JP2019033116A - Semiconductor optical integrated element - Google Patents

Semiconductor optical integrated element Download PDF

Info

Publication number
JP2019033116A
JP2019033116A JP2017151659A JP2017151659A JP2019033116A JP 2019033116 A JP2019033116 A JP 2019033116A JP 2017151659 A JP2017151659 A JP 2017151659A JP 2017151659 A JP2017151659 A JP 2017151659A JP 2019033116 A JP2019033116 A JP 2019033116A
Authority
JP
Japan
Prior art keywords
soa
dfb laser
modulator
semiconductor optical
control terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017151659A
Other languages
Japanese (ja)
Inventor
慈 金澤
Shigeru Kanazawa
慈 金澤
小林 亘
Wataru Kobayashi
亘 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017151659A priority Critical patent/JP2019033116A/en
Publication of JP2019033116A publication Critical patent/JP2019033116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

To suppress influence due to the leakage of a modulation signal of an EA converter.SOLUTION: In a semiconductor optical integrated element in which a DFB laser, an EA modulator, and an SOA are monolithic-integrated on the same substrate, the DFB laser, the EA modulator, and the SOA are integrated to an optical waveguide direction in this order. In the DFB laser and the SOA, a current in accordance with a ratio of a length of the optical waveguide direction of the DFB laser and the SOA is implanted from the same control terminal, and a bypass capacitor is connected to both a current supply path from the control terminal to the DFB laser and the current supply path from the control terminal to the SOA.SELECTED DRAWING: Figure 4

Description

本発明は、半導体光集積素子に関し、より詳細には、半導体レーザと変調器と増幅器とがモノリシックに一体化された半導体光集積素子に関する。   The present invention relates to a semiconductor optical integrated device, and more particularly to a semiconductor optical integrated device in which a semiconductor laser, a modulator, and an amplifier are monolithically integrated.

分布帰還型(DFB:Distributed FeedBack)レーザは、単一波長性に優れており、単一の基板上に電界吸収型(EA: Electroabsorption)変調器とモノリシックに一体化された半導体光集積素子が知られている。このような半導体光集積素子(EA−DFBレーザ)は、伝送距離40km以上の長距離伝送用の光送信モジュールとして用いられている。この光送信モジュールの信号光波長は、光ファイバの伝播損失が小さい1550nm帯が用いられるが、光ファイバに生じる波長分散の影響を受けにくい1300nm帯も用いられ、10Gb/s以上の高速光信号を伝送する。   Distributed feedback (DFB) lasers have excellent single wavelength characteristics, and semiconductor optical integrated devices that are monolithically integrated with an electroabsorption (EA) modulator on a single substrate are known. It has been. Such a semiconductor optical integrated device (EA-DFB laser) is used as an optical transmission module for long-distance transmission having a transmission distance of 40 km or more. As the signal light wavelength of this optical transmission module, the 1550 nm band where the propagation loss of the optical fiber is small is used, but the 1300 nm band which is not easily affected by the chromatic dispersion generated in the optical fiber is also used. To transmit.

EA−DFBレーザにおいて高出力を得るためには、EA変調器に印加するDCバイアスの絶対値は小さいほうがよい一方、長距離伝送が可能な光波形を得るためには、DCバイアスの絶対値は大きいほうがよいというトレードオフの関係がある。このトレードオフの関係を打ち消すために、非特許文献1では、EA変調器の出力端に半導体光増幅器(SOA:Semiconductor Optical Amplifier)をさらに集積することが開示されている。非特許文献1によれば、EA変調器の出力端に集積されたSOAに電流注入を行うことにより、EA変調器から出力された変調光のチャープ値が変換されて、長距離伝送を実現している。   In order to obtain a high output in the EA-DFB laser, the absolute value of the DC bias applied to the EA modulator should be small. On the other hand, in order to obtain an optical waveform capable of long-distance transmission, the absolute value of the DC bias is There is a trade-off relationship that a larger value is better. In order to cancel this trade-off relationship, Non-Patent Document 1 discloses that a semiconductor optical amplifier (SOA) is further integrated at the output end of the EA modulator. According to Non-Patent Document 1, the chirp value of the modulated light output from the EA modulator is converted by injecting current into the SOA integrated at the output terminal of the EA modulator, thereby realizing long-distance transmission. ing.

