JP2019031705A - Evaporation source device and its control method - Google Patents

Evaporation source device and its control method Download PDF

Info

Publication number
JP2019031705A
JP2019031705A JP2017152488A JP2017152488A JP2019031705A JP 2019031705 A JP2019031705 A JP 2019031705A JP 2017152488 A JP2017152488 A JP 2017152488A JP 2017152488 A JP2017152488 A JP 2017152488A JP 2019031705 A JP2019031705 A JP 2019031705A
Authority
JP
Japan
Prior art keywords
heating
container
vapor deposition
deposition material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017152488A
Other languages
Japanese (ja)
Other versions
JP6436544B1 (en
Inventor
喜成 近藤
Yoshinari Kondo
喜成 近藤
良秋 風間
Yoshiaki Kazama
良秋 風間
将大 山崎
Masahiro Yamazaki
将大 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2017152488A priority Critical patent/JP6436544B1/en
Priority to KR1020180074487A priority patent/KR102057783B1/en
Priority to CN201810887800.8A priority patent/CN109385605B/en
Application granted granted Critical
Publication of JP6436544B1 publication Critical patent/JP6436544B1/en
Publication of JP2019031705A publication Critical patent/JP2019031705A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

To provide an evaporation source device enabling excellent vapor deposition by suppressing bumping generation.SOLUTION: There is provided an evaporation source device including a container for storing a vapor deposition material, heating means for heating the container, and control means for controlling heating by the heating means. In the evaporation source device, the control means can perform first heating control in which a temperature of a lower part of the vapor deposition material stored in the container is higher than a temperature of an upper part of the vapor deposition material stored in the container, and second heating control in which the temperature of the upper part of the vapor deposition material stored in the container is higher than the temperature of the lower part of the vapor deposition material stored in the container.SELECTED DRAWING: Figure 4

Description

本発明は、蒸発源装置およびその制御方法に関する。   The present invention relates to an evaporation source device and a control method thereof.

近年、ディスプレイの一種として、有機材料の電界発光を用いた有機EL素子を備えた有機EL装置が注目を集めている。かかる有機ELディスプレイ等の有機電子デバイス製造において、蒸発源装置を用いて、基板上に有機材料や金属電極材料などの蒸着材料を蒸着させて成膜を行う工程がある。   In recent years, an organic EL device provided with an organic EL element using electroluminescence of an organic material has attracted attention as a kind of display. In manufacturing an organic electronic device such as an organic EL display, there is a step of forming a film by evaporating an evaporation material such as an organic material or a metal electrode material on a substrate using an evaporation source device.

蒸着工程で用いられる蒸発源装置は、蒸着材料が収容される容器としての機能と、蒸着材料の温度を上昇させて蒸発させ、基板の表面に付着させるための加熱機能を有する。従来、加熱機能を向上させて良好な成膜を行うために、蒸着材料を均一に加熱できるような蒸発源装置が提案されている。   The evaporation source device used in the vapor deposition process has a function as a container for accommodating the vapor deposition material, and a heating function for increasing the temperature of the vapor deposition material to evaporate it and adhere it to the surface of the substrate. Conventionally, in order to improve the heating function and perform good film formation, an evaporation source device that can uniformly heat the vapor deposition material has been proposed.

特許文献1(特開平4−348022号公報)では、蒸着材料の容器(るつぼ)の底部を底上げしておき、容器の開口部と、底上げした部分に加熱用ヒータを設けることにより、蒸着材料を一様に加熱するとともに、蒸発した材料が該開口部に液滴として付着することを防いでいる。   In Patent Document 1 (Japanese Patent Application Laid-Open No. 4-348022), the bottom of a vapor deposition material container (crucible) is raised, and a heater for heating is provided at the opening of the container and the raised portion. While heating uniformly, it is preventing that the evaporated material adheres to this opening as a droplet.

特開平4−348022号公報Japanese Patent Laid-Open No. 4-348022

しかし従来、蒸発源装置が蒸着材料を加熱して温度を高める段階において、突沸が発生し、溶融した蒸着材料が噴出して飛び散ることがあった。   However, hitherto, when the evaporation source device heated the vapor deposition material to raise the temperature, bumping occurred, and the molten vapor deposition material was ejected and scattered.

本発明は上記課題に鑑みてなされたものである。本発明の目的は、突沸の発生を抑えて良好な蒸着が可能な蒸発源装置を提供することである。   The present invention has been made in view of the above problems. An object of the present invention is to provide an evaporation source device capable of suppressing the occurrence of bumping and performing good vapor deposition.

上記目的のため、本発明は以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記制御手段は、前記容器に収容される前記蒸着材料の下部の温度が前記容器に収容される前記蒸着材料の上部の温度よりも高い第一の加熱制御と、前記容器に収容される前記蒸着材料の上部の温度が前記容器に収容される前記蒸着材料の下部の温度よりも高い第二の加熱制御とを行うことができることを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域と、前記上部領域と前記下部領域との間に位置する中部領域とを有し、
前記制御手段は、前記中部領域の温度が前記下部領域の温度よりも低くなるように、前記加熱手段による加熱を制御することを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料と、前記蒸着材料が収容された容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域と、前記上部領域と前記下部領域との間に位置する中部領域とを有し、
前記蒸着材料は、当該蒸着材料の上面の位置が、前記容器の高さ方向において前記中部領域に含まれるように、前記容器に収容されており、
前記制御手段は、前記中部領域の温度が前記下部領域の温度よりも低くなるように、前記加熱手段による加熱を制御することを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の同一側面の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域とを有し、
前記制御手段は、前記下部領域の温度が前記上部領域の温度よりも高くなるような第一の加熱制御と、前記上部領域の温度が前記下部領域の温度よりも高くなるような第二の加熱制御とを行うことを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記加熱手段は、第1の加熱源、第2の加熱源、および、第1の保温材を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第1の保温材は、前記容器の底部に対向する位置に配置されることを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記加熱手段は、第1の加熱源、第2の加熱源、および、第3の加熱源を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第3の加熱源は、前記容器の底部に対向する位置に配置される
ことを特徴とする蒸発源装置である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段とを備える蒸発源装置の制御方法であって、
前記容器に収容される前記蒸着材料の下部の温度が、前記容器に収容される前記蒸着材料の上部の温度よりも高くなるように前記加熱手段を制御する第一の加熱ステップと、
前記容器に収容される前記蒸着材料の上部の温度が、前記容器に収容される前記蒸着材料の下部の温度よりも高くなるように前記加熱手段を制御する第二の加熱ステップとを有することを特徴とする蒸発源装置の制御方法である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段とを備える蒸発源装置の制御方法であって、
前記蒸着材料が蒸発するときに通過する開口を含む上部領域と前記容器の底部を含む下部領域との間に位置する中部領域の温度が、前記下部領域の温度より低くなるように前記加熱手段を制御する第一の加熱ステップと、
前記下部領域の温度が、前記中部領域の温度より低くなるように前記加熱手段を制御する第二の加熱ステップとを有することを特徴とする蒸発源装置の制御方法である。
本発明はまた、以下の構成を採用する。すなわち、
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置と、
前記蒸発源装置が配置され、前記蒸着材料の蒸着が行われる真空チャンバと、を備え、
前記制御手段は、前記蒸着材料の蒸着を行う前に、前記容器に収容される前記蒸着材料の下部の温度が前記容器に収容される前記蒸着材料の上部の温度よりも高くなるように第一の加熱制御を行い、
前記制御手段は、前記蒸着材料の蒸着を行うときに、前記容器に収容される前記蒸着材料の上部の温度が前記容器に収容される前記蒸着材料の下部の温度よりも高くなるように第二の加熱制御を行うことを特徴とする蒸着装置である。
For the above purpose, the present invention adopts the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The control means includes a first heating control in which a lower temperature of the vapor deposition material accommodated in the container is higher than an upper temperature of the vapor deposition material accommodated in the container, and the vapor deposition accommodated in the container. The evaporation source device is characterized in that the second heating control in which the temperature of the upper part of the material is higher than the temperature of the lower part of the vapor deposition material accommodated in the container can be performed.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the container, an upper region including an opening through which the vapor deposition material evaporates, a lower region including a bottom of the container, and between the upper region and the lower region. A middle region located,
The said control means is an evaporation source apparatus characterized by controlling the heating by the said heating means so that the temperature of the said center area | region becomes lower than the temperature of the said lower area | region.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a deposition material; a container in which the deposition material is stored; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the container, an upper region including an opening through which the vapor deposition material evaporates, a lower region including a bottom of the container, and between the upper region and the lower region. A middle region located,
The vapor deposition material is accommodated in the container so that the position of the upper surface of the vapor deposition material is included in the middle region in the height direction of the container,
The said control means is an evaporation source apparatus characterized by controlling the heating by the said heating means so that the temperature of the said center area | region becomes lower than the temperature of the said lower area | region.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the same side surface of the container, an upper region including an opening that passes when the vapor deposition material evaporates, and a lower region including a bottom of the container,
The control means includes first heating control such that the temperature of the lower region is higher than the temperature of the upper region, and second heating such that the temperature of the upper region is higher than the temperature of the lower region. It is an evaporation source device characterized by performing control.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The heating means includes a first heating source, a second heating source, and a first heat insulating material,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The first heat insulating material is an evaporation source device, which is disposed at a position facing the bottom of the container.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The heating means has a first heating source, a second heating source, and a third heating source,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The third heating source is an evaporation source device, which is disposed at a position facing the bottom of the container.
The present invention also employs the following configuration. That is,
A method for controlling an evaporation source device comprising a container in which a deposition material is accommodated and a heating means for heating the container,
A first heating step of controlling the heating means such that a temperature of the lower part of the vapor deposition material accommodated in the container is higher than a temperature of the upper part of the vapor deposition material accommodated in the container;
A second heating step of controlling the heating means so that the temperature of the upper part of the vapor deposition material accommodated in the container is higher than the temperature of the lower part of the vapor deposition material accommodated in the container. It is the control method of the evaporation source device characterized.
The present invention also employs the following configuration. That is,
A method for controlling an evaporation source device comprising a container in which a deposition material is accommodated and a heating means for heating the container,
The heating means is arranged so that the temperature of the middle region located between the upper region including the opening through which the vapor deposition material evaporates and the lower region including the bottom of the container is lower than the temperature of the lower region. A first heating step to control;
And a second heating step for controlling the heating means so that the temperature of the lower region is lower than the temperature of the middle region.
The present invention also employs the following configuration. That is,
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit for heating the container; and a control unit for controlling heating by the heating unit;
A vacuum chamber in which the evaporation source device is disposed and the evaporation material is deposited;
The control means is configured so that, before vapor deposition of the vapor deposition material, the temperature of the lower portion of the vapor deposition material accommodated in the container is higher than the temperature of the upper portion of the vapor deposition material accommodated in the container. Control the heating of
When the vapor deposition of the vapor deposition material is performed, the control means is configured so that the temperature of the upper part of the vapor deposition material accommodated in the container is higher than the temperature of the lower part of the vapor deposition material accommodated in the container. It is the vapor deposition apparatus characterized by performing heating control of.

本発明によれば、突沸の発生を抑えて良好な蒸着が可能な蒸発源装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, generation | occurrence | production of bumping boiling can be suppressed and the evaporation source apparatus which can perform favorable vapor deposition can be provided.

