JP2019019382A - Low alloy steel - Google Patents

Low alloy steel Download PDF

Info

Publication number
JP2019019382A
JP2019019382A JP2017139290A JP2017139290A JP2019019382A JP 2019019382 A JP2019019382 A JP 2019019382A JP 2017139290 A JP2017139290 A JP 2017139290A JP 2017139290 A JP2017139290 A JP 2017139290A JP 2019019382 A JP2019019382 A JP 2019019382A
Authority
JP
Japan
Prior art keywords
less
mass
low alloy
content
alloy steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017139290A
Other languages
Japanese (ja)
Other versions
JP6972722B2 (en
Inventor
大村 朋彦
Tomohiko Omura
朋彦 大村
勇次 荒井
Yuji Arai
勇次 荒井
宏太 富松
Kota Tomimatsu
宏太 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017139290A priority Critical patent/JP6972722B2/en
Publication of JP2019019382A publication Critical patent/JP2019019382A/en
Application granted granted Critical
Publication of JP6972722B2 publication Critical patent/JP6972722B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide low alloy steel having excellent hydrogen embrittlement resistance.SOLUTION: Low alloy steel contains, in mass%, C: 0.01% or less, both or one of Si: 0.05-10.0% and Al: 0.01-10.0%, P: 0.025% or less, S: 0.010% or less, O: 0.005% or less, N: 0.008% or less, Mn: 0-1.0%, B: 0-0.003%, Cr: 0-5.0%, Mo: 0-5.0%, V: 0-5.0%, W: 0-5.0%, Nb: 0-0.1%, Ti: 0-0.1%, Zr: 0-0.2%, Hf: 0-0.2%, Ta: 0-0.2%, Cu: 0-3.0%, Ni: 0-5.0%, Co: 0-3.0%, Ca: 0-0.01%, Mg: 0-0.01%, REM: 0-0.50%, with the balance being Fe and impurities, Fn1(=Si+Al(mass%)) of 1.0-10.0, and Fn2 (=Si+Al(mass% of solid solution)) of 1.0-10.0.SELECTED DRAWING: None

Description

本発明は、低合金鋼に関する。   The present invention relates to a low alloy steel.

薄鋼板、厚鋼板、鋼管、棒線などの種々の分野で、高強度化ならびに使用環境の過酷化に伴い、水素脆化が問題となっている。水素脆化が問題となる用途としては、例えば、自動車用の高強度薄鋼板、建材用の厚鋼板、油井管やラインパイプ等の過酷環境で使われる鋼管、高強度の棒線・棒鋼・ボルトなどが挙げられる。   In various fields such as thin steel plates, thick steel plates, steel pipes and rods, hydrogen embrittlement has become a problem as the strength increases and the usage environment becomes severe. Applications in which hydrogen embrittlement is a problem include, for example, high-strength steel sheets for automobiles, thick steel sheets for building materials, steel pipes used in harsh environments such as oil well pipes and line pipes, and high-strength bars, bars and bolts. Etc.

bcc構造を有する炭素鋼や低合金鋼の耐水素脆化特性を改善する組織上の対策としては、例えばマルテンサイト系の材料では、焼戻し温度を高めることによる粒界炭化物の球状化や、水素トラップ効果を有する微細な合金炭化物の活用が知られている(非特許文献1および非特許文献2)。   As structural measures to improve the hydrogen embrittlement resistance of carbon steel and low alloy steel having a bcc structure, for example, in martensitic materials, spheroidization of grain boundary carbides by increasing the tempering temperature, hydrogen trap Utilization of fine alloy carbide having an effect is known (Non-Patent Document 1 and Non-Patent Document 2).

上記の対策は、焼戻し時に生じる炭化物の作用に着目し、これを制御するものである。一方、Fe以外の合金元素を添加した場合には、その一部がbcc構造の母相中に固溶し、この固溶元素を活用すれば、熱処理に依存しなくても普遍的な耐水素脆化特性が得られることが期待される。   The above measures pay attention to the action of carbides generated during tempering and control this. On the other hand, when an alloy element other than Fe is added, a part of it is dissolved in the matrix phase of the bcc structure, and if this solid solution element is used, universal hydrogen resistance can be achieved without depending on heat treatment. It is expected that embrittlement characteristics can be obtained.

ただし、Fe以外の固溶合金元素は一般には水素拡散係数を低下させ、使用環境中における吸蔵水素濃度を増加させ、水素脆化に対して悪影響を及ぼすと考えられている(非特許文献3および非特許文献4)。   However, solid solution alloy elements other than Fe are generally considered to have a negative effect on hydrogen embrittlement by lowering the hydrogen diffusion coefficient and increasing the concentration of occluded hydrogen in the use environment (Non-patent Documents 3 and 3). Non-patent document 4).

特許文献1には、固溶窒素量を0.004〜0.03質量%に制限した冷間加工用鋼材に関する発明が開示されている。この冷間加工用鋼材によれば、冷間加工のみで高強度が得られるため、熱処理を省略することができる、としている。   Patent Document 1 discloses an invention relating to a steel material for cold working in which the amount of dissolved nitrogen is limited to 0.004 to 0.03% by mass. According to this steel material for cold work, since high strength can be obtained only by cold work, heat treatment can be omitted.

