JP2019019154A - Lubricant composition - Google Patents

Lubricant composition Download PDF

Info

Publication number
JP2019019154A
JP2019019154A JP2017135672A JP2017135672A JP2019019154A JP 2019019154 A JP2019019154 A JP 2019019154A JP 2017135672 A JP2017135672 A JP 2017135672A JP 2017135672 A JP2017135672 A JP 2017135672A JP 2019019154 A JP2019019154 A JP 2019019154A
Authority
JP
Japan
Prior art keywords
meth
mass
acrylate
molecular weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017135672A
Other languages
Japanese (ja)
Other versions
JP6855342B2 (en
Inventor
一生 田川
Kazuo Tagawa
一生 田川
成 小山
Shigeru Koyama
成 小山
彰 高木
Akira Takagi
彰 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2017135672A priority Critical patent/JP6855342B2/en
Publication of JP2019019154A publication Critical patent/JP2019019154A/en
Application granted granted Critical
Publication of JP6855342B2 publication Critical patent/JP6855342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a lubricant composition that contains a poly(meth)acrylate viscosity index improver and has improved sludge resistance.SOLUTION: The lubricant composition comprises a lubricant base oil and a (meth)acrylate polymer comprising a structural unit (A) represented by formula (1) and a structural unit (B) represented by formula (2), with the value of a parameter a represented by formula (3) being 0.12 or less. In formula (1), Rrepresents H or a methyl group, and Rrepresents a 1-4C straight chain or branched chain alkyl group. In formula (2), Rrepresents H or a methyl group, and Rrepresents a 16-24C straight chain or branched chain alkyl group. In formula (3), i.e., a=log(M(t))-log(M(t)), M(t) obtained by GPC represents a molecular weight at the peak of the molecular weight distribution, and M(t) represents a molecular weight that gives strength which is one half of the strength of M(t).SELECTED DRAWING: None

Description

本発明は潤滑油組成物に関し、特に内燃機関用潤滑油組成物に関する。   The present invention relates to a lubricating oil composition, and more particularly to a lubricating oil composition for an internal combustion engine.

一般に潤滑油は、摺動面の間に油膜を形成することにより、摺動面どうしが直接に接触することを防止する(流体潤滑)。流体潤滑条件においては、摺動面の間に油膜が維持されない潤滑条件(境界潤滑)におけるよりも大幅に摩擦および摩耗が低減される。潤滑油の粘度が高いほど油膜が維持されやすいが、同時に摺動抵抗も増大するため省エネルギー性の点では不利となる。   In general, the lubricating oil forms an oil film between the sliding surfaces to prevent the sliding surfaces from directly contacting each other (fluid lubrication). In the fluid lubrication condition, friction and wear are greatly reduced as compared with the lubrication condition (boundary lubrication) in which the oil film is not maintained between the sliding surfaces. The higher the viscosity of the lubricating oil, the easier it is to maintain the oil film, but at the same time the sliding resistance increases, which is disadvantageous in terms of energy saving.

例えば自動車エンジン等の内燃機関の潤滑に用いられる潤滑油組成物(内燃機関用潤滑油組成物)については、省燃費性を向上させるために、低粘度の基油を用いつつ、ポリ(メタ)アクリレート等の粘度指数向上剤の添加によって高温における基油の粘度低下を補うことが提案されている。   For example, a lubricating oil composition (lubricating oil composition for an internal combustion engine) used for lubricating an internal combustion engine such as an automobile engine is used in order to improve fuel economy, while using a low-viscosity base oil. It has been proposed to compensate for the base oil viscosity drop at high temperatures by the addition of viscosity index improvers such as acrylates.

特開2015−013957号公報Japanese Patent Laying-Open No. 2015-013957 特開2015−013962号公報Japanese Patent Laying-Open No. 2015-013962 特開2015−013963号公報Japanese Unexamined Patent Publication No. 2015-013963 特開2015−013964号公報Japanese Patent Laid-Open No. 2015-013964 特表2003−515630号公報Special Table 2003-515630 国際公開2014/017554号パンフレットInternational Publication No. 2014/017554 Pamphlet 特表2008−518051公報Special table 2008-518051 gazette 特表2007−512413公報Special table 2007-512413 gazette 特開2007−084658公報JP 2007-084658 A 特公平7−25859号公報Japanese Patent Publication No. 7-25859 特開平11−335432号公報JP-A-11-335432 特開平6−93060号公報JP-A-6-93060 特許第4681187号公報Japanese Patent No. 4681187

耐熱性が不十分な潤滑油を高温下で使用すると、熱で変質した生成物(炭質物)が不溶分として析出しやすい。そのため例えば内燃機関用潤滑油等の、高温になる機械要素を潤滑する潤滑油には、耐スラッジ性も要求される。   When a lubricating oil with insufficient heat resistance is used at a high temperature, a product (carbonaceous material) altered by heat tends to precipitate as an insoluble matter. Therefore, sludge resistance is also required for lubricating oil that lubricates high temperature machine elements such as lubricating oil for internal combustion engines.

本発明は、ポリ(メタ)アクリレート系粘度指数向上剤を含有する潤滑油組成物であって、向上した耐スラッジ性を有する潤滑油組成物を提供することを課題とする。   An object of the present invention is to provide a lubricating oil composition containing a poly (meth) acrylate viscosity index improver and having improved sludge resistance.

本発明の一の実施形態は、潤滑油基油と、(A)下記一般式(1)で表される構造単位を、重合体全量基準で25〜35質量%と、下記一般式(2)で表される構造単位を、重合体全量基準で25〜35質量%とを含み、重量平均分子量が50,000〜500,000であり、下記式(3)で表されるパラメタaの値が0.12以下である、(メタ)アクリレート系重合体とを含むことを特徴とする、潤滑油組成物である。   In one embodiment of the present invention, a lubricating base oil, (A) a structural unit represented by the following general formula (1), 25 to 35 mass% based on the total amount of the polymer, and the following general formula (2) The structural unit represented by the formula (3) includes 25 to 35% by mass based on the total amount of the polymer, the weight average molecular weight is 50,000 to 500,000, and the value of the parameter a represented by the following formula (3) is It is a lubricating oil composition characterized by including the (meth) acrylate type polymer which is 0.12 or less.

(式(1)中、Rは水素またはメチル基を表し、Rは炭素数1〜4の直鎖または分岐鎖アルキル基を表す。) (In formula (1), R 1 represents hydrogen or a methyl group, and R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms.)

(式(2)中、Rは水素またはメチル基を表し、Rは炭素数16〜24の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を表す。) (In formula (2), R 3 represents hydrogen or a methyl group, R 4 is a linear alkyl group having 16 to 24 carbon atoms or a C 16 to 24 of it also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)

a=Log(M(t1/2))−Log(M(t)) …(3)
(式(3)中、M(t)は上記(メタ)アクリレート系重合体のゲル浸透クロマトグラフィー測定により得られるポリスチレン換算分子量の微分分子量分布曲線におけるピークトップ分子量を表し;M(t1/2)は上記微分分子量分布曲線において分子量M(t)における強度の1/2の強度を与える高分子量側のポリスチレン換算分子量を表す。)
a = Log (M h (t 1/2 )) − Log (M (t)) (3)
(In Formula (3), M (t) represents the peak top molecular weight in the differential molecular weight distribution curve of the polystyrene conversion molecular weight obtained by the gel permeation chromatography measurement of the said (meth) acrylate type polymer; M h (t 1 / 2 ) represents the molecular weight in terms of polystyrene on the high molecular weight side giving half the strength of the molecular weight M (t) in the differential molecular weight distribution curve.)

本明細書中において「(メタ)アクリル」とは「メタクリル」と「アクリル」との総称を意味し、「(メタ)アクリレート」とは「メタクリレート」と「アクリレート」との総称を意味する。またLogは常用対数(底が10の対数)を意味する。また本明細書において、分岐鎖アルキル基における主鎖および側鎖の決定は、有機化合物の命名法(IUPAC命名法)に従うものとする。   In this specification, “(meth) acryl” means a generic name of “methacryl” and “acryl”, and “(meth) acrylate” means a generic name of “methacrylate” and “acrylate”. Log means a common logarithm (base 10 logarithm). In the present specification, the main chain and side chain in the branched alkyl group are determined according to the organic compound nomenclature (IUPAC nomenclature).

一の好ましい実施形態において、上記(メタ)アクリレート重合体は、さらに下記式(4)で表される構造単位を、重合体全量基準で30〜50質量%含む。   In one preferable embodiment, the (meth) acrylate polymer further contains 30 to 50% by mass of a structural unit represented by the following formula (4) based on the total amount of the polymer.

(式(4)中、Rは水素またはメチル基を表し、Rは炭素数6〜14の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を表す。) (In the formula (4), R 5 represents hydrogen or a methyl group, R 6 is a linear alkyl group having 6 to 14 carbon atoms or 6 to 14 carbon atoms is also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)

一の好ましい実施形態において、上記(メタ)アクリレート系重合体は、1種以上の(メタ)アクリレート系重合性単量体を含む原料をリビングアニオン重合によって重合させることによって得られる重合体であり、原料中の水酸基を有する化合物の含有量が、該原料中の1種以上の(メタ)アクリレート系重合性単量体100質量部に対して0.2質量部以下である。   In one preferred embodiment, the (meth) acrylate polymer is a polymer obtained by polymerizing a raw material containing one or more (meth) acrylate polymerizable monomers by living anionic polymerization, Content of the compound which has a hydroxyl group in a raw material is 0.2 mass part or less with respect to 100 mass parts of 1 or more types of (meth) acrylate type | system | group polymerizable monomer in this raw material.

本発明によれば、ポリ(メタ)アクリレート系粘度指数向上剤を含有する潤滑油組成物であって、向上した耐スラッジ性を有する潤滑油組成物を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it is a lubricating oil composition containing a poly (meth) acrylate type viscosity index improver, Comprising: The lubricating oil composition which has the improved sludge resistance can be provided.

重合体のGPC測定により得られるポリスチレン換算の微分分子量曲線における、M(t)、M(t1/2)、M(t1/2)、a値、及び半値全幅(b値)を示す概略図である。M (t), M h (t 1/2 ), M l (t 1/2 ), a value, and full width at half maximum (b value) in a polystyrene-equivalent differential molecular weight curve obtained by GPC measurement of the polymer FIG.

以下、本発明について詳述する。なお、特に断らない限り、数値A及びBについて「A〜B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また「又は」及び「若しくは」の語は、特に断りのない限り論理和を意味するものとする。   Hereinafter, the present invention will be described in detail. Unless otherwise specified, the notation “A to B” for the numerical values A and B means “A to B”. In this notation, when a unit is attached to only the numerical value B, the unit is also applied to the numerical value A. Further, the terms “or” and “or” mean logical sums unless otherwise specified.

<潤滑油基油>
潤滑油基油としては、特に制限されず、通常の潤滑油に使用される潤滑油基油を使用できる。具体的には、鉱油系基油、合成系基油、又はこれらの中から選ばれる2種以上の潤滑油基油を任意の割合で混合した混合基油等を使用できる。
<Lubricant base oil>
The lubricating base oil is not particularly limited, and a lubricating base oil used for ordinary lubricating oil can be used. Specifically, a mineral base oil, a synthetic base oil, or a mixed base oil obtained by mixing two or more kinds of lubricating base oils selected from these at any ratio can be used.

鉱油系基油としては、例えば、原油を常圧蒸留および/または減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理から選ばれる1種以上の処理により精製したパラフィン系鉱油、およびノルマルパラフィン系基油、イソパラフィン系基油、ならびにこれらの混合物等を挙げることができる。   Examples of the mineral oil base oil include a solvent oil removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrogen removal of a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and / or vacuum distillation. Examples thereof include paraffinic mineral oil refined by one or more treatments selected from purification treatments such as chemical purification, sulfuric acid washing, and clay treatment, normal paraffin base oils, isoparaffin base oils, and mixtures thereof.

鉱油系基油の好ましい例としては、以下に示す基油(1)〜(8)を原料とし、この原料油および/またはこの原料油から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げることができる。
(1)パラフィン基系原油および/または混合基系原油の常圧蒸留による留出油;
(2)パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO);
(3)潤滑油脱ろう工程により得られるワックス(スラックワックス等)および/またはガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、GTLワックス等);
(4)基油(1)〜(3)から選ばれる1種または2種以上の混合油および/または当該混合油のマイルドハイドロクラッキング処理油;
(5)基油(1)〜(4)から選ばれる2種以上の混合油;
(6)基油(1)、(2)、(3)、(4)または(5)の脱れき油(DAO);
(7)基油(6)のマイルドハイドロクラッキング処理油(MHC);
(8)基油(1)〜(7)から選ばれる2種以上の混合油。
As a preferred example of the mineral oil base oil, the following base oils (1) to (8) are used as raw materials, and the raw oil and / or the lubricating oil fraction recovered from the raw oils are obtained by a predetermined refining method. The base oil obtained by refine | purifying and collect | recovering lubricating oil fractions can be mentioned.
(1) Distilled oil obtained by atmospheric distillation of paraffin-based crude oil and / or mixed-base crude oil;
(2) Distilled oil (WVGO) by distillation under reduced pressure of paraffin base crude oil and / or mixed base crude oil at atmospheric distillation residue;
(3) Wax (such as slack wax) obtained by the lubricating oil dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-liquid (GTL) process or the like;
(4) One or more mixed oils selected from the base oils (1) to (3) and / or mild hydrocracking treatment oils of the mixed oils;
(5) Two or more mixed oils selected from base oils (1) to (4);
(6) Base oil (1), (2), (3), (4) or (5) de-oiling oil (DAO);
(7) Mild hydrocracking treatment oil (MHC) of base oil (6);
(8) Two or more mixed oils selected from base oils (1) to (7).

なお、上記所定の精製方法としては、水素化分解、水素化仕上げなどの水素化精製;フルフラール溶剤抽出などの溶剤精製;溶剤脱ろうや接触脱ろうなどの脱ろう;酸性白土や活性白土などによる白土精製;硫酸洗浄、苛性ソーダ洗浄などの薬品(酸またはアルカリ)洗浄などが好ましい。本発明では、これらの精製方法のうちの1種を単独で行ってもよく、2種以上を組み合わせて行ってもよい。また、2種以上の精製方法を組み合わせる場合、その順序は特に制限されず、適宜選定することができる。   The above-mentioned predetermined purification methods include hydrorefining such as hydrocracking and hydrofinishing; solvent refining such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; acid clay and activated clay White clay refining; chemical (acid or alkali) cleaning such as sulfuric acid cleaning and caustic soda cleaning are preferred. In the present invention, one of these purification methods may be performed alone, or two or more may be combined. Moreover, when combining 2 or more types of purification methods, the order in particular is not restrict | limited, It can select suitably.

更に、鉱油系基油としては、上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分について所定の処理を行うことにより得られる下記基油(9)または(10)が特に好ましい。
(9)上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化分解し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理をした後に蒸留することによって得られる水素化分解基油;
(10)上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化異性化し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろう処理をしたあとに蒸留することによって得られる水素化異性化基油。脱ろう工程としては接触脱ろう工程を経て製造された基油が好ましい。
Furthermore, as the mineral oil-based base oil, the following base oil obtained by subjecting a base oil selected from the base oils (1) to (8) or a lubricating oil fraction recovered from the base oil to a predetermined treatment ( 9) or (10) is particularly preferred.
(9) The base oil selected from the base oils (1) to (8) or the lubricating oil fraction recovered from the base oil is hydrocracked and recovered from the product or the product by distillation or the like. Hydrocracking base oil obtained by performing dewaxing treatment such as solvent dewaxing or catalytic dewaxing on the lube oil fraction, or by distillation after the dewaxing treatment;
(10) A base oil selected from the base oils (1) to (8) or a lubricating oil fraction recovered from the base oil is hydroisomerized and recovered from the product or the product by distillation or the like. Hydroisomerized base oil obtained by subjecting a lubricating oil fraction to dewaxing such as solvent dewaxing or catalytic dewaxing, or distillation after the dewaxing treatment. As the dewaxing step, a base oil produced through a contact dewaxing step is preferable.

また、上記(9)または(10)の潤滑油基油を得るに際して、必要に応じて溶剤精製処理および/または水素化仕上げ処理工程を適当な段階で更に行ってもよい。   Moreover, when obtaining the lubricating base oil of (9) or (10) above, a solvent refining treatment and / or a hydrofinishing treatment step may be further carried out at an appropriate stage, if necessary.

また、上記水素化分解・水素化異性化に使用される触媒は特に制限されないが、分解活性を有する複合酸化物(例えば、シリカアルミナ、アルミナボリア、シリカジルコニアなど)または当該複合酸化物の1種類以上を組み合わせてバインダーで結着させたものを担体とし、水素化能を有する金属(例えば周期律表第VIa族の金属や第VIII族の金属などの1種類以上)を担持させた水素化分解触媒、あるいはゼオライト(例えばZSM−5、ゼオライトベータ、SAPO−11など)を含む担体に第VIII族の金属のうち少なくとも1種類以上を含む水素化能を有する金属を担持させた水素化異性化触媒が好ましく使用される。水素化分解触媒および水素化異性化触媒は、積層または混合などにより組み合わせて用いてもよい。   The catalyst used for the hydrocracking / hydroisomerization is not particularly limited, but a composite oxide having cracking activity (for example, silica alumina, alumina boria, silica zirconia, etc.) or one kind of the composite oxide. Hydrogenolysis with a combination of the above combined with a binder and supporting a metal having hydrogenation ability (for example, one or more metals such as Group VIa metal or Group VIII metal in the periodic table) Hydroisomerization catalyst in which a catalyst or a support containing zeolite (for example, ZSM-5, zeolite beta, SAPO-11, etc.) is loaded with a metal having a hydrogenation ability containing at least one of Group VIII metals Are preferably used. The hydrocracking catalyst and the hydroisomerization catalyst may be used in combination by stacking or mixing.

水素化分解・水素化異性化の際の反応条件は特に制限されないが、水素分圧0.1〜20MPa、平均反応温度150〜450℃、LHSV0.1〜3.0hr−1、水素/油比50〜20000scf/bとすることが好ましい。 The reaction conditions in the hydrocracking / hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C., the LHSV is 0.1 to 3.0 hr −1 , the hydrogen / oil ratio. It is preferable to set it as 50-20000 scf / b.

合成系基油としては、例えば、ポリブテン又はその水素化物;1−オクテンオリゴマー、1−デセンオリゴマー等のポリ−α−オレフィン又はその水素化物;ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール−2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等のポリオールエステル;アルキルナフタレン、アルキルベンゼン等の芳香族系合成油、及びこれらの混合物等を例示できる。   Synthetic base oils include, for example, polybutene or hydrides thereof; poly-α-olefins such as 1-octene oligomers and 1-decene oligomers or hydrides thereof; ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate Diesters such as ditridecyl adipate and di-2-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol-2-ethylhexanoate, pentaerythritol pelargonate; alkylnaphthalene, Aromatic synthetic oils such as alkylbenzene, and mixtures thereof can be exemplified.

潤滑油基油の100℃における動粘度は、好ましくは2.0〜8.0mm/sである。また、5mm/s以下であることがより好ましく、さらに好ましくは4.5mm/s以下、特に好ましくは4.4mm/s以下、最も好ましくは4.3mm/s以下である。一方、当該100℃における動粘度は、2.0mm/s以上であることがより好ましく、さらに好ましくは2.5mm/s以上、特に好ましくは3.0mm/s以上、最も好ましくは3.3mm/s以上である。潤滑油基油の100℃における動粘度が8.0mm/sを超える場合には、潤滑油組成物の低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、2.0mm/s未満の場合には潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。なお本明細書において、「100℃における動粘度」とは、ASTM D−445に規定される100℃での動粘度を意味する。 The kinematic viscosity at 100 ° C. of the lubricating base oil is preferably 2.0 to 8.0 mm 2 / s. Further, more preferably not more than 5 mm 2 / s, more preferably 4.5 mm 2 / s or less, particularly preferably 4.4 mm 2 / s or less, and most preferably not more than 4.3 mm 2 / s. On the other hand, the kinematic viscosity at 100 ° C. is more preferably 2.0 mm 2 / s or more, more preferably 2.5 mm 2 / s or more, particularly preferably 3.0 mm 2 / s or more, most preferably 3 .3 mm 2 / s or more. When the kinematic viscosity at 100 ° C. of the lubricating base oil exceeds 8.0 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may deteriorate, and sufficient fuel economy may not be obtained. If it is less than 0.0 mm 2 / s, the formation of an oil film at the lubrication site is insufficient, resulting in poor lubricity, and the evaporation loss of the lubricating oil composition may be increased. In the present specification, “kinematic viscosity at 100 ° C.” means a kinematic viscosity at 100 ° C. as defined in ASTM D-445.

潤滑油基油の40℃における動粘度は、好ましくは40mm/s以下、より好ましくは30mm/s以下、さらに好ましくは25mm/s以下、特に好ましくは22mm/s以下、最も好ましくは20mm/s以下である。一方、当該40℃における動粘度は、好ましくは6.0mm/s以上、より好ましくは8.0mm/s以上、さらに好ましくは10mm/s以上、特に好ましくは12mm/s以上、最も好ましくは14mm/s以上である。潤滑油基油の40℃における動粘度が40mm/sを超える場合には、潤滑油組成物の低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、6.0mm/s未満の場合には潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。なお本明細書において「40℃における動粘度」とは、ASTM D−445に規定される40℃での動粘度を意味する。 The kinematic viscosity at 40 ° C. of the lubricating base oil is preferably 40 mm 2 / s or less, more preferably 30 mm 2 / s or less, still more preferably 25 mm 2 / s or less, particularly preferably 22 mm 2 / s or less, and most preferably 20 mm 2 / s or less. On the other hand, the kinematic viscosity at 40 ° C. is preferably 6.0 mm 2 / s or more, more preferably 8.0 mm 2 / s or more, further preferably 10 mm 2 / s or more, particularly preferably 12 mm 2 / s or more, most preferably Preferably it is 14 mm < 2 > / s or more. When the kinematic viscosity at 40 ° C. of the lubricating base oil exceeds 40 mm 2 / s, the low-temperature viscosity characteristics of the lubricating oil composition may be deteriorated, and sufficient fuel economy may not be obtained. If it is less than 2 / s, the oil film formation at the lubrication site is insufficient, so that the lubricity is inferior, and the evaporation loss of the lubricating oil composition may increase. In the present specification, “kinematic viscosity at 40 ° C.” means the kinematic viscosity at 40 ° C. as defined in ASTM D-445.