図1に、従来の半導体光集積素子の制御方法を示す。半導体光集積素子100は、光導波方向に対して順に、DFBレーザ101、EA変調器102、およびSOA103を備えており、これらの構成要素は、単一の半導体基板上に、一体的にモノシリック積層されている(例えば、特許文献1参照)。DFBレーザ101とSOA103とは、同一の制御端子104から注入される電流値IOPによって制御される。このとき、DFBレーザ101への注入電流をIDFBとし、SOA103への注入電流をISOAとすると、電流値IOPは、
OP=IDFB+ISOA
で与えられる。
FIG. 1 shows a conventional method for controlling a semiconductor optical integrated device. The semiconductor optical integrated device 100 includes a DFB laser 101, an EA modulator 102, and an SOA 103 in order with respect to the optical waveguide direction. These components are monolithically stacked on a single semiconductor substrate. (For example, refer to Patent Document 1). The DFB laser 101 and the SOA 103 are controlled by a current value I OP injected from the same control terminal 104. At this time, the current injected into the DFB laser 101 and I DFB, when the current injected into SOA103 and I SOA, the current value I OP is
I OP = I DFB + I SOA
Given in.

一般に、EA−DFBレーザを搭載した光送信モジュールで許容されるIOPの値は60〜80mAである。DFBレーザ101とSOA103の光導波方向の長さの比を調整することにより、所定の電流注入量IOPに対してIDFBとISOAの割合を調整することができる。 Generally, the value of I OP allowed in an optical transmission module equipped with an EA-DFB laser is 60 to 80 mA. By adjusting the ratio of the length of the DFB laser 101 and the SOA 103 in the optical waveguide direction, the ratio of I DFB and I SOA can be adjusted with respect to a predetermined current injection amount I OP .

特許第5823920号Patent No. 5823920

Toshio Watanabe, 外3名, “Chirp Control of an Optical Signal Using Phase Modulation in a Semiconductor Optical Amplifier”, Photonics Technology Letters, 1998年7月, vol.10, No.7, p.1027-1029.Toshio Watanabe, 3 others, “Chirp Control of an Optical Signal Using Phase Modulation in a Semiconductor Optical Amplifier”, Photonics Technology Letters, July 1998, vol.10, No.7, p.1027-1029.

しかしながら、同一の制御端子104からDFBレーザ101とSOA103に電流を注入するので、DFBレーザ101の電極とSOA103の電極とが短絡されることになる。このため、モノシリック積層されているDFBレーザ101とEA変調器102の間の分離抵抗、およびEA変調器102とSOA103との間の分離抵抗が、実効的に低下してしまい、EA変調器102に供給する変調信号が、DFBレーザ101とSOA103に漏洩するという問題があった。変調信号の漏洩は、EA変調器102の変調効率が劣化するとともに、DFBレーザ101とSOA103のそれぞれの出力光のパワーが変動してしまう。   However, since current is injected into the DFB laser 101 and the SOA 103 from the same control terminal 104, the electrode of the DFB laser 101 and the electrode of the SOA 103 are short-circuited. For this reason, the separation resistance between the monolithically stacked DFB laser 101 and the EA modulator 102 and the separation resistance between the EA modulator 102 and the SOA 103 are effectively reduced, and the EA modulator 102 is affected. There is a problem that the modulation signal to be supplied leaks to the DFB laser 101 and the SOA 103. The leakage of the modulation signal causes the modulation efficiency of the EA modulator 102 to deteriorate and the powers of the output lights of the DFB laser 101 and the SOA 103 to fluctuate.

本発明の目的は、EA変調器の変調信号の漏洩による影響を抑制することができる半導体光集積素子を提供することにある。   An object of the present invention is to provide a semiconductor optical integrated device capable of suppressing the influence of leakage of a modulation signal of an EA modulator.

本発明は、このような目的を達成するために、一実施態様は、DFBレーザと、EA変調器と、SOAとが同一の基板上にモノリシック集積された半導体光集積素子であって、光導波方向に対して、前記DFBレーザ、前記EA変調器、前記SOAの順に集積され、前記DFBレーザおよび前記SOAは、同一の制御端子から、前記DFBレーザと前記SOAの光導波方向についての長さの比に応じた電流が注入され、前記制御端子から前記DFBレーザに至る電流供給経路と、前記制御端子から前記SOAに至る電流供給経路のそれぞれにバイパスコンデンサが接続されていることを特徴とする。   In order to achieve such an object, the present invention provides a semiconductor optical integrated device in which a DFB laser, an EA modulator, and an SOA are monolithically integrated on the same substrate. The DFB laser, the EA modulator, and the SOA are integrated in this order with respect to the direction, and the DFB laser and the SOA have a length in the optical waveguide direction of the DFB laser and the SOA from the same control terminal. A current according to the ratio is injected, and a bypass capacitor is connected to each of a current supply path from the control terminal to the DFB laser and a current supply path from the control terminal to the SOA.