有機電子デバイスの製造装置の構成の一部を示す断面図Sectional drawing which shows a part of structure of the manufacturing apparatus of an organic electronic device 蒸着材料の突沸について説明する図Diagram explaining bumping of vapor deposition material 実施形態1にかかる蒸発源装置の構成を示す図The figure which shows the structure of the evaporation source apparatus concerning Embodiment 1. 実施形態1にかかる温度等の推移を示すグラフThe graph which shows transition, such as temperature concerning Embodiment 1. 実施形態1の構成による制御の流れを示す図The figure which shows the flow of control by the structure of Embodiment 1. 実施形態2・3にかかる蒸発源装置の構成を示す図The figure which shows the structure of the evaporation source apparatus concerning Embodiment 2 * 3. 有機EL表示装置の構造を示す図The figure which shows the structure of an organic electroluminescence display

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲をそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples are merely illustrative of preferred configurations of the present invention, and the scope of the present invention is not limited to these configurations. In the following description, the hardware configuration and software configuration of the apparatus, processing flow, manufacturing conditions, dimensions, materials, shapes, and the like limit the scope of the present invention only to those unless otherwise specified. It is not intended.

本発明は、蒸発源装置およびその制御方法に関し、特に、蒸着により被蒸着体に薄膜を形成するための蒸発源装置およびその制御方法に好適である。本発明はまた、制御方法をコンピュータに実行させるプログラムや、当該プログラムを格納した記憶媒体としても捉えられる。記憶媒体は、コンピュータにより読み取り可能な非一時的な記憶媒体であってもよい。本発明は、例えば、被蒸着体である基板の表面に真空蒸着により所望のパターンの薄膜(材料層)を形成する装置に好ましく適用できる。基板の材料としては、ガラス、樹脂、金属などの任意の材料を選択できる。なお、蒸発源装置の被蒸着体は、平板状の基板に限られない。例えば、凹凸や開口のある機械部品を被蒸着体としてもよい。また、蒸着材料としても、有機材料、無機材料(金属、金属酸化物など)などの任意の材料を選択できる。また、有機膜だけではなく金属膜を成膜することも可能である。本発明の技術は、具体的には、有機電子デバイス(例えば、有機EL表示装置、薄膜太陽電池)、光学部材などの製造装置に適用可能である。   The present invention relates to an evaporation source device and a control method therefor, and is particularly suitable for an evaporation source device and a control method therefor for forming a thin film on a deposition target by vapor deposition. The present invention can also be understood as a program for causing a computer to execute the control method and a storage medium storing the program. The storage medium may be a non-transitory storage medium readable by a computer. The present invention can be preferably applied to, for example, an apparatus for forming a thin film (material layer) having a desired pattern by vacuum deposition on the surface of a substrate that is a deposition target. As a material for the substrate, any material such as glass, resin and metal can be selected. In addition, the to-be-deposited body of an evaporation source apparatus is not restricted to a flat substrate. For example, a mechanical component having unevenness or an opening may be used as the deposition target. Further, as a vapor deposition material, any material such as an organic material and an inorganic material (metal, metal oxide, etc.) can be selected. Further, not only an organic film but also a metal film can be formed. Specifically, the technology of the present invention can be applied to manufacturing apparatuses such as organic electronic devices (for example, organic EL display devices, thin film solar cells), optical members, and the like.

<実施形態1>
<蒸発源装置の概略構成>
図1は、蒸着装置(成膜装置)の構成を模式的に示す断面図である。成膜装置は、真空チャンバ200を有する。真空チャンバ200の内部は、真空雰囲気か、窒素ガスなどの不活性ガス雰囲気に維持されている。真空チャンバ200の内部には、概略、基板保持ユニット(不図示)によって保持された被蒸着体である基板10と、マスク220と、蒸発
源装置240が設けられる。基板保持ユニットは、基板10を載置するための受け爪などの支持具や、基板を押圧保持するためのクランプなどの押圧具によって基板を保持する。
<Embodiment 1>
<Schematic configuration of the evaporation source device>
FIG. 1 is a cross-sectional view schematically showing the configuration of a vapor deposition apparatus (film formation apparatus). The film forming apparatus has a vacuum chamber 200. The inside of the vacuum chamber 200 is maintained in a vacuum atmosphere or an inert gas atmosphere such as nitrogen gas. Inside the vacuum chamber 200, a substrate 10 that is a deposition target generally held by a substrate holding unit (not shown), a mask 220, and an evaporation source device 240 are provided. The substrate holding unit holds the substrate by a support such as a receiving claw for placing the substrate 10 or a pressing tool such as a clamp for pressing and holding the substrate.

基板10は、搬送ロボット(不図示)により真空チャンバ200内に搬送されたのち、基板保持ユニットによって保持され、成膜時には水平面(XY平面)と平行となるよう固定される。マスク220は、基板10上に形成する所定パターンの薄膜パターンに対応する開口パターンをもつマスクであり、例えばメタルマスクである。成膜時にはマスク220の上に基板10が載置される。   The substrate 10 is transferred into the vacuum chamber 200 by a transfer robot (not shown), held by a substrate holding unit, and fixed so as to be parallel to a horizontal plane (XY plane) during film formation. The mask 220 is a mask having an opening pattern corresponding to a predetermined thin film pattern formed on the substrate 10, for example, a metal mask. The substrate 10 is placed on the mask 220 during film formation.

真空チャンバ内には、その他、基板10の温度上昇を抑制する冷却板(不図示)を備えていてもよい。また、真空チャンバの上には、基板10のアライメントのための機構、例えばX方向またはY方向のアクチュエータや、基板保持のためのクランプ機構用アクチュエータなどの駆動手段や、基板10を撮像するカメラ(いずれも不図示)を備えていてもよい。   In addition, a cooling plate (not shown) that suppresses the temperature rise of the substrate 10 may be provided in the vacuum chamber. Further, on the vacuum chamber, a mechanism for alignment of the substrate 10, for example, a driving means such as an actuator in the X direction or the Y direction, an actuator for a clamp mechanism for holding the substrate, or a camera for imaging the substrate 10 ( Any of them may be provided).

蒸発源装置240は概略、内部に蒸着材料242を収容可能な容器244と、加熱を行うためのヒータ246と、加熱効率を高めるための保温材であるリフレクタ248とを備える。図1ではヒータ246は容器上部と下部に、リフレクタ248は容器上部と底部に設けられているが、後述するように、これ以外の配置も可能である。その他に、蒸発源装置240の構成要素全体を格納できる筐体、シャッタ、膜厚モニタなどを備えていてよい(いずれも不図示)。また、成膜を一様に行うために蒸発源装置240を移動させる、蒸発源駆動機構250を備えてもよい。これらの各構成要素については、後ほど詳しく述べる。なお、図1における蒸発源装置240の各構成要素の形状、位置関係、サイズ比は例示にすぎない。なお、後述する制御部270については、本明細書では蒸発源装置の一部として捉えているが、蒸発源装置とは別のものとして捉えてもよい。   The evaporation source device 240 generally includes a container 244 that can accommodate the vapor deposition material 242 therein, a heater 246 for performing heating, and a reflector 248 that is a heat insulating material for increasing heating efficiency. In FIG. 1, the heater 246 is provided at the top and bottom of the container, and the reflector 248 is provided at the top and bottom of the container, but other arrangements are possible as will be described later. In addition, a housing, a shutter, a film thickness monitor, and the like that can store all the components of the evaporation source device 240 may be provided (all not shown). Further, an evaporation source driving mechanism 250 that moves the evaporation source device 240 may be provided in order to perform film formation uniformly. Each of these components will be described in detail later. In addition, the shape, positional relationship, and size ratio of each component of the evaporation source device 240 in FIG. 1 are merely examples. Note that a control unit 270 described later is regarded as a part of the evaporation source device in the present specification, but may be regarded as a separate device from the evaporation source device.

容器244の材質としては、例えばセラミック、金属、カーボン材料などが知られているが、これに限定されず、蒸着材料242の物性やヒータ246による加熱温度との関係で好ましいものを用いる。ヒータ246としては、例えばシースヒータや金属ワイヤ線などの抵抗加熱式のヒータが知られているが、これに限定されず、蒸着材料242を蒸発させる加熱性能があればよい。後述するように、容器244の複数の部位を個別に温度制御しながら加熱できるものであれば、種類は問わない。またヒータの形状についても、図1のようなワイヤ状のほか、プレート状、メッシュ状など任意の形状を採用できる。リフレクタ248は熱効率を高める保温材(断熱材)であり、例えば金属等を利用できるが、これに限定されない。   As the material of the container 244, for example, ceramic, metal, carbon material, and the like are known, but the material is not limited thereto, and a preferable material is used in relation to the physical properties of the vapor deposition material 242 and the heating temperature by the heater 246. As the heater 246, for example, a resistance heating type heater such as a sheath heater or a metal wire is known, but is not limited to this, and any heating performance that evaporates the vapor deposition material 242 may be used. As will be described later, the type of the container 244 is not limited as long as it can be heated while individually controlling a plurality of portions of the container 244. In addition to the wire shape as shown in FIG. 1, any shape such as a plate shape or a mesh shape can be adopted as the shape of the heater. The reflector 248 is a heat insulating material (heat insulating material) that enhances the thermal efficiency. For example, a metal or the like can be used, but it is not limited thereto.

成膜装置は制御部270を有する。制御部270は、蒸発源装置240の制御、例えば加熱の開始や終了のタイミング制御、温度制御、シャッタを設ける場合はその開閉タイミング制御、蒸発源駆動機構を設ける場合はその移動制御などを行う。なお、複数の制御手段を組み合わせて制御部270を構成してもよい。複数の制御手段とは例えば、加熱制御手段、シャッタ制御手段、蒸発源駆動制御手段などである。また、ヒータ246を部位ごとに制御可能とした場合、それぞれの部位ごとに加熱制御手段を設けてもよい。加熱制御については、後ほど別項を設けて詳述する。制御部270は、基板10の搬送およびアライメント制御手段など、蒸発源装置240以外の機構の制御手段を兼ねていてもよい。   The film forming apparatus includes a control unit 270. The control unit 270 performs control of the evaporation source device 240, for example, heating start and end timing control, temperature control, opening / closing timing control when a shutter is provided, movement control when an evaporation source drive mechanism is provided. The control unit 270 may be configured by combining a plurality of control means. Examples of the plurality of control means include a heating control means, a shutter control means, and an evaporation source drive control means. In addition, when the heater 246 can be controlled for each part, a heating control unit may be provided for each part. The heating control will be described in detail later by providing another item. The control unit 270 may also serve as a control unit for a mechanism other than the evaporation source device 240, such as a transport and alignment control unit for the substrate 10.

制御部270は、例えば、プロセッサ、メモリ、ストレージ、I/O、UIなどを有するコンピュータにより構成可能である。この場合、制御部270の機能は、メモリ又はストレージに記憶されたプログラムをプロセッサが実行することにより実現される。コンピュータとしては、汎用のコンピュータを用いてもよいし、組込型のコンピュータ又はPLC(programmable logic controller)を用いてもよい。
あるいは、制御部270の機能の一部又は全部をASICやFPGAのような回路で構成してもよい。なお、成膜装置ごとに制御部270が設けられていてもよいし、1つの制御部270が複数の成膜装置を制御してもよい。
The control unit 270 can be configured by a computer having a processor, memory, storage, I / O, UI, and the like, for example. In this case, the function of the control unit 270 is realized by the processor executing a program stored in the memory or storage. As the computer, a general-purpose computer may be used, or a built-in computer or a PLC (programmable logic controller) may be used.
Alternatively, some or all of the functions of the control unit 270 may be configured by a circuit such as an ASIC or FPGA. Note that a control unit 270 may be provided for each film forming apparatus, or one control unit 270 may control a plurality of film forming apparatuses.