潤滑油基油の粘度指数は、100以上であることが好ましい。より好ましくは110以上、さらに好ましくは115以上、特に好ましくは120以上、最も好ましくは125以上である。粘度指数が100未満であると、潤滑油組成物の粘度−温度特性および熱・酸化安定性、揮発防止性が悪化するだけでなく、摩擦係数が上昇する傾向にあり、また、摩耗防止性が低下する傾向にある。なお、本明細書において粘度指数とは、JIS K 2283−1993に準拠して測定された粘度指数を意味する。   The viscosity index of the lubricating base oil is preferably 100 or more. More preferably, it is 110 or more, More preferably, it is 115 or more, Especially preferably, it is 120 or more, Most preferably, it is 125 or more. When the viscosity index is less than 100, not only the viscosity-temperature characteristics, thermal / oxidative stability and volatilization prevention property of the lubricating oil composition deteriorate, but also the friction coefficient tends to increase, and the wear prevention property It tends to decrease. In the present specification, the viscosity index means a viscosity index measured in accordance with JIS K 2283-1993.

潤滑油基油の15℃における密度(ρ15)は、好ましくは0.860以下、より好ましくは0.850以下、さらに好ましくは0.840以下、特に好ましくは0.835以下である。なお、本明細書において15℃における密度とは、JIS K 2249−1995に準拠して15℃において測定された密度を意味する。 The density (ρ 15 ) of the lubricating base oil at 15 ° C. is preferably 0.860 or less, more preferably 0.850 or less, still more preferably 0.840 or less, and particularly preferably 0.835 or less. In this specification, the density at 15 ° C. means the density measured at 15 ° C. in accordance with JIS K 2249-1995.

潤滑油基油の流動点は、好ましくは−10℃以下、より好ましくは−12.5℃以下、更に好ましくは−15℃以下、最も好ましくは−17.5℃以下である。流動点が上記上限値を超えると、潤滑油組成物全体の低温流動性が低下する傾向にある。なお、本明細書において流動点とは、JIS K 2269−1987に準拠して測定された流動点を意味する。   The pour point of the lubricating base oil is preferably -10 ° C or lower, more preferably -12.5 ° C or lower, still more preferably -15 ° C or lower, and most preferably -17.5 ° C or lower. When the pour point exceeds the above upper limit, the low temperature fluidity of the entire lubricating oil composition tends to be lowered. In addition, in this specification, a pour point means the pour point measured based on JISK2269-1987.

潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。潤滑油基油においては、熱・酸化安定性の更なる向上および低硫黄化の点から、硫黄分の含有量が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、5質量ppm以下であることが特に好ましい。   The sulfur content in the lubricating base oil depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using raw materials containing sulfur such as slack wax obtained in the refining process of the lubricating base oil and microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil, the sulfur content is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, from the viewpoint of further improvement in thermal and oxidation stability and low sulfur content. It is more preferably 10 ppm by mass or less, and particularly preferably 5 ppm by mass or less.

潤滑油基油における窒素分の含有量は、好ましくは10質量ppm以下、より好ましくは5質量ppm以下、更に好ましくは3質量ppm以下である。窒素分の含有量が10質量ppmを超えると、熱・酸化安定性が低下する傾向にある。なお、本明細書において窒素分とは、JIS K 2609−1990に準拠して測定される窒素分を意味する。   The nitrogen content in the lubricating base oil is preferably 10 ppm by mass or less, more preferably 5 ppm by mass or less, and even more preferably 3 ppm by mass or less. When the content of nitrogen exceeds 10 ppm by mass, the heat / oxidation stability tends to decrease. In the present specification, the nitrogen content means a nitrogen content measured in accordance with JIS K 2609-1990.

潤滑油基油の%Cは、好ましくは70以上、より好ましくは80以上、さらに好ましくは85以上であり、また通常99以下、好ましくは95以下、より好ましくは94以下である。潤滑油基油の%Cが上記下限値未満の場合、粘度−温度特性、熱・酸化安定性および摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、潤滑油基油の%Cが上記上限値を超えると、添加剤の溶解性が低下する傾向にある。 % C P of the lubricating base oil is preferably 70 or more, more preferably 80 or more, more preferably 85 or more, and usually 99 or less, preferably 95 or less, more preferably 94 or less. If% C P of the lubricating base oil is less than the above lower limit, the viscosity - temperature characteristics tend to heat and oxidation stability and frictional properties will be lowered, further, if the additive is blended into a lubricating base oil In addition, the effectiveness of the additive tends to decrease. Further, when the% C p value of the lubricating base oil exceeds the upper limit value, the additive solubility will tend to be lower.

潤滑油基油の%Cは、2以下であることが好ましく、より好ましくは1以下、更に好ましくは0.8以下、特に好ましくは0.5以下である。潤滑油基油の%Cが上記上限値を超えると、粘度−温度特性、熱・酸化安定性および省燃費性が低下する傾向にある。 % C A of the lubricating base oil is preferably 2 or less, more preferably 1 or less, more preferably 0.8 or less, particularly preferably 0.5 or less. When% C A of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and fuel efficiency tends to decrease.

潤滑油基油の%Cは、好ましくは30以下であり、より好ましくは25以下であり、さらに好ましくは20以下であり、特に好ましくは15以下である。また潤滑油基油の%Cは、好ましくは1以上であり、より好ましくは4以上である。潤滑油基油の%Cが上記上限値を超えると、粘度−温度特性、熱・酸化安定性および摩擦特性が低下する傾向にある。また、%Cが上記下限値未満であると、添加剤の溶解性が低下する傾向にある。 % C N of the lubricating base oil is preferably 30 or less, more preferably 25 or less, more preferably 20 or less, particularly preferably 15 or less. The% C N of the lubricating base oil is preferably 1 or more, more preferably 4 or more. If the% C N value of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and frictional properties will tend to be reduced. Moreover, when% CN is less than the said lower limit, it exists in the tendency for the solubility of an additive to fall.

本明細書において%C、%Cおよび%Cとは、それぞれASTM D 3238−85に準拠した方法(n−d−M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、および芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%Cおよび%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cは0を超える値を示し得る。 In the present specification,% C P ,% C N and% C A are the percentages of the number of paraffin carbons to the total number of carbons determined by a method (ndM ring analysis) based on ASTM D 3238-85, respectively. Mean the percentage of naphthene carbons to total carbons, and the percentage of aromatic carbons to total carbons. In other words, the preferred ranges of% C P ,% C N and% C A described above are based on the values obtained by the above method. For example, even for a lubricating base oil containing no naphthene, it can be obtained by the above method. The% CN that is obtained can exhibit values greater than zero.

潤滑油基油における飽和分の含有量は、潤滑油基油全量を基準として、好ましくは90質量%以上であり、好ましくは95質量%以上、より好ましくは99質量%以上である。また、当該飽和分に占める環状飽和分の割合は、好ましくは40質量%以下であり、好ましくは35質量%以下であり、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、更に好ましくは21質量%以下である。また、当該飽和分に占める環状飽和分の割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上である。飽和分の含有量および当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすことにより、粘度−温度特性および熱・酸化安定性を向上させることができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。なお本明細書において飽和分とは、ASTM D 2007−93に準拠して測定された値を意味する。   The content of the saturated component in the lubricating base oil is preferably 90% by mass or more, preferably 95% by mass or more, and more preferably 99% by mass or more, based on the total amount of the lubricating oil base oil. The proportion of the cyclic saturated component in the saturated component is preferably 40% by mass or less, preferably 35% by mass or less, preferably 30% by mass or less, and more preferably 25% by mass or less. More preferably, it is 21% by mass or less. Moreover, the ratio of the cyclic | annular saturated part which occupies for the said saturated part becomes like this. Preferably it is 5 mass% or more, More preferably, it is 10 mass% or more. When the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, the viscosity-temperature characteristics and the thermal / oxidative stability can be improved. When the additive is blended, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in friction reduction effect and an improvement in energy saving. In this specification, the saturated component means a value measured according to ASTM D 2007-93.

また、飽和分の分離方法、あるいは環状飽和分、非環状飽和分等の組成分析の際には、同様の結果が得られる類似の方法を使用することができる。例えば、上記ASTM D 2007−93に記載された方法の他、ASTM D 2425−93に記載の方法、ASTM D 2549−91に記載の方法、高速液体クロマトグラフィ(HPLC)による方法、あるいはこれらの方法を改良した方法等を挙げることができる。   In addition, a similar method that can obtain the same result can be used in the separation method of the saturated component or the composition analysis of the cyclic saturated component and the non-cyclic saturated component. For example, in addition to the method described in ASTM D 2007-93, the method described in ASTM D 2425-93, the method described in ASTM D 2549-91, the method by high performance liquid chromatography (HPLC), or these methods may be used. The improved method etc. can be mentioned.

潤滑油基油における芳香族分は、潤滑油基油全量を基準として、好ましくは10質量%以下であり、より好ましくは5質量%以下、さらに好ましくは1質量%以下、特に好ましくは0.2質量%以下であり、芳香族分を実質的に含有しない基油も好ましく用いることができる。本明細書において、基油が芳香族分を「実質的に含有しない」とは、芳香族分の含有量が基油全量基準で0〜1000質量ppmであることを意味する。芳香族分の含有量が上記上限値を超えると、粘度−温度特性、熱・酸化安定性および摩擦特性、更には揮発防止性および低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。   The aromatic content in the lubricating base oil is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less, particularly preferably 0.2%, based on the total amount of the lubricating base oil. A base oil that is not more than mass% and does not substantially contain an aromatic component can also be preferably used. In the present specification, the fact that the base oil does not substantially contain an aromatic component means that the content of the aromatic component is 0 to 1000 ppm by mass based on the total amount of the base oil. If the aromatic content exceeds the above upper limit, the viscosity-temperature characteristics, thermal / oxidative stability, friction characteristics, volatilization prevention properties, and low-temperature viscosity characteristics tend to decrease. When an additive is blended with the additive, the effectiveness of the additive tends to decrease.

なお、本明細書において芳香族分とは、ASTM D 2007−93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮環した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。   In the present specification, the aromatic component means a value measured in accordance with ASTM D 2007-93. The aromatic component usually includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, and compounds having four or more condensed benzene rings, pyridines, quinolines, phenols, naphthols, etc. An aromatic compound having a hetero atom is included.

<(A)(メタ)アクリレート系重合体>
本発明の潤滑油組成物は、(A)下記一般式(1)で表される構造単位を、重合体全量基準で25〜35質量%と、下記一般式(2)で表される構造単位を、重合体全量基準で25〜35質量%とを含み、重量平均分子量が50,000〜500,000であり、下記式(3)で表されるパラメタaの値が0.12以下である、(メタ)アクリレート系重合体(以下において「(A)成分」または「(メタ)アクリレート系重合体(A)」ということがある。)を含有する。
<(A) (Meth) acrylate polymer>
The lubricating oil composition of the present invention comprises (A) a structural unit represented by the following general formula (1), 25 to 35% by mass on the basis of the total amount of the polymer, and a structural unit represented by the following general formula (2). And a weight average molecular weight of 50,000 to 500,000, and the value of parameter a represented by the following formula (3) is 0.12 or less. , (Meth) acrylate polymer (hereinafter, also referred to as “(A) component” or “(meth) acrylate polymer (A)”).

(式(1)中、Rは水素またはメチル基を表し、Rは炭素数1〜4の直鎖または分岐鎖アルキル基を表す。) (In formula (1), R 1 represents hydrogen or a methyl group, and R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms.)

(式(2)中、Rは水素またはメチル基を表し、Rは炭素数16〜24の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を表す。) (In formula (2), R 3 represents hydrogen or a methyl group, R 4 is a linear alkyl group having 16 to 24 carbon atoms or a C 16 to 24 of it also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)

a=Log(M(t1/2))−Log(M(t)) …(3)
(式(3)中、M(t)は上記(メタ)アクリレート系重合体のゲル浸透クロマトグラフィー測定により得られるポリスチレン換算分子量の微分分子量分布曲線におけるピークトップ分子量を表し;M(t1/2)は上記微分分子量分布曲線において分子量M(t)における強度の1/2の強度を与える高分子量側のポリスチレン換算分子量を表す。)
a = Log (M h (t 1/2 )) − Log (M (t)) (3)
(In Formula (3), M (t) represents the peak top molecular weight in the differential molecular weight distribution curve of the polystyrene conversion molecular weight obtained by the gel permeation chromatography measurement of the said (meth) acrylate type polymer; M h (t 1 / 2 ) represents the molecular weight in terms of polystyrene on the high molecular weight side giving half the strength of the molecular weight M (t) in the differential molecular weight distribution curve.)

(メタ)アクリレート系重合体(A)は、分子量分布が狭いだけでなく、潤滑油組成物の耐スラッジ性を高める観点から、高分子量側の分子量分布が狭いことが重要である。高分子量側の分子量分布を評価する方法として、以下の方法を用いる。   It is important that the (meth) acrylate polymer (A) not only has a narrow molecular weight distribution but also has a narrow molecular weight distribution on the high molecular weight side from the viewpoint of enhancing the sludge resistance of the lubricating oil composition. As a method for evaluating the molecular weight distribution on the high molecular weight side, the following method is used.

ゲル浸透クロマトグラフィー(GPC)測定により得られるクロマトグラムを、溶出時間と標準ポリスチレンの分子量との関係を示す検量線を用いて、ポリスチレン換算の分子量の微分分子量分布曲線に置き換える。その際、(メタ)アクリレート系重合体のポリスチレン換算のピークトップ分子量(測定強度が最も高い分子量)M(t)における測定強度をI(t)とする。該微分分子量分布曲線において、強度が0.5I(t)となる地点の高分子量側のポリスチレン換算分子量をM(t1/2)とする。(メタ)アクリレート系重合体(A)は、このようにして定められるM(t)及びM(t1/2)に対して、上記式(3)で示されるパラメタaの値が0.12以下である必要がある(図1参照)。パラメタaの値が0.12以下である(メタ)アクリレート系重合体(A)は、高分子量側の分子量分布が小さい重合体である。 A chromatogram obtained by gel permeation chromatography (GPC) measurement is replaced with a differential molecular weight distribution curve having a molecular weight in terms of polystyrene using a calibration curve indicating the relationship between the elution time and the molecular weight of standard polystyrene. At that time, the measured intensity at the peak top molecular weight (molecular weight having the highest measured intensity) M (t) in terms of polystyrene of the (meth) acrylate polymer is defined as I (t). In the differential molecular weight distribution curve, the molecular weight in terms of polystyrene on the high molecular weight side at the point where the strength is 0.5I (t) is defined as M h (t 1/2 ). In the (meth) acrylate polymer (A), the value of the parameter a represented by the above formula (3) is 0. 0 with respect to M (t) and M h (t 1/2 ) determined in this way. It must be 12 or less (see FIG. 1). The (meth) acrylate polymer (A) having a parameter a value of 0.12 or less is a polymer having a small molecular weight distribution on the high molecular weight side.

潤滑油組成物の耐スラッジ性をより高める観点、および、剪断粘度安定性が良好な(メタ)アクリレート系重合体を得る観点からは、上記a値は、0.11以下が好ましく、0.10以下がより好ましく、0.095以下がさらに好ましい。なお上記式(2)において、Logは常用対数(底が10の対数)を意味する。なお、上記a値は通常0.05以上である。   From the viewpoint of further improving the sludge resistance of the lubricating oil composition and from the viewpoint of obtaining a (meth) acrylate polymer having good shear viscosity stability, the a value is preferably 0.11 or less, and 0.10. The following is more preferable, and 0.095 or less is more preferable. In the above formula (2), Log means a common logarithm (base 10 logarithm). The a value is usually 0.05 or more.

(メタ)アクリレート系重合体(A)において、下記式(5)で表されるパラメタbの値が0.3以下であることが好ましい。
b=Log(M(t1/2))−Log(M(t1/2)) …(5)
(式(5)中、M(t1/2)は上記定義のとおりであり、M(t1/2)は上記微分分子量分布曲線において分子量M(t)における強度の1/2の強度を与える低分子量側のポリスチレン換算分子量を表す。)
In the (meth) acrylate polymer (A), the value of the parameter b represented by the following formula (5) is preferably 0.3 or less.
b = Log (M h (t 1/2 )) − Log (M l (t 1/2 )) (5)
(In formula (5), M h (t 1/2 ) is as defined above, and M l (t 1/2 ) is ½ of the intensity at molecular weight M (t) in the differential molecular weight distribution curve. Represents the polystyrene equivalent molecular weight on the low molecular weight side that gives strength.)

パラメタbの値は半値全幅を表す。半値幅が0.3以下であると、低分子量側の分子量分布も狭く、すなわちピークトップ分子量M(t)より小さい分子量を有する重合体の量も少ないので、粘度指数向上に寄与しない重合体の割合が少なくなり、したがって(A)成分の添加量を低減することができる。同様の観点から、上記b値は、0.25以下であることがより好ましい。なお、上記b値は通常0.1以上である。   The value of parameter b represents the full width at half maximum. When the half-value width is 0.3 or less, the molecular weight distribution on the low molecular weight side is narrow, that is, the amount of the polymer having a molecular weight smaller than the peak top molecular weight M (t) is small. The ratio is reduced, and therefore the amount of component (A) added can be reduced. From the same viewpoint, the b value is more preferably 0.25 or less. The b value is usually 0.1 or more.

さらに、半値半幅aと半値全幅bとの比a/bが、0.46以下であることが好ましい。比a/bが0.46以下であると、高分子量側の分子量分布が狭く、せん断力を受けた際に切断されやすい高分子量のポリマー分子が少ないため、潤滑油組成物の耐スラッジ性およびせん断粘度安定性をより向上させることができる。同様の観点から、上記a/b比は、0.44以下であることがより好ましく、0.43以下であることがさらに好ましく、0.42以下であることが最も好ましい。なお、上記a/b比は通常0.1以上である。   Furthermore, it is preferable that the ratio a / b between the half width half width a and the full width half maximum b is 0.46 or less. When the ratio a / b is 0.46 or less, the molecular weight distribution on the high molecular weight side is narrow, and there are few high molecular weight polymer molecules that are easily cut when subjected to shearing force. Shear viscosity stability can be further improved. From the same viewpoint, the a / b ratio is more preferably 0.44 or less, further preferably 0.43 or less, and most preferably 0.42 or less. The a / b ratio is usually 0.1 or more.

(メタ)アクリレート系重合体(A)は、上記一般式(1)で表される構造単位を1種のみ含んでいてもよく、上記一般式(1)で表される2種以上の異なる構造単位を含んでいてもよい。また(メタ)アクリレート系重合体(A)は、上記一般式(2)で表される構造単位を1種のみ含んでいてもよく、上記一般式(2)で表される2種以上の異なる構造単位を含んでいてもよい。(メタ)アクリレート系重合体(A)における、上記一般式(1)で表される構造単位の含有量は、(メタ)アクリレート系重合体(A)の全量を基準(100質量%)として、25〜35質量%である。上記一般式(1)で表される構造単位の含有量が25質量%以上であることにより、省燃費性を高めることが可能になる。また上記一般式(1)で表される構造単位の含有量が35質量%以下であることにより、溶解性を高めることが可能になる。また、(メタ)アクリレート系重合体(A)における、上記一般式(2)で表される構造単位の含有量は、(メタ)アクリレート系重合体(A)の全量を基準(100質量%)として、25〜35質量%である。上記一般式(2)で表される構造単位の含有量が25質量%以上であることにより、省燃費性および低温流動性を高めることが可能になる。また上記一般式(2)で表される構造単位の含有量が35質量%以下であることにより、溶解性を高めることが可能になる。   The (meth) acrylate polymer (A) may contain only one type of structural unit represented by the general formula (1), and two or more different structures represented by the general formula (1). Units may be included. The (meth) acrylate polymer (A) may contain only one type of structural unit represented by the general formula (2), and two or more types represented by the general formula (2) are different. A structural unit may be included. The content of the structural unit represented by the general formula (1) in the (meth) acrylate polymer (A) is based on the total amount of the (meth) acrylate polymer (A) (100% by mass). It is 25-35 mass%. When the content of the structural unit represented by the general formula (1) is 25% by mass or more, it is possible to improve fuel economy. Moreover, it becomes possible to improve solubility because content of the structural unit represented by the said General formula (1) is 35 mass% or less. In the (meth) acrylate polymer (A), the content of the structural unit represented by the general formula (2) is based on the total amount of the (meth) acrylate polymer (A) (100% by mass). As 25 to 35% by mass. When the content of the structural unit represented by the general formula (2) is 25% by mass or more, it is possible to improve fuel economy and low temperature fluidity. Moreover, it becomes possible to improve solubility because content of the structural unit represented by the said General formula (2) is 35 mass% or less.

(メタ)アクリレート系重合体(A)は、下記一般式(4)で表される構造単位をさらに含むことが好ましい。(メタ)アクリレート系重合体(A)は、下記一般式(4)で表される構造単位を1種のみ含んでいてもよく、下記一般式(4)で表される2種以上の異なる構造単位を含んでいてもよい。また、(メタ)アクリレート系重合体(A)における、下記一般式(4)で表される構造単位の含有量は、(メタ)アクリレート系重合体(A)の全量を基準(100質量%)として、30〜50質量%であることが好ましい。   The (meth) acrylate polymer (A) preferably further includes a structural unit represented by the following general formula (4). The (meth) acrylate polymer (A) may contain only one type of structural unit represented by the following general formula (4), and two or more different structures represented by the following general formula (4). Units may be included. The content of the structural unit represented by the following general formula (4) in the (meth) acrylate polymer (A) is based on the total amount of the (meth) acrylate polymer (A) (100% by mass). As for it, it is preferable that it is 30-50 mass%.

(式(4)中、Rは水素またはメチル基を表し、Rは炭素数6〜14の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を表す。) (In the formula (4), R 5 represents hydrogen or a methyl group, R 6 is a linear alkyl group having 6 to 14 carbon atoms or 6 to 14 carbon atoms is also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)

、RおよびRはそれぞれ、水素又はメチル基のいずれであってもよいが、好ましくはメチル基である。 R 1 , R 3 and R 5 may each be hydrogen or a methyl group, but are preferably a methyl group.

(メタ)アクリレート系重合体(A)中の、上記一般式(1)で表される構造単位と、上記一般式(2)で表される構造単位と、上記一般式(4)で表される構造単位との合計の含有量は、(メタ)アクリレート系重合体(A)に含まれる構造単位の全量を基準(100質量%)として、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは95質量%以上であり、一の好ましい実施形態において99質量%以上であり、100質量%であってもよい。なお一般式(1)で表される構造単位と、一般式(2)で表される構造単位と、一般式(4)で表される構造単位との合計の含有量が100質量%であるとは、当該(メタ)アクリレート系重合体(A)が、一般式(1)で表される構造単位と、一般式(2)で表される構造単位と、一般式(4)で表される構造単位とからなることを意味する。   The structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the general formula (4) in the (meth) acrylate polymer (A). The total content of the structural units is preferably 80% by mass or more, more preferably 90% by mass, based on the total amount of the structural units contained in the (meth) acrylate polymer (A) (100% by mass). As mentioned above, More preferably, it is 95 mass% or more, In one preferable embodiment, it is 99 mass% or more, and may be 100 mass%. The total content of the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the structural unit represented by the general formula (4) is 100% by mass. The (meth) acrylate polymer (A) is represented by the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the general formula (4). It consists of a structural unit.