特開2016−056418号公報JP, 2006-056418, A

櫛田隆弘、松本斉、倉富直行、津村輝隆、中里福和、工藤赳夫、鉄と鋼Vol.82、No.4(1996)297−302頁Takahiro Kushida, Hitoshi Matsumoto, Naoyuki Kuratomi, Terutaka Tsumura, Fukukazu Nakazato, Ikuo Kudo, Iron and Steel Vol.82, No. 4 (1996) pp. 297-302 山崎真吾、高橋稔彦、鉄と鋼Vol.83、No.7(1997)454−459頁Yamazaki Shingo, Takahashi Yasuhiko, Iron and Steel Vol.83, No. 7 (1997) 454-459 羽木秀樹、日本金属学会誌 第55巻 第12号(1991)1283−1290頁Hideki Hagi, Journal of the Japan Institute of Metals, Vol. 55, No. 12 (1991), pages 1283-1290 櫛田隆弘、工藤赳夫、まてりあ 第33巻 第7号(1994)932−939頁Takahiro Kushida, Ikuo Kudo, Materia Vol. 33, No. 7 (1994), pages 932-939

本発明者らは、純鉄系の材料を用いて、各種の合金元素を完全に固溶させた合金を用いて鋭意検討を行った結果、主として、SiおよびAlは、固溶状態でも水素拡散係数を低下させず、かつ耐水素脆化特性の改善効果を有することを見出した。上記改善効果の作用機構については、詳細は不明であるが、これらの元素は表面エネルギーを高めて腐食環境における水素侵入を抑制する効果がある。水素侵入の抑制機構は、金属表面に水素原子が吸着した状態を不安定化させ、水素分子に速やかに再結合させ、系外に逃散させることと推定されている。この効果と同様に、鉄中にSiおよびAlが固溶している場合、鉄中を拡散して近づいて来た水素原子を反発し、拡散を促進することで水素原子が脆化起点(応力集中部や介在物などの界面)に集積するのを防止し、水素脆化を抑制すると推定される。   As a result of intensive studies using an alloy in which various alloying elements are completely dissolved in a pure iron-based material, the present inventors mainly conducted hydrogen diffusion even in a solid solution state. It has been found that the coefficient is not lowered and the hydrogen embrittlement resistance is improved. Although the details of the action mechanism of the improvement effect are unknown, these elements have the effect of increasing the surface energy and suppressing hydrogen intrusion in a corrosive environment. The suppression mechanism of hydrogen intrusion is presumed to destabilize the state in which hydrogen atoms are adsorbed on the metal surface, quickly recombine with hydrogen molecules, and escape from the system. Similar to this effect, when Si and Al are dissolved in iron, the hydrogen atoms that diffused in the iron are repelled and promoted to promote the diffusion, thereby causing the hydrogen atoms to start from embrittlement (stress It is presumed that accumulation at the interface of concentrated portions and inclusions is prevented and hydrogen embrittlement is suppressed.

特許文献1の発明は、Si、Alの固溶量を確保することによる耐水素脆化特性について全く考慮されていない。また、調質のための熱処理、いわゆる焼入れ/焼戻し熱処理を省略することを前提としているが、熱処理を省略したこのような非調質鋼の場合、製造工程中の徐冷過程でSiやAlが析出するため、この技術では、Si、Alの固溶量を確保することはできない。   In the invention of Patent Document 1, no consideration is given to the hydrogen embrittlement resistance by ensuring the solid solution amount of Si and Al. In addition, it is assumed that heat treatment for tempering, so-called quenching / tempering heat treatment, is omitted, but in the case of such non-tempered steel in which heat treatment is omitted, Si and Al are contained in the slow cooling process during the manufacturing process. Since it precipitates, this technique cannot secure the solid solution amount of Si and Al.

本発明は、SiおよびAlを固溶状態で存在させることにより耐水素脆化特性の改善させた低合金鋼を提供することを目的とする。   An object of the present invention is to provide a low alloy steel having improved hydrogen embrittlement resistance by allowing Si and Al to exist in a solid solution state.

本発明は、下記の低合金鋼を要旨とする。   The gist of the present invention is the following low alloy steel.

〔1〕質量%で、
C:0.01%以下と、
Si:0.05〜10.0%およびAl:0.01〜10.0%の両方またはいずれか一方と、
P:0.025%以下、
S:0.010%以下、
O:0.005%以下、
N:0.008%以下、
Mn:0〜1.0%、
B:0〜0.003%、
Cr:0〜5.0%、
Mo:0〜5.0%、
V:0〜5.0%、
W:0〜5.0%、
Nb:0〜0.1%、
Ti:0〜0.1%、
Zr:0〜0.2%、
Hf:0〜0.2%、
Ta:0〜0.2%、
Cu:0〜3.0%、
Ni:0〜5.0%、
Co:0〜3.0%、
Ca:0〜0.01%、
Mg:0〜0.01%、
REM:0〜0.50%と、
残部:Feおよび不純物とである化学組成を有し、
下記(1)式から求められるFn1が1.0〜10.0であり、
下記(2)式から求められるFn2が1.0〜10.0である、
耐水素脆化特性に優れる低合金鋼。
Fn1 = Si+Al (質量%)(1)
Fn2 = Si+Al (固溶分の質量%)(2)
ただし、(1)式中の各元素記号は、低合金鋼中に含まれる各元素の含有量(質量%)を意味し、(2)式中の各元素記号は、低合金鋼中に固溶状態で存在する各元素の含有量(質量%)を意味する。
[1] By mass%
C: 0.01% or less,
Si: 0.05 to 10.0% and Al: 0.01 to 10.0% or either one of them,
P: 0.025% or less,
S: 0.010% or less,
O: 0.005% or less,
N: 0.008% or less,
Mn: 0 to 1.0%,
B: 0 to 0.003%,
Cr: 0 to 5.0%,
Mo: 0 to 5.0%,
V: 0 to 5.0%,
W: 0 to 5.0%,
Nb: 0 to 0.1%,
Ti: 0 to 0.1%,
Zr: 0 to 0.2%,
Hf: 0 to 0.2%,
Ta: 0 to 0.2%,
Cu: 0 to 3.0%,
Ni: 0 to 5.0%,
Co: 0 to 3.0%,
Ca: 0 to 0.01%,
Mg: 0 to 0.01%,
REM: 0 to 0.50%,
The balance: having a chemical composition that is Fe and impurities,
Fn1 calculated | required from the following (1) Formula is 1.0-10.0,
Fn2 calculated | required from following (2) Formula is 1.0-10.0,
Low alloy steel with excellent hydrogen embrittlement resistance.
Fn1 = Si + Al (mass%) (1)
Fn2 = Si + Al (mass% of solid solution content) (2)
However, each element symbol in the formula (1) means the content (mass%) of each element contained in the low alloy steel, and each element symbol in the formula (2) is solid in the low alloy steel. It means content (mass%) of each element which exists in a solution state.