本発明によれば、EA変調器に供給された変調信号の漏洩を、バイパスコンデンサによってバイパスすることにより、その影響を抑制することができる。   According to the present invention, the influence of the modulation signal supplied to the EA modulator can be suppressed by bypassing the leakage with the bypass capacitor.

従来の半導体光集積素子の制御方法を説明するための図である。It is a figure for demonstrating the control method of the conventional semiconductor optical integrated element. 本発明の一実施形態にかかる半導体光集積素子を示す断面図である。It is sectional drawing which shows the semiconductor optical integrated element concerning one Embodiment of this invention. 半導体光集積素子に電源を供給する方法を示す図である。It is a figure which shows the method of supplying a power supply to a semiconductor optical integrated element. 本発明の第1の実施形態にかかる半導体光集積素子への電源供給方法を示す図である。It is a figure which shows the power supply method to the semiconductor optical integrated device concerning the 1st Embodiment of this invention. 本発明の第2の実施形態にかかる半導体光集積素子への電源供給方法を示す図である。It is a figure which shows the power supply method to the semiconductor optical integrated device concerning the 2nd Embodiment of this invention.

以下、図面を参照しながら本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2に、本発明の一実施形態にかかる半導体光集積素子を示す。半導体光集積素子200は、光導波方向に対して順に、DFBレーザ201、EA変調器202、およびSOA203がモノリシックに集積されており、これらの構成要素は、n−InP基板211上のn−InPクラッド層212の上に形成されている。   FIG. 2 shows a semiconductor optical integrated device according to an embodiment of the present invention. In the semiconductor optical integrated device 200, the DFB laser 201, the EA modulator 202, and the SOA 203 are monolithically integrated in order with respect to the optical waveguide direction, and these components are n-InP on the n-InP substrate 211. It is formed on the cladding layer 212.

DFBレーザ201は、クラッド層212の上に活性層213と、回折格子215が形成されたガイド層214とを備え、DFBレーザ部の中心部分には、発振波長の単一モードを実現するために、回折格子を四分の一波長だけ位相シフトした四分の一波長位相シフト216が設けられている。   The DFB laser 201 includes an active layer 213 and a guide layer 214 in which a diffraction grating 215 is formed on a clad layer 212. In order to realize a single mode of an oscillation wavelength in the central portion of the DFB laser portion. A quarter-wave phase shift 216 is provided by phase shifting the diffraction grating by a quarter wavelength.

EA変調器202は、クラッド層212の上に吸収層217を備え、SOA203は、クラッド層212の上に活性層218およびガイド層219を備える。SOA203の活性層およびガイド層は、DFBレーザ201の活性層およびガイド層と同じ層構造とすることもできる。   The EA modulator 202 includes an absorption layer 217 on the cladding layer 212, and the SOA 203 includes an active layer 218 and a guide layer 219 on the cladding layer 212. The active layer and the guide layer of the SOA 203 may have the same layer structure as the active layer and the guide layer of the DFB laser 201.

これらの構成要素の上には、さらにp−InPクラッド層220が形成され、その上にDFBレーザ電極221、EA変調器電極222、SOA電極223のそれぞれが形成されている。また、基板211に下面には、n電極224が形成されている。   A p-InP cladding layer 220 is further formed on these components, and a DFB laser electrode 221, an EA modulator electrode 222, and an SOA electrode 223 are formed thereon. An n-electrode 224 is formed on the lower surface of the substrate 211.

このような構成により、同一の電流源231からDFBレーザ201とSOA203に電流IOPが供給される。ここで、DFBレーザ201とSOA203の光導波方向の長さの比(DFBレーザ電極221とSOA電極223の光導波方向の長さの比に同じ)が調整されており、同一の制御端子から供給される電流IOPが、DFBレーザ201への電流IDFBと、SOA203への電流ISOAとして分流されて供給される。 With such a configuration, the current I OP is supplied from the same current source 231 to the DFB laser 201 and the SOA 203. Here, the ratio of the length of the DFB laser 201 and the SOA 203 in the optical waveguide direction (the same as the ratio of the length of the DFB laser electrode 221 and the SOA electrode 223 in the optical waveguide direction) is adjusted and supplied from the same control terminal. The current I OP is divided and supplied as a current I DFB to the DFB laser 201 and a current I SOA to the SOA 203.

