JP2019018535A - Method for manufacturing molding product - Google Patents

Method for manufacturing molding product Download PDF

Info

Publication number
JP2019018535A
JP2019018535A JP2017141990A JP2017141990A JP2019018535A JP 2019018535 A JP2019018535 A JP 2019018535A JP 2017141990 A JP2017141990 A JP 2017141990A JP 2017141990 A JP2017141990 A JP 2017141990A JP 2019018535 A JP2019018535 A JP 2019018535A
Authority
JP
Japan
Prior art keywords
heat treatment
fine shape
thermoplastic resin
molded product
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017141990A
Other languages
Japanese (ja)
Inventor
慎也 加島
Shinya Kashima
慎也 加島
晃 庭山
Akira Niwayama
晃 庭山
浩 川嶋
Hiroshi Kawashima
浩 川嶋
橋本 将臣
Masaomi Hashimoto
将臣 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2017141990A priority Critical patent/JP2019018535A/en
Publication of JP2019018535A publication Critical patent/JP2019018535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

To provide a method for manufacturing a molding product with a fine shape, hardly causing cracks even when being in contact with an organic solvent.SOLUTION: A method for manufacturing a molding product includes the steps of: preparation for preparing a fine shape imprinted molding product formed by imprinting a fine shape by plasticizing a thermoplastic resin by a plasticizing fluid; and heat treatment for heat treating the fine shape imprinted molding product. Heat treatment time y (time) and heat treatment temperature x (°C) in the heat treatment step satisfies the following formula (1), y≥6E+09e(1), where the heat treatment temperature x (°C) is equal to or more than [(a glass transition temperature of the thermoplastic resin)-64°C], and equal to or less than the glass transition temperature of the thermoplastic resin.SELECTED DRAWING: Figure 2

Description

本発明は、表面に微細形状が転写された、成形品の製造方法に関する。   The present invention relates to a method for producing a molded product having a fine shape transferred to the surface.

従来、樹脂に形状を転写する方法として、射出成形法が一般的に知られている。射出成形法では、軟化温度以上に加熱した樹脂を所望の金型内に射出し、固化させることで、金型の形状を転写する。   Conventionally, an injection molding method is generally known as a method for transferring a shape to a resin. In the injection molding method, a resin heated to a temperature higher than the softening temperature is injected into a desired mold and solidified to transfer the shape of the mold.

近年、電子製品の小型化等に伴い、微細な形状を有する光学部品等が求められている。しかしながら、射出成形法では、金型に設けられた微細な凹部内に樹脂を入り込ませることが難しく、微細な形状が十分に転写され難い、との課題があった。   In recent years, with the miniaturization of electronic products and the like, optical components having a fine shape have been demanded. However, in the injection molding method, there is a problem that it is difficult to allow the resin to enter the fine concave portion provided in the mold, and the fine shape is not easily transferred.

これに対し、樹脂の表面を、例えば液体の二酸化炭素または超臨界状態の二酸化炭素等で可塑化した後、当該樹脂の表面に、微細形状を有する金型を押圧し、微細形状を転写する方法が提案されている(例えば、特許文献1)。   On the other hand, after the surface of the resin is plasticized with, for example, liquid carbon dioxide or supercritical carbon dioxide, a mold having a fine shape is pressed onto the surface of the resin to transfer the fine shape. Has been proposed (for example, Patent Document 1).