〔2〕質量%で、
Mn:0.1〜1.0%、
B:0.0003〜0.003%
Cr:0.01〜5.0%、
Mo:0.01〜5.0%、
V:0.01〜5.0%、
W:0.01〜5.0%、
Nb:0.001〜0.1%、
Ti:0.001〜0.1%、
Zr:0.001〜0.2%、
Hf:0.001〜0.2%、
Ta:0.001〜0.2%、
Cu:0.1〜3.0%、
Ni:0.1〜5.0%、
Co:0.1〜3.0%、
Ca:0.0001〜0.01%、
Mg:0.0001〜0.01%および
REM:0.0001〜0.50%から選択される一種以上を含有する、
上記〔1〕の低合金鋼。
[2] In mass%,
Mn: 0.1 to 1.0%,
B: 0.0003 to 0.003%
Cr: 0.01 to 5.0%,
Mo: 0.01 to 5.0%,
V: 0.01-5.0%,
W: 0.01-5.0%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Zr: 0.001 to 0.2%,
Hf: 0.001 to 0.2%,
Ta: 0.001 to 0.2%,
Cu: 0.1 to 3.0%,
Ni: 0.1 to 5.0%,
Co: 0.1-3.0%
Ca: 0.0001 to 0.01%,
One or more selected from Mg: 0.0001 to 0.01% and REM: 0.0001 to 0.50%,
The low alloy steel of [1] above.

〔3〕析出物、介在物および金属間化合物の合計量が0.5質量%以下である、
上記〔1〕または〔2〕の低合金鋼。
[3] The total amount of precipitates, inclusions and intermetallic compounds is 0.5% by mass or less.
The low alloy steel according to the above [1] or [2].

本発明によれば、耐水素脆化特性に優れた低合金鋼が得られる。   According to the present invention, a low alloy steel excellent in hydrogen embrittlement resistance can be obtained.

1.化学組成
本発明に係る低合金鋼は、下記の化学組成を有する。各元素の含有量の範囲および限定理由を説明する。各元素の含有量の%は、「質量%」を意味する。
1. Chemical Composition The low alloy steel according to the present invention has the following chemical composition. The range of the content of each element and the reason for limitation will be described. % Of the content of each element means “mass%”.

C:0.01%以下
Cは、固溶強化により鋼の強度を高めるのに有効であるが、0.01%を超えて含有させると、母相のフェライト地に固溶しきれなくなり、焼鈍時に粗大な炭化物を形成し、耐水素脆化特性を低下させる。この観点から、Cの含有量は0.01%以下とする。C含有量は、低ければ低いほど望ましい。
C: 0.01% or less C is effective in increasing the strength of the steel by solid solution strengthening. However, if it exceeds 0.01%, it cannot be completely dissolved in the ferrite phase of the parent phase and is annealed. Sometimes coarse carbides are formed and the hydrogen embrittlement resistance is reduced. From this viewpoint, the C content is 0.01% or less. The lower the C content, the better.

Si:0.05〜10.0%および
Al:0.01〜10.0%の両方またはいずれか一方
SiおよびAlは、鋼の脱酸に有効な元素であるが、本発明においては、耐水素脆化特性を向上させるために重要な元素である。脱酸の効果を得る観点ではSiは0.05%以上、Alは0.01%以上含有させれば十分であるが、優れた耐水素脆化特性を得るためには、SiおよびAlの合計含有量を1.0%以上とする必要がある。一方、耐水素脆化特性の効果は、過剰に含有させても飽和するので、それぞれの元素の含有量の上限および合計含有量の上限は10.0%とする。すなわち、下記(1)式から求められるFn1が1.0〜10.0であることが必要である。一方、耐水素脆化特性は、特に、鋼中に固溶したSiおよびAlによって得られるので、下記(2)式から求められるFn2が1.0〜10.0であることも必要である。
Fn1 = Si+Al (質量%)(1)
Fn2 = Si+Al (固溶分の質量%)(2)
ただし、(1)式中の各元素記号は、低合金鋼中に含まれる各元素の含有量(質量%)を意味し、(2)式中の各元素記号は、低合金鋼中に固溶状態で存在する各元素の含有量(質量%)を意味する。
Si: 0.05-10.0% and Al: 0.01-10.0% and / or either Si and Al are effective elements for deoxidation of steel. It is an important element for improving hydrogen embrittlement characteristics. In order to obtain the effect of deoxidation, it is sufficient to contain Si by 0.05% or more and Al by 0.01% or more. In order to obtain excellent hydrogen embrittlement resistance, the total of Si and Al is sufficient. The content needs to be 1.0% or more. On the other hand, since the effect of hydrogen embrittlement resistance is saturated even if it is excessively contained, the upper limit of the content of each element and the upper limit of the total content are set to 10.0%. That is, Fn1 calculated | required from the following (1) formula needs to be 1.0-10.0. On the other hand, since the hydrogen embrittlement resistance is obtained particularly by Si and Al dissolved in steel, it is also necessary that Fn2 obtained from the following formula (2) is 1.0 to 10.0.
Fn1 = Si + Al (mass%) (1)
Fn2 = Si + Al (mass% of solid solution content) (2)
However, each element symbol in the formula (1) means the content (mass%) of each element contained in the low alloy steel, and each element symbol in the formula (2) is solid in the low alloy steel. It means content (mass%) of each element which exists in a solution state.

耐水素脆化特性を向上させるためには、Fn1の下限を1.5とするのが好ましく、2.0とするのがより好ましく、Fn2の下限も1.5とするのが好ましく、2.0とするのがより好ましい。一方、Si、Alのいずれも過剰に含有させてもその効果は小さくなるため、Fn1の上限を7.0とするのが好ましく、5.0とするのがより好ましく、Fn2の上限も7.0とするのが好ましく、5.0とするのがより好ましい。   In order to improve hydrogen embrittlement resistance, the lower limit of Fn1 is preferably 1.5, more preferably 2.0, and the lower limit of Fn2 is also preferably 1.5. More preferably 0. On the other hand, since the effect becomes small even if both Si and Al are contained excessively, the upper limit of Fn1 is preferably 7.0, more preferably 5.0, and the upper limit of Fn2 is also 7. It is preferably 0, and more preferably 5.0.