EA変調器203には、バイアスTを介して、直流電圧源233からのバイアス電圧Vbiasに、高周波(RF)信号源232からのRF信号電圧VRFが重畳されて、EA変調器電極222に印加される。 The RF signal voltage V RF from the radio frequency (RF) signal source 232 is superimposed on the bias voltage V bias from the DC voltage source 233 via the bias T, and the EA modulator 203 is superimposed on the EA modulator electrode 222. Applied.

図3に、半導体光集積素子に電源を供給する方法を示す。従来、図3(a)に示したように、半導体光集積素子200が実装された光送信モジュールには、高周波配線基板301が配置されている。高周波配線基板301には、DFBレーザ電極221とSOA電極223に電流を供給する配線302と、EA変調器電極222に電圧を供給する高周波配線303とが形成され、半導体光集積素子200の各々の電極と配線との間を、ボンディング・ワイヤで接続している。   FIG. 3 shows a method for supplying power to the semiconductor optical integrated device. Conventionally, as shown in FIG. 3A, a high-frequency wiring board 301 is disposed in an optical transmission module on which a semiconductor optical integrated device 200 is mounted. The high frequency wiring substrate 301 is formed with a wiring 302 for supplying current to the DFB laser electrode 221 and the SOA electrode 223 and a high frequency wiring 303 for supplying voltage to the EA modulator electrode 222. The electrode and the wiring are connected by a bonding wire.

図3(b)は、このような構成にかかる等価回路である。モノシリック積層されているDFBレーザ201とEA変調器202の間には分離抵抗R1が存在し、EA変調器202とSOA203との間には分離抵抗R2が存在する。DFBレーザ電極221とSOA電極223とが短絡されると、分離抵抗R1,R2が実効的に低下し、EA変調器202に供給する変調信号が、分離抵抗R1,R2を介してDFBレーザ201とSOA203に漏洩する。   FIG. 3B is an equivalent circuit according to such a configuration. A separation resistor R1 exists between the monolithically stacked DFB laser 201 and the EA modulator 202, and a separation resistor R2 exists between the EA modulator 202 and the SOA 203. When the DFB laser electrode 221 and the SOA electrode 223 are short-circuited, the separation resistors R1 and R2 are effectively reduced, and the modulation signal supplied to the EA modulator 202 is connected to the DFB laser 201 via the separation resistors R1 and R2. It leaks into the SOA 203.

図4に、本発明の第1の実施形態にかかる半導体光集積素子への電源供給方法を示す。EA変調器202に供給する変調信号の漏洩を、バイパスコンデンサC1,C2で阻止す。図4(a)に示したように、高周波配線基板401上の配線402とDFBレーザ電極221との間にコンデンサC1、配線402とSOA電極223との間にコンデンサC2を実装する。すなわち、図4(b)に示したように、同一の制御端子AからDFBレーザ電極221に至る経路と、制御端子AからSOA電極223に至る経路のそれぞれにコンデンサを接続する。   FIG. 4 shows a method of supplying power to the semiconductor optical integrated device according to the first embodiment of the present invention. Leakage of the modulation signal supplied to the EA modulator 202 is blocked by the bypass capacitors C1 and C2. As shown in FIG. 4A, a capacitor C1 is mounted between the wiring 402 on the high-frequency wiring board 401 and the DFB laser electrode 221, and a capacitor C2 is mounted between the wiring 402 and the SOA electrode 223. That is, as shown in FIG. 4B, a capacitor is connected to each of a path from the same control terminal A to the DFB laser electrode 221 and a path from the control terminal A to the SOA electrode 223.

EA変調器202の変調速度を10Gb/s以上(5GHz以上)とすると、DFBレーザ201の抵抗分は5Ω程度となる。そこで、コンデンサC1,C2として、5GHz以上で0.5Ω以下の抵抗分となるように数十pF以上の容量を挿入する。このような構成により、EA変調器202に供給された変調信号のうち、分離抵抗R1,R2を介して漏洩した信号は、コンデンサC1,C2によりバイパスされるので、変調信号の漏洩による影響を抑制することができる。   When the modulation speed of the EA modulator 202 is 10 Gb / s or higher (5 GHz or higher), the resistance of the DFB laser 201 is about 5Ω. Therefore, capacitors of several tens of pF or more are inserted as capacitors C1 and C2 so as to have a resistance of 0.5 GHz or less at 5 GHz or more. With such a configuration, of the modulation signal supplied to the EA modulator 202, the signal leaked through the separation resistors R1 and R2 is bypassed by the capacitors C1 and C2, so that the influence due to the leakage of the modulation signal is suppressed. can do.