容器内部に蒸着材料242が収容され、基板10のマスク220への載置やアライメントなどの準備が完了すると、制御部270の制御によってヒータ246が動作を開始し、蒸着材料242が加熱される。温度が十分に高まると、蒸着材料242が蒸発して基板10の表面に付着し、薄膜を形成する。複数の容器に別種の蒸着材料を収容しておくことで共蒸着も可能である。形成された膜を膜厚モニタ(不図示)等で測定しながら制御を行うことで、基板上に所望の厚さを持った膜が形成される。一様な厚さで成膜するために、例えば、基板10を回転させたり、蒸発源駆動機構により蒸発源装置を移動させたりしながら蒸着を行ってもよい。また、基板の大きさによっては、複数の蒸発源を並行して加熱することも好ましい。容器244の形状は任意である。また、蒸発源の種類も、点状の蒸発源、線状の蒸発源、面状の蒸発源のいずれでも構わない。   When the vapor deposition material 242 is accommodated in the container and preparations such as placement of the substrate 10 on the mask 220 and alignment are completed, the heater 246 starts operating under the control of the control unit 270, and the vapor deposition material 242 is heated. When the temperature rises sufficiently, the vapor deposition material 242 evaporates and adheres to the surface of the substrate 10 to form a thin film. Co-evaporation is also possible by storing different types of vapor deposition materials in a plurality of containers. By controlling the formed film while measuring it with a film thickness monitor (not shown) or the like, a film having a desired thickness is formed on the substrate. In order to form a film with a uniform thickness, for example, vapor deposition may be performed while rotating the substrate 10 or moving the evaporation source device by an evaporation source driving mechanism. Further, depending on the size of the substrate, it is also preferable to heat a plurality of evaporation sources in parallel. The shape of the container 244 is arbitrary. The type of the evaporation source may be any of a point-like evaporation source, a linear evaporation source, and a planar evaporation source.

後述するように、ある種類の蒸着材料が成膜された基板上に別種の蒸着材料を成膜することで、複層構造を形成できる。その場合、容器内の蒸着材料を交換したり、容器自体を別種の蒸着材料が格納されたものに交換したりしてもよい。また、真空チャンバ内に複数の蒸発源装置を設けて交換しながら用いてもよいし、基板10を現在の成膜装置から搬出し、別種の蒸着材料が収納された蒸発源装置を備える他の成膜装置に搬入してもよい。   As will be described later, a multilayer structure can be formed by depositing another type of vapor deposition material on a substrate on which a certain type of vapor deposition material is deposited. In that case, the vapor deposition material in the container may be exchanged, or the container itself may be exchanged for one in which another kind of vapor deposition material is stored. In addition, a plurality of evaporation source devices may be provided and replaced in the vacuum chamber, or the substrate 10 may be carried out from the current film formation device and provided with an evaporation source device in which another type of vapor deposition material is stored. You may carry in to the film-forming apparatus.

<蒸着材料の突沸の原因>
図2(a)〜図2(d)は、突沸の原因を説明するための図であり、従来の蒸着方式における加熱開始以降の容器244の内部の様子を順次示したものである。
<Cause of bumping of vapor deposition material>
FIG. 2A to FIG. 2D are diagrams for explaining the cause of bumping, and sequentially show the inside of the container 244 after the start of heating in the conventional vapor deposition method.

まず図2(a)において、ヒータ246によって蒸着材料242の加熱が開始される。このとき蒸着材料は、全体が固体の状態(242a)である。加熱が進行すると、図2(b)に示すように、蒸着材料の下部が固体の状態(242a)であるのに対して、蒸着材料の上部が溶融して液体の状態(242b)になる。   First, in FIG. 2A, heating of the vapor deposition material 242 is started by the heater 246. At this time, the vapor deposition material is in a solid state (242a) as a whole. When the heating proceeds, as shown in FIG. 2B, the lower part of the vapor deposition material is in a solid state (242a), whereas the upper part of the vapor deposition material is melted into a liquid state (242b).

ここで、蒸着材料によっては、加熱による温度の上昇に伴って、図2(c)に示すように蒸着材料から不純物であるガス成分252が放出される場合がある。このガス離脱現象は「デガス(degasification)」とも呼ばれ、蒸着材料242から抜け出たガス成分252は上部に抜け出ていく。しかし、デガスによるガス成分252が抜け切る前に、図2(b)のように上部の蒸着材料が溶融して液体の状態(242b)になっていると、上部に抜け出そうとするガス成分252に対して蓋をしてしまう。   Here, depending on the vapor deposition material, the gas component 252 which is an impurity may be released from the vapor deposition material as shown in FIG. This gas detachment phenomenon is also called “degasification”, and the gas component 252 that has escaped from the vapor deposition material 242 escapes upward. However, before the gas component 252 due to the degas is completely removed, if the upper vapor deposition material is melted and in a liquid state (242b) as shown in FIG. The lid will be covered.

加熱によるガス成分252の離脱が進行すると、液体の状態の蒸着材料(242b)の下でガス圧が高まる。さらにこのガス圧が高まると、図2(d)に示すように、行き場の無くなったガス成分252が噴出して蒸着材料が飛散してしまう。この現象が出願人らの検討により明らかになった突沸の原因であり、良好な成膜を妨げる要因となる。   When the separation of the gas component 252 by heating proceeds, the gas pressure increases under the vapor deposition material (242b) in a liquid state. When this gas pressure further increases, as shown in FIG. 2D, the gas component 252 that has gone out of place is ejected and the vapor deposition material is scattered. This phenomenon is a cause of bumping that has been clarified by the applicant's examination, and hinders good film formation.

出願人が鋭意検討した結果、上記の蒸着材料が突沸を起こす原因を追求し、更に下記に記載した蒸発源装置の構成および制御方法を着想するに至った。本発明により、蒸着材料の突沸を抑制する蒸発源装置および蒸発源装置の制御方法を提供する。   As a result of intensive studies by the applicant, the inventors have pursued the cause of bumping of the above-mentioned vapor deposition material, and have come up with the configuration and control method of the evaporation source apparatus described below. According to the present invention, an evaporation source device that suppresses bumping of an evaporation material and a method for controlling the evaporation source device are provided.

<蒸発源装置の詳細構成>
図3(a)は、本実施形態の蒸発源装置240の構成を説明するために、蒸発源装置240のうち、蒸着材料の収容および加熱に関連する構成要素を示した概略断面図である。図3(b)は、容器244の各部位を指し示す用語について説明する図である。本実施形
態においては、ヒータ246は、容器の上部領域244aに対向する位置に配置される上部ヒータ246aと、容器の下部領域244bに対向する位置に配置される下部ヒータ246bを含んでいる。なお、「対向する位置」という文言は厳格に捉える必要はなく、多少の高さ方向の位置ずれがあったとしても、加熱対象位置の温度に影響を与えられれば構わない。
<Detailed configuration of evaporation source device>
FIG. 3A is a schematic cross-sectional view showing components related to accommodation and heating of the vapor deposition material in the evaporation source device 240 in order to describe the configuration of the evaporation source device 240 of the present embodiment. FIG. 3B is a diagram for describing terms indicating each part of the container 244. In the present embodiment, the heater 246 includes an upper heater 246a disposed at a position facing the upper region 244a of the container and a lower heater 246b disposed at a position facing the lower region 244b of the container. Note that the term “opposing position” does not need to be strictly grasped, and even if there is a slight displacement in the height direction, the temperature of the heating target position may be affected.

制御部270は、上部ヒータ246aと下部ヒータ246bを、それぞれ独立して制御可能である。制御内容としては、加熱の開始/終了や温度変更などがある。また、リフレクタ248は、容器の上部領域244aに対応する上部リフレクタ248aと、容器の底部244dに対向する底部リフレクタ248bとを含んでいる。なお、底部リフレクタ248bは、容器の底部244dの下側にしか存在できないわけではなく、その一部が容器の底部244dの上側に延伸していてもよい。底部リフレクタ248bは、要するに、下部ヒータ246bが容器内の蒸着材料の下部を加熱するために配置される。   The control unit 270 can independently control the upper heater 246a and the lower heater 246b. Control contents include start / end of heating and temperature change. The reflector 248 also includes an upper reflector 248a corresponding to the container upper region 244a and a bottom reflector 248b opposite the container bottom 244d. Note that the bottom reflector 248b can be present only below the bottom 244d of the container, and a part thereof may extend above the bottom 244d of the container. In short, the bottom reflector 248b is arranged for the lower heater 246b to heat the lower part of the vapor deposition material in the container.

図3(b)を参照して、本明細書中の用語について説明する。容器244のうち、少なくとも上面を含む領域のことを容器の「上部領域244a」と呼ぶ。上部領域244aは、蒸着材料242が蒸発するときに通過する開口を含む。上部領域同様に、容器のうち少なくとも底面を含む領域のことを「下部領域244b」と呼ぶ。上部領域と下部領域のそれぞれが容器の高さの中で占める割合は必ずしも特定の範囲に限定されるものではなく、蒸発源装置ごとに異なっていてもよい。上述のように、容器上面を含んでいれば上部領域と言える。また該上部領域に対応する位置に設けられ、該上部領域を加熱可能なヒータは上部ヒータと言える。また、容器底面を含んでいれば下部領域と言える。また該下部領域に対応する位置に設けられ、該下部領域を加熱可能なヒータは下部ヒータと言える。   With reference to FIG.3 (b), the term in this specification is demonstrated. A region including at least the upper surface of the container 244 is referred to as an “upper region 244a” of the container. The upper region 244a includes an opening through which the vapor deposition material 242 evaporates. Similar to the upper region, a region including at least the bottom surface of the container is referred to as a “lower region 244b”. The proportion of the upper region and the lower region in the height of the container is not necessarily limited to a specific range, and may be different for each evaporation source device. As described above, it can be said to be an upper region if it includes the upper surface of the container. A heater provided at a position corresponding to the upper region and capable of heating the upper region can be said to be an upper heater. Moreover, it can be said that it is a lower area | region, if the container bottom face is included. A heater provided at a position corresponding to the lower region and capable of heating the lower region can be said to be a lower heater.

また、容器の高さ方向を、上部領域と下部領域のいずれかに分類しなければならないわけではなく、両者の間に「中部領域244c」を設定してもよい。また、容器の底面のことを、下部領域244bとは別に「底部244d」と呼ぶ場合もある。なお、容器244が、当該容器の上面から突出したノズル状の部位を備える場合のように、高さ方向において複数の側面が存在する場合がある。その場合、上部領域は、少なくとも容器の上面を含む領域のことを指す。また、下部領域は、当該上部領域と同一側面(同一の上面と底面を有する側面)に設定される。   In addition, the height direction of the container does not have to be classified into either the upper region or the lower region, and the “middle region 244c” may be set between them. Further, the bottom surface of the container may be referred to as a “bottom portion 244d” separately from the lower region 244b. Note that there may be a plurality of side surfaces in the height direction as in the case where the container 244 includes a nozzle-like portion protruding from the upper surface of the container. In that case, the upper region refers to a region including at least the upper surface of the container. The lower region is set to the same side surface (side surface having the same upper surface and bottom surface) as the upper region.