P:0.025%以下
Pは、鋼中に不純物として存在する元素である。Pは、粒界に偏析し、耐水素脆化特性を低下させる元素であるため、その含有量は0.025%以下とする必要がある。Pの含有量はできるだけ少ない方が望ましい。
P: 0.025% or less P is an element present as an impurity in steel. P is an element that segregates at the grain boundaries and reduces the resistance to hydrogen embrittlement, and therefore its content needs to be 0.025% or less. The content of P is preferably as low as possible.

S:0.010%以下
Sは、鋼中に不純物として存在する元素である。SもPと同様に粒界に偏析し,耐水素脆化特性を低下させる元素であるため、その含有量は0.01%以下とする必要がある。Sの含有量はできるだけ少ない方が望ましい。
S: 0.010% or less S is an element present as an impurity in steel. Similarly to P, S is an element that segregates at the grain boundary and reduces the resistance to hydrogen embrittlement, so its content must be 0.01% or less. The content of S is preferably as low as possible.

O:0.005%以下
O(酸素)は,鋼中に不純物として存在する元素である。その含有量が0.005%を超えると、粗大な酸化物を形成し、靭性等の機械的特性を低下させる。従って、O(酸素)は0.005%以下とする。O(酸素)の含有量はできるだけ低い方が望ましい。その上限は望ましくは0.004%、さらに望ましくは0.003%である。
O: 0.005% or less O (oxygen) is an element present as an impurity in steel. When the content exceeds 0.005%, a coarse oxide is formed, and mechanical properties such as toughness are lowered. Therefore, O (oxygen) is made 0.005% or less. The content of O (oxygen) is preferably as low as possible. The upper limit is desirably 0.004%, and more desirably 0.003%.

N:0.008%以下
N(窒素)は、鋼中に不純物として存在する元素である。その含有量が0.008%を超えると、粗大な窒化物を形成し、靭性等の機械的特性を低下させる。従って、N(窒素)は0.008%以下とする。N(窒素)の含有量はできるだけ低い方が望ましい。その上限は望ましくは0.006%、さらに望ましくは0.005%である。
N: 0.008% or less N (nitrogen) is an element present as an impurity in steel. When the content exceeds 0.008%, coarse nitrides are formed, and mechanical properties such as toughness are lowered. Therefore, N (nitrogen) is 0.008% or less. The content of N (nitrogen) is preferably as low as possible. The upper limit is desirably 0.006%, and more desirably 0.005%.

Mn:0〜1.0%
Mnは、固溶強化の効果を有するので、含有させてもよい。ただし、過剰に含有させても効果が飽和するので、含有させる場合の上限を1.0%とする。上記の効果を得るためには、0.1%以上含有させるのが好ましい。
Mn: 0 to 1.0%
Since Mn has an effect of solid solution strengthening, Mn may be contained. However, since an effect is saturated even if it makes it contain excessively, the upper limit in the case of making it contain shall be 1.0%. In order to acquire said effect, it is preferable to make it contain 0.1% or more.

B:0〜0.003%
Bは、Cと同様に鋼の強度を高めるのに有効であるので、含有させてもよい。ただし、0.003%を超えて含有させてもその効果は飽和するため、含有させる場合の上限を0.003%とする。上記の効果を得るためには、0.0003%以上含有させるのが好ましい。
B: 0 to 0.003%
Since B is effective in increasing the strength of steel in the same manner as C, it may be contained. However, since the effect is saturated even if it contains exceeding 0.003%, the upper limit in the case of making it contain shall be 0.003%. In order to acquire said effect, it is preferable to make it contain 0.0003% or more.

Cr:0〜5.0%
Mo:0〜5.0%
V:0〜5.0%
W:0〜5.0%
Nb:0〜0.1%
Ti:0〜0.1%
Zr:0〜0.2%
Hf:0〜0.2%
Ta:0〜0.2%
Cr、Mo、V、W、Nb、Ti、Zr、HfおよびTa(以下、これらの元素を「第1群元素」ともいう。)は、フェライト生成元素であり、かつ固溶強化能を有する。また、Nb、Ti、Zr、HfおよびTaは、炭窒化物の生成能が強く、焼鈍時に微細な炭窒化物を形成し、固溶Cや固溶Nを低減する効果を有する。このため、これらの元素の一種以上を含有させてもよい。ただし、それぞれの元素の含有量が過剰な場合には効果が飽和するので、これらの元素を含有させる場合には、Crは5.0%以下、Moは5.0%以下、Vは5.0%以下、Wは5.0%以下、Nbは0.1%以下、Tiは0.1%以下、Zrは0.2%以下、Hfは0.2%以下、Taは0.2%以下とする。また、上記の効果を得るためには、Crは0.01%以上、Moは0.01%以上、Vは0.01%以上、Wは0.01%以上、Nbは0.001%以上、Tiは0.001%以上、Zrは0.001%以上、Hfは0.001%以上、Taは0.001%以上含有させるのが好ましい。
Cr: 0 to 5.0%
Mo: 0 to 5.0%
V: 0 to 5.0%
W: 0 to 5.0%
Nb: 0 to 0.1%
Ti: 0 to 0.1%
Zr: 0 to 0.2%
Hf: 0 to 0.2%
Ta: 0 to 0.2%
Cr, Mo, V, W, Nb, Ti, Zr, Hf and Ta (hereinafter, these elements are also referred to as “first group elements”) are ferrite-forming elements and have a solid solution strengthening ability. Further, Nb, Ti, Zr, Hf and Ta have a strong ability to form carbonitrides and have the effect of forming fine carbonitrides during annealing and reducing solid solution C and solid solution N. For this reason, you may contain 1 or more types of these elements. However, when the content of each element is excessive, the effect is saturated. Therefore, when these elements are contained, Cr is 5.0% or less, Mo is 5.0% or less, and V is 5. 0% or less, W is 5.0% or less, Nb is 0.1% or less, Ti is 0.1% or less, Zr is 0.2% or less, Hf is 0.2% or less, Ta is 0.2% The following. In order to obtain the above effect, Cr is 0.01% or more, Mo is 0.01% or more, V is 0.01% or more, W is 0.01% or more, and Nb is 0.001% or more. , Ti is preferably 0.001% or more, Zr is 0.001% or more, Hf is 0.001% or more, and Ta is preferably 0.001% or more.