図5に、本発明の第2の実施形態にかかる半導体光集積素子への電源供給方法を示す。第1の実施形態は、例えば、高周波配線基板401上にチップコンデンサを実装する形態を示したが、第2の実施形態では、半導体光集積素子500に、コンデンサC11,C12を内挿する。例えば、DFBレーザ201とSOA203のそれぞれに隣接する領域に、図2に示した半導体光集積素子200のクラッド層220上の電極と、基板211の下面の電極とを設け、高誘電率の誘電体材料等を挟持することにより、コンデンサを形成することができる。   FIG. 5 shows a method of supplying power to the semiconductor optical integrated device according to the second embodiment of the present invention. In the first embodiment, for example, a chip capacitor is mounted on the high-frequency wiring board 401. In the second embodiment, capacitors C11 and C12 are inserted into the semiconductor optical integrated device 500. For example, in the regions adjacent to the DFB laser 201 and the SOA 203, an electrode on the cladding layer 220 of the semiconductor optical integrated device 200 shown in FIG. A capacitor can be formed by sandwiching a material or the like.

101,201 DFBレーザ
102,202 EA変調器
103,203 SOA
200,500 半導体光集積素子
211 基板
212,220 クラッド層
213,218 活性層
214,219 ガイド層
215 回折格子
216 四分の一波長位相シフト
217 吸収層
221 DFBレーザ電極
222 EA変調器電極
223 SOA電極
231 電流源
232 RF信号源
233 直流電圧源
301,401 高周波配線基板
302,402 配線
303,403 高周波配線
101, 201 DFB laser 102, 202 EA modulator 103, 203 SOA
200,500 Semiconductor optical integrated device 211 Substrate 212,220 Clad layer 213,218 Active layer 214,219 Guide layer 215 Diffraction grating 216 Quarter wavelength phase shift 217 Absorbing layer 221 DFB laser electrode 222 EA modulator electrode 223 SOA electrode 231 Current source 232 RF signal source 233 DC voltage source 301, 401 High frequency wiring board 302, 402 Wiring 303, 403 High frequency wiring

Claims (2)

DFBレーザと、EA変調器と、SOAとが同一の基板上にモノリシック集積された半導体光集積素子であって、
光導波方向に対して、前記DFBレーザ、前記EA変調器、前記SOAの順に集積され、前記DFBレーザおよび前記SOAは、同一の制御端子から、前記DFBレーザと前記SOAの光導波方向についての長さの比に応じた電流が注入され、
前記制御端子から前記DFBレーザに至る電流供給経路と、前記制御端子から前記SOAに至る電流供給経路のそれぞれにバイパスコンデンサが接続されていることを特徴とする半導体光集積素子。
A semiconductor optical integrated device in which a DFB laser, an EA modulator, and an SOA are monolithically integrated on the same substrate,
The DFB laser, the EA modulator, and the SOA are integrated in this order with respect to the optical waveguide direction. The DFB laser and the SOA are long from the same control terminal in the optical waveguide direction of the DFB laser and the SOA. A current according to the ratio is injected,
A semiconductor optical integrated device, wherein a bypass capacitor is connected to each of a current supply path from the control terminal to the DFB laser and a current supply path from the control terminal to the SOA.
前記バイパスコンデンサは、前記基板上の前記DFBレーザに隣接する領域と、前記SOAに隣接する領域とに形成されていることを特徴とする請求項1に記載の半導体光集積素子。   2. The semiconductor optical integrated device according to claim 1, wherein the bypass capacitor is formed in a region adjacent to the DFB laser on the substrate and a region adjacent to the SOA.
JP2017151659A 2017-08-04 2017-08-04 Semiconductor optical integrated element Pending JP2019033116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017151659A JP2019033116A (en) 2017-08-04 2017-08-04 Semiconductor optical integrated element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151659A JP2019033116A (en) 2017-08-04 2017-08-04 Semiconductor optical integrated element

Publications (1)

Publication Number Publication Date
JP2019033116A true JP2019033116A (en) 2019-02-28