省燃費性の観点から、(メタ)アクリレート系重合体(A)には、Rがメチル基である上記一般式(1)の構造単位が、(メタ)アクリレート系重合体(A)に含まれる構造単位の全量を基準として、20質量%以上含まれることが好ましく、25質量%以上含まれることがより好ましく、30質量%以上含まれることがさらに好ましく、35質量%含まれてもよい。一の好ましい実施形態において、(メタ)アクリレート系重合体(A)に含まれる上記一般式(1)の構造単位で表される構造単位は、Rがメチル基である上記一般式(1)の構造単位からなる。かかる実施形態によれば、省燃費性をさらに高めることが可能になる。Rがメチル基である上記一般式(1)の構造単位において、Rは水素であってもよく、メチル基であってもよく、それらの組み合わせであってもよいが、好ましくはメチル基である。 From the viewpoint of fuel economy, the (meth) acrylate polymer (A) contains the structural unit of the above general formula (1) in which R 2 is a methyl group in the (meth) acrylate polymer (A). Based on the total amount of structural units to be produced, it is preferably contained by 20% by mass or more, more preferably by 25% by mass or more, further preferably by 30% by mass or more, and may be contained by 35% by mass. In one preferred embodiment, the structural unit represented by the structural unit of the above general formula (1) contained in the (meth) acrylate polymer (A) is the above general formula (1) in which R 2 is a methyl group. It consists of structural units. According to such an embodiment, it becomes possible to further improve fuel efficiency. In the structural unit of the above general formula (1) in which R 2 is a methyl group, R 1 may be hydrogen, a methyl group, or a combination thereof, preferably a methyl group It is.

(メタ)アクリレート系重合体(A)は、上記一般式(1)で表される構造単位、上記一般式(2)で表される構造単位、及び上記一般式(4)で表される構造単位のみを含んでいてもよく、あるいは、これら以外の構造単位を更に含んでいてもよい。また、(メタ)アクリレート系重合体(A)の重合鎖末端は、特に制限されない。このような重合鎖の中でも、上記一般式(1)で表される構造単位及び上記一般式(2)で表される構造単位及び上記一般式(4)で表される構造単位のみを含んでおり、末端が水素原子である重合鎖、すなわち下記一般式(6)で表される重合鎖が好ましい。   The (meth) acrylate polymer (A) is a structural unit represented by the general formula (1), a structural unit represented by the general formula (2), and a structure represented by the general formula (4). Only the unit may be included, or a structural unit other than these may be further included. The polymer chain end of the (meth) acrylate polymer (A) is not particularly limited. Among such polymer chains, only the structural unit represented by the general formula (1), the structural unit represented by the general formula (2), and the structural unit represented by the general formula (4) are included. And a polymer chain having a hydrogen atom at the end, that is, a polymer chain represented by the following general formula (6) is preferable.

式(6)中、Rは水素又はメチル基を示し、Rは、炭素数1〜4の直鎖もしくは分岐鎖アルキル基、炭素数16〜24の直鎖アルキル基もしくはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基、又は、炭素数6〜14の直鎖アルキル基若しくはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を示し、pは重量平均分子量Mw及び重量平均分子量Mwの数平均分子量Mnに対する比Mw/Mnが所望の範囲内となるように選ばれる整数である。pは、例えば400〜2000の整数である。 In the formula (6), R 7 represents hydrogen or a methyl group, and R 8 represents a linear or branched alkyl group having 1 to 4 carbon atoms, a linear alkyl group having 16 to 24 carbon atoms, or any side chain. A branched alkyl group having 16 to 24 carbon atoms having 2 or less carbon atoms, or a straight chain alkyl group having 6 to 14 carbon atoms or a branched chain having 6 to 14 carbon atoms having 2 or less carbon atoms. P represents a chain alkyl group, and p is an integer selected so that the ratio Mw / Mn of the weight average molecular weight Mw and the weight average molecular weight Mw to the number average molecular weight Mn is within a desired range. p is an integer of 400 to 2000, for example.

(メタ)アクリレート系重合体(A)の重量平均分子量Mwは50,000以上500,000以下であり、省燃費性能の観点から好ましくは100,000以上、より好ましくは150,000以上、特に好ましくは190,000以上であり、またせん断安定性の観点から好ましくは400,000以下、さらに好ましくは310,000以下であり、一の実施形態において300,000以下である。   The weight average molecular weight Mw of the (meth) acrylate polymer (A) is 50,000 or more and 500,000 or less, preferably 100,000 or more, more preferably 150,000 or more, particularly preferably from the viewpoint of fuel saving performance. Is 190,000 or more, and from the viewpoint of shear stability, it is preferably 400,000 or less, more preferably 310,000 or less, and in one embodiment, 300,000 or less.

(メタ)アクリレート系重合体(A)の重量平均分子量Mwと数平均分子量Mnとの比(Mw/Mn;以下において「分子量分布」ということがある。)は、剪断粘度安定性および省燃費性の観点から、好ましくは1.6以下、より好ましくは1.5以下であり、また製造の容易性および経済性の観点から好ましくは1.01以上、より好ましくは1.05以上であり、特に好ましくは1.11以上である。MwおよびMnは、例えば、(メタ)アクリレート系重合体(A)の製造の際に使用する、(メタ)アクリレート系重合性単量体を含む原料中の水酸基を有する化合物や重合禁止剤の量に依存する。MwおよびMnは、上述したGPCによる測定から求められたポリスチレン換算分子量の値である。   The ratio of the weight average molecular weight Mw and the number average molecular weight Mn of the (meth) acrylate polymer (A) (Mw / Mn; hereinafter referred to as “molecular weight distribution”) is the shear viscosity stability and fuel economy. In view of the above, it is preferably 1.6 or less, more preferably 1.5 or less, and from the viewpoint of ease of production and economy, it is preferably 1.01 or more, more preferably 1.05 or more, Preferably it is 1.11 or more. Mw and Mn are, for example, the amount of a compound having a hydroxyl group or a polymerization inhibitor in a raw material containing a (meth) acrylate-based polymerizable monomer used in the production of the (meth) acrylate-based polymer (A). Depends on. Mw and Mn are values of molecular weight in terms of polystyrene determined from the above-described measurement by GPC.

(メタ)アクリレート系重合体(A)の数平均分子量Mnは、Mw/Mnが上記の条件を満たすように適宜選択することができる。Mnは、省燃費性能の観点から、75,000以上であることが好ましく、94,000以上であることがより好ましく、110,000以上であることが更に好ましい。Mnの上限は特に制限されないが、Mnは例えば400,000以下であり得る。   The number average molecular weight Mn of the (meth) acrylate polymer (A) can be appropriately selected so that Mw / Mn satisfies the above conditions. From the viewpoint of fuel saving performance, Mn is preferably 75,000 or more, more preferably 94,000 or more, and further preferably 110,000 or more. Although the upper limit of Mn is not particularly limited, Mn can be, for example, 400,000 or less.

剪断粘度安定性は、例えば粘度低下率によって評価される。粘度低下率は、好ましくは3.0%以下、より好ましくは2.0%以下、更に好ましくは1.5%以下である。粘度低下率が上記上限値以下であると、省燃費性に優れる。なお本明細書において、剪断粘度低下率とは、超音波剪断試験における粘度低下率を意味し、具体的には、JASO M347−95(自動変速機油剪断安定性試験方法)に準拠し、試料容量のみ増加させた条件にて評価した際の粘度指数向上剤による増粘性の低下率を意味する。   The shear viscosity stability is evaluated by, for example, a viscosity reduction rate. The viscosity reduction rate is preferably 3.0% or less, more preferably 2.0% or less, and still more preferably 1.5% or less. When the viscosity reduction rate is less than or equal to the above upper limit, fuel economy is excellent. In this specification, the shear viscosity reduction rate means the viscosity reduction rate in the ultrasonic shear test, and specifically, in accordance with JASO M347-95 (automatic transmission oil shear stability test method), sample volume This means the rate of decrease in thickening due to the viscosity index improver when evaluated under only increased conditions.

剪断粘度安定性は、より詳細には、ASTMの試験法(ASTM D6022−06(2012))に規定されている標準油Aにて出力調整を行った後、振幅28μm、振動数10KHz、照射時間10分、試料容量50mLの条件で剪断試験を実施し、測定された動粘度に基づき計算したポリマーの永久剪断安定性指数PSSI(Permanent Shear Stability Index)を意味する。PSSIは、剪断試験前に測定された100℃における粘度指数向上剤の添加量あたりの増粘性(V1)と、剪断試験後に測定された100℃における粘度指数向上剤の添加量あたりの増粘性(V2)とに基づき、((V1−V2)/V1×100)(%)により計算される。   More specifically, the shear viscosity stability is determined by adjusting the output with the standard oil A defined by ASTM test method (ASTM D6022-06 (2012)), and then the amplitude is 28 μm, the vibration frequency is 10 KHz, and the irradiation time. This means a permanent shear stability index (PSSI) of the polymer calculated based on the measured kinematic viscosity after a shear test was performed for 10 minutes under a sample volume of 50 mL. PSSI is a viscosity increase (V1) per 100 ° C. viscosity index improver measured before the shear test and a viscosity increase per 100 ° C. viscosity index improver measured after the shear test (V1). V2) and ((V1−V2) / V1 × 100) (%).

潤滑油組成物中における(メタ)アクリレート系重合体(A)の含有量は、組成物全量基準で、通常0.1〜30質量%であり、好ましくは0.5質量%以上、より好ましくは1質量%以上、さらに好ましくは2質量%以上であり、また好ましくは20質量%以下、より好ましくは15質量%以下である。含有量が0.1質量%より少ない場合には省燃費性が悪化するとともに、低温特性が不十分となるおそれがあり、また含有量が30質量%を超える場合には組成物の省燃費性が悪化するとともに、せん断安定性が悪化するおそれがある。   The content of the (meth) acrylate polymer (A) in the lubricating oil composition is usually 0.1 to 30% by mass, preferably 0.5% by mass or more, more preferably, based on the total amount of the composition. 1 mass% or more, More preferably, it is 2 mass% or more, Preferably it is 20 mass% or less, More preferably, it is 15 mass% or less. When the content is less than 0.1% by mass, the fuel efficiency is deteriorated and the low temperature characteristics may be insufficient. When the content exceeds 30% by mass, the fuel efficiency of the composition is decreased. May deteriorate and shear stability may deteriorate.

かかる(メタ)アクリレート系重合体(A)は、例えば、上記一般式(1)で表される構造単位を与える(メタ)アクリル酸アルキルエステル、上記一般式(2)で表される構造単位を与える(メタ)アクリル酸アルキルエステル、及び、上記一般式(4)で表される(メタ)アクリル酸アルキルエステルを含む(メタ)アクリレート系重合性単量体を重合することにより得られる。   The (meth) acrylate polymer (A) includes, for example, a (meth) acrylic acid alkyl ester that gives a structural unit represented by the general formula (1), and a structural unit represented by the general formula (2). It is obtained by polymerizing (meth) acrylic acid alkyl ester to be fed and (meth) acrylate-based polymerizable monomer containing the (meth) acrylic acid alkyl ester represented by the general formula (4).

((メタ)アクリレート系重合性単量体)
上記一般式(1)で表される構造単位を与える(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸n−ブチル等の炭素数1〜4の直鎖アルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t−ブチル等の炭素数3〜4の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステルなどが挙げられる。
((Meth) acrylate polymerizable monomer)
Examples of the (meth) acrylic acid alkyl ester that gives the structural unit represented by the general formula (1) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, ( (Meth) acrylic acid alkyl ester having a linear alkyl group having 1 to 4 carbon atoms such as n-butyl (meth) acrylate; isopropyl (meth) acrylate, isobutyl (meth) acrylate, t- (meth) acrylic acid Examples thereof include (meth) acrylic acid alkyl esters having a branched alkyl group having 3 to 4 carbon atoms such as butyl.

上記一般式(1)においてRの炭素数が1〜4であることにより、粘度指数向上効果を高めることが可能になる。上記一般式(1)で表される構造単位を与える(メタ)アクリル酸アルキルエステルとしては、(メタ)アクリル酸メチルが特に好ましい。上記一般式(1)で表される構造単位を与える(メタ)アクリル酸エステルは、単独で用いてもよく、二種以上を混合して用いてもよい。 In the general formula (1), when R 2 has 1 to 4 carbon atoms, the effect of improving the viscosity index can be enhanced. As the (meth) acrylic acid alkyl ester giving the structural unit represented by the general formula (1), methyl (meth) acrylate is particularly preferable. The (meth) acrylic acid ester which gives the structural unit represented by the general formula (1) may be used alone or in combination of two or more.

上記一般式(2)で表される構造単位を与える(メタ)アクリル酸アルキルエステルとしては、例えば(メタ)アクリル酸n−ヘキサデシル、(メタ)アクリル酸n−ヘプタデシル、(メタ)アクリル酸n−オクタデシル、(メタ)アクリル酸n−ノナデシル、(メタ)アクリル酸n−エイコシル、(メタ)アクリル酸n−ヘンエイコシル、(メタ)アクリル酸n−ドコシル、(メタ)アクリル酸n−トリコシル、(メタ)アクリル酸n−テトラコシル等の、炭素数16〜24の直鎖アルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸イソヘキサデシル、(メタ)アクリル酸イソオクタデシル、(メタ)アクリル酸2−エチル−n−ヘプタデシル、及び(メタ)アクリル酸イソイコシル等の、いずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル;などが挙げられる。   Examples of the (meth) acrylic acid alkyl ester that gives the structural unit represented by the general formula (2) include n-hexadecyl (meth) acrylate, n-heptadecyl (meth) acrylate, and n- (meth) acrylate. Octadecyl, n-nonadecyl (meth) acrylate, n-eicosyl (meth) acrylate, n-henecosyl (meth) acrylate, n-docosyl (meth) acrylate, n-tricosyl (meth) acrylate, (meth) (Meth) acrylic acid alkyl ester having a linear alkyl group having 16 to 24 carbon atoms, such as n-tetracosyl acrylate; isohexadecyl (meth) acrylate, isooctadecyl (meth) acrylate, (meth) acrylic acid Carbon in any side chain such as 2-ethyl-n-heptadecyl and isoicosyl (meth) acrylate Also having a branched chain alkyl group having a carbon number of 16 to 24 2 or less (meth) acrylic acid alkyl ester; and the like.

上記一般式(2)において、Rの炭素数は16〜24であり、好ましくは16〜22、より好ましくは16〜20である。上記一般式(2)においてRの炭素数が16以上であることにより、粘度指数向上効果を高めることが可能になる。またRの炭素数が24以下であることにより、剪断安定性を高めることが可能になる。上記一般式(2)で表される構造単位を与える(メタ)アクリル酸エステルは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 In the general formula (2), the carbon number of R 4 is 16 to 24, preferably 16 to 22, more preferably 16 to 20. In the general formula (2), when R 4 has 16 or more carbon atoms, the effect of improving the viscosity index can be enhanced. Further, when R 4 has 24 or less carbon atoms, it is possible to improve shear stability. As the (meth) acrylic acid ester that gives the structural unit represented by the general formula (2), one kind may be used alone, or two or more kinds may be mixed and used.

上記一般式(4)で表される構造単位を与える(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸n−ノニル、(メタ)アクリル酸n−デシル、(メタ)アクリル酸n−ウンデシル、(メタ)アクリル酸n−ドデシル、(メタ)アクリル酸n−トリデシル、(メタ)アクリル酸n−テトラデシル等の、炭素数6〜14の直鎖アルキル基を有する(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸イソヘキシル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸2,4,6−トリメチルヘプチル、(メタ)アクリル酸2−エチル−n−ドデシル等の、いずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル;などが挙げられる。   Examples of the (meth) acrylic acid alkyl ester that gives the structural unit represented by the general formula (4) include n-hexyl (meth) acrylate, n-heptyl (meth) acrylate, and (meth) acrylic acid n. -Octyl, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, n-undecyl (meth) acrylate, n-dodecyl (meth) acrylate, n-tridecyl (meth) acrylate, (meta ) (Meth) acrylic acid alkyl ester having a linear alkyl group having 6 to 14 carbon atoms, such as n-tetradecyl acrylate; isohexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic acid Isononyl, isodecyl (meth) acrylate, 2,4,6-trimethylheptyl (meth) acrylate, 2- (meth) acrylic acid Such as chill -n- dodecyl, the number of carbon atoms of either side chain having a branched chain alkyl group having 6 to 14 carbon atoms is 2 or less (meth) acrylic acid alkyl ester; and the like.

上記一般式(4)において、Rの炭素数は6〜14であり、好ましくは8〜12である。上記一般式(4)においてRの炭素数が6以上であることにより、基油への溶解性を高めることが可能となる。またRの炭素数が14以下であることにより、合成したポリマーのハンドリング性が良好になる。上記一般式(4)で表される構造単位を与える(メタ)アクリル酸エステルは、一種を単独で用いてもよく、二種以上を混合して用いてもよい。 In the general formula (4), the number of carbon atoms of R 6 is from 6 to 14, preferably 8 to 12. When the carbon number of R 6 in the general formula (4) is 6 or more, the solubility in the base oil can be increased. Moreover, when the carbon number of R 6 is 14 or less, the handling property of the synthesized polymer is improved. The (meth) acrylic acid ester that gives the structural unit represented by the general formula (4) may be used singly or in combination of two or more.

また、上記(メタ)アクリレート系重合性単量体には、上記一般式(1)、(2)、又は(4)で表される構造単位以外の構造単位を与える他の(メタ)アクリレート系重合性単量体が含有されていてもよい。かかる他の(メタ)アクリレート系重合性単量体としては、例えば(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシクロドデシル等の脂環式アルキル基を有する(メタ)アクリル酸エステル;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸ビフェニル等の芳香族炭化水素を有する(メタ)アクリル酸エステル;(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸2−メトキシプロピル、(メタ)アクリル酸2−エトキシエチル、(メタ)アクリル酸2−エトキシプロピル、(メタ)アクリル酸メトキシポリエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール等のエーテル結合を有する(メタ)アクリル酸エステル;(メタ)N,N−ジメチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N,N−ジイソプロピル(メタ)アクリルアミド、N,N−ジ−n−ブチル(メタ)アクリルアミド等のN,N−ジアルキル(メタ)アクリルアミド;(メタ)アクリル酸グリシジル等のエポキシ基を有する(メタ)アクリル酸エステル;1,3−プロパンジオールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリアルキレングリコールジ(メタ)アクリレート、ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能(メタ)アクリル酸エステルなどが挙げられる。   In addition, other (meth) acrylate-based monomers that give structural units other than the structural unit represented by the general formula (1), (2), or (4) to the (meth) acrylate-based polymerizable monomer. A polymerizable monomer may be contained. Examples of such other (meth) acrylate-based polymerizable monomers include cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, and tricyclododecyl (meth) acrylate. (Meth) acrylic acid ester having a formula alkyl group; (meth) aromatic hydrocarbon such as phenyl (meth) acrylate, benzyl (meth) acrylate, naphthyl (meth) acrylate, biphenyl (meth) acrylate Acrylic acid ester; methoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-methoxypropyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-ethoxy (meth) acrylate Propyl, (meth) acrylic acid methoxypolyethylene glycol, (meth) (Meth) acrylic acid ester having an ether bond such as methoxypolypropylene glycol crylate; (meth) N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-diisopropyl (meth) acrylamide N, N-dialkyl (meth) acrylamide such as N, N-di-n-butyl (meth) acrylamide; (meth) acrylic acid ester having an epoxy group such as glycidyl (meth) acrylate; 1,3-propane Diol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (Meth) acrylate, 1,10-decanediol di (meth) a Relate, neopentyl glycol di (meth) acrylate, polyalkylene glycol di (meth) acrylate, bisphenol A di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin tri Polyfunctional (meth) acrylic acid esters such as (meth) acrylate and pentaerythritol tetra (meth) acrylate are exemplified.

一の実施形態において、上記(メタ)アクリレート系重合性単量体は、高せん断粘度への影響の観点から、炭素数6以上の側鎖を有する分岐鎖アルキル基を有する単量体を含有しないことが好ましく、炭素数5以上の側鎖を有する分岐鎖アルキル基を有する単量体を含有しないことがより好ましく、炭素数4以上の側鎖を有する分岐鎖アルキル基を有する単量体を含有しないことがさらに好ましく、炭素数3以上の側鎖を有する分岐鎖アルキル基を有する単量体を含有しないことが特に好ましい。   In one embodiment, the (meth) acrylate polymerizable monomer does not contain a monomer having a branched alkyl group having a side chain of 6 or more carbon atoms from the viewpoint of influence on high shear viscosity. More preferably, it does not contain a monomer having a branched alkyl group having a side chain of 5 or more carbon atoms, and contains a monomer having a branched alkyl group having a side chain of 4 or more carbon atoms It is more preferable not to include a monomer having a branched alkyl group having a side chain having 3 or more carbon atoms.