Cu:0〜3.0%
Ni:0〜5.0%
Co:0〜3.0%
Cu、NiおよびCoは、いずれも鋼の固溶強化に有効である。このため、これらの元素から選択される一種以上を含有させてもよい。ただし、過剰に含有させてもその効果は飽和するので、CuおよびCoはその上限を3.0%とし、Niはその上限を5.0%とする。また、上記の効果を得るためには、いずれの元素も0.1%以上含有させるのが好ましい。
Cu: 0 to 3.0%
Ni: 0 to 5.0%
Co: 0 to 3.0%
Cu, Ni and Co are all effective for solid solution strengthening of steel. For this reason, you may contain 1 or more types selected from these elements. However, even if contained excessively, the effect is saturated, so the upper limit of Cu and Co is 3.0%, and the upper limit of Ni is 5.0%. Moreover, in order to acquire said effect, it is preferable to contain 0.1% or more of any element.

Ca:0〜0.01%
Mg:0〜0.01%
REM:0〜0.50%
Ca、MgおよびREMは、鋼中のSと結合して硫化物を形成し、介在物の形状を改善して靭性等の機械的特性を改善するので、含有させてもよい。過剰に含有させてもこの効果は飽和するため、CaおよびMgの上限は、0.01%、REMの上限は0.50%とする。上記の効果を得るためには、いずれの元素も0.0001%以上含有させるのが好ましい。
Ca: 0 to 0.01%
Mg: 0 to 0.01%
REM: 0 to 0.50%
Ca, Mg, and REM combine with S in steel to form sulfides, improve the shape of inclusions and improve mechanical properties such as toughness, and therefore may be included. Since this effect is saturated even if contained excessively, the upper limit of Ca and Mg is 0.01%, and the upper limit of REM is 0.50%. In order to acquire said effect, it is preferable to contain 0.0001% or more of any element.

なお、REMとは、Sc、Y、およびランタノイドの合計17元素を指し、「REMの含有量」とは、REMが1種の場合はその含有量、2種以上の場合はそれらの合計含有量を指す。また、REMは一般的には複数種のREMの合金であるミッシュメタルとしても供給されている。このため、個別の元素を1種または2種以上添加してREMの量が上記の範囲となるように含有させてもよいし、例えば、ミッシュメタルの形で添加して、REMの量が上記の範囲となるように含有させてもよい。   Note that REM refers to a total of 17 elements of Sc, Y, and lanthanoids, and “REM content” refers to the content when there is one REM, and the total content when there are two or more. Point to. REM is also supplied as misch metal, which is generally an alloy of a plurality of types of REM. For this reason, one or more individual elements may be added and contained so that the amount of REM is in the above range. For example, the amount of REM may be added in the form of misch metal. You may make it contain so that it may become this range.

本発明の化学組成は、上記の各元素をそれぞれ規定される範囲で含有し、残部は、Feおよび不純物である。不純物とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料その他の要因により混入する成分を意味する。   The chemical composition of the present invention contains each of the above elements in a prescribed range, with the balance being Fe and impurities. An impurity means the component mixed by raw materials and other factors, such as an ore and a scrap, when manufacturing steel materials industrially.

2.金属組織
本発明鋼は、体積率で99%以上がフェライトである、フェライト単相組織を対象とする。フェライト以外の組織については、特に制約がないが、水素脆化の起点および進展経路として働くので、その量はできるだけ少ないことが好ましい。このため、析出物、介在物および金属間化合物(以下、「析出物等」という。)の合計量は0.5質量%以下とするのが好ましい。
2. Metal structure The steel of the present invention is intended for a ferrite single-phase structure in which 99% or more of the volume is ferrite. There is no particular restriction on the structure other than ferrite, but it works as a starting point and a development path for hydrogen embrittlement, so the amount is preferably as small as possible. For this reason, the total amount of precipitates, inclusions and intermetallic compounds (hereinafter referred to as “precipitates”) is preferably 0.5% by mass or less.

3.製造方法
本発明鋼は、通常の方法で溶製(溶解および鋳造)し、熱間鍛造し、必要に応じてさらに熱間圧延することにより製造することができる。ただし、偏析を除去し、金属間化合物の生成を抑えるために、熱間鍛造後に1200〜1300℃で1時間以上保持のソーキング熱処理を行うのが望ましい。最終熱処理の焼鈍温度は、フェライトの単相組織が得られる条件であればよいが、通常は、750〜850℃の温度で、5分以上均熱し、その後に水冷するのがよい。析出物等の生成を低減するためには、単にSiおよびAlの含有量を調整するだけでは足りず、水冷工程の800〜500℃間の冷却速度を10℃/s以上するのがよい。必要に応じて、焼鈍後に冷間圧延等を施し、強度を高めてもよい。
3. Production Method The steel of the present invention can be produced by melting (melting and casting) by a normal method, hot forging, and further hot rolling as necessary. However, in order to remove segregation and suppress the formation of intermetallic compounds, it is desirable to perform a soaking heat treatment held at 1200 to 1300 ° C. for 1 hour or longer after hot forging. The annealing temperature of the final heat treatment may be any conditions as long as a single-phase structure of ferrite can be obtained, but it is usually preferable to soak at a temperature of 750 to 850 ° C. for 5 minutes or more and then cool with water. In order to reduce the formation of precipitates and the like, it is not sufficient to simply adjust the contents of Si and Al, and the cooling rate between 800 and 500 ° C. in the water cooling step should be 10 ° C./s or more. If necessary, cold rolling or the like may be performed after annealing to increase the strength.

本発明の効果を検証した実施例を以下に説明する。   Examples in which the effects of the present invention are verified will be described below.