蒸着材料および/または容器の加熱に用いられるヒータ246とリフレクタ248のことを、「加熱手段」とも呼ぶ。加熱手段のうち、ヒータは加熱源であり、リフレクタは保温材と呼べる。また、加熱のタイミングや温度にも用いられる制御部270のことを、蒸発源装置の加熱に関する「制御手段」とも呼ぶ。ただし制御部270とは別に、加熱に関する制御手段として機能する温度制御ユニットを設けても構わない。上部ヒータ246a、下部ヒータ246b、底部ヒータ246c、上部リフレクタ248a、底部リフレクタ248bは、それぞれ本発明の第1の加熱源、第2の加熱源、第3の加熱源、第2の保温材、第1の保温材に相当する。   The heater 246 and the reflector 248 used for heating the vapor deposition material and / or the container are also referred to as “heating means”. Of the heating means, the heater is a heating source, and the reflector can be called a heat insulating material. Further, the control unit 270 that is also used for the timing and temperature of heating is also referred to as “control means” related to heating of the evaporation source device. However, a temperature control unit that functions as a control unit related to heating may be provided separately from the control unit 270. The upper heater 246a, the lower heater 246b, the bottom heater 246c, the upper reflector 248a, and the bottom reflector 248b are respectively a first heating source, a second heating source, a third heating source, a second heat insulating material, It corresponds to 1 heat insulating material.

また、加熱手段や制御手段を、容器の高さ方向での位置に応じて分類することもできる。例えば、上部ヒータ246aおよび上部リフレクタ248aを、容器の上部領域244aの加熱、または、蒸着材料242の上部の加熱に関連する第一の加熱手段として定義できる。同様に、下部ヒータ246bおよび底部リフレクタ248bを、容器の下部領域244bの加熱、または、蒸着材料242の下部の加熱に関連する第二の加熱手段として定義できる。また、後述する実施形態のように蒸発源装置240が上部リフレクタ248aを含まない場合、上部ヒータ246aのみをもって第一の加熱手段としてもよい。また、蒸発源装置240が底部ヒータ246cを含む場合、該底部ヒータ246cを第二の加熱手段に含めてもよい。また、蒸発源装置240が底部リフレクタ248bを含まない場合
、下部ヒータ246bのみ、または、下部ヒータ246bおよび底部ヒータ246cをもって第二の加熱手段としてもよい。また、制御部270を、第一の加熱手段に対応する第一の制御手段と、第二の加熱手段に対応する第二の加熱手段に分類してもよい。
Moreover, a heating means and a control means can also be classified according to the position in the height direction of a container. For example, the upper heater 246a and the upper reflector 248a can be defined as the first heating means associated with heating the upper region 244a of the container or heating the top of the deposition material 242. Similarly, the lower heater 246b and the bottom reflector 248b can be defined as a second heating means associated with heating the lower region 244b of the container or heating the lower portion of the deposition material 242. Further, when the evaporation source device 240 does not include the upper reflector 248a as in an embodiment described later, only the upper heater 246a may be used as the first heating unit. When the evaporation source device 240 includes the bottom heater 246c, the bottom heater 246c may be included in the second heating unit. Further, when the evaporation source device 240 does not include the bottom reflector 248b, only the lower heater 246b or the lower heater 246b and the bottom heater 246c may be used as the second heating means. The control unit 270 may be classified into a first control unit corresponding to the first heating unit and a second heating unit corresponding to the second heating unit.

制御部270は加熱手段の種類に応じた方法で上部ヒータ246aと下部ヒータ246bそれぞれを制御する。例えば抵抗加熱式ヒータを用いる場合は発熱線への通電を制御する。より具体的には、抵抗加熱式ヒータの電流密度を高くしたり低くしたりすることで、温度を高くしたり低くしたりする。制御部270は、ユーザがコンピュータのUI等を介して入力した入力値や、装置構成および蒸着材料に関する条件(例えば、ヒータの性能、容器の形状や材質、リフレクタの配置や特性、その他成膜装置の特性、蒸着材料の種類、容器内に収容される蒸着材料の量)などに応じて制御条件を決定する。温度センサ(不図示)を設置しておき、その検出値を制御に用いることも好ましい。また、蒸着材料や装置構成に応じた好ましい制御条件を、予めメモリにテーブルや数式の形式で格納しておき、制御部270に参照させることも好ましい。   The controller 270 controls each of the upper heater 246a and the lower heater 246b by a method according to the type of the heating means. For example, when a resistance heater is used, energization to the heating wire is controlled. More specifically, the temperature is increased or decreased by increasing or decreasing the current density of the resistance heater. The control unit 270 is configured to input values input by the user via a computer UI or the like, conditions regarding the apparatus configuration and vapor deposition material (for example, heater performance, container shape and material, reflector arrangement and characteristics, and other film forming apparatuses. The control conditions are determined in accordance with the characteristics, the type of vapor deposition material, the amount of vapor deposition material accommodated in the container, and the like. It is also preferable to install a temperature sensor (not shown) and use the detected value for control. It is also preferable to store preferable control conditions in accordance with the vapor deposition material and the apparatus configuration in advance in the form of a table or a mathematical expression in the memory and to refer to the control unit 270.

<加熱制御>
図4は、図3(a)に示した蒸発源装置240を用いた加熱制御について説明するグラフであり、(1)蒸着材料の上部の温度、(2)蒸着材料の下部の温度、(3)容器の上部領域の温度、(4)容器の下部領域の温度、(5)蒸着材料の蒸発レート、(6)デガスにより発生するガスの圧力、の推移を示している。図4の横軸は時間の経過を示す。縦軸は、(1)〜(4)に関しては温度を、(5)に関しては単位時間当たりの蒸発量を、(6)に関しては圧力を、それぞれ表す。
<Heating control>
FIG. 4 is a graph for explaining heating control using the evaporation source device 240 shown in FIG. 3A. (1) Temperature of the upper part of the vapor deposition material, (2) Temperature of the lower part of the vapor deposition material, (3 The graph shows changes in the temperature of the upper region of the container, (4) the temperature of the lower region of the container, (5) the evaporation rate of the vapor deposition material, and (6) the pressure of the gas generated by degassing. The horizontal axis in FIG. 4 shows the passage of time. The vertical axis represents temperature for (1) to (4), evaporation per unit time for (5), and pressure for (6).

蒸着材料を加熱する期間をフェーズ1、蒸着材料が蒸発を始めて以降の期間であり、被蒸着体への蒸着段階をフェーズ2とする。本発明の構成および制御方法は、制御部270が、フェーズ1の期間では、材料の下部が材料の上部よりも高温になるような第一の加熱制御を行う点に特徴がある。加熱手段が抵抗加熱式ヒータの場合、下部ヒータ(第2の加熱源)の電力密度が、第1の加熱源(上部ヒータ)の電力密度よりも高くすることで、第一の加熱制御を実現できる。   The period during which the vapor deposition material is heated is Phase 1, the period after the vapor deposition material starts to evaporate, and the vapor deposition stage on the deposition target is Phase 2. The configuration and control method of the present invention is characterized in that the control unit 270 performs the first heating control so that the lower part of the material becomes higher in temperature than the upper part of the material during the phase 1 period. When the heating means is a resistance heater, the first heating control is realized by making the power density of the lower heater (second heating source) higher than the power density of the first heating source (upper heater). it can.

本発明の構成または制御方法のより好ましい特徴は、フェーズ2の期間では、材料の上部が材料の下部よりも高温になるような第二の加熱制御を行う点である。フェーズ2における第二の加熱制御は、容器の上部領域を容器の下部領域よりも高温にする制御、と言い換えることもできる。また、容器の上部領域の温度を、少なくとも開口部への材料堆積を抑制できる程度に高くできれば、フェーズ2(第二の加熱制御)においてある程度の効果が得られる。加熱手段が抵抗加熱式ヒータの場合、第1の加熱源(上部ヒータ)の電力密度が、第2の加熱源(下部ヒータ)の電力密度よりも高くすることで、第二の加熱制御を実現できる。   A more preferable feature of the configuration or the control method of the present invention is that the second heating control is performed so that the upper part of the material becomes higher than the lower part of the material in the phase 2 period. The second heating control in the phase 2 can be rephrased as a control in which the upper region of the container is set to a higher temperature than the lower region of the container. In addition, if the temperature of the upper region of the container can be increased to a level that can suppress at least material deposition on the opening, a certain degree of effect can be obtained in phase 2 (second heating control). When the heating means is a resistance heater, the second heating control is realized by making the power density of the first heating source (upper heater) higher than the power density of the second heating source (lower heater). it can.

なお、上記では材料の加熱段階のことをフェーズ1と呼んだが、蒸発が少しでも始まったら直ちにフェーズ1の制御を終了しなければならないわけではない。例えば、蒸発レートが所定のレベルを超えるまでの間は、フェーズ1の制御を行っていてもよい。あるいは、突沸が発生しない程度にデガスが進行したら、フェーズ2に切り替えてもよい。また、フェーズ移行期間において、上部と下部の温度を同程度にしてもよい。図4では、蒸発レートが上昇したのち安定的な蒸着が始まるタイミング(t2)以降をフェーズ2としているが、このタイミングは厳密なものではない。   In the above description, the heating stage of the material is referred to as phase 1, but the control of phase 1 does not have to be terminated as soon as evaporation starts even a little. For example, phase 1 control may be performed until the evaporation rate exceeds a predetermined level. Alternatively, the phase 2 may be switched when the degas progresses to such an extent that bumping does not occur. Further, the upper and lower temperatures may be set to the same level during the phase transition period. In FIG. 4, the timing after the timing (t2) at which stable vapor deposition starts after the evaporation rate increases is set as phase 2, but this timing is not strict.

まず、図4のタイミングt0において加熱が開始されたときの蒸発源装置240の様子を図5(a)に示す。このとき制御部270は、固体状態の蒸着材料242aの下部の温度が、上部の温度よりも高くなるように、上部ヒータ246aの温度と下部ヒータ246
bの温度を制御する。例えば、容器の高さ方向において、個体状態の蒸着材料242aの収容量と、上部/下部ヒータの位置関係が図5(a)のような場合、容器の下部領域244bに対応する下部ヒータ246bの温度を、容器の上部領域244aに対応する上部ヒータ246aの温度よりも高くする。
First, FIG. 5A shows the state of the evaporation source device 240 when heating is started at the timing t0 in FIG. At this time, the control unit 270 determines the temperature of the upper heater 246a and the lower heater 246 so that the temperature of the lower part of the vapor deposition material 242a in the solid state is higher than the temperature of the upper part.
Control the temperature of b. For example, in the height direction of the container, when the accommodation amount of the vapor deposition material 242a in the solid state and the positional relationship between the upper / lower heaters are as shown in FIG. 5A, the lower heater 246b corresponding to the lower region 244b of the container The temperature is made higher than the temperature of the upper heater 246a corresponding to the upper region 244a of the container.

本実施形態のフェーズ1においては、底部リフレクタ248bが存在することにより、容器の下部領域244bの温度を効率的に上昇させることができ、ひいては蒸着材料の下部の温度を高めることができる。なお、容器の中部領域244cに対応する部位にはリフレクタを設けていない。かかる構成により中部領域244cから熱を逃がすことが可能になり、蒸着材料の上部の温度が過度に上昇することを抑制できる。   In the phase 1 of the present embodiment, the presence of the bottom reflector 248b makes it possible to efficiently increase the temperature of the lower region 244b of the container, and thus increase the temperature of the lower portion of the vapor deposition material. In addition, the reflector is not provided in the site | part corresponding to the middle area | region 244c of a container. With this configuration, heat can be released from the middle region 244c, and the temperature of the upper portion of the vapor deposition material can be prevented from rising excessively.