特開2014−188950号公報JP 2014-188950 A

特許文献1の方法によれば、熱可塑性樹脂が金型の形状に追従しやすく、十分に微細な形状を有する光学部品等が得られるとの利点がある。ここで、このような方法で作製された成形品(本明細書では「微細形状転写成形品」とも称する)は、これをさらに加工する際、もしくは当該微細形状転写成形品を含む製品を使用する際に、アルコール等の有機溶媒と接触することがある。例えば、表面に付着した汚れを除去するために、有機溶媒に浸漬したり、有機溶媒を含ませた布で拭いたりすることがある。そして、本発明者らは、微細形状転写成形品が有機溶媒と接触すると、当該微細形状を転写した領域にクラックが生じることを見出した。   According to the method of Patent Document 1, there is an advantage that an optical component having a sufficiently fine shape can be obtained because the thermoplastic resin easily follows the shape of the mold. Here, the molded product produced by such a method (also referred to as “fine shape transfer molded product” in the present specification) is used when further processed, or a product including the fine shape transfer molded product is used. In some cases, it may come into contact with an organic solvent such as alcohol. For example, in order to remove dirt adhered to the surface, the film may be immersed in an organic solvent or wiped with a cloth soaked with an organic solvent. Then, the present inventors have found that when the fine shape transfer molded product comes into contact with an organic solvent, a crack is generated in the region where the fine shape is transferred.

例えば、ポリメタクリル酸メチル樹脂(PMMA)板の表面を、液体状の二酸化炭素(可塑化用流体)で可塑化させた後、金型を押し当てて微細形状を転写した。図1Aは、当該微細形状転写成形品の部分拡大写真であり、表面にクラック等が生じていないことが明らかである。一方、図1Bは、当該微細形状転写成形品にエタノールを付着させた後の部分拡大写真である。図1Bに示されるように、微細形状転写成形品にエタノールが付着すると、微細形状を転写した領域やその周辺の領域に細かいクラックが生じた。   For example, the surface of a polymethyl methacrylate resin (PMMA) plate was plasticized with liquid carbon dioxide (plasticizing fluid), and then the mold was pressed to transfer the fine shape. FIG. 1A is a partially enlarged photograph of the fine shape transfer molded product, and it is clear that no cracks or the like are generated on the surface. On the other hand, FIG. 1B is a partially enlarged photograph after ethanol is attached to the fine shape transfer molded product. As shown in FIG. 1B, when ethanol adhered to the fine shape transfer molded product, fine cracks occurred in the region where the fine shape was transferred and in the surrounding region.

一方、金型を押し当てなかった以外は上記と同様にPMMA板の表面を液体状の二酸化炭素で可塑化させた。図1Cは、当該PMMA板にエタノールを付着させた後の部分拡大写真である。図1Cに示されるように、熱可塑性樹脂と可塑化用流体とを接触させた領域では、成形しなくても、エタノールの付着によってクラックが生じた。   On the other hand, the surface of the PMMA plate was plasticized with liquid carbon dioxide in the same manner as described above except that the mold was not pressed. FIG. 1C is a partially enlarged photograph after ethanol is attached to the PMMA plate. As shown in FIG. 1C, in the region where the thermoplastic resin and the plasticizing fluid were brought into contact with each other, cracking occurred due to the adhesion of ethanol without molding.

さらに、液体状の二酸化炭素で可塑化させることなく、熱可塑性樹脂に金型を押し当てて成形品を作製した。図1Dは、当該成形品にエタノールを付着させた後の部分拡大写真である。図1Dに示されるように、熱可塑性樹脂に金型を押し当てて成形しただけでは、エタノールが付着してもクラックは生じなかった。   Further, a mold was pressed against the thermoplastic resin without plasticizing with liquid carbon dioxide to produce a molded product. FIG. 1D is a partially enlarged photograph after ethanol is attached to the molded article. As shown in FIG. 1D, cracking did not occur even when ethanol was adhered simply by pressing the mold against the thermoplastic resin.

以上のことから、微細形状転写成形品が有機溶媒と接触した際に生じるクラックは、熱可塑性樹脂と可塑化用流体との接触に起因するといえる。このような課題に対し、本発明は、有機溶媒と接触してもクラックが生じ難い、微細形状を有する成形品の製造方法の提供を目的とする。   From the above, it can be said that the crack generated when the fine shape transfer molded product comes into contact with the organic solvent is caused by the contact between the thermoplastic resin and the plasticizing fluid. In order to solve such a problem, the present invention aims to provide a method for producing a molded product having a fine shape, which does not easily crack even when contacted with an organic solvent.