粘度指数向上効果および剪断安定性の観点から、上記(メタ)アクリレート系重合性単量体としては、炭素数1〜4の直鎖もしくは分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル、及び、炭素数6〜14の直鎖アルキル基もしくはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル、及び、炭素数16〜24の直鎖アルキル基もしくはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル、を含有する混合物が好ましく、(メタ)アクリル酸メチル、及び、炭素数6〜14の直鎖アルキル基もしくはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル、及び、炭素数16〜24の直鎖アルキル基もしくはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル、を含有する混合物がより好ましい。   From the viewpoint of improving the viscosity index and shear stability, the (meth) acrylate polymerizable monomer includes (meth) acrylic acid alkyl ester having a linear or branched alkyl group having 1 to 4 carbon atoms, and A (meth) acrylic acid alkyl ester having a C 6-14 branched alkyl group having 6 to 14 carbon atoms or a C 6-14 branched chain alkyl group having 2 or less carbon atoms in any side chain; Preferred is a mixture containing (meth) acrylic acid alkyl ester having a straight chain alkyl group of 24 or a branched alkyl group of 16 to 24 carbon atoms in which any side chain has 2 or less carbon atoms. Methyl acid and a straight-chain alkyl group having 6 to 14 carbon atoms or a branched-chain alkyl group having 6 to 14 carbon atoms in which any side chain has 2 or less carbon atoms (me ) Acrylic acid alkyl ester and (meth) acrylic acid alkyl ester having a straight chain alkyl group having 16 to 24 carbon atoms or a branched chain alkyl group having 16 to 24 carbon atoms and any side chain having 2 or less carbon atoms More preferably, a mixture containing

上記(メタ)アクリレート系重合性単量体は、上記一般式(1)で表される構造単位を与える(メタ)アクリル酸アルキルエステル、及び、上記一般式(2)で表される構造単位を与える(メタ)アクリル酸アルキルエステルを含み、好ましくは更に、上記一般式(4)で表される構造単位を与える(メタ)アクリル酸アルキルエステルを含む限りにおいて特に限定されるものではないが、粘度指数向上効果の観点からは、上記(メタ)アクリレート系重合性単量体は、該(メタ)アクリレート系重合性単量体の全量を基準(100質量%)として、炭素数1〜4の直鎖または分岐鎖アルキル基を有する(メタ)アクリル酸エステル25〜35質量%、炭素数16〜24の直鎖アルキル基またはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル25〜35質量%、および、炭素数6〜14の直鎖アルキル基またはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル30〜50質量%を含有する混合物であることが好ましく、(メタ)アクリル酸メチル25〜35質量%、炭素数16〜24の直鎖アルキル基またはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル25〜35質量%、および、炭素数6〜14の直鎖アルキル基またはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を有する(メタ)アクリル酸アルキルエステル30〜50質量%を含有する混合物であることがより好ましい。   The (meth) acrylate polymerizable monomer includes (meth) acrylic acid alkyl ester that gives a structural unit represented by the general formula (1), and a structural unit represented by the general formula (2). (Meth) acrylic acid alkyl ester to be provided, preferably as long as it further includes (meth) acrylic acid alkyl ester to give the structural unit represented by the general formula (4), the viscosity is not limited. From the viewpoint of improving the index, the (meth) acrylate polymerizable monomer is a straight chain having 1 to 4 carbon atoms based on the total amount of the (meth) acrylate polymerizable monomer (100% by mass). (Meth) acrylic acid ester having a chain or branched chain alkyl group of 25 to 35% by mass, a straight chain alkyl group having 16 to 24 carbon atoms, or any side chain having 2 or less carbon atoms (Meth) acrylic acid alkyl ester having from 24 to 24 branched chain alkyl groups and from 35 to 35% by mass, and a straight chain alkyl group having 6 to 14 carbon atoms or any side chain having 2 or less carbon atoms It is preferably a mixture containing 30 to 50% by mass of a (meth) acrylic acid alkyl ester having a branched alkyl group of ˜14, a methyl (meth) acrylate of 25 to 35% by mass, and a straight chain having 16 to 24 carbon atoms. (Meth) acrylic acid alkyl ester having a branched alkyl group having 16 to 24 carbon atoms in which the chain alkyl group or any side chain has 2 or less carbon atoms, and a straight chain having 6 to 14 carbon atoms. (Meth) acrylic acid alkyl ester having a branched alkyl group having 6 to 14 carbon atoms in which the chain alkyl group or any side chain has 2 or less carbon atoms is 30 to 50 mass More preferably a mixture containing.

((メタ)アクリレート系重合性単量体を含む原料中の水酸基を有する化合物)
上記の特性を有する(メタ)アクリレート系重合体(A)を得るには、(メタ)アクリレート系重合性単量体を含む原料中の水酸基を含有する化合物の濃度を制御することが好ましい。原料中に含まれる水酸基を含有する化合物には特に制限はなく、例えば水、フェノール性水酸基を有する化合物、アルコール性水酸基を有する化合物(例えば、アルコールなど)を挙げることができる。
(Compound having a hydroxyl group in a raw material containing a (meth) acrylate polymerizable monomer)
In order to obtain the (meth) acrylate polymer (A) having the above characteristics, it is preferable to control the concentration of the compound containing a hydroxyl group in the raw material containing the (meth) acrylate polymerizable monomer. The compound containing a hydroxyl group contained in the raw material is not particularly limited, and examples thereof include water, a compound having a phenolic hydroxyl group, and a compound having an alcoholic hydroxyl group (for example, alcohol).

フェノール性水酸基を有する化合物は、例えば、(メタ)アクリレート系重合性単量体の保存安定性を確保する重合禁止剤などとして用いられる。フェノール性水酸基を有する化合物としては、例えば、ハイドロキノン、メトキシフェノール、p−tert−ブチルカテコール、2,4−ジメチル−6−tert−ブチルフェノール、2,6−tert−ブチル−4−メチルフェノールなどが挙げられる。なお、重合禁止剤としては、重合禁止効果の高い、ハイドロキノン、メトキシフェノール、2,6−tert−ブチル−4−メチルフェノールが好ましく使用される。   The compound having a phenolic hydroxyl group is used as, for example, a polymerization inhibitor that ensures the storage stability of the (meth) acrylate-based polymerizable monomer. Examples of the compound having a phenolic hydroxyl group include hydroquinone, methoxyphenol, p-tert-butylcatechol, 2,4-dimethyl-6-tert-butylphenol, 2,6-tert-butyl-4-methylphenol, and the like. It is done. As the polymerization inhibitor, hydroquinone, methoxyphenol, and 2,6-tert-butyl-4-methylphenol having a high polymerization inhibition effect are preferably used.

原料中に含まれるアルコール性水酸基を有する化合物としては、例えば、(メタ)アクリレート系重合性単量体に含まれる(メタ)アクリル酸アルキルエステルに対応するアルコールが挙げられる。特に、高炭素数(例えば炭素数10以上。)のアルキル基を有する(メタ)アクリル酸アルキルエステルに対応する高炭素数のアルキル基を有するアルキルアルコールは沸点が高く、該アルキルアルコールが原料中に含まれる場合、該アルキルアルコールを(メタ)アクリル酸アルキルエステルに影響を与えることなく完全に除去することは困難である。   Examples of the compound having an alcoholic hydroxyl group contained in the raw material include alcohols corresponding to the (meth) acrylic acid alkyl ester contained in the (meth) acrylate polymerizable monomer. In particular, an alkyl alcohol having a high carbon number alkyl group corresponding to a (meth) acrylic acid alkyl ester having an alkyl group having a high carbon number (for example, 10 or more carbon atoms) has a high boiling point, and the alkyl alcohol is contained in the raw material. When included, it is difficult to completely remove the alkyl alcohol without affecting the (meth) acrylic acid alkyl ester.

原料中の水酸基を有する化合物の含有量は、(メタ)アクリレート系重合性単量体100質量部に対して、好ましくは0.2質量部以下であり、より好ましくは0.1質量部以下である。(メタ)アクリレート系重合性単量体100質量部に対して、原料中の水の含有量は0.002質量部以下であることが好ましく、原料中のフェノール性水酸基を有する化合物の含有量は0.005質量部以下であることが好ましく、原料中のアルコール性水酸基を有する化合物の含有量は0.2質量部以下であることが好ましい。   The content of the compound having a hydroxyl group in the raw material is preferably 0.2 parts by mass or less, more preferably 0.1 parts by mass or less, with respect to 100 parts by mass of the (meth) acrylate polymerizable monomer. is there. The content of water in the raw material is preferably 0.002 parts by mass or less with respect to 100 parts by mass of the (meth) acrylate polymerizable monomer, and the content of the compound having a phenolic hydroxyl group in the raw material is It is preferable that it is 0.005 mass part or less, and it is preferable that content of the compound which has the alcoholic hydroxyl group in a raw material is 0.2 mass part or less.

また、(メタ)アクリレート系重合性単量体100質量部に対して、原料中の水の含有量は0.00001質量部以上であることが好ましく、原料中のフェノール性水酸基を有する化合物の含有量は0.00001質量部以上であることが好ましく、原料中のアルコール性水酸基を有する化合物の含有量は0.0001質量部以上であることが好ましい。
原料中の水およびアルコール性水酸基を有する化合物の含有量を上記下限値未満まで低減することは、除去効率および経済性の観点から困難である。特に、(メタ)アクリレート系重合体(A)の原料に含まれる高炭素数(例えば炭素数10以上。)のアルキル基を有する(メタ)アクリル酸アルキルエステルは、沸点が高く、一般には、該(メタ)アクリル酸アルキルエステルを含む原料中には、水酸基を有する化合物が多く残存する傾向にある。また、原料中のフェノール性水酸基を有する化合物の含有量が上記下限値以上であることにより、原料に含まれる(メタ)アクリレート系重合性単量体の保存安定性を確保することが容易になる。
The content of water in the raw material is preferably 0.00001 parts by mass or more with respect to 100 parts by mass of the (meth) acrylate-based polymerizable monomer, and the content of the compound having a phenolic hydroxyl group in the raw material The amount is preferably 0.00001 part by mass or more, and the content of the compound having an alcoholic hydroxyl group in the raw material is preferably 0.0001 part by mass or more.
It is difficult to reduce the content of water and the compound having an alcoholic hydroxyl group in the raw material to less than the above lower limit from the viewpoint of removal efficiency and economy. In particular, a (meth) acrylic acid alkyl ester having an alkyl group having a high carbon number (for example, 10 or more carbon atoms) contained in the raw material of the (meth) acrylate polymer (A) has a high boiling point. In the raw material containing the (meth) acrylic acid alkyl ester, many compounds having a hydroxyl group tend to remain. Moreover, when the content of the compound having a phenolic hydroxyl group in the raw material is not less than the above lower limit, it becomes easy to ensure the storage stability of the (meth) acrylate polymerizable monomer contained in the raw material. .

(メタ)アクリレート系重合体(A)の原料中の水酸基を有する化合物の含有量は、例えば、ガスクロマトグラフィーまたは液体クロマトグラフィーを用い、内部標準法、または絶対検量線法によって求めることができる。   The content of the compound having a hydroxyl group in the raw material of the (meth) acrylate polymer (A) can be determined by, for example, an internal standard method or an absolute calibration curve method using gas chromatography or liquid chromatography.

(メタ)アクリレート系重合体(A)の原料に含まれる水酸基を有する化合物の含有量を低減する方法に制限は無く、例えば、(メタ)アクリレート系単量体を含む混合物から蒸留、再結晶などにより水酸基を有する化合物の含有量を低減する方法、(メタ)アクリレート系単量体を含む混合物から吸着材を用いた吸着処理により水酸基を有する化合物を低減する方法などが挙げられ、さらに(メタ)アクリレート系単量体の製造時に原料アルコールを消費させることによって残存量を抑える方法なども挙げられる。なかでも、(メタ)アクリレート系重合性単量体を含む原料の回収率および操作の簡便さの観点から、吸着処理により水酸基を有する化合物を低減する方法が好ましい。   There is no limitation on the method for reducing the content of the compound having a hydroxyl group contained in the raw material of the (meth) acrylate polymer (A). For example, distillation, recrystallization, etc. from a mixture containing a (meth) acrylate monomer A method of reducing the content of a compound having a hydroxyl group by a method, a method of reducing a compound having a hydroxyl group by an adsorption treatment using an adsorbent from a mixture containing a (meth) acrylate monomer, and (meth) A method of suppressing the remaining amount by consuming raw material alcohol during the production of the acrylate monomer is also included. Especially, the method of reducing the compound which has a hydroxyl group by adsorption | suction processing from a viewpoint of the recovery rate of the raw material containing a (meth) acrylate type | system | group polymerizable monomer, and the ease of operation is preferable.

上記吸着材としては、水酸基を有する化合物を吸着除去することが可能な吸着剤を特に制限なく使用できるが、吸着効率の高さから、活性アルミナ、シリカ、活性白土、酸性白土、活性炭、イオン交換樹脂、ゼオライト、モレキュラーシーブスが好ましい。中でも、活性アルミナ、ゼオライト、モレキュラーシーブスがより好ましい。   As the adsorbent, an adsorbent capable of adsorbing and removing a compound having a hydroxyl group can be used without particular limitation. From the high adsorption efficiency, activated alumina, silica, activated clay, acidic clay, activated carbon, ion exchange are used. Resins, zeolites, and molecular sieves are preferred. Of these, activated alumina, zeolite, and molecular sieves are more preferable.

吸着処理の方法としては、(メタ)アクリレート系単量体を含む混合物と吸着材とをバッチ式で混合した後、撹拌または静置する方法や、吸着材を充填した充填塔に(メタ)アクリレート系単量体を含む混合物を連続的に導入する方法などが挙げられる。   As a method for the adsorption treatment, a mixture containing a (meth) acrylate monomer and an adsorbent are mixed in a batch system, and then stirred or left standing, or (meth) acrylate is packed in a packed tower filled with an adsorbent. And a method of continuously introducing a mixture containing a monomer.

吸着処理は、(メタ)アクリレート系単量体を含む混合物を溶剤に希釈してから行ってもよい。吸着処理において使用する溶媒としては、吸着処理に悪影響を及ぼさない溶媒を特に制限なく用いることができ、例えばペンタン、n−ヘキサン、オクタン等の脂肪族炭化水素; シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素; ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、アニソール、ジフェニルエーテル等のエーテル;などが挙げられる。これらの中でも、その後の重合反応にそのまま使用できること、溶媒の回収精製が容易であることなどの観点から、芳香族炭化水素が好ましく、トルエン、キシレンがより好ましい。これらの溶媒は単独で使用してもよく、2種類以上を組み合わせて使用してもよい。   The adsorption treatment may be performed after diluting a mixture containing a (meth) acrylate monomer in a solvent. As the solvent used in the adsorption treatment, a solvent that does not adversely affect the adsorption treatment can be used without particular limitation. For example, aliphatic hydrocarbons such as pentane, n-hexane, and octane; cyclopentane, methylcyclopentane, cyclohexane, And alicyclic hydrocarbons such as methylcyclohexane and ethylcyclohexane; aromatic hydrocarbons such as benzene, toluene, ethylbenzene and xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole and diphenyl ether; Among these, aromatic hydrocarbons are preferable and toluene and xylene are more preferable from the viewpoints that they can be used in the subsequent polymerization reaction as they are and that the solvent can be easily recovered and purified. These solvents may be used alone or in combination of two or more.

(メタアクリレート系重合性単量体を含む混合物の製造方法)
(メタ)アクリレート系重合体(A)の原料となる(メタ)アクリレート系重合性単量体を含む混合物の製造方法は特に制限されるものではなく、例えば公知または公知に準ずる方法を採用できる。例えば、(メタ)アクリル酸メチル等の短鎖アルキル基を有する(メタ)アクリル酸エステルとアルキルアルコールとをブレンステッド酸やルイス酸触媒の存在下で加熱し、生成した短鎖アルコールを留去させながら行うエステル交換反応や、(メタ)アクリル酸とアルキルアルコールとを硫酸やp−トルエンスルホン酸、メタンスルホン酸や固体酸触媒の存在下で加熱することによって行う縮合反応、(メタ)アクリル酸クロリドまたは(メタ)アクリル酸無水物とアルキルアルコールとをトリエチルアミンやピリジン等の塩基存在下で反応させる方法等を挙げることができる。
(Method for producing a mixture containing a methacrylate polymerizable monomer)
The manufacturing method of the mixture containing the (meth) acrylate-based polymerizable monomer that is the raw material of the (meth) acrylate-based polymer (A) is not particularly limited, and for example, a known or known method can be employed. For example, a (meth) acrylic acid ester having a short chain alkyl group such as methyl (meth) acrylate and an alkyl alcohol are heated in the presence of a Bronsted acid or a Lewis acid catalyst to distill off the generated short chain alcohol. A transesterification reaction, a condensation reaction performed by heating (meth) acrylic acid and alkyl alcohol in the presence of sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid or a solid acid catalyst, (meth) acrylic acid chloride Alternatively, a method of reacting (meth) acrylic anhydride and alkyl alcohol in the presence of a base such as triethylamine or pyridine can be exemplified.

反応液から(メタ)アクリレート系重合性単量体を含む混合物を取得するにあたっては、抽出、再結晶等の公知の方法を特に制限なく用いることができる。例えば、(メタ)アクリル酸とアルキルアルコールとの反応により得られた反応液からの(メタ)アクリレート系重合性単量体を含む混合物の取得は、例えば(メタ)アクリル酸とアルキルアルコールとを、トルエンやヘキサン等の有機溶剤中硫酸やp−トルエンスルホン酸、メタンスルホン酸や固体酸等の酸触媒存在下で加熱し、共沸脱水によって生成した水を系外に除去しながら反応を行って反応液を得た後に、該反応液に水酸化ナトリウム等のアルカリ水溶液を添加することによって酸触媒を中和、抽出し、その後有機層中の溶剤を留去することによって行うことができる。   In obtaining a mixture containing a (meth) acrylate polymerizable monomer from the reaction solution, known methods such as extraction and recrystallization can be used without particular limitation. For example, acquisition of the mixture containing the (meth) acrylate polymerizable monomer from the reaction solution obtained by the reaction of (meth) acrylic acid and alkyl alcohol is, for example, (meth) acrylic acid and alkyl alcohol, Heat in the presence of an acid catalyst such as sulfuric acid, p-toluenesulfonic acid, methanesulfonic acid or solid acid in an organic solvent such as toluene or hexane, and perform the reaction while removing water generated by azeotropic dehydration out of the system. After obtaining the reaction solution, it can be carried out by neutralizing and extracting the acid catalyst by adding an alkaline aqueous solution such as sodium hydroxide to the reaction solution, and then distilling off the solvent in the organic layer.

上記(メタ)アクリレート系重合性単量体を含む混合物の製造においては、重合禁止剤を使用することが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ベンゾキノンなどのキノン類;メトキシフェノール、p−tert−ブチルカテコール、2,4−ジメチル−6−tert−ブチルフェノール、及び2,6−tert−ブチル−4−メチルフェノールから選ばれる少なくとも1つのフェノール性水酸基を有する化合物;クペロン、フェノチアジンが挙げられる。なお、重合禁止剤としては、重合禁止効果の高い、ハイドロキノン、メトキシフェノール、p−tert−ブチルカテコール、2,6−tert−ブチル−4−メチルフェノールが好ましく使用される。   In the production of the mixture containing the (meth) acrylate-based polymerizable monomer, it is preferable to use a polymerization inhibitor. Examples of the polymerization inhibitor include quinones such as hydroquinone, methylhydroquinone, and benzoquinone; methoxyphenol, p-tert-butylcatechol, 2,4-dimethyl-6-tert-butylphenol, and 2,6-tert-butyl- A compound having at least one phenolic hydroxyl group selected from 4-methylphenol; and cuperone and phenothiazine. As the polymerization inhibitor, hydroquinone, methoxyphenol, p-tert-butylcatechol, and 2,6-tert-butyl-4-methylphenol having a high polymerization inhibition effect are preferably used.

上記(メタ)アクリレート系重合性単量体を含む混合物を製造する際の重合禁止剤の使用量は、(メタ)アクリル酸および(メタ)アクリル酸エステルの重合防止の観点から、原料の(メタ)アクリル酸又は(メタ)アクリル酸短鎖アルキルエステル100質量部に対して、好ましくは0.001質量部以上、より好ましくは0.005質量部以上、更に好ましくは0.01質量部以上である。また、当該使用量は、生成物の有用性の観点から、好ましくは10質量部以下、より好ましくは1質量部以下、更に好ましくは0.5質量部以下である。   From the viewpoint of preventing polymerization of (meth) acrylic acid and (meth) acrylic acid ester, the amount of the polymerization inhibitor used in the production of the mixture containing the (meth) acrylate polymerizable monomer is (meth) acrylic acid (meth) acrylate. ) It is preferably 0.001 part by mass or more, more preferably 0.005 part by mass or more, and still more preferably 0.01 part by mass or more with respect to 100 parts by mass of acrylic acid or (meth) acrylic acid short chain alkyl ester. . Moreover, the said usage-amount is from a useful viewpoint of a product, Preferably it is 10 mass parts or less, More preferably, it is 1 mass part or less, More preferably, it is 0.5 mass part or less.

上記(メタ)アクリレート系重合性単量体を含む混合物中の上記重合禁止剤の含有量は、保管中の重合防止の観点から、(メタ)アクリレート系単量体100質量部に対して好ましくは0.00001質量部以上、より好ましくは0.0001質量部以上、より好ましくは0.0005質量部以上である。また、当該含有量は、重合で使用する前の除去の容易さから、好ましくは0.5質量部以下、より好ましくは0.2質量部以下、さらに好ましくは0.1質量部以下である。   The content of the polymerization inhibitor in the mixture containing the (meth) acrylate polymerizable monomer is preferably from 100 parts by mass of the (meth) acrylate monomer from the viewpoint of preventing polymerization during storage. It is 0.00001 mass part or more, More preferably, it is 0.0001 mass part or more, More preferably, it is 0.0005 mass part or more. In addition, the content is preferably 0.5 parts by mass or less, more preferably 0.2 parts by mass or less, and further preferably 0.1 parts by mass or less from the viewpoint of ease of removal before use in polymerization.

((メタ)アクリレート系重合体(A)の製造方法)
(メタ)アクリレート系重合体(A)の製造方法は特に制限ないが、a値を所望の範囲にするためには、該製造方法は、原子移動ラジカル重合(ATRP)、可逆付加フラグメント化連鎖移動重合(RAFT)、ニトロキシド介在重合(NMP)、ヨウ素移動重合、(有機テルル、アンチモン、ビスマス等の)高周期ヘテロ元素を用いる重合、硼素介在重合、触媒移動重合(CCT)、およびコバルトやチタンなどの金属と炭素結合をドーマント種とする重合系(OMRP)などの精密ラジカル重合、ならびにリビングアニオン重合が好ましい。なかでも、熱安定性が高い(メタ)アクリレート系重合体(A)が得られることから、リビングアニオン重合がより好ましい。かかるリビングアニオン重合法としては、例えば、有機アルカリ金属化合物を重合開始剤として用いアルカリ金属またはアルカリ土類金属の塩などの鉱酸塩の存在下でアニオン重合する方法(特公平7−25859号参照)、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でアニオン重合する方法(特開平11−335432号参照)、有機希土類金属錯体やメタロセン型金属錯体を重合開始剤としてアニオン重合する方法(特開平6−93060号参照)などが挙げられる。なかでも、Mw/Mnのより小さい重合体が得られるために剪断安定性が良好となること、シンジオタクティシティの高い重合体が得られるために粘度指数向上効果が高くなることから、有機アルカリ金属化合物を重合開始剤として用い、有機アルミニウム化合物の存在下でアニオン重合する方法が好ましい。
(Method for producing (meth) acrylate polymer (A))
The production method of the (meth) acrylate polymer (A) is not particularly limited, but in order to make the a value within a desired range, the production method is atom transfer radical polymerization (ATRP), reversible addition fragmentation chain transfer. Polymerization (RAFT), nitroxide-mediated polymerization (NMP), iodine transfer polymerization, polymerization using high-cycle heteroelements (such as organic tellurium, antimony, bismuth, etc.), boron-mediated polymerization, catalyst transfer polymerization (CCT), and cobalt, titanium, etc. Precise radical polymerization such as a polymerization system (OMRP) using a metal and a carbon bond as a dormant species, and living anion polymerization are preferable. Especially, since a (meth) acrylate type polymer (A) with high heat stability is obtained, living anion polymerization is more preferable. As such a living anionic polymerization method, for example, a method of anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of a mineral acid salt such as an alkali metal or alkaline earth metal salt (see Japanese Patent Publication No. 7-25859). ), Anionic polymerization using an organic alkali metal compound as a polymerization initiator in the presence of an organic aluminum compound (see JP-A-11-335432), anionic polymerization using an organic rare earth metal complex or a metallocene metal complex as a polymerization initiator And a method (see JP-A-6-93060). Among them, since a polymer having a smaller Mw / Mn is obtained, the shear stability is improved, and since a polymer having a high syndiotacticity is obtained, the effect of improving the viscosity index is increased. A method of anionic polymerization using a metal compound as a polymerization initiator in the presence of an organoaluminum compound is preferred.