このようなフェーズ1の加熱制御によれば、蒸着材料において比較的高温な下部の側から、比較的低温な上部に向かって順にデガスが起こる。そのため、図4のタイミングt1においてガス圧力が増大した場合でも、図5(b)に示すように、蒸着材料の上部は固体のため、ガス成分252が蒸着材料の間を通ることが可能になり、スムーズに容器外へ離脱する。したがって、ガスが抜けきる前に蒸着材料の上部が溶融してフタになることが無いので、突沸は起こらない。   According to such phase 1 heating control, degassing occurs sequentially from the relatively high temperature lower portion of the vapor deposition material toward the relatively low temperature upper portion. Therefore, even when the gas pressure increases at the timing t1 in FIG. 4, the upper part of the vapor deposition material is solid as shown in FIG. 5B, so that the gas component 252 can pass between the vapor deposition materials. , Get out of the container smoothly. Therefore, since the upper part of the vapor deposition material does not melt and become a lid before the gas is completely discharged, bumping does not occur.

デガスの完了後さらに温度が上昇すると、徐々に蒸着材料が溶融していき、やがて図5(c)に示すように液体の状態242bになる。制御部270は、突沸が発生しない程度までガス離脱が進んだら、容器の上部領域244aの温度が、下部領域244bの温度よりも高くなるように、上部ヒータ246aの温度と下部ヒータ246bの温度を制御する。例えば、フェーズ1とは逆に、容器の下部領域244bに対応する下部ヒータ246bの温度を、容器の上部領域244aに対応する上部ヒータ246aの温度よりも低くする。その結果、図4においては、タイミングt2以降のフェーズ2において、容器上部が容器下部よりも高温になっている。また、それに伴い、材料上部が材料下部より高温になっている。   When the temperature further rises after the degas is completed, the vapor deposition material gradually melts and eventually becomes a liquid state 242b as shown in FIG. 5C. The controller 270 sets the temperature of the upper heater 246a and the temperature of the lower heater 246b so that the temperature of the upper region 244a of the container becomes higher than the temperature of the lower region 244b after the gas separation has progressed to such an extent that bumping does not occur. Control. For example, contrary to Phase 1, the temperature of the lower heater 246b corresponding to the lower region 244b of the container is made lower than the temperature of the upper heater 246a corresponding to the upper region 244a of the container. As a result, in FIG. 4, in the phase 2 after the timing t2, the upper part of the container is hotter than the lower part of the container. Along with this, the upper part of the material is at a higher temperature than the lower part of the material.

本実施形態のフェーズ2においては、上部リフレクタ248aが存在することにより、容器の上部領域244aの温度を効率的に上昇させることができ、ひいては材料堆積を効果的に抑制できる。   In phase 2 of the present embodiment, the presence of the upper reflector 248a makes it possible to efficiently increase the temperature of the upper region 244a of the container, thereby effectively suppressing material deposition.

このようなフェーズ2の加熱制御によれば、容器の上部領域が高温に加熱されるため、蒸発した蒸着材料が容器の開口部で凝縮して堆積することがないので、安定した蒸着が可能になる。   According to such phase 2 heating control, since the upper region of the container is heated to a high temperature, the evaporated evaporation material does not condense and accumulate at the opening of the container, thus enabling stable evaporation. Become.

以上のように、本実施形態の蒸発源装置の構成および制御方法によれば、加熱時には蒸着材料の下部が上部よりも高温になるため、ガスがスムーズに離脱し、突沸を防止することができる。その結果、蒸着の際に突沸を起こさずに良好な成膜が可能になる。さらにフェーズ2のような、より好ましい制御方法によれば、蒸着時に容器の上部領域を高温にすることにより、凝縮を効果的に防いで材料堆積を防ぐことができる。   As described above, according to the configuration and the control method of the evaporation source device of the present embodiment, the lower part of the vapor deposition material becomes higher than the upper part at the time of heating, so that the gas can be released smoothly and bumping can be prevented. . As a result, good film formation is possible without causing bumping during vapor deposition. Furthermore, according to a more preferable control method such as Phase 2, by condensing the upper region of the container at a high temperature during vapor deposition, it is possible to effectively prevent condensation and prevent material deposition.

なお、蒸発が進行するに連れて容器中の蒸着材料242の量は減少していく。そのため、容器の高さ方向における、上部/下部ヒータの位置と、蒸着材料の上面の位置の関係も徐々に変化する。したがって、本発明の制御の効果を大きくするためには、初期状態(タイミングt0)における蒸着材料242の上面の位置や、蒸発が始まって以降の蒸着材料242の上面の位置を考慮して、上部/下部ヒータの加熱制御を行うことが好ましい。例えば初期状態で、蒸着材料242の量が多く、容器の高さ方向において、蒸着材料242の上面が上部ヒータ246aに対応する位置(容器の上部領域)にある場合、上部ヒータの温度を高くしすぎることは好ましくない。一方、初期状態では、容器の高さ方向におい
て、蒸着材料242の上面が中部領域に対応する位置にある場合、中部領域からは熱が外部に逃げやすいため、フェーズ1の制御が好適に行われる。
As the evaporation proceeds, the amount of the vapor deposition material 242 in the container decreases. Therefore, the relationship between the position of the upper / lower heater and the position of the upper surface of the vapor deposition material in the height direction of the container also gradually changes. Therefore, in order to increase the effect of the control of the present invention, the upper surface position of the vapor deposition material 242 in the initial state (timing t0) and the position of the upper surface of the vapor deposition material 242 after evaporation starts are considered. / It is preferable to control the heating of the lower heater. For example, in the initial state, when the amount of the vapor deposition material 242 is large and the upper surface of the vapor deposition material 242 is in a position corresponding to the upper heater 246a (the upper region of the container) in the height direction of the container, the temperature of the upper heater is increased. Too much is not preferable. On the other hand, in the initial state, when the upper surface of the vapor deposition material 242 is in a position corresponding to the middle region in the height direction of the container, heat easily escapes from the middle region, so that the phase 1 control is suitably performed. .

<実施形態2>
本発明の実施形態2を、図面を参照しつつ説明する。実施形態1と共通する構成については同じ符号を付し、説明を簡略化する。図6(a)は、本実施形態の蒸発源装置のうち、材料の加熱に関連する構成要素を示した概略断面図である。ヒータ246は、容器の上部領域244aに対応する上部ヒータ246aと、容器の下部領域244bに対応する下部ヒータ246bを含んでおり、それぞれ独自に制御可能である。また、リフレクタ248は、容器の底面に対応する底部リフレクタ248bを含んでいる。一方、本実施形態の蒸発源装置は、上部リフレクタ248aを含んでいない。
<Embodiment 2>
A second embodiment of the present invention will be described with reference to the drawings. The components common to the first embodiment are denoted by the same reference numerals, and the description is simplified. FIG. 6A is a schematic cross-sectional view showing components related to heating of the material in the evaporation source apparatus of the present embodiment. The heater 246 includes an upper heater 246a corresponding to the upper region 244a of the container and a lower heater 246b corresponding to the lower region 244b of the container, and can be controlled independently. The reflector 248 also includes a bottom reflector 248b corresponding to the bottom surface of the container. On the other hand, the evaporation source apparatus of the present embodiment does not include the upper reflector 248a.

このような構成によっても、実施形態1で説明したような、蒸着材料の加熱段階(フェーズ1)において材料の下部を材料の上部よりも高温にする制御は可能である。また、蒸着材料が蒸着する段階(フェーズ2)においても、材料の上部を材料の下部よりも高温にする制御(または、容器の上部領域を容器の下部領域よりも高温にする制御、あるいは、容器の上部領域を、開口部への材料堆積を抑制できる程度の温度にする制御)は可能である。本実施形態の加熱手段が抵抗加熱式ヒータである場合、実施形態1と同様に、フェーズ1では下部ヒータ246bの電力密度を上部ヒータ246aより高くし、フェーズ2では上部ヒータ246aの電力密度を下部ヒータ246bより高くするとよい。   Even with such a configuration, it is possible to control the lower part of the material to be higher in temperature than the upper part of the material in the heating step (phase 1) of the vapor deposition material as described in the first embodiment. Further, also in the stage of vapor deposition of the deposition material (phase 2), the control of making the upper part of the material higher than the lower part of the material (or the control of making the upper region of the container higher than the lower region of the container, or the container It is possible to control the upper region of the substrate so that the material deposition on the opening can be suppressed. When the heating means of this embodiment is a resistance heater, the power density of the lower heater 246b is made higher than that of the upper heater 246a in phase 1, and the power density of the upper heater 246a is set lower in phase 2 as in the first embodiment. It may be higher than the heater 246b.

なお、本実施形態では上部リフレクタ248aを設けていないため、フェーズ1において、材料の上部の温度が、実施形態1の場合と比べて上昇しにくい。そのため、突沸抑制の効果を比較的得やすい。一方、フェーズ2においては、開口部への材料堆積を防止するために、上部ヒータ246aの加熱制御を効率的に行う必要がある。   In the present embodiment, since the upper reflector 248a is not provided, the temperature of the upper portion of the material is less likely to increase in the phase 1 than in the case of the first embodiment. Therefore, it is relatively easy to obtain the effect of suppressing bumping. On the other hand, in phase 2, it is necessary to efficiently control the heating of the upper heater 246a in order to prevent material deposition in the opening.

以上のように、本実施形態の蒸発源装置の構成および制御方法によっても、突沸を起こさずに良好な成膜が可能になる。また、より好ましい制御方法によれば、蒸着時の材料堆積防止という効果が得られる。   As described above, even with the configuration and control method of the evaporation source apparatus of the present embodiment, it is possible to form a good film without causing bumping. Further, according to a more preferable control method, an effect of preventing material deposition during vapor deposition can be obtained.

<実施形態3>
本発明の実施形態3を、図面を参照しつつ説明する。実施形態1・2と共通する構成については同じ符号を付し、説明を簡略化する。図6(b)は、本実施形態の蒸発源装置のうち、材料の加熱に関連する構成要素を示した概略断面図である。ヒータ246は、容器の上部領域244aに対応する上部ヒータ246aと、容器の下部領域244bに対応する下部ヒータ246bに加え、容器の底面に対応する底部ヒータ246cを含んでいる。上部ヒータ246a、下部ヒータ246b、底部ヒータ246cは、制御部270によってそれぞれ独立して制御可能である。なお、図6(b)ではリフレクタ248は設けていない。ただし、本実施形態の特徴は底部ヒータ246cを設けた点にあるので、図6(b)の構成に加えて上部リフレクタ248aおよび底部リフレクタ248bの少なくとも一方を設けてもよい。
<Embodiment 3>
Embodiment 3 of the present invention will be described with reference to the drawings. Constituent elements common to the first and second embodiments are denoted by the same reference numerals, and description thereof is simplified. FIG.6 (b) is the schematic sectional drawing which showed the component relevant to the heating of material among the evaporation source apparatuses of this embodiment. The heater 246 includes an upper heater 246a corresponding to the upper region 244a of the container and a lower heater 246b corresponding to the lower region 244b of the container, and a bottom heater 246c corresponding to the bottom surface of the container. The upper heater 246a, the lower heater 246b, and the bottom heater 246c can be independently controlled by the control unit 270. In FIG. 6B, the reflector 248 is not provided. However, since the feature of the present embodiment is that the bottom heater 246c is provided, at least one of the upper reflector 248a and the bottom reflector 248b may be provided in addition to the configuration of FIG. 6B.