本発明に係る成形品の製造方法は、熱可塑性樹脂を可塑化用流体で可塑化して微細形状を転写した、微細形状転写成形品を準備する準備工程と、前記微細形状転写成形品を熱処理する熱処理工程と、を有し、前記熱処理工程における熱処理時間y(時間)および熱処理温度x(℃)が、下記式(1)を満たす。
y≧6E+09e−0.427x (1)
(ただし、熱処理温度x(℃)は、前記熱可塑性樹脂のガラス転移温度−64℃以上、前記熱可塑性樹脂のガラス転移温度以下である)
The method for producing a molded product according to the present invention includes a preparation step of preparing a fine shape transfer molded product obtained by plasticizing a thermoplastic resin with a plasticizing fluid and transferring a fine shape, and heat-treating the fine shape transfer molded product. The heat treatment time y (hour) and the heat treatment temperature x (° C.) in the heat treatment step satisfy the following formula (1).
y ≧ 6E + 09e −0.427x (1)
(However, the heat treatment temperature x (° C.) is not lower than the glass transition temperature of the thermoplastic resin −64 ° C. and not higher than the glass transition temperature of the thermoplastic resin.)

本発明の製造方法によれば、有機溶媒と接触してもクラックが生じ難い、微細な形状を有する成形品が得られる。当該成形品は、各種光学部品や各種電子部品として、信頼性が高く、非常に有用である。   According to the production method of the present invention, it is possible to obtain a molded product having a fine shape, which does not easily generate cracks even when contacted with an organic solvent. The molded product has high reliability and is very useful as various optical components and various electronic components.

図1A〜Dは、有機溶媒の付着によって、微細形状転写成形品にクラックが生じることを説明するための部分拡大写真である。1A to 1D are partially enlarged photographs for explaining that a crack is generated in a fine shape transfer molded product due to adhesion of an organic solvent. 図2A〜Dは、本発明の一実施の形態に係る微細形状転写成形品の作製方法を示す概略断面図である。2A to 2D are schematic cross-sectional views illustrating a method for producing a fine shape transfer molded product according to an embodiment of the present invention. 図3は、本発明の熱処理工程における熱処理温度x(℃)と、熱処理時間y(時間)と、クラックの発生の有無との関係を示すグラフである。FIG. 3 is a graph showing the relationship between the heat treatment temperature x (° C.), the heat treatment time y (hour), and the presence or absence of cracks in the heat treatment step of the present invention.

前述のように、熱可塑性樹脂を可塑化用流体で可塑化して微細形状を転写した微細形状転写成形品は、有機溶媒に接触するとクラックが生じることが、本発明者らによって見出された。そして、本発明者らの鋭意検討により、このような微細形状転写成形品を、所定の温度で、所定時間以上熱処理することで、有機溶媒が付着しても、クラックが生じなくなることも見出された。   As described above, the present inventors have found that a fine shape transfer molded product obtained by plasticizing a thermoplastic resin with a plasticizing fluid to transfer a fine shape causes cracks when contacted with an organic solvent. As a result of diligent investigations by the present inventors, it has been found that such fine shape transfer molded products are heat-treated at a predetermined temperature for a predetermined time or more, so that cracks do not occur even if an organic solvent adheres. It was done.

そこで、本発明の成形品の製造方法では、微細形状転写成形品を準備する準備工程と、微細形状転写成形品を所定の条件で熱処理する熱処理工程と、を行う。以下、本発明の成形品の製造方法の一実施の形態を説明するが、本発明は当該実施の形態に限定されない。   Therefore, in the method for manufacturing a molded product according to the present invention, a preparation step for preparing a fine shape transfer molded product and a heat treatment step for heat-treating the fine shape transfer molded product under predetermined conditions are performed. Hereinafter, an embodiment of a method for producing a molded article of the present invention will be described, but the present invention is not limited to the embodiment.

