium chloride, and the B stock solution composed of an aqueous sodium hydrogen carbonate solution at a predetermined ratio,
2. The dialysate preparation according to claim 1, wherein the sum of products of the measured electrical conductivities and unit time is obtained and compared with a preset reference value at least for the B stock solution. Component monitoring method in the system.
JP2017155622A 2017-08-10 2017-08-10 Component monitoring method in dialysate preparation system Active JP6892602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155622A JP6892602B2 (en) 2017-08-10 2017-08-10 Component monitoring method in dialysate preparation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155622A JP6892602B2 (en) 2017-08-10 2017-08-10 Component monitoring method in dialysate preparation system

Publications (2)

Publication Number Publication Date
JP2019033807A true JP2019033807A (en) 2019-03-07
JP6892602B2 JP6892602B2 (en) 2021-06-23

Family

ID=65635975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155622A Active JP6892602B2 (en) 2017-08-10 2017-08-10 Component monitoring method in dialysate preparation system

Country Status (1)

Country Link
JP (1) JP6892602B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628767A (en) * 1979-08-16 1981-03-20 Sanyo Electric Works Device for preparing dialyzing liquid for artificial kidney
JPH01280468A (en) * 1988-04-30 1989-11-10 Kazuo Era Dialyzer
JPH03179256A (en) * 1989-09-25 1991-08-05 H Paul Heyde Ion chromatography for low density
JPH06504708A (en) * 1991-11-15 1994-06-02 バクスター、インターナショナル、インコーポレイテッド Hemodialysis conductivity servo proportional compounding system
WO2007049736A1 (en) * 2005-10-28 2007-05-03 Kyowa Hakko Kogyo Co., Ltd. Concentration crystallizer and method
JP2011092402A (en) * 2009-10-29 2011-05-12 Nipro Corp Method and instrument for monitoring concentration of dialyzate
JP2013081662A (en) * 2011-10-11 2013-05-09 Nipro Corp Method of diagnosing dialysate preparation apparatus and dialysate preparation apparatus
JP2014097224A (en) * 2012-11-15 2014-05-29 Tatsunori Kato Dialysis unit and method for measuring access recirculation rate
WO2016125902A1 (en) * 2015-02-06 2016-08-11 旭化成メディカル株式会社 Treatment solution preparation device and blood processing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628767A (en) * 1979-08-16 1981-03-20 Sanyo Electric Works Device for preparing dialyzing liquid for artificial kidney
JPH01280468A (en) * 1988-04-30 1989-11-10 Kazuo Era Dialyzer
JPH03179256A (en) * 1989-09-25 1991-08-05 H Paul Heyde Ion chromatography for low density
JPH06504708A (en) * 1991-11-15 1994-06-02 バクスター、インターナショナル、インコーポレイテッド Hemodialysis conductivity servo proportional compounding system
WO2007049736A1 (en) * 2005-10-28 2007-05-03 Kyowa Hakko Kogyo Co., Ltd. Concentration crystallizer and method
JP2011092402A (en) * 2009-10-29 2011-05-12 Nipro Corp Method and instrument for monitoring concentration of dialyzate
JP2013081662A (en) * 2011-10-11 2013-05-09 Nipro Corp Method of diagnosing dialysate preparation apparatus and dialysate preparation apparatus
JP2014097224A (en) * 2012-11-15 2014-05-29 Tatsunori Kato Dialysis unit and method for measuring access recirculation rate
WO2016125902A1 (en) * 2015-02-06 2016-08-11 旭化成メディカル株式会社 Treatment solution preparation device and blood processing system

Also Published As

Publication number Publication date
JP6892602B2 (en) 2021-06-23

Similar Documents

Publication Publication Date Title
EP2745863B9 (en) An apparatus for extracorporeal blood treatment
JP5548001B2 (en) Blood purification equipment
JP4254913B2 (en) Safety device for blood processing apparatus and method for enhancing safety of blood processing apparatus
CN107666919B (en) Device for extracorporeal blood treatment
JP6362267B2 (en) Device and method for detecting operating state of extracorporeal blood treatment
JP5423318B2 (en) Dialysate concentration monitoring device and operating method thereof
CN102458503B (en) Method and device for monitoring a fluid system of an extracorporeal blood treatment device
CN106659830B (en) Device for detecting the direction of flow of a fluid through a dialyzer
JP6830887B2 (en) How to calibrate the flow meter of a blood dialysis system
JP5889896B2 (en) Device and method for detecting the direction of fluid flow through a dialyzer
AU2010324153B2 (en) Method for regulating the supply of substituate during extracorporeal blood treatment and extracorporeal blood treatment device comprising a unit for regulating the supply of substituate
CN109475672A (en) The connecting test II of blood processing machine
CN104107467B (en) The method and apparatus of self-filtering are judged during blood treatment in vitro
EP3865160A1 (en) Apparatus for extracorporeal blood treatment
JP5803543B2 (en) Dialysis fluid preparation device diagnostic method and dialysis fluid preparation device
EP3374001B1 (en) Apparatus for extracorporeal blood treatment - ii
JP2018042624A (en) Blood purification device
JP6892602B2 (en) Component monitoring method in dialysate preparation system
EP1810703B1 (en) Dialysis machine with arterial pressure monitoring by measuring blood oxygen saturation and sodium concentration
JP2021062067A (en) Fluid replacement device of hemodialysis device
EP1776971A1 (en) Machine for dialysis with improved control of the state of advance of the haemodialysis treatment
US11992595B2 (en) Extracorporeal blood treatment apparatus and method for monitoring pressures in an extracorporeal blood treatment apparatus
US10751460B2 (en) Method of flushing a dialyzer
CN208823585U (en) The online Kt/V monitoring device of haemodialysis
EP2735325B1 (en) Extracorporeal blood treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210510

R150 Certificate of patent or registration of utility model

Ref document number: 6892602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150