このような構成によっても、実施形態1・2で説明したような、蒸着材料の加熱段階(フェーズ1)において材料の下部を材料の上部よりも高温にする制御は可能である。また、蒸着材料が蒸着する段階(フェーズ2)においても、材料の上部を材料の下部よりも高温にする制御(または、容器の上部領域を容器の下部領域よりも高温にする制御、あるいは、容器の上部領域を、開口部への材料堆積を抑制できる程度の温度にする制御)は可能である。なお、本実施形態では底部ヒータ246cを設けているため、フェーズ1において材料の下部の温度を上昇させやすい。そのため材料下部からのガス離脱を効果的に促進できる。   Even with such a configuration, it is possible to control the lower part of the material to be higher in temperature than the upper part of the material in the heating stage (phase 1) of the vapor deposition material as described in the first and second embodiments. Further, also in the stage of vapor deposition of the deposition material (phase 2), the control of making the upper part of the material higher than the lower part of the material (or the control of making the upper region of the container higher than the lower region of the container, or the container It is possible to control the upper region of the substrate so that the material deposition on the opening can be suppressed. In this embodiment, since the bottom heater 246c is provided, it is easy to raise the temperature of the lower part of the material in the phase 1. Therefore, the gas detachment from the lower part of the material can be effectively promoted.

本実施形態の加熱手段が抵抗加熱式ヒータである場合、フェーズ1では、上部ヒータ246aの電力密度を下部ヒータ246bおよび底部ヒータ246cより低くする。また、フェーズ1において、底部ヒータ246cの電力密度を、下部ヒータ246bの電力密度以上としてもよい。さらに、フェーズ2では、上部ヒータ246aの電力密度を下部ヒータ246bおよび底部ヒータ246cより高くする。また、フェーズ2において、下部ヒータ246bの電力密度を、底部ヒータ246cの電力密度以上としてもよい。あるいは、フェーズ2において、底部ヒータ246cには電源を入れなくてもよい。これにより、レート制御をスムーズに行うことができる。   When the heating means of the present embodiment is a resistance heater, in phase 1, the power density of the upper heater 246a is made lower than that of the lower heater 246b and the bottom heater 246c. In phase 1, the power density of the bottom heater 246c may be equal to or higher than the power density of the lower heater 246b. Further, in phase 2, the power density of the upper heater 246a is made higher than that of the lower heater 246b and the bottom heater 246c. Further, in phase 2, the power density of the lower heater 246b may be equal to or higher than the power density of the bottom heater 246c. Alternatively, in phase 2, the bottom heater 246c may not be turned on. Thereby, rate control can be performed smoothly.

以上のように、本実施形態の蒸発源装置の構成および制御方法によっても、突沸を起こさずに良好な成膜が可能になる。また、より好ましい制御方法によれば、蒸着時の材料堆積防止という効果が得られる。   As described above, even with the configuration and control method of the evaporation source apparatus of the present embodiment, it is possible to form a good film without causing bumping. Further, according to a more preferable control method, an effect of preventing material deposition during vapor deposition can be obtained.

<変形例>
上記各実施形態では、加熱手段を最大で上部・下部・底部の3系統に区分した。しかし、加熱段階において材料の下部を上部より高温にできるのであれば、これ以外の区分方法でも構わない。容器のサイズや想定される蒸着材料の収容量に応じてより細かい制御をできるように、系統を増やしてもよい。
<Modification>
In each of the above embodiments, the heating means is divided into three systems, that is, the upper part, the lower part, and the bottom part at the maximum. However, as long as the lower part of the material can be heated to a higher temperature than the upper part in the heating stage, other sorting methods may be used. You may increase a system | strain so that finer control can be performed according to the size of a container and the accommodation capacity of the vapor deposition material assumed.

また、上記各実施形態で示した蒸発源装置の容器の形状は、本発明の適用対象の一例にすぎない。また、容器の上面の、蒸着材料が蒸発してできた粒子が射出される部分に、粒子の指向性制御などの目的でノズルやスリットを設けてもよい。容器の上面から突出したノズルを設ける場合も、上記各実施形態と同様に、少なくとも容器の上面を含む領域のことを上部領域と呼べる。また、蒸着時(フェーズ2)においては、材料堆積を抑制するために、ヒータによってノズルを含んだ部位を高温に制御することが好ましい。   Moreover, the shape of the container of the evaporation source device shown in the above embodiments is merely an example of the application target of the present invention. In addition, a nozzle or a slit may be provided on the upper surface of the container where particles produced by evaporation of the vapor deposition material are ejected for the purpose of particle directivity control. Even when a nozzle protruding from the upper surface of the container is provided, the region including at least the upper surface of the container can be called an upper region, as in the above embodiments. Further, at the time of vapor deposition (phase 2), in order to suppress material deposition, it is preferable to control the portion including the nozzle to a high temperature with a heater.

<実施形態4>
<有機電子デバイスの製造方法の具体例>
本実施形態では、蒸発源装置を備える蒸着装置(成膜装置)を用いた有機電子デバイスの製造方法の一例を説明する。以下、有機電子デバイスの例として有機EL表示装置の構成及び製造方法を例示する。まず、製造する有機EL表示装置について説明する。図7(a)は有機EL表示装置60の全体図、図7(b)は1画素の断面構造を表している。本実施形態の成膜装置が備える蒸発源装置240としては、上記の各実施形態にいずれかに記載の装置を用いる。
<Embodiment 4>
<Specific Example of Manufacturing Method of Organic Electronic Device>
In the present embodiment, an example of a method for manufacturing an organic electronic device using a vapor deposition apparatus (film formation apparatus) including an evaporation source apparatus will be described. Hereinafter, the structure and manufacturing method of an organic EL display device will be exemplified as an example of the organic electronic device. First, an organic EL display device to be manufactured will be described. FIG. 7A shows an overall view of the organic EL display device 60, and FIG. 7B shows a cross-sectional structure of one pixel. As the evaporation source device 240 included in the film forming apparatus of the present embodiment, the apparatus described in any of the above embodiments is used.

図7(a)に示すように、有機EL表示装置60の表示領域61には、発光素子を複数備える画素62がマトリクス状に複数配置されている。詳細は後で説明するが、発光素子のそれぞれは、一対の電極に挟まれた有機層を備えた構造を有している。なお、ここでいう画素とは、表示領域61において所望の色の表示を可能とする最小単位を指している。本図の有機EL表示装置の場合、互いに異なる発光を示す第1発光素子62R、第2発光素子62G、第3発光素子62Bの組合せにより画素62が構成されている。画素62は、赤色発光素子と緑色発光素子と青色発光素子の組合せで構成されることが多いが、黄色発光素子とシアン発光素子と白色発光素子の組み合わせでもよく、少なくとも1色以上であれば特に制限されるものではない。   As shown in FIG. 7A, in the display region 61 of the organic EL display device 60, a plurality of pixels 62 including a plurality of light emitting elements are arranged in a matrix. Although details will be described later, each of the light-emitting elements has a structure including an organic layer sandwiched between a pair of electrodes. Here, the pixel refers to a minimum unit that enables display of a desired color in the display area 61. In the case of the organic EL display device of this figure, the pixel 62 is configured by a combination of the first light emitting element 62R, the second light emitting element 62G, and the third light emitting element 62B that emit different light. The pixel 62 is often composed of a combination of a red light emitting element, a green light emitting element, and a blue light emitting element, but may be a combination of a yellow light emitting element, a cyan light emitting element, and a white light emitting element. It is not limited.

図7(b)は、図7(a)のA−B線における部分断面模式図である。画素62は、被蒸着体である基板63上に、第1電極(陽極)64と、正孔輸送層65と、発光層66R,66G,66Bのいずれかと、電子輸送層67と、第2電極(陰極)68と、を備える有機EL素子を有している。これらのうち、正孔輸送層65、発光層66R,66G,6
6B、電子輸送層67が有機層に当たる。また、本実施形態では、発光層66Rは赤色を発する有機EL層、発光層66Gは緑色を発する有機EL層、発光層66Bは青色を発する有機EL層である。発光層66R,66G,66Bは、それぞれ赤色、緑色、青色を発する発光素子(有機EL素子と記述する場合もある)に対応するパターンに形成されている。また、第1電極64は、発光素子ごとに分離して形成されている。正孔輸送層65と電子輸送層67と第2電極68は、複数の発光素子62R,62G,62Bと共通で形成されていてもよいし、発光素子毎に形成されていてもよい。なお、第1電極64と第2電極68とが異物によってショートするのを防ぐために、第1電極64間に絶縁層69が設けられている。さらに、有機EL層は水分や酸素によって劣化するため、水分や酸素から有機EL素子を保護するための保護層70が設けられている。
FIG. 7B is a partial schematic cross-sectional view taken along the line AB of FIG. The pixel 62 includes a first electrode (anode) 64, a hole transport layer 65, one of the light emitting layers 66R, 66G, and 66B, an electron transport layer 67, and a second electrode on a substrate 63 that is a deposition target. (Cathode) 68. Among these, the hole transport layer 65 and the light emitting layers 66R, 66G, 6
6B, the electron transport layer 67 hits the organic layer. In the present embodiment, the light emitting layer 66R is an organic EL layer that emits red, the light emitting layer 66G is an organic EL layer that emits green, and the light emitting layer 66B is an organic EL layer that emits blue. The light emitting layers 66R, 66G, and 66B are formed in patterns corresponding to light emitting elements that emit red, green, and blue (sometimes referred to as organic EL elements). The first electrode 64 is formed separately for each light emitting element. The hole transport layer 65, the electron transport layer 67, and the second electrode 68 may be formed in common with the plurality of light emitting elements 62R, 62G, and 62B, or may be formed for each light emitting element. Note that an insulating layer 69 is provided between the first electrodes 64 in order to prevent the first electrode 64 and the second electrode 68 from being short-circuited by foreign matter. Furthermore, since the organic EL layer is deteriorated by moisture and oxygen, a protective layer 70 for protecting the organic EL element from moisture and oxygen is provided.

次に、有機EL表示装置の製造方法の例について具体的に説明する。
まず、有機EL表示装置を駆動するための回路(不図示)および第1電極64が形成された基板63を準備する。
Next, an example of a method for manufacturing an organic EL display device will be specifically described.
First, a circuit (not shown) for driving the organic EL display device and a substrate 63 on which the first electrode 64 is formed are prepared.

第1電極64が形成された基板63の上にアクリル樹脂をスピンコートで形成し、アクリル樹脂をリソグラフィ法により、第1電極64が形成された部分に開口が形成されるようにパターニングし絶縁層69を形成する。この開口部が、発光素子が実際に発光する発光領域に相当する。   An acrylic resin is formed by spin coating on the substrate 63 on which the first electrode 64 is formed, and the acrylic resin is patterned by a lithography method so that an opening is formed in a portion where the first electrode 64 is formed. 69 is formed. This opening corresponds to a light emitting region where the light emitting element actually emits light.