(準備工程)
本実施の形態における準備工程は、熱可塑性樹脂を可塑化用流体で可塑化する工程と、可塑化された熱可塑性樹脂の表面に金型を押し当て、微細形状を転写する工程とを含む。以下、図2を参照してより詳しく説明する。
(Preparation process)
The preparation step in the present embodiment includes a step of plasticizing a thermoplastic resin with a plasticizing fluid, and a step of pressing a mold against the surface of the plasticized thermoplastic resin to transfer a fine shape. Hereinafter, this will be described in more detail with reference to FIG.

まず、微細形状を転写するための熱可塑性樹脂1を準備する。熱可塑性樹脂の種類は、可塑化用流体を含浸させることにより、可塑化可能な樹脂であれば特に制限されず、例えば、アクリル樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)等とすることができる。これらの中でも特に、アクリル樹脂またはABS樹脂である場合に、微細形状転写成形品にクラックが生じやすい。したがって、熱可塑性樹脂1がアクリル樹脂またはABS樹脂である場合に、本実施の形態の効果が得られやすい。なお、微細形状を転写する前の熱可塑性樹脂1の形状は特に制限されず、本実施の形態では平板状であるが、各種形状に成形されていてもよい。   First, a thermoplastic resin 1 for transferring a fine shape is prepared. The type of thermoplastic resin is not particularly limited as long as it is a resin that can be plasticized by impregnating with a plasticizing fluid. For example, an acrylic resin, an acrylonitrile / butadiene / styrene copolymer resin (ABS resin), or the like is used. be able to. Of these, cracks are likely to occur in the fine shape transfer molded product, particularly when the resin is acrylic resin or ABS resin. Therefore, when the thermoplastic resin 1 is an acrylic resin or an ABS resin, the effects of the present embodiment are easily obtained. In addition, the shape of the thermoplastic resin 1 before transferring the fine shape is not particularly limited, and is a flat plate shape in the present embodiment, but may be formed into various shapes.

そして、熱可塑性樹脂1を、微細形状転写装置10の支持部11上に固定する(図2A)。その後、微細形状転写装置10の圧力容器12を、その開口部が熱可塑性樹脂1と面するように配置し、微細形状転写装置10の圧力容器12と支持部11との間に熱可塑性樹脂1を挟み込む(図2B)。   And the thermoplastic resin 1 is fixed on the support part 11 of the fine shape transfer apparatus 10 (FIG. 2A). Thereafter, the pressure vessel 12 of the fine shape transfer device 10 is disposed so that the opening faces the thermoplastic resin 1, and the thermoplastic resin 1 is interposed between the pressure vessel 12 and the support portion 11 of the fine shape transfer device 10. Is sandwiched (FIG. 2B).

そして、微細形状転写装置10の圧力容器12に接続された流体供給装置(図示せず)から、圧力容器12内に、気体状の二酸化炭素を供給する。なお、圧力容器12内には、液体状や超臨界状態の二酸化炭素を供給、すなわち直接可塑化用流体を供給してもよいが、本実施の形態では、可塑化用流体の前駆体である気体状の二酸化炭素を圧力容器12内に充填し、当該気体を圧縮することで、可塑化用流体(液体状の二酸化炭素)とする。液体状や超臨界状体の二酸化炭素より気体状の二酸化炭素のほうが、取扱いやすいとの利点がある。   Then, gaseous carbon dioxide is supplied into the pressure vessel 12 from a fluid supply device (not shown) connected to the pressure vessel 12 of the fine shape transfer device 10. The pressure vessel 12 may be supplied with liquid or supercritical carbon dioxide, that is, directly supplied with a plasticizing fluid. In the present embodiment, the pressure vessel 12 is a precursor of the plasticizing fluid. By filling the pressure vessel 12 with gaseous carbon dioxide and compressing the gas, a plasticizing fluid (liquid carbon dioxide) is obtained. There is an advantage that gaseous carbon dioxide is easier to handle than liquid or supercritical carbon dioxide.