有機アルカリ金属化合物を重合開始剤として用いた有機アルミニウム化合物の存在下でのアニオン重合は、例えば、有機リチウム化合物と、下記の一般式(7)又は(8):
AlR1011 …(7)
(一般式(7)中、R、R10及びR11はそれぞれ独立に、置換基を有してもよいアルキル基、置換基を有してもよいシクロアルキル基、置換基を有してもよいアリール基、置換基を有してもよいアラルキル基、置換基を有してもよいアルコキシル基、置換基を有してもよいアリールオキシ基、若しくはN,N−二置換アミノ基を表す。)
AlR12 …(8)
(一般式(8)中、Rは上記定義の通りであり、R12は置換基を有していてもよいアリーレンジオキシ基を表す。)
で表される有機アルミニウム化合物の存在下に、必要に応じて、反応系内に、ジメチルエーテル、ジメトキシエタン、ジエトキシエタン、12−クラウン−4などのエーテル;又は、トリエチルアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’’,N’’−ペンタメチルジエチレントリアミン、1,1,4,7,10,10−ヘキサメチルトリエチレンテトラミン、ピリジン、2,2’−ジピリジルなどの含窒素化合物を更に存在させて(メタ)アクリル酸アルキルエステルを重合させることにより行なわれる。
Anionic polymerization in the presence of an organoaluminum compound using an organic alkali metal compound as a polymerization initiator is, for example, an organolithium compound and the following general formula (7) or (8):
AlR 9 R 10 R 11 (7)
(In the general formula (7), R 9 , R 10 and R 11 each independently have an alkyl group which may have a substituent, an cycloalkyl group which may have a substituent, or a substituent. Represents an aryl group which may have a substituent, an aralkyl group which may have a substituent, an alkoxyl group which may have a substituent, an aryloxy group which may have a substituent, or an N, N-disubstituted amino group .)
AlR 9 R 12 (8)
(In General Formula (8), R 9 is as defined above, and R 12 represents an aryleneoxy group which may have a substituent.)
In the presence of an organoaluminum compound represented by the formula, an ether such as dimethyl ether, dimethoxyethane, diethoxyethane, 12-crown-4; or triethylamine, N, N, N ′ if necessary in the reaction system. , N′-tetramethylethylenediamine, N, N, N ′, N ″, N ″ -pentamethyldiethylenetriamine, 1,1,4,7,10,10-hexamethyltriethylenetetramine, pyridine, 2,2 It is carried out by polymerizing the (meth) acrylic acid alkyl ester in the presence of a nitrogen-containing compound such as' -dipyridyl.

上記アニオン重合で用いられる有機リチウム化合物としては、例えば、メチルリチウム、エチルリチウム、n−プロピルリチウム、イソプロピルリチウム、n−ブチルリチウム、sec−ブチルリチウム、イソブチルリチウム、tert−ブチルリチウム、n−ペンチルリチウム、n−ヘキシルリチウム、テトラメチレンジリチウム、ペンタメチレンジリチウム、ヘキサメチレンジリチウムなどのアルキルリチウムおよびアルキルジリチウム;フェニルリチウム、m−トリルリチウム、p−トリルリチウム、キシリルリチウム、リチウムナフタレンなどのアリールリチウムおよびアリールジリチウム; ベンジルリチウム、ジフェニルメチルリチウム、トリチルリチウム、1,1−ジフェニル−3−メチルペンチルリチウム、α−メチルスチリルリチウム、ジイソプロペニルベンゼンとブチルリチウムの反応により生成するジリチウムなどのアラルキルリチウムおよびアラルキルジリチウム;リチウムジメチルアミド、リチウムジエチルアミド、リチウムジイソプロピルアミドなどのリチウムアミド;メトキシリチウム、エトキシリチウム、n−プロポキシリチウム、イソプロポキシリチウム、n−ブトキシリチウム、sec−ブトキシリチウム、tert−ブトキシリチウム、ペンチルオキシリチウム、ヘキシルオキシリチウム、ヘプチルオキシリチウム、オクチルオキシリチウム、フェノキシリチウム、4−メチルフェノキシリチウム、ベンジルオキシリチウム、4−メチルベンジルオキシリチウムなどのリチウムアルコキシド等を、単独で又は組み合わせて用いることができる。   Examples of the organic lithium compound used in the anionic polymerization include methyl lithium, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, isobutyl lithium, tert-butyl lithium, and n-pentyl lithium. Alkyl lithium and alkyl dilithium such as n-hexyl lithium, tetramethylene dilithium, pentamethylene dilithium, hexamethylene dilithium; phenyl lithium, m-tolyl lithium, p-tolyl lithium, xylyl lithium, lithium naphthalene, etc. Aryllithium and aryldilithium; benzyllithium, diphenylmethyllithium, trityllithium, 1,1-diphenyl-3-methylpentyllithium, α-methylstyryl Aralkyllithium and aralkyldilithium such as dilithium produced by the reaction of lithium, diisopropenylbenzene and butyllithium; lithium amides such as lithium dimethylamide, lithium diethylamide and lithium diisopropylamide; methoxylithium, ethoxylithium, n-propoxylithium, Isopropoxylithium, n-butoxylithium, sec-butoxylithium, tert-butoxylithium, pentyloxylithium, hexyloxylithium, heptyloxylithium, octyloxylithium, phenoxylithium, 4-methylphenoxylithium, benzyloxylithium, 4- Lithium alkoxides such as methylbenzyloxylithium can be used alone or in combination

また、上記一般式(7)又は(8)で表される有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリn−オクチルアルミニウムなどのトリアルキルアルミニウム;ジメチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジメチル(2,6−ジ−tert−ブチルフェノキシ) アルミニウム、ジエチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジエチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、ジイソブチル(2,6−ジ−tert−ブチルフェノキシ)アルミニウムなどのジアルキルフェノキシアルミニウム;メチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、メチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エチル[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウム、エチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、エチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エチル[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウム、イソブチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウムなどのアルキルジフェノキシアルミニウム;メトキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、メトキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、メトキシ[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウム、エトキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、エトキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、エトキシ[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウム、イソプロポキシビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ) アルミニウム、イソプロポキシビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソプロポキシ[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウムなどのアルコキシジフェノキシアルミニウム; トリス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、トリス(2,6−ジフェニルフェノキシ)アルミニウムなどのトリフェノキシアルミニウム等を、単独で又は組み合わせて用いることができる。中でも、イソブチルビス(2,6−ジ−tert−ブチル−4−メチルフェノキシ)アルミニウム、イソブチルビス(2,6−ジ−tert−ブチルフェノキシ)アルミニウム、イソブチル[2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノキシ)]アルミニウムなどが、取り扱いが容易であり、しかも比較的緩和な温度条件下で失活なく(メタ)アクリル酸エステルの重合を進行させることができる点から特に好ましく用いられる。   Examples of the organoaluminum compound represented by the general formula (7) or (8) include trialkylaluminums such as trimethylaluminum, triethylaluminum, triisobutylaluminum, and tri-n-octylaluminum; dimethyl (2,6 -Di-tert-butyl-4-methylphenoxy) aluminum, dimethyl (2,6-di-tert-butylphenoxy) aluminum, diethyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diethyl ( Dialkylphenols such as 2,6-di-tert-butylphenoxy) aluminum, diisobutyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum, diisobutyl (2,6-di-tert-butylphenoxy) aluminum Methylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, methylbis (2,6-di-tert-butylphenoxy) aluminum, ethyl [2,2′-methylenebis (4-methyl- 6-tert-butylphenoxy)] aluminum, ethylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, ethylbis (2,6-di-tert-butylphenoxy) aluminum, ethyl [2,2 ′ -Methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) ) Aluminum, isobutyl [2,2'-me Alkyldiphenoxyaluminum such as lenbis (4-methyl-6-tert-butylphenoxy)] aluminum; methoxybis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, methoxybis (2,6-di-tert) -Butylphenoxy) aluminum, methoxy [2,2'-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, ethoxybis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, ethoxybis ( 2,6-di-tert-butylphenoxy) aluminum, ethoxy [2,2′-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum, isopropoxybis (2,6-di-tert-butyl- 4-methylphenoxy) Alkoxydiphenoxyaluminum such as luminium, isopropoxybis (2,6-di-tert-butylphenoxy) aluminum, isopropoxy [2,2'-methylenebis (4-methyl-6-tert-butylphenoxy)] aluminum; Triphenoxyaluminum such as (2,6-di-tert-butyl-4-methylphenoxy) aluminum and tris (2,6-diphenylphenoxy) aluminum can be used alone or in combination. Among them, isobutylbis (2,6-di-tert-butyl-4-methylphenoxy) aluminum, isobutylbis (2,6-di-tert-butylphenoxy) aluminum, isobutyl [2,2′-methylenebis (4-methyl) -6-tert-butylphenoxy)] aluminum and the like are particularly preferably used because they are easy to handle and can progress polymerization of (meth) acrylic acid esters without deactivation under relatively mild temperature conditions. It is done.

上記アニオン重合は、溶媒中で行なうことが好ましい。該溶媒としては、反応に悪影響を及ぼさない溶媒を特に制限なく用いることができ、例えばペンタン、n−ヘキサン、オクタンなどの脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサンなどの脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレンなどの芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサン、アニソール、ジフェニルエーテルなどのエーテル、などが挙げられる。中でも、生成する重合体または共重合体の溶解度が高いこと、廃水への混入が生じにくいこと、溶媒の回収精製が容易であることなどの観点から、芳香族炭化水素が好ましく、トルエン、キシレンがより好ましい。これらの溶媒は単独で使用してもよく、二種以上を組み合わせて使用してもよい。なお、上記溶媒は、予め脱気および脱水処理して精製しておくことが、重合反応を円滑に進行させる点から好ましい。   The anionic polymerization is preferably performed in a solvent. As the solvent, a solvent that does not adversely influence the reaction can be used without particular limitation. For example, an aliphatic hydrocarbon such as pentane, n-hexane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, ethylcyclohexane And alicyclic hydrocarbons such as: aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene; ethers such as diethyl ether, tetrahydrofuran, 1,4-dioxane, anisole, and diphenyl ether. Among them, aromatic hydrocarbons are preferable from the viewpoints of high solubility of the polymer or copolymer to be produced, difficulty in mixing in wastewater, easy recovery and purification of the solvent, and toluene and xylene. More preferred. These solvents may be used alone or in combination of two or more. The solvent is preferably purified in advance by degassing and dehydrating from the viewpoint of allowing the polymerization reaction to proceed smoothly.

また、(メタ)アクリレート系重合体(A)を製造する重合反応は、窒素、アルゴン、ヘリウムなどの不活性ガスの雰囲気下で行なうことが好ましい。   The polymerization reaction for producing the (meth) acrylate polymer (A) is preferably performed in an atmosphere of an inert gas such as nitrogen, argon, or helium.

(メタ)アクリレート系重合体(A)を製造する際の重合温度は、使用する(メタ)アクリル酸エステルの種類、重合反応液中の濃度などに応じて適切に選択すればよいが、有機アルカリ金属化合物を重合開始剤として用い有機アルミニウム化合物の存在下でのアニオン重合する方法により製造する場合には、重合時間が短縮でき、また、重合中の失活反応が少ないことなどから、通常−20〜80℃の範囲の温度が好ましい。これは、従来の(メタ)アクリル酸エステルのアニオン重合条件と比較して極めて温和な温度条件であるので、本発明の方法を工業的に実施するに際しては、従来の方法と比較して冷却設備のコストを大幅に削減することができる。   The polymerization temperature for producing the (meth) acrylate polymer (A) may be appropriately selected according to the type of (meth) acrylic acid ester used, the concentration in the polymerization reaction solution, and the like. When a metal compound is used as a polymerization initiator and produced by a method of anionic polymerization in the presence of an organoaluminum compound, the polymerization time can be shortened, and since there are few deactivation reactions during polymerization, etc., it is usually -20. A temperature in the range of ~ 80 ° C is preferred. This is an extremely mild temperature condition compared with the conventional anionic polymerization conditions of (meth) acrylic acid ester. Therefore, when industrially carrying out the method of the present invention, the cooling equipment is compared with the conventional method. The cost can be greatly reduced.

(メタ)アクリレート系重合体(A)を製造するための重合方式としては、例えばバッチ重合方式、連続重合方式などを用いることができる。   As a polymerization method for producing the (meth) acrylate polymer (A), for example, a batch polymerization method, a continuous polymerization method, or the like can be used.

(メタ)アクリレート系重合体(A)は、例えば、製造する最終の反応器より連続的に流出する重合反応液に、重合停止剤を添加することによって重合反応を停止させることにより得ることができる。重合停止剤としては、例えば水、メタノール、酢酸、塩酸などのプロトン性化合物などが挙げられる。重合停止剤の使用量は特に限定されないが、通常、使用する重合開始剤に対して1〜100倍モルの範囲である。   The (meth) acrylate polymer (A) can be obtained, for example, by stopping the polymerization reaction by adding a polymerization terminator to the polymerization reaction solution that continuously flows out from the final reactor to be produced. . Examples of the polymerization terminator include protic compounds such as water, methanol, acetic acid and hydrochloric acid. Although the usage-amount of a polymerization terminator is not specifically limited, Usually, it is the range of 1-100 times mole with respect to the polymerization initiator to be used.

重合停止後の重合反応液から分離取得した(メタ)アクリレート系重合体(A)中に、使用した有機アルミニウム化合物に由来するアルミニウムが残存していると、(メタ)アクリレート系重合体(A)や、それを用いた材料の物性低下を生じる場合があるので、有機アルミニウム化合物に由来するアルミニウムを重合終了後に除去することが好ましい。該アルミニウムの除去方法としては、重合停止剤を添加した後の重合反応液を、酸性水溶液を用いた洗浄処理する方法、イオン交換樹脂などの吸着剤を用いた吸着処理などに付する方法などが有効である。   When aluminum derived from the used organoaluminum compound remains in the (meth) acrylate polymer (A) obtained separately from the polymerization reaction liquid after the polymerization is stopped, the (meth) acrylate polymer (A) In addition, since the physical properties of the material using the same may be deteriorated, it is preferable to remove aluminum derived from the organoaluminum compound after completion of the polymerization. Examples of the method for removing aluminum include a method in which a polymerization reaction liquid after adding a polymerization terminator is subjected to a washing treatment using an acidic aqueous solution, a method in which an adsorption treatment using an adsorbent such as an ion exchange resin is performed, and the like. It is valid.

重合を停止させ、アルミニウムの除去処理操作を行なった後の重合反応液から(メタ)アクリレート系重合体(A)を分離取得するための方法は特に制限されず、公知の方法を適宜採用できる。例えば、重合反応液を、(メタ)アクリレート系重合体(A)の貧溶媒に注いで該(メタ)アクリレート系重合体(A)を析出させる方法; 重合反応液から溶媒を減圧下に留去して(メタ)アクリレート系重合体(A)を取得する方法などが挙げられる。また、まず薄膜蒸発装置などを用いて、重合反応液から溶媒および低沸点成分の大部分を除去した後、得られた残留物を連続的に溶融押出器に供給し、かかる溶融押出器中において減圧下に溶媒などを留去して、(メタ)アクリレート系重合体(A)をストランド、ペレットまたは餅状ブロックとして回収することも可能である。また、重合反応液として取り出してもよいし、用いた溶媒よりも沸点の高い溶媒を加えて溶媒を除去することで、重合で用いた別の溶媒に溶解した溶液として取り出すことも可能である。   The method for separating and obtaining the (meth) acrylate polymer (A) from the polymerization reaction solution after stopping the polymerization and performing the aluminum removal treatment operation is not particularly limited, and a known method can be appropriately employed. For example, a method in which a polymerization reaction solution is poured into a poor solvent of a (meth) acrylate polymer (A) to precipitate the (meth) acrylate polymer (A); the solvent is distilled off from the polymerization reaction solution under reduced pressure. And a method for obtaining the (meth) acrylate polymer (A). First, after removing most of the solvent and low-boiling components from the polymerization reaction solution using a thin-film evaporator, etc., the obtained residue is continuously supplied to the melt extruder, and in the melt extruder, It is also possible to recover the (meth) acrylate polymer (A) as a strand, pellet or cage-like block by distilling off the solvent under reduced pressure. Alternatively, it may be taken out as a polymerization reaction solution, or it may be taken out as a solution dissolved in another solvent used in the polymerization by adding a solvent having a boiling point higher than the solvent used and removing the solvent.

(メタ)アクリレート系重合体(A)は、単一の単量体から製造される単独重合体であっても、複数の単量体から製造される共重合体であってもよい。単独重合体としては、直鎖状であっても、スター型であってもよい。共重合体としては、ランダム共重合体、ブロック共重合体、グラフト共重合体、スター型共重合体であってもよい。   The (meth) acrylate polymer (A) may be a homopolymer produced from a single monomer or a copolymer produced from a plurality of monomers. The homopolymer may be linear or star-shaped. The copolymer may be a random copolymer, a block copolymer, a graft copolymer, or a star copolymer.

<その他の添加剤>
本発明の潤滑油組成物には、さらにその性能を向上させるために、その目的に応じて潤滑油に一般的に使用されている他の添加剤を含有させることができる。そのような添加剤としては、例えば、上記(A)成分以外の粘度指数向上剤、無灰分散剤、摩擦調整剤、摩耗防止剤または極圧剤、酸化防止剤、腐食防止剤、金属不活性化剤、防錆剤、抗乳化剤、および消泡剤等を挙げることができる。
<Other additives>
In order to further improve the performance, the lubricating oil composition of the present invention can contain other additives generally used in lubricating oils depending on the purpose. Examples of such additives include viscosity index improvers other than the above component (A), ashless dispersant, friction modifier, antiwear or extreme pressure agent, antioxidant, corrosion inhibitor, and metal deactivation. Agents, rust inhibitors, demulsifiers, and antifoaming agents.

上記(A)成分以外の粘度指数向上剤としては、耐スラッジ性に悪影響を与えない範囲において、上記の(メタ)アクリレート系重合体(A)以外のポリ(メタ)アクリレート系粘度指数向上剤、ポリイソブテン系粘度指数向上剤、エチレン−プロピレン共重合体系粘度指数向上剤、スチレン−ブタジエン水添共重合体系粘度指数向上剤などが挙げられる。潤滑油組成物は上記(A)成分以外の粘度指数向上剤を含有してもよく、含有しなくてもよい。潤滑油組成物中の上記(A)成分以外の粘度指数向上剤の含有量は、潤滑油組成物全量基準で、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは3質量%以下、特に好ましくは1質量%以下であり、0質量%であってもよい。さらに、潤滑油組成物中の上記(A)成分以外の粘度指数向上剤の含有量は、上記(A)成分100質量部に対して好ましくは50質量部以下、より好ましくは30質量部以下、さらに好ましくは20質量部以下、特に好ましくは10質量部以下であり、0質量部であってもよい。   As a viscosity index improver other than the component (A), a poly (meth) acrylate viscosity index improver other than the (meth) acrylate polymer (A), as long as it does not adversely affect the sludge resistance, Examples thereof include polyisobutene viscosity index improvers, ethylene-propylene copolymer viscosity index improvers, and styrene-butadiene hydrogenated copolymer viscosity index improvers. The lubricating oil composition may or may not contain a viscosity index improver other than the component (A). The content of the viscosity index improver other than the component (A) in the lubricating oil composition is preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 3% by mass based on the total amount of the lubricating oil composition. % Or less, particularly preferably 1% by mass or less, and may be 0% by mass. Furthermore, the content of the viscosity index improver other than the component (A) in the lubricating oil composition is preferably 50 parts by mass or less, more preferably 30 parts by mass or less, with respect to 100 parts by mass of the component (A). More preferably, it is 20 mass parts or less, Most preferably, it is 10 mass parts or less, and may be 0 mass part.

金属系清浄剤としては、アルカリ金属スルホネートもしくはアルカリ土類金属スルホネート、アルカリ金属フェネートもしくはアルカリ土類金属フェネート、及びアルカリ金属サリシレートもしくはアルカリ土類金属サリシレート等の正塩、塩基性塩または過塩基性塩などが挙げられる。本発明では、これらからなる群より選ばれる1種以上のアルカリ金属又はアルカリ土類金属系清浄剤、特にアルカリ土類金属系清浄剤を好ましく使用することができる。特にマグネシウム塩及び/又はカルシウム塩が好ましく、カルシウム塩がより好ましく用いられる。潤滑油組成物に金属系清浄剤を含有させる場合、その含有量は、金属量として、潤滑油組成物全量基準で、好ましくは0.01質量%以上、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上、特に好ましくは0.15質量%以上であり、また好ましくは1.5質量%以下、より好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.3質量%以下である。金属系清浄剤の含有量が金属元素換算で0.01質量%に満たない場合には、十分な清浄性を発揮できないおそれがあり、また1.5質量%を超える場合には、硫酸灰分量が多くなるため排気ガス後処理装置に悪影響を与える恐れがある。   Metal detergents include alkali metal sulfonates or alkaline earth metal sulfonates, alkali metal phenates or alkaline earth metal phenates, and normal salts, basic salts or overbased salts such as alkali metal salicylates or alkaline earth metal salicylates. Etc. In the present invention, one or more alkali metal or alkaline earth metal detergents selected from the group consisting of these, particularly alkaline earth metal detergents can be preferably used. In particular, a magnesium salt and / or a calcium salt is preferable, and a calcium salt is more preferably used. When the lubricating oil composition contains a metallic detergent, the content is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on the total amount of the lubricating oil composition, as a metal amount. More preferably, it is 0.1% by mass or more, particularly preferably 0.15% by mass or more, preferably 1.5% by mass or less, more preferably 1.0% by mass or less, and further preferably 0.5% by mass. Hereinafter, it is particularly preferably 0.3% by mass or less. If the content of the metal detergent is less than 0.01% by mass in terms of metal element, there is a risk that sufficient cleanliness cannot be exhibited, and if it exceeds 1.5% by mass, the sulfated ash content May increase the exhaust gas aftertreatment device.