表1に示す化学組成を有する低合金鋼をそれぞれ50kg真空溶製した。得られた鋳片から、熱間鍛造、熱間圧延を経て、厚さ30mmの板材を得た後、800℃で60分加熱後水冷の焼鈍熱処理を行い、試験材(焼鈍材)を得た。また、焼鈍後に、減面率60〜94%の冷間圧延を施し、試験材(冷間圧延材)を得た。この際、引張強さが600〜900MPaの範囲に入るように、素材に応じて冷間圧延率を調整した。   Each of the low alloy steels having chemical compositions shown in Table 1 was vacuum-melted by 50 kg. From the obtained slab, a plate material having a thickness of 30 mm was obtained through hot forging and hot rolling, and then heated at 800 ° C. for 60 minutes and then subjected to a water-cooled annealing heat treatment to obtain a test material (annealed material). . Moreover, after annealing, cold rolling with a reduction in area of 60 to 94% was performed to obtain a test material (cold rolled material). Under the present circumstances, the cold rolling rate was adjusted according to the raw material so that tensile strength might be in the range of 600-900 MPa.

Figure 2019019382
Figure 2019019382

<析出物等の合計含有量の測定等>
SiおよびAlの合計固溶量、析出物等の合計含有量は、下記の手順により求めた。
試験材(焼鈍材)の中心部から、直径が1〜10mmで長さが50mmの寸法の抽出分析用丸棒試験片を採取した。この試験片を陽極電解してマトリックスを溶解させ、析出物等を抽出し、抽出された残渣を用いてICP(高周波誘導結合プラズマ)発光分析を行い、残渣中のSiおよびAlの合計含有量を測定する。陽極電解は、1質量%の酒石酸を含む電解液を用いて定電流電解により行った。この合計含有量を、陽極電解によるマトリックス溶解前後での試験片の質量差(つまり、試験片の溶解量)で除して、マトリックス中に析出したSiおよびAlの合計含有量(質量%)を算出した。鋼材のSiおよびAlの合計含有量から、析出したSiおよびAlの合計含有量を差し引いて、固溶したSiおよびAlの合計含有量を計算した。また、マトリックスを溶解させ得られた残渣の合計量を、陽極電解によるマトリックス溶解前後での試験片の質量差(試験片の溶解量)で除して、析出物等の合計含有量(質量%)を求めた。
<Measurement of total content of precipitates, etc.>
The total content of Si and Al, the total content of precipitates and the like were determined by the following procedure.
A round bar specimen for extraction analysis having a diameter of 1 to 10 mm and a length of 50 mm was collected from the center of the test material (annealed material). The test piece was anodically electrolyzed to dissolve the matrix, precipitates, etc. were extracted, ICP (high frequency inductively coupled plasma) emission analysis was performed using the extracted residue, and the total content of Si and Al in the residue was determined. taking measurement. The anodic electrolysis was performed by constant current electrolysis using an electrolytic solution containing 1% by mass of tartaric acid. Dividing this total content by the mass difference of the test piece before and after dissolution of the matrix by anodic electrolysis (that is, the dissolution amount of the test piece), the total content (mass%) of Si and Al deposited in the matrix is obtained. Calculated. The total content of precipitated Si and Al was subtracted from the total content of Si and Al in the steel material to calculate the total content of dissolved Si and Al. Also, the total amount of residues obtained by dissolving the matrix is divided by the difference in mass of the test piece before and after dissolution of the matrix by anodic electrolysis (dissolution amount of the test piece), and the total content (mass%) of precipitates, etc. )

<耐水素脆化特性の測定>
試験材(焼鈍材)および試験材(冷間圧延材)の板厚中心部から平行部の幅2mm×厚さ2mm、もしくは幅2mm×厚さ1mmの板状引張試験片を採取し、水溶液中での陰極チャージ下での低ひずみ速度引張試験により、耐水素脆化特性を評価した。溶液には常温の3%NaCl+3g/Lチオシアン酸アンモニウム水溶液を用いて、飽和カロメル電極に対して−1.2(V)で陰極水素チャージを行いつつ引張試験を行った。ひずみ速度は3×10−4(s−1)とした。陰極チャージ下の破断伸びを測定し、これを大気中で測定した破断伸びで除して、相対破断伸び(%)を算出した。相対破断伸びが大きい材料ほど、耐水素脆化特性に優れる。本実施形態においては、相対破断伸びが50%以上の試験材を耐水素脆化特性に優れると判断した。
<Measurement of hydrogen embrittlement resistance>
A plate-shaped tensile test piece having a width of 2 mm × thickness of 2 mm or a width of 2 mm × thickness of 1 mm from the center of the thickness of the test material (annealed material) and the test material (cold rolled material) is collected in an aqueous solution. The hydrogen embrittlement resistance was evaluated by a low strain rate tensile test under cathodic charging. A 3% NaCl + 3 g / L ammonium thiocyanate aqueous solution at room temperature was used as the solution, and a tensile test was performed while performing cathode hydrogen charging at −1.2 (V) against a saturated calomel electrode. The strain rate was 3 × 10 −4 (s −1 ). Relative elongation at break (%) was calculated by measuring the elongation at break under cathodic charge and dividing this by the elongation measured in air. The higher the relative elongation at break, the better the hydrogen embrittlement resistance. In the present embodiment, it was determined that a test material having a relative breaking elongation of 50% or more is excellent in hydrogen embrittlement resistance.

<機械的特性の測定>
試験材(焼鈍材)および試験材(冷間圧延材)から試験部の厚さが1〜2mm、試験部の幅が6mmの板状引張試験片を採取し、JIS Z 2241:2011に従って引張試験を行い、TS(引張強さ)を求めた。
<Measuring mechanical properties>
From the test material (annealed material) and test material (cold rolled material), a plate-shaped tensile test piece having a thickness of 1 to 2 mm and a width of 6 mm of the test part is collected and subjected to a tensile test according to JIS Z 2241: 2011. And TS (tensile strength) was determined.

表2に、焼鈍条件(冷却条件)と、上記の試験結果を示す。   Table 2 shows the annealing conditions (cooling conditions) and the test results.