絶縁層69がパターニングされた基板63を第1の成膜装置に搬入し、基板保持ユニットにて基板を保持し、正孔輸送層65を、表示領域の第1電極64の上に共通する層として成膜する。正孔輸送層65は真空蒸着により成膜される。実際には正孔輸送層65は表示領域61よりも大きなサイズに形成されるため、高精細なマスクは不要である。ここで、本ステップでの成膜や、以下の各レイヤーの成膜において用いられる成膜装置は、上記各実施形態のいずれかに記載された蒸発源装置を備えている。蒸発源装置が上記実施形態の構成を持ち、上記実施形態に記載の加熱制御を行うことにより、成膜中の突沸が抑制される。   The substrate 63 patterned with the insulating layer 69 is carried into the first film formation apparatus, the substrate is held by the substrate holding unit, and the hole transport layer 65 is a common layer on the first electrode 64 in the display region. As a film formation. The hole transport layer 65 is formed by vacuum deposition. Actually, since the hole transport layer 65 is formed in a size larger than the display region 61, a high-definition mask is not necessary. Here, the film forming apparatus used in the film formation in this step and the film formation of each of the following layers includes the evaporation source device described in any of the above embodiments. The evaporation source device has the configuration of the above-described embodiment, and by performing the heating control described in the above-described embodiment, bumping during film formation is suppressed.

次に、正孔輸送層65までが形成された基板63を第2の成膜装置に搬入し、基板保持ユニットにて保持する。基板とマスクとのアライメントを行い、基板をマスクの上に載置し、基板63の赤色を発する素子を配置する部分に、赤色を発する発光層66Rを成膜する。本例によれば、マスクと基板とを良好に重ね合わせることができ、高精度な成膜を行うことができる。   Next, the substrate 63 on which the hole transport layer 65 is formed is carried into the second film forming apparatus and held by the substrate holding unit. The substrate and the mask are aligned, the substrate is placed on the mask, and the light emitting layer 66R that emits red is formed on the portion of the substrate 63 where the element that emits red is disposed. According to this example, the mask and the substrate can be satisfactorily overlapped, and highly accurate film formation can be performed.

発光層66Rの成膜と同様に、第3の成膜装置により緑色を発する発光層66Gを成膜し、さらに第4の成膜装置により青色を発する発光層66Bを成膜する。発光層66R、66G、66Bの成膜が完了した後、第5の成膜装置により表示領域61の全体に電子輸送層67を成膜する。電子輸送層65は、3色の発光層66R、66G、66Bに共通の層として形成される。   Similarly to the formation of the light emitting layer 66R, the light emitting layer 66G that emits green is formed by the third film forming apparatus, and the light emitting layer 66B that emits blue is formed by the fourth film forming apparatus. After the formation of the light emitting layers 66R, 66G, and 66B is completed, the electron transport layer 67 is formed on the entire display region 61 by the fifth film formation apparatus. The electron transport layer 65 is formed as a layer common to the three-color light emitting layers 66R, 66G, and 66B.

電子輸送層65までが形成された基板をスパッタリング装置に移動し、第2電極68を成膜し、その後プラズマCVD装置に移動して保護層70を成膜して、有機EL表示装置60が完成する。   The substrate on which the electron transport layer 65 is formed is moved to the sputtering apparatus, the second electrode 68 is formed, and then the protective layer 70 is formed by moving to the plasma CVD apparatus, and the organic EL display device 60 is completed. To do.

絶縁層69がパターニングされた基板63を成膜装置に搬入してから保護層70の成膜が完了するまでは、水分や酸素を含む雰囲気にさらしてしまうと、有機EL材料からなる発光層が水分や酸素によって劣化してしまうおそれがある。従って、本例において、成膜装置間の基板の搬入搬出は、真空雰囲気または不活性ガス雰囲気の下で行われる。   From when the substrate 63 with the insulating layer 69 patterned is carried into the film formation apparatus until the film formation of the protective layer 70 is completed, if the light emitting layer made of an organic EL material is exposed to an atmosphere containing moisture or oxygen, There is a risk of deterioration due to moisture and oxygen. Therefore, in this example, the carrying-in / out of the substrate between the film forming apparatuses is performed in a vacuum atmosphere or an inert gas atmosphere.

このようにして得られた有機EL表示装置は、発光素子ごとに発光層が精度よく形成される。従って、上記製造方法を用いれば、発光層の位置ずれに起因する有機EL表示装置の不良の発生を抑制することができる。本実施形態に係る成膜装置によれば、蒸発源装置の加熱を適切に制御することにより突沸が抑制されるため、良好な蒸着が可能となる。   In the organic EL display device thus obtained, a light emitting layer is accurately formed for each light emitting element. Therefore, if the manufacturing method is used, it is possible to suppress the occurrence of defects in the organic EL display device due to the displacement of the light emitting layer. According to the film forming apparatus according to the present embodiment, bumping is suppressed by appropriately controlling the heating of the evaporation source apparatus, so that favorable vapor deposition is possible.

240:蒸発源装置、242:蒸着材料、244:容器、246:ヒータ、248:リフレクタ   240: evaporation source device, 242: vapor deposition material, 244: container, 246: heater, 248: reflector

Claims (19)

蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記制御手段は、前記容器に収容される前記蒸着材料の下部の温度が前記容器に収容される前記蒸着材料の上部の温度よりも高い第一の加熱制御と、前記容器に収容される前記蒸着材料の上部の温度が前記容器に収容される前記蒸着材料の下部の温度よりも高い第二の加熱制御とを行うことができることを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The control means includes a first heating control in which a lower temperature of the vapor deposition material accommodated in the container is higher than an upper temperature of the vapor deposition material accommodated in the container, and the vapor deposition accommodated in the container. An evaporation source apparatus characterized in that the second heating control in which the temperature of the upper part of the material is higher than the temperature of the lower part of the vapor deposition material accommodated in the container can be performed.
前記制御手段は、前記第一の加熱制御を行った後、前記第二の加熱制御を行うことを特徴とする請求項1に記載の蒸発源装置。   The evaporation source apparatus according to claim 1, wherein the control unit performs the second heating control after performing the first heating control. 蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域と、前記上部領域と前記下部領域との間に位置する中部領域とを有し、
前記制御手段は、前記中部領域の温度が前記下部領域の温度よりも低くなるように、前記加熱手段による加熱を制御することを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the container, an upper region including an opening through which the vapor deposition material evaporates, a lower region including a bottom of the container, and between the upper region and the lower region. A middle region located,
The said control means controls the heating by the said heating means so that the temperature of the said center area | region becomes lower than the temperature of the said lower area | region, The evaporation source apparatus characterized by the above-mentioned.
前記容器の中部領域は、前記蒸着材料が収容された状態で、前記蒸着材料の上面の位置を含むことを特徴とする請求項3に記載の蒸発源装置。   The evaporation source apparatus according to claim 3, wherein the middle region of the container includes a position of an upper surface of the vapor deposition material in a state where the vapor deposition material is accommodated. 蒸着材料と、前記蒸着材料が収容された容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域と、前記上部領域と前記下部領域との間に位置する中部領域とを有し、
前記蒸着材料は、当該蒸着材料の上面の位置が、前記容器の高さ方向において前記中部領域に含まれるように、前記容器に収容されており、
前記制御手段は、前記中部領域の温度が前記下部領域の温度よりも低くなるように、前記加熱手段による加熱を制御することを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a deposition material; a container in which the deposition material is stored; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the container, an upper region including an opening through which the vapor deposition material evaporates, a lower region including a bottom of the container, and between the upper region and the lower region. A middle region located,
The vapor deposition material is accommodated in the container so that the position of the upper surface of the vapor deposition material is included in the middle region in the height direction of the container,
The said control means controls the heating by the said heating means so that the temperature of the said center area | region becomes lower than the temperature of the said lower area | region, The evaporation source apparatus characterized by the above-mentioned.
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記容器は、当該容器の同一側面の高さ方向において、前記蒸着材料が蒸発するときに通過する開口を含む上部領域と、前記容器の底部を含む下部領域とを有し、
前記制御手段は、前記下部領域の温度が前記上部領域の温度よりも高くなるような第一の加熱制御と、前記上部領域の温度が前記下部領域の温度よりも高くなるような第二の加熱制御とを行うことを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The container has, in the height direction of the same side surface of the container, an upper region including an opening that passes when the vapor deposition material evaporates, and a lower region including a bottom of the container,
The control means includes first heating control such that the temperature of the lower region is higher than the temperature of the upper region, and second heating such that the temperature of the upper region is higher than the temperature of the lower region. An evaporation source apparatus characterized by performing control.
前記制御手段は、前記第一の加熱制御を行った後、前記第二の加熱制御を行うことを特徴とする請求項6に記載の蒸発源装置。   The evaporation source apparatus according to claim 6, wherein the control unit performs the second heating control after performing the first heating control. 前記加熱手段は、第1の加熱源、第2の加熱源、および、第1の保温材を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第1の保温材は、前記容器の底部に対向する位置に配置されることを特徴とする請求項1ないし7のいずれか1項に記載の蒸発源装置。
The heating means includes a first heating source, a second heating source, and a first heat insulating material,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The evaporation source device according to any one of claims 1 to 7, wherein the first heat insulating material is disposed at a position facing the bottom of the container.
前記加熱手段は、第1の加熱源、第2の加熱源、および、第3の加熱源を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第3の加熱源は、前記容器の底部に対向する位置に配置されることを特徴とする請求項1ないし7のいずれか1項に記載の蒸発源装置。
The heating means has a first heating source, a second heating source, and a third heating source,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The evaporation source device according to any one of claims 1 to 7, wherein the third heating source is disposed at a position facing the bottom of the container.
前記加熱手段は、前記第1の加熱源に対応する位置に配置された第2の保温材を有することを特徴とする請求項8又は9に記載の蒸発源装置。   The evaporation source apparatus according to claim 8, wherein the heating unit includes a second heat insulating material disposed at a position corresponding to the first heating source. 蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記加熱手段は、第1の加熱源、第2の加熱源、および、第1の保温材を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第1の保温材は、前記容器の底部に対向する位置に配置されることを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The heating means includes a first heating source, a second heating source, and a first heat insulating material,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The first heat insulating material is disposed at a position facing the bottom of the container.
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置であって、
前記加熱手段は、第1の加熱源、第2の加熱源、および、第3の加熱源を有し、
前記第1の加熱源は、前記容器の上部に対向する位置に配置され、
前記第2の加熱源は、前記容器の下部に対向する位置に配置され、
前記第3の加熱源は、前記容器の底部に対向する位置に配置される
ことを特徴とする蒸発源装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit that heats the container; and a control unit that controls heating by the heating unit;
The heating means has a first heating source, a second heating source, and a third heating source,
The first heating source is disposed at a position facing the top of the container,
The second heating source is disposed at a position facing the lower part of the container,
The third heating source is disposed at a position facing the bottom of the container.
前記加熱手段は、前記第1の加熱源に対応する位置に配置された第2の保温材を有することを特徴とする請求項11又は12に記載の蒸発源装置。   The evaporation source device according to claim 11, wherein the heating unit includes a second heat insulating material arranged at a position corresponding to the first heating source. 前記制御手段は、前記第2の加熱源の電力密度が、前記第1の加熱源の電力密度よりも高くなるような第一の加熱制御と、前記第1の加熱源の電力密度が、前記第2の加熱源の電力密度よりも高くなるような第二の加熱制御とを行うことができることを特徴とする請求項11乃至13のいずれか1項に記載の蒸発源装置。   The control means includes first heating control such that the power density of the second heating source is higher than the power density of the first heating source, and the power density of the first heating source is The evaporation source device according to any one of claims 11 to 13, wherein the second heating control can be performed so as to be higher than the power density of the second heating source. 前記制御手段は、前記第一の加熱制御を行った後、前記第二の加熱制御を行うことを特徴とする請求項14に記載の蒸発源装置。   The evaporation source apparatus according to claim 14, wherein the control unit performs the second heating control after performing the first heating control. 蒸着材料が収容される容器と、前記容器を加熱する加熱手段とを備える蒸発源装置の制御方法であって、
前記容器に収容される前記蒸着材料の下部の温度が、前記容器に収容される前記蒸着材料の上部の温度よりも高くなるように前記加熱手段を制御する第一の加熱ステップと、
前記容器に収容される前記蒸着材料の上部の温度が、前記容器に収容される前記蒸着材料の下部の温度よりも高くなるように前記加熱手段を制御する第二の加熱ステップとを有することを特徴とする蒸発源装置の制御方法。
A method for controlling an evaporation source device comprising a container in which a deposition material is accommodated and a heating means for heating the container,
A first heating step of controlling the heating means such that a temperature of the lower part of the vapor deposition material accommodated in the container is higher than a temperature of the upper part of the vapor deposition material accommodated in the container;
A second heating step of controlling the heating means so that the temperature of the upper part of the vapor deposition material accommodated in the container is higher than the temperature of the lower part of the vapor deposition material accommodated in the container. A method for controlling an evaporation source device.
蒸着材料が収容される容器と、前記容器を加熱する加熱手段とを備える蒸発源装置の制御方法であって、
前記蒸着材料が蒸発するときに通過する開口を含む上部領域と前記容器の底部を含む下部領域との間に位置する中部領域の温度が、前記下部領域の温度より低くなるように前記加熱手段を制御する第一の加熱ステップと、
前記下部領域の温度が、前記中部領域の温度より低くなるように前記加熱手段を制御す
る第二の加熱ステップとを有することを特徴とする蒸発源装置の制御方法。
A method for controlling an evaporation source device comprising a container in which a deposition material is accommodated and a heating means for heating the container,
The heating means is arranged so that the temperature of the middle region located between the upper region including the opening through which the vapor deposition material evaporates and the lower region including the bottom of the container is lower than the temperature of the lower region. A first heating step to control;
And a second heating step for controlling the heating means so that the temperature of the lower region is lower than the temperature of the middle region.
請求項1乃至請求項15のいずれか1項に記載の蒸発源装置と、
前記蒸発源装置が配置され、前記蒸着材料の蒸着が行われる真空チャンバと、を備えることを特徴とする蒸着装置。
The evaporation source device according to any one of claims 1 to 15,
A vapor deposition apparatus comprising: a vacuum chamber in which the evaporation source device is disposed and the vapor deposition material is deposited.
蒸着材料が収容される容器と、前記容器を加熱する加熱手段と、前記加熱手段による加熱を制御する制御手段とを備える蒸発源装置と、
前記蒸発源装置が配置され、前記蒸着材料の蒸着が行われる真空チャンバと、を備え、
前記制御手段は、前記蒸着材料の蒸着を行う前に、前記容器に収容される前記蒸着材料の下部の温度が前記容器に収容される前記蒸着材料の上部の温度よりも高くなるように第一の加熱制御を行い、
前記制御手段は、前記蒸着材料の蒸着を行うときに、前記容器に収容される前記蒸着材料の上部の温度が前記容器に収容される前記蒸着材料の下部の温度よりも高くなるように第二の加熱制御を行うことを特徴とする蒸着装置。
An evaporation source apparatus comprising: a container for storing a vapor deposition material; a heating unit for heating the container; and a control unit for controlling heating by the heating unit;
A vacuum chamber in which the evaporation source device is disposed and the evaporation material is deposited;
The control means is configured so that, before vapor deposition of the vapor deposition material, the temperature of the lower portion of the vapor deposition material accommodated in the container is higher than the temperature of the upper portion of the vapor deposition material accommodated in the container. Control the heating of
When the vapor deposition of the vapor deposition material is performed, the control means is configured so that the temperature of the upper part of the vapor deposition material accommodated in the container is higher than the temperature of the lower part of the vapor deposition material accommodated in the container. The vapor deposition apparatus characterized by performing heating control.
JP2017152488A 2017-08-07 2017-08-07 Evaporation source apparatus and control method thereof Active JP6436544B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017152488A JP6436544B1 (en) 2017-08-07 2017-08-07 Evaporation source apparatus and control method thereof
KR1020180074487A KR102057783B1 (en) 2017-08-07 2018-06-28 Evaporator appratus and control method thereof
CN201810887800.8A CN109385605B (en) 2017-08-07 2018-08-07 Evaporation source device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017152488A JP6436544B1 (en) 2017-08-07 2017-08-07 Evaporation source apparatus and control method thereof