無灰分散剤としては、潤滑油に用いられる無灰分散剤を特に制限なく用いることができる。本発明において使用可能な無灰分散剤としては、例えば、炭素数40〜400の直鎖もしくは分枝状のアルキル基またはアルケニル基を分子中に少なくとも1個有するモノまたはビスコハク酸イミド、炭素数40〜400のアルキル基またはアルケニル基を分子中に少なくとも1個有するベンジルアミン、あるいは炭素数40〜400のアルキル基またはアルケニル基を分子中に少なくとも1個有するポリアミン、あるいはこれらのホウ素化合物、カルボン酸、またはリン酸等による変成品等が挙げられ、これらの中から選ばれる1種以上を配合することができる。潤滑油組成物に無灰分散剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.01〜20質量%であり、より好ましくは0.1〜10質量%である。無灰分散剤の含有量が0.01質量%未満の場合は、清浄分散性向上効果が不十分となるおそれがあり、一方、20質量%を超える場合は、潤滑油組成物の低温流動性が大幅に悪化するおそれがある。   As the ashless dispersant, an ashless dispersant used for lubricating oil can be used without any particular limitation. Examples of the ashless dispersant that can be used in the present invention include mono- or bissuccinimide having at least one linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, and 40 to 40 carbon atoms. Benzylamine having at least one alkyl group or alkenyl group of 400 in the molecule, or polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or a boron compound, carboxylic acid thereof, or Examples of such modified products include phosphoric acid, and one or more selected from these can be blended. When the ashless dispersant is contained in the lubricating oil composition, the content is preferably 0.01 to 20% by mass, more preferably 0.1 to 10% by mass, based on the total amount of the lubricating oil composition. . When the content of the ashless dispersant is less than 0.01% by mass, the effect of improving the clean dispersibility may be insufficient. On the other hand, when the content exceeds 20% by mass, the low-temperature fluidity of the lubricating oil composition is low. There is a risk of significant deterioration.

摩擦調整剤としては、公知の摩擦調整剤を特に制限なく用いることができ、有機モリブデン化合物および/または無灰摩擦調整剤を好ましく用いることができる。   As the friction modifier, known friction modifiers can be used without particular limitation, and organic molybdenum compounds and / or ashless friction modifiers can be preferably used.

有機モリブデン化合物としては、例えば、モリブデンジチオホスフェート、モリブデンジチオカーバメート(MoDTC)等の硫黄を含有する有機モリブデン化合物;モリブデン化合物(例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン、オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデン等。)と、硫黄含有有機化合物(例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステル等。)又はその他の有機化合物との錯体等;および、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等の、硫黄を含有する有機モリブデン化合物を挙げることができる。   Examples of the organic molybdenum compound include organic molybdenum compounds containing sulfur such as molybdenum dithiophosphate and molybdenum dithiocarbamate (MoDTC); molybdenum compounds (eg molybdenum oxide such as molybdenum dioxide and molybdenum trioxide, orthomolybdic acid, para-molybdenum) Acids, molybdic acids such as (poly) sulfurized molybdic acid, metal salts of these molybdates, molybdates such as ammonium salts, molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, molybdenum sulfide such as polysulfide molybdenum, molybdenum sulfide Acid, metal salts of sulfur molybdate or amine salts, molybdenum halides such as molybdenum chloride, etc.) and sulfur-containing organic compounds (eg, alkyl (thio) xanthate, thiadiazole, mercaptothiadiazole) Thiocarbonate, tetrahydrocarbyl thiuram disulfide, bis (di (thio) hydrocarbyl dithiophosphonate) disulfide, organic (poly) sulfide, sulfide ester, etc.) or other organic compounds, etc .; and the above sulfides An organic molybdenum compound containing sulfur such as a complex of a sulfur-containing molybdenum compound such as molybdenum or sulfurized molybdic acid and an alkenyl succinimide can be given.

また、有機モリブデン化合物として、構成元素として硫黄を含まない有機モリブデン化合物を用いることもできる。構成元素として硫黄を含まない有機モリブデン化合物としては、具体的には、モリブデン−アミン錯体、モリブデン−コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデン−アミン錯体、有機酸のモリブデン塩およびアルコールのモリブデン塩が好ましい。   Further, as the organic molybdenum compound, an organic molybdenum compound which does not contain sulfur as a constituent element can be used. Specific examples of organic molybdenum compounds that do not contain sulfur as a constituent element include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, and molybdenum salts of alcohols. Complexes, molybdenum salts of organic acids and molybdenum salts of alcohols are preferred.

潤滑油組成物において、摩擦調整剤として有機モリブデン化合物を用いる場合、その含有量は組成物全量基準で例えば0.1〜1.0質量%とすることができる。また有機モリブデン化合物のモリブデン元素換算での含有量は、潤滑油組成物全量を基準として、好ましくは10質量ppm以上、より好ましくは50質量ppm以上、さらに好ましくは100質量ppm以上、特に好ましくは200質量ppm以上である。一方、潤滑油基油への溶解性、貯蔵安定性および酸化安定性、さらには経済性の観点から、好ましくは400質量ppm以下、より好ましくは300質量ppm以下、特に好ましくは250質量ppm以下である。なお、有機モリブデン化合物のモリブデン元素換算での含有量が400質量ppmを超えると、特に、潤滑油組成物の高温における安定性が阻害され、デポジットの生成が促進されるので好ましくなく、さらには経済性の面からも好ましくない。   In the lubricating oil composition, when an organomolybdenum compound is used as the friction modifier, the content thereof can be, for example, 0.1 to 1.0% by mass based on the total amount of the composition. The content of the organic molybdenum compound in terms of molybdenum element is preferably 10 mass ppm or more, more preferably 50 mass ppm or more, still more preferably 100 mass ppm or more, particularly preferably 200, based on the total amount of the lubricating oil composition. It is mass ppm or more. On the other hand, from the viewpoints of solubility in lubricating base oil, storage stability and oxidation stability, and economic efficiency, it is preferably 400 ppm by mass or less, more preferably 300 ppm by mass or less, and particularly preferably 250 ppm by mass or less. is there. In addition, when the content of the organic molybdenum compound in terms of molybdenum element exceeds 400 ppm by mass, the stability of the lubricating oil composition at high temperatures is particularly hindered, and the formation of deposits is promoted, which is not preferable. It is not preferable from the viewpoint of sex.

無灰摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられている化合物が特に制限なく使用可能である。本発明の潤滑油組成物において使用可能な無灰摩擦調整剤としては、例えば、分子中に酸素原子、窒素原子、硫黄原子から選ばれる1種以上のヘテロ元素を含有する、炭素数6〜50の化合物が挙げられる。さらに具体的には、炭素数6〜30のアルキル基またはアルケニル基、特に炭素数6〜30の直鎖アルキル基、直鎖アルケニル基、分岐アルキル基、または分岐アルケニル基を分子中に少なくとも1個有する、アミン化合物、脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ウレア系化合物、ヒドラジド系化合物等の無灰摩擦調整剤等が挙げられる。   As the ashless friction modifier, a compound usually used as a friction modifier for lubricating oil can be used without any particular limitation. Examples of the ashless friction modifier that can be used in the lubricating oil composition of the present invention include, for example, one or more heteroelements selected from an oxygen atom, a nitrogen atom, and a sulfur atom in the molecule, and have 6 to 50 carbon atoms. The compound of this is mentioned. More specifically, at least one alkyl group or alkenyl group having 6 to 30 carbon atoms, particularly a straight chain alkyl group, straight chain alkenyl group, branched alkyl group or branched alkenyl group having 6 to 30 carbon atoms in the molecule. Examples thereof include ashless friction modifiers such as amine compounds, fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, urea compounds, hydrazide compounds, and the like.

潤滑油組成物における無灰摩擦調整剤の含有量は、潤滑油組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また好ましくは2質量%以下、より好ましくは1質量%以下、特に好ましくは0.8質量%以下である。無灰摩擦調整剤の含有量が0.01質量%未満であると、その添加による摩擦低減効果が不十分となる傾向にあり、また2質量%を超えると、添加剤の溶解性が悪化する傾向にあり、さらに耐摩耗性添加剤などの効果が阻害される恐れがある。   The content of the ashless friction modifier in the lubricating oil composition is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.3% by mass, based on the total amount of the lubricating oil composition. % Or more, preferably 2% by mass or less, more preferably 1% by mass or less, and particularly preferably 0.8% by mass or less. If the content of the ashless friction modifier is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and if it exceeds 2% by mass, the solubility of the additive deteriorates. In addition, the effects of anti-wear additives may be hindered.

酸化防止剤としては、フェノール系、アミン系等の無灰酸化防止剤、銅系、モリブデン系等の金属系酸化防止剤が挙げられる。具体的には例えば、フェノール系無灰酸化防止剤としては、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)等が挙げられ、アミン系無灰酸化防止剤としては、フェニル−α−ナフチルアミン、アルキルフェニル−α−ナフチルアミン、ジアルキルジフェニルアミン等が挙げられる。潤滑油組成物に酸化防止剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、通常5.0質量%以下であり、好ましくは3.0質量%以下であり、また好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上である。   Examples of the antioxidant include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum. Specifically, for example, phenol-based ashless antioxidants include 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert-butylphenol). As the amine-based ashless antioxidant, phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, dialkyldiphenylamine and the like can be mentioned. When the antioxidant is contained in the lubricating oil composition, the content is usually 5.0% by mass or less, preferably 3.0% by mass or less, and preferably based on the total amount of the lubricating oil composition. It is 0.1 mass% or more, More preferably, it is 0.5 mass% or more.

摩耗防止剤または極圧剤としては、潤滑油に用いられる摩耗防止剤・極圧剤を特に制限なく使用できる。例えば、硫黄系、リン系、硫黄−リン系の極圧剤等が使用でき、具体的には、亜リン酸エステル類、チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、リン酸エステル類、チオリン酸エステル類、ジチオリン酸エステル類、トリチオリン酸エステル類、これらのアミン塩、これらの金属塩、これらの誘導体、ジチオリン酸亜鉛、ジチオカーバメート、亜鉛ジチオカーバメート、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類等が挙げられる。潤滑油組成物に摩耗防止剤または極圧剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、その含有量は、潤滑油組成物全量基準で、例えば0.05〜2.0質量%とすることができ、耐摩耗性あるいは耐荷重性向上の観点から、0.01〜10質量%であることが好ましい。   As the antiwear agent or extreme pressure agent, any antiwear agent / extreme pressure agent used for lubricating oil can be used without particular limitation. For example, sulfur-based, phosphorus-based, sulfur-phosphorus extreme pressure agents and the like can be used. Specifically, phosphites, thiophosphites, dithiophosphites, trithiophosphites Esters, phosphate esters, thiophosphate esters, dithiophosphate esters, trithiophosphate esters, amine salts thereof, metal salts thereof, derivatives thereof, zinc dithiophosphate, dithiocarbamate, zinc dithiocarbamate, disulfide , Polysulfides, sulfurized olefins, sulfurized fats and oils, and the like. When the lubricating oil composition contains an antiwear agent or extreme pressure agent, the content is based on the total amount of the lubricating oil composition, and the content is based on the total amount of the lubricating oil composition, for example 0.05-2. It can be 0 mass%, and it is preferable that it is 0.01-10 mass% from a viewpoint of abrasion resistance or a load-proof improvement.

腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、およびイミダゾール系化合物等が挙げられる。潤滑油組成物に腐食防止剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.005〜5質量%である。   Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds. When the corrosion inhibitor is contained in the lubricating oil composition, the content is preferably 0.005 to 5 mass% based on the total amount of the lubricating oil composition.

防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、および多価アルコールエステル等が挙げられる。潤滑油組成物に防錆剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.005〜5質量%である。   Examples of the rust inhibitor include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester. When the lubricating oil composition contains a rust inhibitor, the content is preferably 0.005 to 5 mass% based on the total amount of the lubricating oil composition.

抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、およびポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤等が挙げられる。潤滑油組成物に抗乳化剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.005〜5質量%である。   Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether. When the lubricating oil composition contains an anti-emulsifier, the content thereof is preferably 0.005 to 5% by mass based on the total amount of the lubricating oil composition.

金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾールまたはその誘導体、1,3,4−チアジアゾールポリスルフィド、1,3,4−チアジアゾリル−2,5−ビスジアルキルジチオカーバメート、2−(アルキルジチオ)ベンゾイミダゾール、およびβ−(o−カルボキシベンジルチオ)プロピオンニトリル等が挙げられる。潤滑油組成物にこれらの金属不活性化剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.005〜1質量%である。   Examples of metal deactivators include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Examples thereof include dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, and β- (o-carboxybenzylthio) propiononitrile. When these metal deactivators are contained in the lubricating oil composition, the content thereof is preferably 0.005 to 1% by mass based on the total amount of the lubricating oil composition.

消泡剤としては、例えば、25℃における動粘度が1000〜100,000mm/sのシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸とのエステル、メチルサリチレート、および、o−ヒドロキシベンジルアルコール等が挙げられ、特にシリコーンオイルを好ましく用いることができる。潤滑油組成物にこれらの消泡剤を含有させる場合、その含有量は、潤滑油組成物全量基準で、好ましくは0.0001〜0.1質量%である。 Examples of the antifoaming agent include silicone oil having a kinematic viscosity at 25 ° C. of 1000 to 100,000 mm 2 / s, an alkenyl succinic acid derivative, an ester of a polyhydroxy aliphatic alcohol and a long chain fatty acid, methyl salicylate, and , O-hydroxybenzyl alcohol, and the like, and silicone oil can be particularly preferably used. When these antifoaming agents are contained in the lubricating oil composition, the content thereof is preferably 0.0001 to 0.1% by mass based on the total amount of the lubricating oil composition.

<潤滑油組成物>
潤滑油組成物の100℃における動粘度は、好ましくは3.0mm/s以上、より好ましくは3.5mm/s以上、更に好ましくは4.0mm/s以上であり、また好ましくは16.3mm/s以下、より好ましくは12.5mm/s以下、更に好ましくは9.3mm/s以下である。100℃における動粘度が上記下限値以上であると、潤滑性を確保しやすくなり、一方、100℃における動粘度が上記上限値以下であると、より省燃費性が向上する。
<Lubricating oil composition>
Kinematic viscosity at 100 ° C. of the lubricating oil composition is preferably 3.0 mm 2 / s or more, more preferably 3.5 mm 2 / s or more, more preferably 4.0 mm 2 / s or more, and preferably 16 .3mm 2 / s or less, more preferably 12.5 mm 2 / s, more preferably not more than 9.3 mm 2 / s. When the kinematic viscosity at 100 ° C. is not less than the above lower limit value, it becomes easy to ensure lubricity, while when the kinematic viscosity at 100 ° C. is not more than the above upper limit value, fuel economy is further improved.

潤滑油組成物の粘度指数は、好ましくは150以上、より好ましくは160以上、さらに好ましくは170以上であり、また好ましくは300以下、より好ましくは280以下、更に好ましくは260以下である。粘度指数が上記下限値以上であると、HTHS粘度を維持しながら、より省燃費性を向上させることができ、また低温粘度を低下させやすくなる。一方、粘度指数が上記上限値以下であると、低温流動性、添加剤の溶解性、及びシール材料との適合性を確保することができる。   The viscosity index of the lubricating oil composition is preferably 150 or more, more preferably 160 or more, still more preferably 170 or more, and preferably 300 or less, more preferably 280 or less, and even more preferably 260 or less. When the viscosity index is equal to or higher than the lower limit, fuel economy can be further improved while maintaining the HTHS viscosity, and the low temperature viscosity is easily lowered. On the other hand, when the viscosity index is less than or equal to the above upper limit, low temperature fluidity, solubility of additives, and compatibility with sealing materials can be ensured.

潤滑油組成物の150℃におけるHTHS粘度は、好ましくは1.7mPa・s以上、より好ましくは2.0mPa・s以上、更に好ましくは2.3mPa・s以上、最も好ましくは2.6mPa・s以上であり、また好ましくは4.0mPa・s以下、より好ましくは3.0mPa・s以下である。150℃におけるHTHS粘度が上記下限値以上であると、潤滑油組成物の蒸発を抑制でき、潤滑性を確保することができる。また150℃におけるHTHS粘度が上記上限値以下であると、省燃費性を高めることができる。   The HTHS viscosity at 150 ° C. of the lubricating oil composition is preferably 1.7 mPa · s or more, more preferably 2.0 mPa · s or more, still more preferably 2.3 mPa · s or more, and most preferably 2.6 mPa · s or more. In addition, it is preferably 4.0 mPa · s or less, more preferably 3.0 mPa · s or less. When the HTHS viscosity at 150 ° C. is equal to or higher than the lower limit, evaporation of the lubricating oil composition can be suppressed, and lubricity can be ensured. Further, when the HTHS viscosity at 150 ° C. is not more than the above upper limit value, fuel economy can be improved.

潤滑油組成物の100℃におけるHTHS粘度は、好ましくは5.2mPa・s以下、より好ましくは5.1mPa・s以下、更に好ましくは5.0mPa・s以下であり、また好ましくは3.0mPa・s以上、より好ましくは3.5mPa・s以上、さらに好ましくは4.0mPa・s以上である。100℃におけるHTHS粘度が上記上限値以下であると、より高い省燃費性を得ることができる。また100℃におけるHTHS粘度が上記下限値以上であることにより、潤滑性を確保することができる。
なお、本明細書において、150℃又は100℃におけるHTHS粘度は、ASTM D−4683に規定される150℃又は100℃における高温高せん断粘度を意味する。
The HTHS viscosity at 100 ° C. of the lubricating oil composition is preferably 5.2 mPa · s or less, more preferably 5.1 mPa · s or less, still more preferably 5.0 mPa · s or less, and preferably 3.0 mPa · s or less. s or more, more preferably 3.5 mPa · s or more, and still more preferably 4.0 mPa · s or more. When the HTHS viscosity at 100 ° C. is not more than the above upper limit value, higher fuel economy can be obtained. Moreover, lubricity can be ensured when the HTHS viscosity at 100 ° C. is equal to or higher than the lower limit.
In the present specification, the HTHS viscosity at 150 ° C. or 100 ° C. means a high temperature high shear viscosity at 150 ° C. or 100 ° C. as defined in ASTM D-4683.

潤滑油組成物の−40℃におけるMRV粘度は、好ましくは60,000mPa・s以下、より好ましくは40,000mPa・s以下、更に好ましくは30,000mPa・s以下である。−40℃におけるMRV粘度が上記上限値以下であると、低温時のポンピング特性に優れる。なお本明細書において、−40℃におけるMRV粘度は、ASTM D−4684に規定される−40℃におけるMRV粘度を意味する。   The MRV viscosity at −40 ° C. of the lubricating oil composition is preferably 60,000 mPa · s or less, more preferably 40,000 mPa · s or less, and still more preferably 30,000 mPa · s or less. When the MRV viscosity at −40 ° C. is not more than the above upper limit value, the pumping characteristics at low temperature are excellent. In the present specification, the MRV viscosity at −40 ° C. means the MRV viscosity at −40 ° C. defined by ASTM D-4684.

潤滑油組成物の蒸発損失量は、250℃におけるNOACK蒸発量として、20質量%以下であることが好ましく、16質量%以下であることがさらに好ましく、15質量%以下であることが特に好ましい。潤滑油基油成分のNOACK蒸発量が20質量%を超える場合、潤滑油の蒸発損失が大きく、粘度増加等の原因となるため好ましくない。なお本明細書において、NOACK蒸発量とは、ASTM D 5800に準拠して測定される潤滑油の蒸発量を測定した値である。潤滑油組成物の250℃におけるNOACK蒸発量の下限は特に制限されるものではないが、通常5質量%以上である。   The evaporation loss amount of the lubricating oil composition is preferably 20% by mass or less, more preferably 16% by mass or less, and particularly preferably 15% by mass or less as the NOACK evaporation amount at 250 ° C. When the NOACK evaporation amount of the lubricating base oil component exceeds 20% by mass, the evaporation loss of the lubricating oil is large, which causes an increase in viscosity and the like, which is not preferable. In this specification, the NOACK evaporation amount is a value obtained by measuring the evaporation amount of lubricating oil measured in accordance with ASTM D 5800. The lower limit of the NOACK evaporation amount at 250 ° C. of the lubricating oil composition is not particularly limited, but is usually 5% by mass or more.

以下、実施例及び比較例に基づき、本発明についてさらに具体的に説明する。ただし、本発明はこれらの実施例に限定されるものではない。   Hereinafter, based on an Example and a comparative example, it demonstrates further more concretely about this invention. However, the present invention is not limited to these examples.

((メタ)アクリレート系重合性単量体の含有量、フェノール性水酸基を有する化合物の含有量、アルコール性水酸基を有する化合物の含有量)
島津製作所社製ガスクロマトグラフGC−2014に、カラムとしてGL Sciences Inc.製InertCap 1(df=0.4μm、0.25mmI.D.×60m)を繋いでなるガスクロマトグラフィー装置を用いて、インジェクション温度240℃、検出器温度300℃、カラム温度を180℃から昇温速度10℃/分で280℃まで昇温して10分間保持する条件にて測定を行った。(メタ)アクリレート系重合性単量体の純度は、ガスクロマトグラフィー測定で得られたチャート中のピークの単純面積から算出した。フェノール性水酸基を有する化合物およびアルコール性水酸基を有する化合物の含有量は、絶対検量線法により単量体100質量部に対する質量比として算出した。
(Content of (meth) acrylate polymerizable monomer, content of compound having phenolic hydroxyl group, content of compound having alcoholic hydroxyl group)
Using a gas chromatograph comprising a Shimadzu gas chromatograph GC-2014 connected as a column with GL Sciences Inc. InertCap 1 (df = 0.4 μm, 0.25 mm ID × 60 m), the injection temperature Measurement was performed under the conditions of 240 ° C., detector temperature 300 ° C., column temperature increased from 180 ° C. to 280 ° C. at a heating rate of 10 ° C./min, and held for 10 minutes. The purity of the (meth) acrylate polymerizable monomer was calculated from the simple area of the peak in the chart obtained by gas chromatography measurement. The content of the compound having a phenolic hydroxyl group and the compound having an alcoholic hydroxyl group was calculated as a mass ratio with respect to 100 parts by mass of the monomer by an absolute calibration curve method.

(原料中の水分量)
株式会社三菱化学アナリティック社製電量滴定方式カールフィッシャー水分計CA−200を用いて、単量体中の水分量を測定し、単量体100質量部に対する割合として算出した。
(Moisture content in raw material)
Using a coulometric titration Karl Fischer moisture meter CA-200 manufactured by Mitsubishi Chemical Analytic Co., Ltd., the amount of moisture in the monomer was measured and calculated as a ratio to 100 parts by mass of the monomer.