Figure 2019019382
Figure 2019019382

表2に示すように、本発明例1〜27は、焼鈍材および冷間加工材のいずれにおいても、相対破断伸びは50%以上であり、優れた耐水素脆化特性を有していた。一方、比較例28および29は、Fn1およびFn2の値が低く、耐水素脆化特性に劣っていた。比較例30および31は、Fn1値は本発明で規定される範囲を満たしていたが、炭化物(主としてMo炭化物)が生成したために、Fn2の値が1.0未満であり、耐水素脆化特性に劣っていた。比較例32は、C含有量が0.01%を超えており、焼鈍時に未固溶の粗大炭化物(主として鉄炭化物)が残存しており、耐水素脆化特性に劣っていた。   As shown in Table 2, Inventive Examples 1 to 27 had an excellent hydrogen embrittlement resistance with a relative breaking elongation of 50% or more in both the annealed material and the cold worked material. On the other hand, Comparative Examples 28 and 29 had low values of Fn1 and Fn2, and were inferior in hydrogen embrittlement resistance. In Comparative Examples 30 and 31, the Fn1 value satisfied the range defined by the present invention, but because carbide (mainly Mo carbide) was generated, the value of Fn2 was less than 1.0, and the hydrogen embrittlement resistance property It was inferior to. In Comparative Example 32, the C content exceeded 0.01%, undissolved coarse carbide (mainly iron carbide) remained during annealing, and the hydrogen embrittlement resistance was inferior.

本発明によれば、耐水素脆化特性に優れた低合金鋼が得られる。   According to the present invention, a low alloy steel excellent in hydrogen embrittlement resistance can be obtained.

Claims (3)

質量%で、
C:0.01%以下と、
Si:0.05〜10.0%およびAl:0.01〜10.0%の両方またはいずれか一方と、
P:0.025%以下、
S:0.010%以下、
O:0.005%以下、
N:0.008%以下、
Mn:0〜1.0%、
B:0〜0.003%、
Cr:0〜5.0%、
Mo:0〜5.0%、
V:0〜5.0%、
W:0〜5.0%、
Nb:0〜0.1%、
Ti:0〜0.1%、
Zr:0〜0.2%、
Hf:0〜0.2%、
Ta:0〜0.2%、
Cu:0〜3.0%、
Ni:0〜5.0%、
Co:0〜3.0%、
Ca:0〜0.01%、
Mg:0〜0.01%、
REM:0〜0.50%と、
残部:Feおよび不純物とである化学組成を有し、
下記(1)式から求められるFn1が1.0〜10.0であり、
下記(2)式から求められるFn2が1.0〜10.0である、
耐水素脆化特性に優れる低合金鋼。
Fn1 = Si+Al (質量%)(1)
Fn2 = Si+Al (固溶分の質量%)(2)
ただし、(1)式中の各元素記号は、低合金鋼中に含まれる各元素の含有量(質量%)を意味し、(2)式中の各元素記号は、低合金鋼中に固溶状態で存在する各元素の含有量(質量%)を意味する。
% By mass
C: 0.01% or less,
Si: 0.05 to 10.0% and Al: 0.01 to 10.0% or either one of them,
P: 0.025% or less,
S: 0.010% or less,
O: 0.005% or less,
N: 0.008% or less,
Mn: 0 to 1.0%,
B: 0 to 0.003%,
Cr: 0 to 5.0%,
Mo: 0 to 5.0%,
V: 0 to 5.0%,
W: 0 to 5.0%,
Nb: 0 to 0.1%,
Ti: 0 to 0.1%,
Zr: 0 to 0.2%,
Hf: 0 to 0.2%,
Ta: 0 to 0.2%,
Cu: 0 to 3.0%,
Ni: 0 to 5.0%,
Co: 0 to 3.0%,
Ca: 0 to 0.01%,
Mg: 0 to 0.01%,
REM: 0 to 0.50%,
The balance: having a chemical composition that is Fe and impurities,
Fn1 calculated | required from the following (1) Formula is 1.0-10.0,
Fn2 calculated | required from following (2) Formula is 1.0-10.0,
Low alloy steel with excellent hydrogen embrittlement resistance.
Fn1 = Si + Al (mass%) (1)
Fn2 = Si + Al (mass% of solid solution content) (2)
However, each element symbol in the formula (1) means the content (mass%) of each element contained in the low alloy steel, and each element symbol in the formula (2) is solid in the low alloy steel. It means content (mass%) of each element which exists in a solution state.
質量%で、
Mn:0.1〜1.0%、
B:0.0003〜0.003%
Cr:0.01〜5.0%、
Mo:0.01〜5.0%、
V:0.01〜5.0%、
W:0.01〜5.0%、
Nb:0.001〜0.1%、
Ti:0.001〜0.1%、
Zr:0.001〜0.2%、
Hf:0.001〜0.2%、
Ta:0.001〜0.2%、
Cu:0.1〜3.0%、
Ni:0.1〜5.0%、
Co:0.1〜3.0%、
Ca:0.0001〜0.01%、
Mg:0.0001〜0.01%および
REM:0.0001〜0.50%
から選択される一種以上を含有する、
請求項1に記載の低合金鋼。
% By mass
Mn: 0.1 to 1.0%,
B: 0.0003 to 0.003%
Cr: 0.01 to 5.0%,
Mo: 0.01 to 5.0%,
V: 0.01-5.0%,
W: 0.01-5.0%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Zr: 0.001 to 0.2%,
Hf: 0.001 to 0.2%,
Ta: 0.001 to 0.2%,
Cu: 0.1 to 3.0%,
Ni: 0.1 to 5.0%,
Co: 0.1-3.0%
Ca: 0.0001 to 0.01%,
Mg: 0.0001 to 0.01% and REM: 0.0001 to 0.50%
Containing one or more selected from
The low alloy steel according to claim 1.
析出物、介在物および金属間化合物の合計量が0.5質量%以下である、
請求項1または2に記載の低合金鋼。
The total amount of precipitates, inclusions and intermetallic compounds is 0.5% by mass or less,
The low alloy steel according to claim 1 or 2.
JP2017139290A 2017-07-18 2017-07-18 Low alloy steel Active JP6972722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017139290A JP6972722B2 (en) 2017-07-18 2017-07-18 Low alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017139290A JP6972722B2 (en) 2017-07-18 2017-07-18 Low alloy steel

Publications (2)

Publication Number Publication Date
JP2019019382A true JP2019019382A (en) 2019-02-07
JP6972722B2 JP6972722B2 (en) 2021-11-24