そして、圧力容器12の熱可塑性樹脂1と対向する面を熱可塑性樹脂1側に押し下げる(図2C)。これにより、気体状の二酸化炭素が液体状となり、熱可塑性樹脂1が液体状の二酸化炭素で含浸される。一方、本実施の形態では、圧力容器12の熱可塑性樹脂1と対向する面に、金型13が配置されている。したがって、圧力容器12の熱可塑性樹脂1と対向する面を十分に押し下げることで、熱可塑性樹脂1に金型13を押しつけることができ、熱可塑性樹脂1表面に、微細形状を転写することもできる(図2C)。   And the surface facing the thermoplastic resin 1 of the pressure vessel 12 is pushed down to the thermoplastic resin 1 side (FIG. 2C). As a result, gaseous carbon dioxide becomes liquid, and the thermoplastic resin 1 is impregnated with liquid carbon dioxide. On the other hand, in the present embodiment, a mold 13 is disposed on the surface of the pressure vessel 12 facing the thermoplastic resin 1. Therefore, the mold 13 can be pressed against the thermoplastic resin 1 by sufficiently pushing down the surface of the pressure vessel 12 facing the thermoplastic resin 1, and the fine shape can be transferred to the surface of the thermoplastic resin 1. (FIG. 2C).

その後、圧力容器12に設けられた排出口(図示せず)等から可塑化用流体を除去し、微細形状転写装置10(圧力容器12および支持部11)から熱可塑性樹脂1を取り外す。これにより、表面に微細形状が転写された微細形状転写成形品1’が得られる。   Thereafter, the plasticizing fluid is removed from a discharge port (not shown) or the like provided in the pressure vessel 12, and the thermoplastic resin 1 is removed from the fine shape transfer device 10 (the pressure vessel 12 and the support portion 11). Thereby, a fine shape transfer molded product 1 ′ having a fine shape transferred onto the surface is obtained.

(熱処理工程)
本実施の形態における熱処理工程では、上記準備工程で準備した微細形状転写成形品に対して、熱処理を行う。熱処理工程を行うタイミングは特に制限されず、微細形状転写成形品の作製直後に行ってもよく、微細形状転写成形品の作製から十分に時間が経過した後に行ってもよい。いずれにおいても、微細形状転写成形品に有機溶媒が付着した際のクラックの発生を抑制することが可能である。
(Heat treatment process)
In the heat treatment step in the present embodiment, heat treatment is performed on the fine shape transfer molded product prepared in the preparation step. The timing for performing the heat treatment step is not particularly limited, and may be performed immediately after the production of the fine shape transfer molded product, or may be performed after a sufficient time has elapsed since the production of the fine shape transfer molded product. In any case, it is possible to suppress the occurrence of cracks when an organic solvent adheres to the fine shape transfer molded product.

ここで、微細形状転写成形品の熱処理を行う際の熱処理時間y(時間)は、熱処理温度x(℃)に応じて決定される。具体的には、以下の式(1)を満たすように設定される。
y≧6E+09e−0.427x (1)
ただし、熱処理温度x(℃)は、微細形状転写成形品を構成する熱可塑性樹脂のガラス転移温度−64℃以上、当該熱可塑性樹脂のガラス転移温度以下とする。
Here, the heat treatment time y (time) when performing heat treatment of the fine shape transfer molded product is determined according to the heat treatment temperature x (° C.). Specifically, it is set to satisfy the following formula (1).
y ≧ 6E + 09e −0.427x (1)
However, the heat treatment temperature x (° C.) is set to be not lower than the glass transition temperature of the thermoplastic resin constituting the fine shape transfer molded article, −64 ° C. or higher and not higher than the glass transition temperature of the thermoplastic resin.