(重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn))
下記条件でゲルパーミエーションクロマトグラフィ(GPC)測定を行い、得られたクロマトグラムから、標準ポリスチレンの分子量に換算したMw、Mn、Mw/Mnの値を算出した。なお、ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点とを結んだ線とした。
GPC装置:東ソー株式会社製、HLC−8320
検出器:示差屈折率検出器
カラム:東ソー株式会社製のTSKgel SuperMultipore HZMMを2本とSuperHZ4000とを上流側から上記順に直列に繋いだものを用いた。
溶離剤: テトラヒドロフラン
溶離剤流量: 0.35ml/分
カラム温度: 40℃
検量線:標準ポリスチレン10点のデータを用いて作成
(Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn))
Gel permeation chromatography (GPC) measurement was performed under the following conditions, and the values of Mw, Mn, and Mw / Mn converted to the molecular weight of standard polystyrene were calculated from the obtained chromatogram. The baseline is that the slope of the peak on the high molecular weight side of the GPC chart changes from zero to plus when viewed from the earlier retention time, and the slope of the peak on the low molecular weight side is minus when viewed from the earlier retention time. A line connecting the points that change from zero to zero.
GPC device: manufactured by Tosoh Corporation, HLC-8320
Detector: Differential refractive index detector Column: Two TSKgel SuperMultipore HZMMs manufactured by Tosoh Corporation and Super HZ4000 connected in series from the upstream side in the above order were used.
Eluent: Tetrahydrofuran eluent Flow rate: 0.35 ml / min Column temperature: 40 ° C
Calibration curve: Created using 10 standard polystyrene data

(重合体中の単量体組成)
核磁気共鳴装置(Bruker社製ULTRA SHIELD 400 PLUS)を用い、試料10mgに対して重水素化クロロホルム1mL、室温、積算回数64回の条件にて、H−NMRスペクトルを測定し、そのスペクトルのうち、TMS(テトラメチルシラン)のピークの化学シフトを0ppmとした際の3.3〜4.2ppmに現れるエステル基の酸素原子に隣接するメチレンまたはメチン、メチル基由来のシグナルの面積値(積分値)から、(メタ)アクリレート系重合体(A)中の単量体に由来する構造単位の組成を算出した。
(Monomer composition in polymer)
Using a nuclear magnetic resonance apparatus (Bruker ULTRA SHIELD 400 PLUS), a 1 H-NMR spectrum was measured for 10 mg of a sample under the conditions of 1 mL of deuterated chloroform, room temperature, and 64 integrations. Among them, the area values of signals derived from methylene, methine, and methyl groups adjacent to the oxygen atom of the ester group appearing at 3.3 to 4.2 ppm when the chemical shift of the peak of TMS (tetramethylsilane) is 0 ppm (integrated) Value), the composition of the structural unit derived from the monomer in the (meth) acrylate polymer (A) was calculated.

(原料製造例1)
温度計、メカニカルスターラーを取り付けた1L三口フラスコに、n−ステアリルアルコールとメタクリル酸とのエステル化により合成したメタクリル酸n−ステアリル((メタ)アクリレート系単量体)を含む混合物(メタクリル酸n−ステアリル99.26質量%;メタクリル酸n−ステアリル100質量部に対する含有量として、メトキシフェノール0.0252質量部、n−ステアリルアルコール0.3425質量部、および水0.0181質量部を含む)250gとイソプロパノール583gとを入れ、25℃で撹拌することによってメタクリル酸n−ステアリルを溶解させた。その後、溶液を4時間かけて−20℃まで冷却した。析出した結晶をろ過、乾燥することによって、243.3g(回収率97.3%)の結晶性の(メタ)アクリレート系重合体(A)の原料(1)を得た。ガスクロマトグラフィーおよびカールフィッシャー水分計により測定を行った結果、(メタ)アクリレート系重合体(A)の原料(1)中、メタクリル酸n−ステアリルの含有量は99.67質量%であり、(メタ)アクリレート系単量体100質量部に対して、水の含有量は0.001質量部、n−ステアリルアルコールの含有量は0.006質量部であり、メトキシフェノールは検出されなかった。
(Raw material production example 1)
A mixture containing n-stearyl methacrylate ((meth) acrylate monomer) synthesized by esterification of n-stearyl alcohol and methacrylic acid in a 1 L three-necked flask equipped with a thermometer and a mechanical stirrer (n-methacrylic acid n- 250 g of stearyl 99.26% by mass; including as a content with respect to 100 parts by mass of n-stearyl methacrylate, 0.0252 parts by mass of methoxyphenol, 0.3425 parts by mass of n-stearyl alcohol, and 0.0181 parts by mass of water) 583 g of isopropanol was added and stirred at 25 ° C. to dissolve n-stearyl methacrylate. The solution was then cooled to −20 ° C. over 4 hours. The precipitated crystals were filtered and dried to obtain 243.3 g (recovery rate 97.3%) of a crystalline (meth) acrylate polymer (A) raw material (1). As a result of measurement by gas chromatography and a Karl Fischer moisture meter, the content of n-stearyl methacrylate in the raw material (1) of the (meth) acrylate polymer (A) is 99.67% by mass ( The content of water was 0.001 part by mass, the content of n-stearyl alcohol was 0.006 part by mass with respect to 100 parts by mass of the (meth) acrylate monomer, and methoxyphenol was not detected.

(原料製造例2)
磁気撹拌子を入れた500mL三口フラスコに、n−ステアリルアルコールとメタクリル酸とのエステル化により合成したメタクリル酸n−ステアリル((メタ)アクリレート系単量体)を含む混合物(メタクリル酸n−ステアリル99.26質量%;メタクリル酸n−ステアリル100質量部に対する含有量として、メトキシフェノール0.0252質量部、n−ステアリルアルコール0.3425質量部、および水0.0181質量部を含む)を90g、トルエンを210g、吸着材として水澤化学製活性アルミナGP−20を30g入れ、25℃で4時間撹拌した。その後ろ過によって活性アルミナを除去し、エバポレーターを用いて液温35℃以下でトルエンを留去することによって、87.2gの液状の(メタ)アクリレート系重合体(A)の原料(2)を得た。ガスクロマトグラフィーおよびカールフィッシャー水分計により測定を行った結果、(メタ)アクリレート系重合体(A)の原料(2)中、メタクリル酸n−ステアリルの含有量は99.20質量%であり、(メタ)アクリレート系単量体100質量部に対して、水の含有量は0.0007質量部、n−ステアリルアルコールの含有量は0.11質量部であり、メトキシフェノールは検出されなかった。
(Raw material production example 2)
A mixture (n-stearyl methacrylate 99) containing n-stearyl methacrylate ((meth) acrylate monomer) synthesized by esterification of n-stearyl alcohol and methacrylic acid in a 500 mL three-necked flask containing a magnetic stir bar .26 mass%; as content with respect to 100 mass parts of n-stearyl methacrylate, 90 g of toluene (including 0.0252 mass parts of methoxyphenol, 0.3425 mass parts of n-stearyl alcohol, and 0.0181 mass parts of water) 210 g and 30 g of activated alumina GP-20 manufactured by Mizusawa Chemical as an adsorbent were added and stirred at 25 ° C. for 4 hours. Thereafter, activated alumina is removed by filtration, and toluene is distilled off at a liquid temperature of 35 ° C. or lower using an evaporator to obtain 87.2 g of a liquid (meth) acrylate polymer (A) raw material (2). It was. As a result of measuring by gas chromatography and a Karl Fischer moisture meter, the content of n-stearyl methacrylate in the raw material (2) of the (meth) acrylate polymer (A) is 99.20% by mass ( The content of water was 0.0007 parts by mass, the content of n-stearyl alcohol was 0.11 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer, and methoxyphenol was not detected.

(原料製造例3)
原料製造例2によって得られたメタクリル酸n−ステアリルを含む原料(2)にp−メトキシフェノールを、その含有量が(メタ)アクリレート系単量体100質量部に対して0.0005質量部となるように添加することにより、(メタ)アクリレート系重合体(A)の原料(3)を作製した。
(Raw material production example 3)
P-methoxyphenol is added to the raw material (2) containing n-stearyl methacrylate obtained in Raw Material Production Example 2, and the content thereof is 0.0005 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer. By adding so that the raw material (3) of the (meth) acrylate polymer (A) was produced.

(原料製造例4)
原料製造例2によって得られたメタクリル酸n−ステアリルを含む原料(2)にn−ステアリルアルコールを、その含有量が(メタ)アクリレート系単量体100質量部に対して0.36質量部となるように添加することにより、(メタ)アクリレート系重合体(A)の原料(4)を作製した。
(Raw material production example 4)
N-stearyl alcohol is added to the raw material (2) containing n-stearyl methacrylate obtained in Raw Material Production Example 2, and the content thereof is 0.36 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer. By adding so that the raw material (4) of the (meth) acrylate polymer (A) was produced.

(原料製造例5)
磁気撹拌子を入れた500mL三口フラスコに、メタクリル酸n−ドデシル((メタ)アクリレート系単量体)を含む混合物(東京化成工業(株)製;メタクリル酸n−ドデシル98質量%;メタクリル酸n−ステアリル100質量部に対する含有量として、重合禁止剤メトキシフェノール0.10質量部、n−ドデシルアルコール0.50質量部、および水0.02質量部を含む)を100g、トルエンを100g、吸着材として水澤化学製活性アルミナGP−20を30g入れ、25℃で4時間撹拌した。その後ろ過によって活性アルミナを除去し、エバポレーターを用いて液温35℃以下でトルエンを留去することによって、95gの液状の(メタ)アクリレート系重合体(A)の原料(5)を得た。ガスクロマトグラフィーおよびカールフィッシャー水分計により測定を行った結果、(メタ)アクリレート系重合体(A)の原料(5)中、メタクリル酸n−ドデシルの含有量は98.8質量%であり、(メタ)アクリレート系単量体100質量部に対して、水の含有量は0.0002質量部、n−ドデシルアルコールの含有量は0.0004質量部であり、メトキシフェノールは検出されなかった。
(Raw material production example 5)
A mixture containing n-dodecyl methacrylate ((meth) acrylate monomer) (manufactured by Tokyo Chemical Industry Co., Ltd .; 98% by mass of n-dodecyl methacrylate; n-methacrylic acid n) in a 500 mL three-necked flask containing a magnetic stir bar -As content with respect to 100 mass parts of stearyl, the polymerization inhibitor methoxyphenol 0.10 mass part, n-dodecyl alcohol 0.50 mass part, and water 0.02 mass part are included 100g, toluene 100g, adsorbent 30 g of activated alumina GP-20 manufactured by Mizusawa Chemical was added and stirred at 25 ° C. for 4 hours. Thereafter, the activated alumina was removed by filtration, and toluene was distilled off at a liquid temperature of 35 ° C. or lower using an evaporator to obtain 95 g of a liquid (meth) acrylate polymer (A) raw material (5). As a result of measurement by gas chromatography and a Karl Fischer moisture meter, the content of n-dodecyl methacrylate in the raw material (5) of the (meth) acrylate polymer (A) is 98.8% by mass ( The content of water was 0.0002 parts by mass, the content of n-dodecyl alcohol was 0.0004 parts by mass with respect to 100 parts by mass of the (meth) acrylate monomer, and no methoxyphenol was detected.

<製造例1>
以下の手順により、(メタ)アクリレート系重合体を製造した。十分乾燥した2Lの三口フラスコに三方コックを取り付け、内部を窒素にて置換した後、室温にて、トルエン480g、1,2−ジメトキシエタン24g、イソブチルビス(2,6−ジ−t−ブチル−4−メチルフェノキシ)アルミニウムの0.45Mトルエン溶液10gを入れ、さらに、sec−ブチルリチウム1.0mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.62gを加えた。続いて(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85g加え、室温にて12時間攪拌した。反応液は、当初黄色に着色していたが、12時間攪拌後には無色となった。その後、メタノール1.0gを加え、重合反応を停止させた。得られた反応液を6.0kgのメタノール中に注いで白色沈殿物を析出させた。その後、この白色沈澱物を濾過により回収し、乾燥させることにより、メタクリレート系重合体80gを得た。
<Production Example 1>
A (meth) acrylate polymer was produced by the following procedure. A three-way cock was attached to a well-dried 2 L three-necked flask, and the inside was replaced with nitrogen. At room temperature, 480 g of toluene, 24 g of 1,2-dimethoxyethane, isobutyl bis (2,6-di-t-butyl- 10 g of a 0.45M toluene solution of 4-methylphenoxy) aluminum was added, and 0.62 g of a mixed solution of cyclohexane and n-hexane containing 1.0 mmol of sec-butyllithium was further added. Subsequently, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, and the raw material obtained in Raw Material Production Example 5 containing n-dodecyl methacrylate ( 5) 40% by mass, and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate is 99.9% by mass or more; water content of 0.0003 parts by mass with respect to 100 parts by mass of methyl methacrylate, 85 g of a mixture containing a methanol content of 0.0002 parts by mass or less, a polymerization inhibitor 2,4-dimethyl-6-tert-butylphenol content of 0.0001 parts by mass) as a raw material is added to room temperature. And stirred for 12 hours. The reaction solution was initially colored yellow, but became colorless after stirring for 12 hours. Thereafter, 1.0 g of methanol was added to stop the polymerization reaction. The obtained reaction solution was poured into 6.0 kg of methanol to precipitate a white precipitate. Thereafter, the white precipitate was collected by filtration and dried to obtain 80 g of a methacrylate polymer.

得られたメタクリレート重合体のH−NMR測定及びGPC測定を行った結果、重合体はランダム共重合体であり、重合体の重量平均分子量(Mw)は83,000であり、数平均分子量(Mn)は77,000であり、分子量分布(Mw/Mn)は1.08であった。
また、得られたメタクリレート系重合体中の各単量体に由来する構造の質量比は、メタクリル酸メチルに由来する構造が30質量%、メタクリル酸ドデシルに由来する構造が40質量%、およびメタクリル酸ステアリルに由来する構造が30質量%であることが分かった。結果を表1に示す。
As a result of performing 1 H-NMR measurement and GPC measurement of the obtained methacrylate polymer, the polymer was a random copolymer, the weight average molecular weight (Mw) of the polymer was 83,000, and the number average molecular weight ( Mn) was 77,000, and the molecular weight distribution (Mw / Mn) was 1.08.
In addition, the mass ratio of the structure derived from each monomer in the obtained methacrylate polymer is 30% by mass of the structure derived from methyl methacrylate, 40% by mass of the structure derived from dodecyl methacrylate, and methacrylic acid. It was found that the structure derived from acid stearyl was 30% by mass. The results are shown in Table 1.

<製造例2>
sec−ブチルリチウム1.0mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.62gを、sec−ブチルリチウム0.64mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.39gに変更した以外は製造例1と同様にして、メタクリレート系重合体79.5gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 2>
Other than changing 0.62 g of a mixed solution of cyclohexane and n-hexane containing 1.0 mmol of sec-butyllithium to 0.39 g of a mixed solution of cyclohexane and n-hexane containing 0.64 mmol of sec-butyllithium. In the same manner as in Production Example 1, 79.5 g of a methacrylate polymer was obtained. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例3>
sec−ブチルリチウム1.0mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.62gを、sec−ブチルリチウム0.55mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.33gに変更した以外は製造例1と同様にして、メタクリレート系重合体78gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 3>
Other than changing 0.62 g of a mixed solution of cyclohexane and n-hexane containing 1.0 mmol of sec-butyllithium to 0.33 g of a mixed solution of cyclohexane and n-hexane containing 0.55 mmol of sec-butyllithium. In the same manner as in Production Example 1 to obtain 78 g of a methacrylate polymer. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例4>
sec−ブチルリチウム1.0mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.62gを、sec−ブチルリチウム0.44mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.27gに変更した以外は製造例1と同様にして、メタクリレート系重合体79.5gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 4>
Other than changing 0.62 g of a mixed solution of cyclohexane and n-hexane containing 1.0 mmol of sec-butyllithium to 0.27 g of a mixed solution of cyclohexane and n-hexane containing 0.44 mmol of sec-butyllithium. In the same manner as in Production Example 1, 79.5 g of a methacrylate polymer was obtained. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例5>
sec−ブチルリチウム1.0mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.62gを、sec−ブチルリチウム0.41mmolを含有するシクロヘキサンとn−ヘキサンとの混合溶液0.25gに変更した以外は製造例1と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 5>
Except for changing 0.62 g of a mixed solution of cyclohexane and n-hexane containing 1.0 mmol of sec-butyllithium to 0.25 g of a mixed solution of cyclohexane and n-hexane containing 0.41 mmol of sec-butyllithium. Was similar to Production Example 1 to obtain 80 g of a methacrylate polymer. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例6>
製造例3で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例2で得た原料(2)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85g加える以外は製造例3と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 6>
In place of the raw material used in Production Example 3, the raw material (2) obtained in Raw Material Production Example 2 containing stearyl methacrylate, which is a (meth) acrylate-based polymerizable monomer, contains 30% by mass and n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 3 except that 85 g of the mixture was added as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例7>
製造例3で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例3で得た原料(3)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85gを加えた以外は製造例3と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表1に示す。
<Production Example 7>
Instead of the raw material used in Production Example 3, the raw material (3) obtained in Raw Material Production Example 3 containing stearyl methacrylate, which is a (meth) acrylate-based polymerizable monomer, contains 30% by mass and n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 3 except that 85 g was added using the mixture as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 1.

<製造例8>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)25質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)50質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)25質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表2に示す。
<Production Example 8>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 25% by mass and contains n-dodecyl methacrylate. 50% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 5 except that 85 g was added using the mixture as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 2.

<製造例9>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)35質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)25質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表2に示す。
<Production Example 9>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 35% by mass and contains n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 5 except that 85 g was added using the mixture as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 2.

<製造例10>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)25質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)35質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表2に示す。
<Production Example 10>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 25% by mass and contains n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 5 except that 85 g was added using the mixture as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 2.

<製造例11>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)35質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)30質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)35質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表2に示す。
<Production Example 11>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 35% by mass and contains n-dodecyl methacrylate. 30% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 5 except that 85 g was added using the mixture as a raw material. The evaluation results of the obtained methacrylate polymer are shown in Table 2.

<製造例12>
製造例5で使用した原料に替えて、メタクリル酸ステアリル原料30質量%、メタクリル酸n−ドデシル原料40質量%、およびメタクリル酸n−ブチル原料30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表3に示す。
<Production Example 12>
Instead of the raw material used in Production Example 5, 85 g was added using as a raw material a mixture containing 30% by mass of stearyl methacrylate raw material, 40% by mass of n-dodecyl methacrylate raw material, and 30% by mass of n-butyl methacrylate raw material. Produced 80 g of methacrylate polymer in the same manner as in Production Example 5. Table 3 shows the evaluation results of the obtained methacrylate polymer.

<製造例13>
製造例5で使用した原料に替えて、メタクリル酸ステアリル原料30質量%、メタクリル酸2−エチルヘキシル原料40質量%、およびメタクリル酸メチル原料30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表3に示す。
<Production Example 13>
Manufacture except that 85 g was added instead of the raw material used in Production Example 5 using a mixture containing 30% by mass of stearyl methacrylate raw material, 40% by mass of 2-ethylhexyl methacrylate raw material, and 30% by mass of methyl methacrylate raw material. In the same manner as in Example 5, 80 g of a methacrylate polymer was obtained. Table 3 shows the evaluation results of the obtained methacrylate polymer.

<製造例14>
製造例5で使用した原料に替えて、メタクリル酸n−ヘキサデシル原料30質量%、メタクリル酸n−ドデシル原料40質量%、およびメタクリル酸メチル原料30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表3に示す。
<Production Example 14>
Instead of the raw material used in Production Example 5, 85 g was added using as a raw material a mixture containing 30% by mass of n-hexadecyl methacrylate raw material, 40% by mass of n-dodecyl methacrylate raw material, and 30% by mass of methyl methacrylate raw material. Produced 80 g of methacrylate polymer in the same manner as in Production Example 5. Table 3 shows the evaluation results of the obtained methacrylate polymer.