Family

ID=65352703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017139290A Active JP6972722B2 (en) 2017-07-18 2017-07-18 Low alloy steel

Country Status (1)

Country Link
JP (1) JP6972722B2 (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134604A (en) * 1994-11-09 1996-05-28 Nkk Corp Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JPH09298318A (en) * 1996-05-02 1997-11-18 Katsutoshi Ono Thermoelectric conversion element
JPH10299803A (en) * 1997-04-22 1998-11-13 Kobe Steel Ltd High strength spring favourable in environmental brittleness resistance
JP2000045025A (en) * 1998-05-29 2000-02-15 Sumitomo Special Metals Co Ltd Production of rolled silicon steel
JP2005029889A (en) * 2003-06-18 2005-02-03 Nippon Steel Corp High strength low specific gravity steel sheet excellent in ductility, and its production method
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2005273004A (en) * 2004-02-24 2005-10-06 Nippon Steel Corp Low-specific-gravity steel sheet excellent in ductility and its production method
JP2006176844A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor
JP2012126943A (en) * 2010-12-14 2012-07-05 Sumitomo Metal Ind Ltd Cold-rolled steel sheet for resistance welding, and method for producing the same
JP2014080676A (en) * 2012-09-27 2014-05-08 Hitachi Metals Ltd PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP2014198874A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material excellent in corrosion resistance and magnetic properties and method of producing the same
JP2014237879A (en) * 2013-06-07 2014-12-18 国立大学法人横浜国立大学 Method of producing solid-solution alloy, solid-solution alloy, electrical steel sheet and electrical bar steel
JP2015045086A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Steel sheet excellent in corrosion resistance of cut end face and manufacturing method therefor
CN104805377A (en) * 2015-05-08 2015-07-29 南京理工大学 Low-alloy ultrahigh-strength steel and preparation method thereof
JP2016056418A (en) * 2014-09-10 2016-04-21 株式会社神戸製鋼所 Steel material for cold working

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134604A (en) * 1994-11-09 1996-05-28 Nkk Corp Soft-magnetic material, excellent in magnetic flux density, coercive force, and corrosion resistance and having high electric resistance, and its production
JPH09298318A (en) * 1996-05-02 1997-11-18 Katsutoshi Ono Thermoelectric conversion element
JPH10299803A (en) * 1997-04-22 1998-11-13 Kobe Steel Ltd High strength spring favourable in environmental brittleness resistance
JP2000045025A (en) * 1998-05-29 2000-02-15 Sumitomo Special Metals Co Ltd Production of rolled silicon steel
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP2005029889A (en) * 2003-06-18 2005-02-03 Nippon Steel Corp High strength low specific gravity steel sheet excellent in ductility, and its production method
JP2005273004A (en) * 2004-02-24 2005-10-06 Nippon Steel Corp Low-specific-gravity steel sheet excellent in ductility and its production method
JP2006176844A (en) * 2004-12-22 2006-07-06 Nippon Steel Corp High-strength and low-density steel sheet superior in ductility and fatigue characteristic, and manufacturing method therefor
JP2012126943A (en) * 2010-12-14 2012-07-05 Sumitomo Metal Ind Ltd Cold-rolled steel sheet for resistance welding, and method for producing the same
JP2014080676A (en) * 2012-09-27 2014-05-08 Hitachi Metals Ltd PRODUCTION METHOD OF Fe-Al BASED ALLOY BAND-STEEL
JP2014198874A (en) * 2013-03-29 2014-10-23 株式会社神戸製鋼所 Steel material excellent in corrosion resistance and magnetic properties and method of producing the same
JP2014237879A (en) * 2013-06-07 2014-12-18 国立大学法人横浜国立大学 Method of producing solid-solution alloy, solid-solution alloy, electrical steel sheet and electrical bar steel
JP2015045086A (en) * 2013-07-31 2015-03-12 Jfeスチール株式会社 Steel sheet excellent in corrosion resistance of cut end face and manufacturing method therefor
JP2016056418A (en) * 2014-09-10 2016-04-21 株式会社神戸製鋼所 Steel material for cold working
CN104805377A (en) * 2015-05-08 2015-07-29 南京理工大学 Low-alloy ultrahigh-strength steel and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PALM M.: ""Concepts derived from phase diagram studies for the strengthening of Fe-Al-based alloys"", INTERMETALLICS, vol. 13, JPN6021020300, 26 April 2005 (2005-04-26), pages 1286 - 1295, ISSN: 0004516480 *

Also Published As

Publication number Publication date
JP6972722B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
KR101868761B1 (en) Austenitic stainless steel and method of manufacturing the same
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
JP4427010B2 (en) High strength tempered steel with excellent delayed fracture resistance and method for producing the same
JP2005350754A (en) Low alloy steel for oil well tube having excellent sulfide stress cracking resistance
KR20060127107A (en) Austenitic-ferritic stainless steel
JP6427272B2 (en) bolt
JPWO2020162616A1 (en) Bolts and steel materials for bolts
JP2014001442A (en) Weather resistant bolt steel
JP2019173160A (en) Low alloy steel excellent in hydrogen embrittlement resistance
JP2021127517A (en) Austenitic stainless steel material
JP6520617B2 (en) Austenitic stainless steel
EP3202941B1 (en) Steel material, and oil-well steel pipe for expansion
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JP6729265B2 (en) Low alloy steel
JP6459704B2 (en) Steel for cold forging parts
JP6972722B2 (en) Low alloy steel
JP4321434B2 (en) Low alloy steel and manufacturing method thereof
JP2006070327A (en) High-strength low alloy steel with hydrogen intrusion suppressing effect
JP6601140B2 (en) High strength bolt and steel for high strength bolt
JP2020128592A (en) Bolt, steel for bolt, and manufacturing method of bolt
JP7273295B2 (en) Steel for bolts, bolts, and method for manufacturing bolts
JP7131318B2 (en) austenitic stainless steel
JP2018162507A (en) High-strength oil well steel and oil well pipe
JP2009249731A (en) Steel for high strength bolt excellent in weatherability and delayed fracture resistance characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151