熱処理温度x(℃)が熱可塑性樹脂のガラス転移温度より高くなると、微細形状転写成形品が変形しやすくなり、得られる成形品の寸法精度が低下しやすくなる。一方、熱処理温度x(℃)が、熱可塑性樹脂のガラス転移温度−64℃未満となると、長時間熱処理を行っても、上述のクラック抑制効果が殆ど見られなくなる。   When the heat treatment temperature x (° C.) is higher than the glass transition temperature of the thermoplastic resin, the fine shape transfer molded product is likely to be deformed, and the dimensional accuracy of the resulting molded product is likely to be lowered. On the other hand, when the heat treatment temperature x (° C.) is less than the glass transition temperature of the thermoplastic resin −64 ° C., the above-described crack suppressing effect is hardly seen even when heat treatment is performed for a long time.

なお、本明細書において、熱処理温度x(℃)とは、微細形状転写成形品の微細形状が転写された表面の温度とする。また、熱処理時間y(時間)とは、微細形状転写成形品の微細形状が転写された表面の温度が、上記熱処理温度x(℃)に達してから当該熱処理温度x(℃)未満となるまでの時間とする。   In this specification, the heat treatment temperature x (° C.) is the temperature of the surface onto which the fine shape of the fine shape transfer molded product has been transferred. The heat treatment time y (time) is from the time when the temperature of the surface to which the fine shape of the fine shape transfer molded product is transferred reaches the heat treatment temperature x (° C.) until the temperature becomes less than the heat treatment temperature x (° C.). Time.

ここで、熱処理時間y(時間)は、上述の式(1)で表される時間(6E+09e−0.427x)以上の時間であればよいが、より確実にクラックを抑制するとの観点から、熱処理時間y(時間)の下限値は、(6E+09e−0.427x)の1.5倍であることが好ましく、2倍であることがさらに好ましい。 Here, the heat treatment time y (time) may be a time equal to or longer than the time represented by the above formula (1) (6E + 09e− 0.427x ), but from the viewpoint of suppressing cracks more reliably, The lower limit of time y (time) is preferably 1.5 times (6E + 09e -0.427x ), and more preferably 2 times.

ここで、上記熱処理を行う際、微細形状転写成形品表面の温度を、熱処理温度x(℃)まで昇温させる速度や、上記熱処理後、微細形状転写成形品の温度を室温まで降温させる速度は特に制限されない。   Here, when performing the heat treatment, the speed at which the surface temperature of the fine shape transfer molded product is raised to the heat treatment temperature x (° C.) and the speed at which the temperature of the fine shape transfer molded product is lowered to room temperature after the heat treatment is as follows: There is no particular limitation.

また、熱処理工程を行う装置は、所定の温度で所定時間保持可能な装置であれば特に制限されず、例えば、公知のオーブン等を用いることができる。   Moreover, the apparatus which performs a heat treatment process will not be restrict | limited especially if it is an apparatus which can be hold | maintained for predetermined time at predetermined temperature, For example, a well-known oven etc. can be used.

(その他)
本実施の形態の成形品の製造方法は、必要に応じて、上記準備工程および熱処理工程以外の工程を含んでいてもよい。例えば、熱処理工程後に、成形品の表面を洗浄する工程、すなわち、成形品を有機溶媒に浸漬したり、有機溶媒を含浸させた布等で拭いたりする工程等を含んでいてもよい。またさらに、成形品を変形させたり、成形品を他の部材と組み合わせたりする加工工程等を含んでいてもよい。
(Other)
The manufacturing method of the molded product of this Embodiment may include processes other than the said preparatory process and heat processing process as needed. For example, after the heat treatment step, a step of washing the surface of the molded product, that is, a step of immersing the molded product in an organic solvent or wiping with a cloth or the like impregnated with an organic solvent may be included. Furthermore, a processing step for deforming the molded product or combining the molded product with other members may be included.