<製造例15>
製造例5で使用した原料に替えて、メタクリル酸n−テトラコシル原料30質量%、メタクリル酸n−ドデシル原料40質量%、およびメタクリル酸メチル原料30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表3に示す。
<Production Example 15>
Instead of the raw material used in Production Example 5, 85 g was added using as a raw material a mixture containing 30% by mass of n-tetracosyl methacrylate raw material, 40% by mass of n-dodecyl methacrylate raw material, and 30% by mass of methyl methacrylate raw material. Produced 80 g of methacrylate polymer in the same manner as in Production Example 5. Table 3 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例1>
製造例5で使用した原料に替えて、n−ステアリルアルコールとメタクリル酸とのエステル化により合成したメタクリル酸n−ステアリルを含む混合物(メタクリル酸n−ステアリル含有量99.26質量%;メタクリル酸n−ステアリル100質量部に対する含有量として、メトキシフェノール0.0252質量部、n−ステアリルアルコール0.3425質量部、および水0.0181質量部を含む)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85g加えた以外は製造例5と同様にして、メタクリレート系重合体79.5gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 1>
Instead of the raw material used in Production Example 5, a mixture containing n-stearyl methacrylate synthesized by esterification of n-stearyl alcohol and methacrylic acid (content of n-stearyl methacrylate 99.26% by mass; methacrylate n) -As a content with respect to 100 mass parts of stearyl, the raw material which contains 30 mass% of methoxyphenol 0.0252 mass part, n-stearyl alcohol 0.3425 mass part, and 0.0181 mass part of water) and n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in Production Example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; with respect to 100 parts by mass of methyl methacrylate, water Content of 0.0003 parts by mass, methanol content of 0.0002 parts by mass or less, polymerization inhibitor In the same manner as in Production Example 5 except that 85 g of a mixture containing 30% by mass of 2,4-dimethyl-6-tert-butylphenol content of 0.0001 part by mass was added as a raw material, 79.5 g of a methacrylate polymer was added. Obtained. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例2>
製造例3で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例4で得た原料(4)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85gを加えた以外は製造例3と同様にして、メタクリレート系重合体80.4gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 2>
In place of the raw material used in Production Example 3, the raw material (4) obtained in Raw Material Production Example 4 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 30% by mass and contains n-dodecyl methacrylate. 40% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80.4 g of a methacrylate polymer was obtained in the same manner as in Production Example 3 except that 85 g was added using the mixture as a raw material. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例3>
以下の手順により、メタクリレート系重合体を製造した。十分乾燥した2Lの三口フラスコに撹拌翼、ジムロート冷却器および三方コックを取り付け、内部を窒素にて置換した後、室温にて、原料製造例2で得た(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料(2)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として500g加え、さらに高度精製鉱油500g、クミルジチオ安息香酸(CDTBA)0.53gを加え、攪拌下で均一溶液とした。該溶液を氷浴にて0℃まで冷却し、ダイヤフラムポンプを用いて反応系の真空脱気/窒素パージを5回実施した。さらに、窒素フロー下でサンプル導入口よりラジカル開始剤としてアゾビスイソブチロニトリル(AIBN)0.0083gを投入した後、窒素雰囲気下にて溶液温度90℃で12時間重合を実施し、メタクリレート系重合体を含有する溶液を得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 3>
A methacrylate polymer was produced by the following procedure. A 2 W three-neck flask that was sufficiently dried was equipped with a stirring blade, a Dimroth cooler, and a three-way cock. After the inside was replaced with nitrogen, the (meth) acrylate polymerizable monomer obtained in Raw Material Production Example 2 was obtained at room temperature. 30% by mass of raw material (2) containing stearyl methacrylate, 40% by mass of raw material (5) obtained in Raw Material Production Example 5 containing n-dodecyl methacrylate, and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: methacrylic acid) Methyl content of 99.9% by mass or more; with respect to 100 parts by mass of methyl methacrylate, the content of water is 0.0003 part by mass, the content of methanol is 0.0002 part by mass or less, -Dimethyl-6-tert-butylphenol content 0.0001 parts by mass) 500 g of a mixture containing 30% by mass is added as a raw material, and highly refined mineral oil 50 g, added Kumirujichio acid (CDTBA) 0.53g, and a homogeneous solution under stirring. The solution was cooled to 0 ° C. in an ice bath, and vacuum degassing / nitrogen purging of the reaction system was performed 5 times using a diaphragm pump. Furthermore, after introducing 0.0083 g of azobisisobutyronitrile (AIBN) as a radical initiator from the sample introduction port under a nitrogen flow, polymerization was carried out at a solution temperature of 90 ° C. for 12 hours under a nitrogen atmosphere, A solution containing the polymer was obtained. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例4>
以下手順によりメタクリレート系重合体を製造した。十分乾燥した2Lの三口フラスコに撹拌翼、ジムロート冷却器および三方コックを取り付け、内部を窒素にて置換した後、室温にて、原料製造例2で得た(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料(2)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)40質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として500g加え、さらに高度精製鉱油500gを加え、窒素の導通により不活性ガス雰囲気下とした。引き続き触媒として、CuBr0.18gおよびリガンド(ペンタメチルジエチレントリアミン(PMDETA))0.22gをそれぞれ加えた。90℃に加熱後、開始剤(エチル−2−ブロモイソブチレート)0.45gを加えた。三口フラスコ中の温度を100℃に高め、20時間重合を実施し、メタクリレート系重合体を含有する溶液を得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 4>
A methacrylate polymer was produced by the following procedure. A 2 W three-neck flask that was sufficiently dried was equipped with a stirring blade, a Dimroth cooler, and a three-way cock. After the inside was replaced with nitrogen, the (meth) acrylate polymerizable monomer obtained in Raw Material Production Example 2 was obtained at room temperature. 30% by mass of raw material (2) containing stearyl methacrylate, 40% by mass of raw material (5) obtained in Raw Material Production Example 5 containing n-dodecyl methacrylate, and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: methacrylic acid) Methyl content of 99.9% by mass or more; with respect to 100 parts by mass of methyl methacrylate, the content of water is 0.0003 parts by mass, the content of methanol is 0.0002 parts by mass or less, and 2,4 is a polymerization inhibitor. -Dimethyl-6-tert-butylphenol content 0.0001 parts by mass) 500 g of a mixture containing 30% by mass is added as a raw material, and highly refined mineral oil 50 g was added and an inert gas atmosphere by conduction of nitrogen. Subsequently, 0.18 g of CuBr and 0.22 g of a ligand (pentamethyldiethylenetriamine (PMDETA)) were added as catalysts. After heating to 90 ° C., 0.45 g of initiator (ethyl-2-bromoisobutyrate) was added. The temperature in the three-neck flask was raised to 100 ° C., and polymerization was carried out for 20 hours to obtain a solution containing a methacrylate polymer. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例5>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)50質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)20質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体78.6gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 5>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 30% by mass and contains n-dodecyl methacrylate. 50% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). A methacrylate polymer 78.6 g was obtained in the same manner as in Production Example 5 except that 85 g was added from the mixture as a raw material. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例6>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)30質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)30質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)40質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体79.4gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 6>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 30% by mass and contains n-dodecyl methacrylate. 30% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). A methacrylate polymer 79.4 g was obtained in the same manner as in Production Example 5 except that 85 g was added from the mixture as a raw material. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例7>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)20質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)50質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 7>
In place of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate polymerizable monomer, contains 20% by mass and contains n-dodecyl methacrylate. 50% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). 80 g of a methacrylate polymer was obtained in the same manner as in Production Example 5 except that 85 g was added using the mixture as a raw material. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<比較製造例8>
製造例5で使用した原料に替えて、(メタ)アクリレート系重合性単量体であるメタクリル酸ステアリルを含む原料製造例1で得た原料(1)40質量%、メタクリル酸n−ドデシルを含む原料製造例5で得た原料(5)30質量%、およびメタクリル酸メチル原料(株式会社クラレ製:メタクリル酸メチルの含有量99.9質量%以上;メタクリル酸メチル100質量部に対して、水の含有量0.0003質量部、メタノールの含有量0.0002質量部以下、重合禁止剤である2,4−ジメチル−6−tert−ブチルフェノールの含有量0.0001質量部)30質量%を含む混合物を原料として85gを加えた以外は製造例5と同様にして、メタクリレート系重合体80.2gを得た。得られたメタクリレート系重合体の評価結果を表4に示す。
<Comparative Production Example 8>
Instead of the raw material used in Production Example 5, the raw material (1) obtained in Raw Material Production Example 1 containing stearyl methacrylate, which is a (meth) acrylate-based polymerizable monomer, contains 40% by mass and n-dodecyl methacrylate. 30% by mass of raw material (5) obtained in raw material production example 5 and methyl methacrylate raw material (manufactured by Kuraray Co., Ltd .: content of methyl methacrylate of 99.9% by mass or more; water based on 100 parts by mass of methyl methacrylate) Content of 0.0003 parts by mass of methanol, 0.0002 parts by mass or less of methanol, and content of 0.0001 parts by mass of 2,4-dimethyl-6-tert-butylphenol which is a polymerization inhibitor). A methacrylate polymer 80.2 g was obtained in the same manner as in Production Example 5 except that 85 g was added from the mixture as a raw material. Table 4 shows the evaluation results of the obtained methacrylate polymer.

<実施例1〜15、比較例1〜8>
以下に示す基油および性能添加剤、ならびに、上記製造例1〜15及び比較製造例1〜8で得られた(メタ)アクリレート系重合体を用いて、本発明の潤滑油組成物(実施例1〜15)及び比較用の潤滑油組成物(比較例1〜8)をそれぞれ調製した。表中、重合体中の構造単位について「mass%」は重合体全量を基準とする質量%を表し、潤滑油組成物について「mass%」は組成物全量を基準とする質量%を表す。なお、各実施例および比較例においては、潤滑油組成物の150℃におけるHTHS粘度が2.6mPa・sとなるように、(メタ)アクリレート系重合体の含有量を決定した。
<Examples 1-15, Comparative Examples 1-8>
Using the base oil and performance additives shown below, and the (meth) acrylate polymers obtained in the above Production Examples 1 to 15 and Comparative Production Examples 1 to 8, the lubricating oil composition of the present invention (Examples) 1-15) and comparative lubricating oil compositions (Comparative Examples 1-8) were prepared. In the table, “mass%” for the structural unit in the polymer represents mass% based on the total amount of the polymer, and “mass%” for the lubricating oil composition represents mass% based on the total amount of the composition. In each example and comparative example, the content of the (meth) acrylate polymer was determined so that the HTHS viscosity at 150 ° C. of the lubricating oil composition was 2.6 mPa · s.

基油:Group III基油、動粘度(100℃)4.2mm/s、粘度指数125
性能添加剤:カルシウムスルホネート系金属系清浄剤,コハク酸イミド系無灰分散剤,モリブデン系摩擦調整剤、及びZnDTP系摩耗防止剤を含む添加剤パッケージ
Base oil: Group III base oil, kinematic viscosity (100 ° C.) 4.2 mm 2 / s, viscosity index 125
Performance additive: Additive package containing calcium sulfonate metal detergent, succinimide ashless dispersant, molybdenum friction modifier, and ZnDTP antiwear agent

(潤滑油組成物の評価)
実施例1〜15および比較例1〜8の各潤滑油組成物について、100℃における動粘度、粘度指数、ならびに100℃及び150℃におけるHTHS粘度を測定した。またパネルスラッジ試験により耐スラッジ性を評価した。結果を表1に併せて示している。
(1)動粘度:ASTM D−445に準拠して測定した。
(2)粘度指数:JIS K 2283−1993に準拠して測定した。
(3)HTHS粘度:ASTM D−4683に準拠して、150℃および100℃における高温高せん断粘度を測定した。潤滑油の150℃におけるHTHS粘度が2.6mPa・sとなるように(メタ)アクリレート系重合体の含有量を調整したとき、潤滑油の100℃におけるHTHS粘度が5.0mPa・s以下であれば、当該(メタ)アクリレート系重合体は省燃費性に優れているといえる。
(4)スラッジ試験:50gの潤滑油を100mLビーカーに入れ、鉄線と銅線各30cmをコイル状にして浸漬し、アルミ箔でふたをして150℃の高温槽で72時間加温した。試験後に0.8μmのフィルターでろ過し、捕獲される不溶解分の重量を測定した。不溶解分の重量が少ないほど耐スラッジ性に優れているといえる。
(5)MRV試験(低温粘度評価):ASTM D−4684に準拠して測定した。粘度測定時に所定の荷重以上の錘をのせないと粘度が測定できない状態を降伏応力(Yield Stress;「Y.S.」と略記することがある。)発生と判断した。Y.S.の発生のない潤滑油を合格とした。本試験に合格した潤滑油は、低温粘度特性に優れているといえる。
(Evaluation of lubricating oil composition)
About each lubricating oil composition of Examples 1-15 and Comparative Examples 1-8, kinematic viscosity at 100 degreeC, a viscosity index, and HTHS viscosity at 100 degreeC and 150 degreeC were measured. Moreover, the sludge resistance was evaluated by the panel sludge test. The results are also shown in Table 1.
(1) Kinematic viscosity: Measured according to ASTM D-445.
(2) Viscosity index: measured in accordance with JIS K 2283-1993.
(3) HTHS viscosity: High temperature high shear viscosity at 150 ° C. and 100 ° C. was measured according to ASTM D-4683. When the content of the (meth) acrylate polymer is adjusted so that the HTHS viscosity at 150 ° C. of the lubricating oil is 2.6 mPa · s, the HTHS viscosity at 100 ° C. of the lubricating oil is 5.0 mPa · s or less. In other words, it can be said that the (meth) acrylate polymer is excellent in fuel economy.
(4) Sludge test: 50 g of lubricating oil was put in a 100 mL beaker, 30 cm each of iron wire and copper wire were immersed in a coil, covered with aluminum foil, and heated in a high temperature bath at 150 ° C. for 72 hours. After the test, it was filtered with a 0.8 μm filter, and the weight of the insoluble matter to be captured was measured. It can be said that the smaller the weight of the insoluble matter, the better the sludge resistance.
(5) MRV test (low-temperature viscosity evaluation): Measured according to ASTM D-4684. A state in which the viscosity cannot be measured unless a weight of a predetermined load or more is applied at the time of measuring the viscosity was determined to be the occurrence of yield stress (sometimes abbreviated as “YS”). Lubricant without YS was accepted. It can be said that the lubricating oil that passed this test is excellent in low-temperature viscosity characteristics.

本発明の潤滑油組成物は、向上した耐スラッジ性を有するので、内燃機関用潤滑油、ガスエンジン油や高温軸受油等、高温になる機械要素を潤滑する潤滑油として好ましく用いることができる。   Since the lubricating oil composition of the present invention has improved sludge resistance, the lubricating oil composition can be preferably used as a lubricating oil for lubricating high temperature machine elements such as internal combustion engine lubricating oil, gas engine oil, and high temperature bearing oil.

Claims (9)

潤滑油基油と、
(A)下記一般式(1)で表される構造単位を、重合体全量基準で25〜35質量%と、下記一般式(2)で表される構造単位を、重合体全量基準で25〜35質量%とを含み、重量平均分子量が50,000〜500,000であり、下記式(3)で表されるパラメタaの値が0.12以下である、(メタ)アクリレート系重合体と
を含むことを特徴とする、潤滑油組成物。
(式(1)中、Rは水素またはメチル基を表し、Rは炭素数1〜4の直鎖または分岐鎖アルキル基を表す。)
(式(2)中、Rは水素またはメチル基を表し、Rは炭素数16〜24の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数16〜24の分岐鎖アルキル基を表す。)
a=Log(M(t1/2))−Log(M(t)) …(3)
(式(3)中、M(t)は前記(メタ)アクリレート系重合体のゲル浸透クロマトグラフィー測定により得られるポリスチレン換算分子量の微分分子量分布曲線におけるピークトップ分子量を表し;M(t1/2)は前記微分分子量分布曲線において分子量M(t)における強度の1/2の強度を与える高分子量側のポリスチレン換算分子量を表す。)
Lubricating base oil,
(A) The structural unit represented by the following general formula (1) is 25 to 35% by mass based on the total amount of the polymer, and the structural unit represented by the following general formula (2) is 25 to 25% based on the total amount of the polymer. A (meth) acrylate polymer containing 35% by mass, having a weight average molecular weight of 50,000 to 500,000, and a value of parameter a represented by the following formula (3) being 0.12 or less; A lubricating oil composition comprising:
(In formula (1), R 1 represents hydrogen or a methyl group, and R 2 represents a linear or branched alkyl group having 1 to 4 carbon atoms.)
(In formula (2), R 3 represents hydrogen or a methyl group, R 4 is a linear alkyl group having 16 to 24 carbon atoms or a C 16 to 24 of it also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)
a = Log (M h (t 1/2 )) − Log (M (t)) (3)
(In Formula (3), M (t) represents the peak top molecular weight in the differential molecular weight distribution curve of the polystyrene conversion molecular weight obtained by the gel permeation chromatography measurement of the said (meth) acrylate type polymer; M h (t 1 / 2 ) represents the molecular weight in terms of polystyrene on the high molecular weight side giving half the strength at the molecular weight M (t) in the differential molecular weight distribution curve.)
前記(メタ)アクリレート重合体が、さらに下記式(4)で表される構造単位を、重合体全量基準で40〜50質量%含む、
請求項1に記載の潤滑油組成物。
(式(4)中、Rは水素またはメチル基を表し、Rは炭素数6〜14の直鎖アルキル基、またはいずれの側鎖の炭素数も2以下である炭素数6〜14の分岐鎖アルキル基を表す。)
The (meth) acrylate polymer further contains a structural unit represented by the following formula (4) in an amount of 40 to 50% by mass based on the total amount of the polymer.
The lubricating oil composition according to claim 1.
(In the formula (4), R 5 represents hydrogen or a methyl group, R 6 is a linear alkyl group having 6 to 14 carbon atoms or 6 to 14 carbon atoms is also 2 or less carbon atoms on either side chain, Represents a branched alkyl group.)
下記式(5)で表されるパラメタbの値が0.3以下である、
請求項1又は2に記載の潤滑油組成物。
b=Log(M(t1/2))−Log(M(t1/2)) …(5)
(式(5)中、M(t1/2)は前記微分分子量分布曲線において分子量M(t)における強度の1/2の強度を与える低分子量側のポリスチレン換算分子量を表す。)
The value of the parameter b represented by the following formula (5) is 0.3 or less,
The lubricating oil composition according to claim 1 or 2.
b = Log (M h (t 1/2 )) − Log (M l (t 1/2 )) (5)
(In Formula (5), M l (t 1/2 ) represents a molecular weight in terms of polystyrene on the low molecular weight side giving half the strength of the molecular weight M (t) in the differential molecular weight distribution curve.)
前記(メタ)アクリレート系重合体の重量平均分子量Mwが310,000以下である、
請求項1〜3のいずれかに記載の潤滑油組成物。
The weight average molecular weight Mw of the (meth) acrylate polymer is 310,000 or less.
The lubricating oil composition according to any one of claims 1 to 3.
前記(メタ)アクリレート系重合体の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが1.6以下である、
請求項1〜4のいずれかに記載の潤滑油組成物。
The ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn of the (meth) acrylate polymer is 1.6 or less.
The lubricating oil composition according to any one of claims 1 to 4.
前記(メタ)アクリレート系重合体の重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnが1.11以上である、
請求項1〜5のいずれかに記載の潤滑油組成物。
The ratio Mw / Mn of the weight average molecular weight Mw and the number average molecular weight Mn of the (meth) acrylate polymer is 1.11 or more.
The lubricating oil composition according to claim 1.
前記(メタ)アクリレート系重合体は、1種以上の(メタ)アクリレート系重合性単量体を含む原料をリビングアニオン重合によって重合させることによって得られる重合体であり、
前記原料中の水酸基を有する化合物の含有量が、該原料中の前記1種以上の(メタ)アクリレート系重合性単量体100質量部に対して0.2質量部以下である、
請求項1〜6のいずれかに記載の潤滑油組成物。
The (meth) acrylate polymer is a polymer obtained by polymerizing a raw material containing at least one (meth) acrylate polymerizable monomer by living anion polymerization,
The content of the compound having a hydroxyl group in the raw material is 0.2 parts by mass or less with respect to 100 parts by mass of the one or more (meth) acrylate polymerizable monomers in the raw material.
The lubricating oil composition according to any one of claims 1 to 6.
金属系清浄剤、無灰分散剤、摩擦調整剤、摩耗防止剤、酸化防止剤、腐食防止剤、金属不活性化剤、前記(A)成分以外の粘度指数向上剤、流動点降下剤、防錆剤、抗乳化剤、および消泡剤からなる群から選ばれる1種以上の添加剤をさらに含む、
請求項1〜7のいずれかに記載の潤滑油組成物。
Metal detergents, ashless dispersants, friction modifiers, antiwear agents, antioxidants, corrosion inhibitors, metal deactivators, viscosity index improvers other than the above component (A), pour point depressants, rust prevention Further comprising one or more additives selected from the group consisting of an agent, a demulsifier, and an antifoaming agent,
The lubricating oil composition according to any one of claims 1 to 7.
内燃機関の潤滑に用いられる、請求項1〜8のいずれかに記載の潤滑油組成物。   The lubricating oil composition according to any one of claims 1 to 8, which is used for lubricating an internal combustion engine.
JP2017135672A 2017-07-11 2017-07-11 Lubricating oil composition Active JP6855342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017135672A JP6855342B2 (en) 2017-07-11 2017-07-11 Lubricating oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017135672A JP6855342B2 (en) 2017-07-11 2017-07-11 Lubricating oil composition

Publications (2)

Publication Number Publication Date
JP2019019154A true JP2019019154A (en) 2019-02-07
JP6855342B2 JP6855342B2 (en) 2021-04-07

Family

ID=65355070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017135672A Active JP6855342B2 (en) 2017-07-11 2017-07-11 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP6855342B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017417A1 (en) * 1995-11-07 1997-05-15 Nof Corporation Viscosity index improver, process for preparing the same and lubricating oil composition
JPH11302333A (en) * 1997-10-24 1999-11-02 Ethyl Corp New pour point depressant obtained by (meth)acrylic monomer polymerization
JP2000044631A (en) * 1998-05-25 2000-02-15 Kuraray Co Ltd Production of acrylic ester polymer
JP2001131216A (en) * 1999-08-24 2001-05-15 Kuraray Co Ltd Anionic polymerization method and method for production of polymer by the same
WO2006009083A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Lubricating oil additive containing acrylic polymer and lubricating oil compositions
JP2009074068A (en) * 2007-08-29 2009-04-09 Sanyo Chem Ind Ltd Viscosity index improver and lubricant composition
WO2015129022A1 (en) * 2014-02-28 2015-09-03 コスモ石油ルブリカンツ株式会社 Engine oil composition
JP2015196696A (en) * 2014-03-31 2015-11-09 出光興産株式会社 Lubricating oil composition for internal combustion engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997017417A1 (en) * 1995-11-07 1997-05-15 Nof Corporation Viscosity index improver, process for preparing the same and lubricating oil composition
JPH11302333A (en) * 1997-10-24 1999-11-02 Ethyl Corp New pour point depressant obtained by (meth)acrylic monomer polymerization
JP2000044631A (en) * 1998-05-25 2000-02-15 Kuraray Co Ltd Production of acrylic ester polymer
JP2001131216A (en) * 1999-08-24 2001-05-15 Kuraray Co Ltd Anionic polymerization method and method for production of polymer by the same
WO2006009083A1 (en) * 2004-07-16 2006-01-26 Kuraray Co., Ltd. Lubricating oil additive containing acrylic polymer and lubricating oil compositions
JP2009074068A (en) * 2007-08-29 2009-04-09 Sanyo Chem Ind Ltd Viscosity index improver and lubricant composition
WO2015129022A1 (en) * 2014-02-28 2015-09-03 コスモ石油ルブリカンツ株式会社 Engine oil composition
JP2015196696A (en) * 2014-03-31 2015-11-09 出光興産株式会社 Lubricating oil composition for internal combustion engine

Also Published As

Publication number Publication date
JP6855342B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
EP2343357B1 (en) Method for producing a lubricant composition
JP5345808B2 (en) Engine oil composition
JP5735827B2 (en) Viscosity index improver, lubricating oil additive and lubricating oil composition
JP6228809B2 (en) Novel polymer, viscosity index improver, and lubricating oil composition
JP5756337B2 (en) Lubricating oil composition
WO2017122721A1 (en) Lubricant composition
JP2009167278A (en) Lubricant composition
JP5756336B2 (en) Lubricating oil composition
WO2014017559A1 (en) Lubricating oil composition
JP2016020498A (en) Lubricant composition
JP5525478B2 (en) Viscosity index improver and lubricating oil composition
JP2010090250A (en) Lubricant composition and method for producing the same
WO2017194654A1 (en) Graft copolymers based on polyolefin backbone and methacrylate side chains
JP5711871B2 (en) Lubricating oil composition
JP2016069446A (en) Viscosity index improver, and lubrication oil composition
JP5756280B2 (en) Lubricating oil composition
JP5700657B2 (en) Lubricating oil composition
JP2019019154A (en) Lubricant composition
JP2010090252A (en) Lubricant composition
JP2017106016A (en) Viscosity index improver and lubricant composition
JP5647313B2 (en) Lubricating oil composition and method for producing the same
JP6077955B2 (en) Poly (meth) acrylate viscosity index improver, and lubricating oil additive and lubricating oil composition containing the viscosity index improver
JP2020050754A (en) Pour-point depressant and lubricant composition containing the same
JP2014205858A (en) Lubricant composition
JP2017008334A (en) Lubricant composition and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210317

R150 Certificate of patent or registration of utility model

Ref document number: 6855342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250