Publications (2)

Publication Number Publication Date
JP6436544B1 JP6436544B1 (en) 2018-12-12
JP2019031705A true JP2019031705A (en) 2019-02-28

Family

ID=64655835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017152488A Active JP6436544B1 (en) 2017-08-07 2017-08-07 Evaporation source apparatus and control method thereof

Country Status (3)

Country Link
JP (1) JP6436544B1 (en)
KR (1) KR102057783B1 (en)
CN (1) CN109385605B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011767A (en) * 2019-05-28 2020-12-01 佳能特机株式会社 Heating device, evaporation source device, film forming method, and method for manufacturing electronic device
JP2020193368A (en) * 2019-05-28 2020-12-03 キヤノントッキ株式会社 Heating apparatus, evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP2020193360A (en) * 2019-05-28 2020-12-03 キヤノントッキ株式会社 Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
KR20210143659A (en) 2020-05-20 2021-11-29 캐논 톡키 가부시키가이샤 Evaporation source apparatus, vapor deposition apparatus and control method of evaporation source apparatus
JP7444843B2 (en) 2021-12-02 2024-03-06 キヤノントッキ株式会社 Deposition crucible and deposition equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109868452B (en) * 2019-03-19 2021-01-01 武汉华星光电半导体显示技术有限公司 Cooling plate and vacuum evaporation device
KR102319130B1 (en) * 2020-03-11 2021-10-29 티오에스주식회사 Metal-Oxide semiconductor evaporation source equipped with variable temperature control module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007063660A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Inorganic vapor deposition source and method for controlling heat source therefor
JP2008069459A (en) * 2000-10-26 2008-03-27 Semiconductor Energy Lab Co Ltd Film formation apparatus and film formation method
JP2014105375A (en) * 2012-11-29 2014-06-09 Optorun Co Ltd Vacuum deposition source, and vacuum deposition method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3508484B2 (en) * 1997-07-14 2004-03-22 松下電器産業株式会社 Method and apparatus for forming functional thin film
CN202246836U (en) * 2011-07-22 2012-05-30 上海奕瑞光电子科技有限公司 Resistance heating type evaporation source

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069459A (en) * 2000-10-26 2008-03-27 Semiconductor Energy Lab Co Ltd Film formation apparatus and film formation method
JP2007063660A (en) * 2005-08-31 2007-03-15 Samsung Sdi Co Ltd Inorganic vapor deposition source and method for controlling heat source therefor
JP2014105375A (en) * 2012-11-29 2014-06-09 Optorun Co Ltd Vacuum deposition source, and vacuum deposition method using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011767A (en) * 2019-05-28 2020-12-01 佳能特机株式会社 Heating device, evaporation source device, film forming method, and method for manufacturing electronic device
JP2020193367A (en) * 2019-05-28 2020-12-03 キヤノントッキ株式会社 Heating apparatus, evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP2020193368A (en) * 2019-05-28 2020-12-03 キヤノントッキ株式会社 Heating apparatus, evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
JP2020193360A (en) * 2019-05-28 2020-12-03 キヤノントッキ株式会社 Evaporation source device, film deposition apparatus, film deposition method, and manufacturing method of electronic device
KR20200136802A (en) 2019-05-28 2020-12-08 캐논 톡키 가부시키가이샤 Heating apparatus, evaporation source apparatus, film formation apparatus, film formation method, and manufacturing method of electronic device
KR20200136801A (en) 2019-05-28 2020-12-08 캐논 톡키 가부시키가이샤 Evaporation source apparatus, film formation apparatus, film formation method, and manufacturing method of electronic device
KR20200136803A (en) 2019-05-28 2020-12-08 캐논 톡키 가부시키가이샤 Heating apparatus, evaporation source apparatus, film formation apparatus, film formation method, and manufacturing method of electronic device
JP7202971B2 (en) 2019-05-28 2023-01-12 キヤノントッキ株式会社 Evaporation Source Apparatus, Film Forming Apparatus, Film Forming Method, and Electronic Device Manufacturing Method
JP7241603B2 (en) 2019-05-28 2023-03-17 キヤノントッキ株式会社 Heating device, evaporation source device, film forming device, film forming method, and electronic device manufacturing method
JP7241604B2 (en) 2019-05-28 2023-03-17 キヤノントッキ株式会社 Heating device, evaporation source device, film forming device, film forming method, and electronic device manufacturing method
KR20210143659A (en) 2020-05-20 2021-11-29 캐논 톡키 가부시키가이샤 Evaporation source apparatus, vapor deposition apparatus and control method of evaporation source apparatus
JP7444843B2 (en) 2021-12-02 2024-03-06 キヤノントッキ株式会社 Deposition crucible and deposition equipment

Also Published As

Publication number Publication date
KR20190015993A (en) 2019-02-15
CN109385605A (en) 2019-02-26
CN109385605B (en) 2022-04-26
KR102057783B1 (en) 2019-12-19
JP6436544B1 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
JP6436544B1 (en) Evaporation source apparatus and control method thereof
JPWO2009034915A1 (en) Vapor deposition equipment
KR102638573B1 (en) Evaporation source device and vapor deposition apparatus
KR102590304B1 (en) Evaporation source apparatus, vapor deposition apparatus and vapor deposition system
JP5078903B2 (en) Method and apparatus for manufacturing plasma display panel
JP2006200040A (en) Supporting device for heating vessel and deposition apparatus having the same
JP7241604B2 (en) Heating device, evaporation source device, film forming device, film forming method, and electronic device manufacturing method
JP5265583B2 (en) Vapor deposition equipment
TW201246651A (en) Vacuum deposition device and manufacturing method of organic electroluminescent display
JP7241603B2 (en) Heating device, evaporation source device, film forming device, film forming method, and electronic device manufacturing method
JP7202971B2 (en) Evaporation Source Apparatus, Film Forming Apparatus, Film Forming Method, and Electronic Device Manufacturing Method
JP7162639B2 (en) Evaporation source device, vapor deposition device, and control method for evaporation source device
KR100647578B1 (en) Apparatus and Method for evaporation
JP7088891B2 (en) Evaporation source equipment and vapor deposition equipment
JP2020506283A (en) Cluster type mass production equipment of high resolution AMOLED device using vertical surface evaporation source
JP2022188811A (en) Film deposition apparatus and electronic device manufacturing method
KR102045820B1 (en) Deposition Apparatus and Method
JP2007046098A (en) Vacuum deposition system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181109

R150 Certificate of patent or registration of utility model

Ref document number: 6436544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250