Family

ID=65523632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151659A Pending JP2019033116A (en) 2017-08-04 2017-08-04 Semiconductor optical integrated element

Country Status (1)

Country Link
JP (1) JP2019033116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153518A1 (en) * 2022-02-14 2023-08-17 日本電信電話株式会社 Optical transmitter
JP7466773B1 (en) 2022-12-23 2024-04-12 三菱電機株式会社 Optical Modules

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103687A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Semiconductor laser element
JPH06120530A (en) * 1992-10-02 1994-04-28 Sumitomo Electric Ind Ltd Mounting system of semiconductor optical amplifier
JP2002329937A (en) * 2001-05-07 2002-11-15 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2003229636A (en) * 2002-02-06 2003-08-15 Hitachi Ltd Semiconductor laser element and semiconductor laser device
JP2004296539A (en) * 2003-03-25 2004-10-21 Sumitomo Electric Ind Ltd Semiconductor laser element and semiconductor optical integrated element
US20050006654A1 (en) * 2003-07-08 2005-01-13 Byung-Kwon Kang Semiconductor monolithic integrated optical transmitter
JP2007286454A (en) * 2006-04-19 2007-11-01 Opnext Japan Inc Substrate mounted with optical semiconductor device, and optical transmission module
JP2013258336A (en) * 2012-06-13 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical integrated element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103687A (en) * 1983-11-11 1985-06-07 Hitachi Ltd Semiconductor laser element
JPH06120530A (en) * 1992-10-02 1994-04-28 Sumitomo Electric Ind Ltd Mounting system of semiconductor optical amplifier
JP2002329937A (en) * 2001-05-07 2002-11-15 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2003229636A (en) * 2002-02-06 2003-08-15 Hitachi Ltd Semiconductor laser element and semiconductor laser device
JP2004296539A (en) * 2003-03-25 2004-10-21 Sumitomo Electric Ind Ltd Semiconductor laser element and semiconductor optical integrated element
US20050006654A1 (en) * 2003-07-08 2005-01-13 Byung-Kwon Kang Semiconductor monolithic integrated optical transmitter
JP2007286454A (en) * 2006-04-19 2007-11-01 Opnext Japan Inc Substrate mounted with optical semiconductor device, and optical transmission module
JP2013258336A (en) * 2012-06-13 2013-12-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor optical integrated element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153518A1 (en) * 2022-02-14 2023-08-17 日本電信電話株式会社 Optical transmitter
JP7466773B1 (en) 2022-12-23 2024-04-12 三菱電機株式会社 Optical Modules
WO2024134864A1 (en) * 2022-12-23 2024-06-27 三菱電機株式会社 Optical module

Similar Documents

Publication Publication Date Title
US7174058B2 (en) Traveling-wave optoelectronic wavelength converter
EP1596246B1 (en) Semiconductor optical modulator and method of modulating light
JP5267105B2 (en) Optical module, method for manufacturing the same, and optical transmitter
JP6425631B2 (en) Semiconductor laser and optical integrated light source having the same
JP4421951B2 (en) Optical transmission module
JP2019033116A (en) Semiconductor optical integrated element
JP6454256B2 (en) Wavelength multiplexed optical transmitter
JP2015167174A (en) Wavelength variable light source and wavelength variable light source module
JP2018060974A (en) Semiconductor optical integrated element
JP6320192B2 (en) Wavelength variable light source and wavelength variable light source module
JP2022506323A (en) Externally reflected return light resistant laser
JP6817912B2 (en) Semiconductor optical integrated device
JPWO2019156189A1 (en) Optical integrated elements and optical modules
JP2016149529A (en) Wavelength-tunable light source and wavelength-tunable light source module
US7656914B1 (en) Directly-modulated diode lasers with reduced overshoot
JP6037952B2 (en) Semiconductor optical integrated device, optical transmission module, and optical transmission integrated module
JP6761390B2 (en) Semiconductor optical integrated device
JP6761391B2 (en) Semiconductor optical integrated device
JP2012222352A (en) Beat signal generating device for use in terahertz system, terahertz system and use of beat signal generating device
JP2013251424A (en) Optical integrated device
JP2019040950A (en) Semiconductor optical integrated element
JP6381507B2 (en) Optical coupler, wavelength tunable light source and wavelength tunable light source module
JP2018060975A (en) Direct modulation laser
EP4033618A1 (en) Mach zehnder-modulated lasers
WO2020166530A1 (en) High-output direct modulation laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201124