なお、上述の説明では、準備工程において、微細形状転写成形品を微細形状転写装置で作製したが、微細形状転写成形品の準備方法は当該方法に制限されず、例えば、市販の微細形状転写成形品を準備してもよい。   In the above description, in the preparation step, the fine shape transfer molded product is produced by the fine shape transfer device. However, the method for preparing the fine shape transfer molded product is not limited to the method, and for example, a commercially available fine shape transfer molded product. You may prepare goods.

微細形状転写成型品を、可塑化用流体で可塑化して微細形状を転写する方法で作製したかどうかは、微細形状が転写された部分の断面を観察することで判断できる。より具体的には、熱可塑性樹脂を可塑化用流体で可塑化して微細形状を転写すると、転写された部分の樹脂中に可塑化用流体が溶け込んだ状態となるため、微細形状転写成型品を加熱(例えば、70℃で4時間加熱)することで、可塑化用流体に起因する気泡が観測できるようになる。この気泡が観測された場合、可塑化用流体で可塑化して微細形状を転写する方法で作製した微細形状転写成型品であると判断できる。   Whether or not the fine shape transfer molded product is produced by a method of plasticizing with a plasticizing fluid and transferring the fine shape can be determined by observing a cross section of the portion to which the fine shape is transferred. More specifically, when a thermoplastic resin is plasticized with a plasticizing fluid and a fine shape is transferred, the plasticizing fluid is dissolved in the transferred resin. By heating (for example, heating at 70 ° C. for 4 hours), bubbles caused by the plasticizing fluid can be observed. When this bubble is observed, it can be determined that the molded product is a fine shape transfer molded product produced by a method of plasticizing with a plasticizing fluid and transferring a fine shape.

(効果)
前述のように、成形時に可塑化用流体が含浸された微細形状転写成形品は、有機溶媒(例えばエタノール、イソプロピルアルコールなどのアルコール、アセトン等)が付着すると、クラックが生じやすい。光学部品等では、クラックが生じると、光学性能に影響を及ぼすため好ましくない。また、各種電子部品等においても、クラックが生じると、強度が低下したり、見た目が悪くなる等の影響がある。これに対し、本実施の形態の成形品の製造方法によれば、所定の温度で所定の時間、熱処理を行う熱処理工程を行うため、有機溶媒が付着してもクラックが生じ難い成形品が得られる。これにより、成形品の加工や洗浄に使用可能な有機溶媒の幅が広がる。さらには当該成形品を含む製品の使用時に有機溶媒が付着したとしてもクラックが生じ難く、製品の信頼性が高まる。
(effect)
As described above, a fine shape transfer molded article impregnated with a plasticizing fluid during molding is prone to cracking when an organic solvent (for example, alcohol such as ethanol or isopropyl alcohol, acetone or the like) adheres thereto. In an optical component or the like, if a crack occurs, it affects the optical performance, which is not preferable. In addition, in various electronic parts and the like, when a crack occurs, there are effects such as a decrease in strength and a deterioration in appearance. On the other hand, according to the method for manufacturing a molded product of the present embodiment, a heat treatment process is performed in which heat treatment is performed at a predetermined temperature for a predetermined time. It is done. Thereby, the range of the organic solvent which can be used for processing and washing of the molded product is expanded. Furthermore, even if an organic solvent adheres during use of a product containing the molded product, cracks are unlikely to occur and the reliability of the product is increased.

以下、本発明について実施例を参照して詳細に説明するが、本発明は、これらの実施例により限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail with reference to an Example, this invention is not limited by these Examples.

1.実施例および比較例(PMMA板)
ポリメタクリル酸メチル樹脂(PMMA)板(厚み:200mm、ガラス転移温度:109℃)を準備した。そして、図2に示すように、当該PMMA板を、微細形状転写装置10の支持部11と、圧力容器12との間に挟み、固定した(図2B)。そして、圧力容器12内に、気体の二酸化炭素を導入し、圧力容器12に設けられたピストンを下げた。これにより、圧力容器12内の二酸化炭素を液状化させると共に、金型13を熱可塑性樹脂1に押し当て(図2C)、微細形状が転写された微細形状転写成形品1’を得た(図2D)。
1. Examples and comparative examples (PMMA plates)
A polymethyl methacrylate resin (PMMA) plate (thickness: 200 mm, glass transition temperature: 109 ° C.) was prepared. And as shown in FIG. 2, the said PMMA board was pinched | interposed and fixed between the support part 11 of the fine shape transcription | transfer apparatus 10, and the pressure vessel 12 (FIG. 2B). And the gaseous carbon dioxide was introduce | transduced in the pressure vessel 12, and the piston provided in the pressure vessel 12 was lowered | hung. As a result, the carbon dioxide in the pressure vessel 12 was liquefied and the mold 13 was pressed against the thermoplastic resin 1 (FIG. 2C) to obtain a fine shape transfer molded product 1 ′ to which the fine shape was transferred (FIG. 2). 2D).

得られた微細形状転写成形品1’に対して、それぞれ表1に示す熱処理温度x(℃)および熱処理時間y(時間)で熱処理工程を行った。その後、微細形状転写成形品1’の表面にエタノールを付着させ、クラックが生じたか否かを、目視で観察した。結果を表1に示す。なお、表1において、熱処理工程における熱処理時間y(時間)および熱処理温度x(℃)が、下記式(1)を満たす場合を実施例、下記式(1)を満たさない場合を比較例と記載している。
y≧6E+09e−0.427x (1)
また、熱処理時間y(時間)および熱処理温度x(℃)が、上記式(1)を満たしたとしても、熱処理温度xが、PMMA板のガラス転移温度−64℃未満、もしくはPMMA板のガラス転移温度超である場合には、比較例とした。
The obtained fine shape transfer molded product 1 ′ was subjected to a heat treatment step at a heat treatment temperature x (° C.) and a heat treatment time y (hour) shown in Table 1, respectively. Thereafter, ethanol was adhered to the surface of the fine shape transfer molded product 1 ′, and it was visually observed whether or not a crack was generated. The results are shown in Table 1. In Table 1, when heat treatment time y (time) and heat treatment temperature x (° C.) in the heat treatment process satisfy the following formula (1), examples are described, and when the following formula (1) is not satisfied, it is described as a comparative example. doing.
y ≧ 6E + 09e −0.427x (1)
Even if the heat treatment time y (time) and the heat treatment temperature x (° C.) satisfy the above formula (1), the heat treatment temperature x is less than the glass transition temperature of the PMMA plate −64 ° C. or the glass transition of the PMMA plate. When it was over temperature, it was set as a comparative example.

さらに表1において、エタノール付着後にクラックが生じた場合には×、クラックが生じなかった場合には〇と記載した。併せて熱処理工程における熱処理温度x(℃)および熱処理時間y(時間)と、クラックの有無との関係を示すグラフを図3に示す。   Furthermore, in Table 1, it was described as “x” when a crack occurred after adhesion of ethanol, and “◯” when a crack did not occur. In addition, FIG. 3 is a graph showing the relationship between the heat treatment temperature x (° C.) and the heat treatment time y (time) in the heat treatment step and the presence or absence of cracks.

上記表1および図3に示されるように、熱処理工程における熱処理温度xおよび熱処理時間yが上記式(1)を満たし、さらに熱処理温度xが、PMMA板のガラス転移温度−64℃以上かつPMMA板のガラス転移温度以下である場合(実施例)には、微細形状転写成形品1’に有機溶媒が付着しても、クラックが生じなかった。これに対し、熱処理工程における熱処理温度xおよび時間yが上記式(1)を満たさない、もしくは熱処理温度xがPMMA板のガラス転移温度−64℃未満である場合、長時間熱処理したとしても、有機溶媒の付着によってクラックが生じた。   As shown in Table 1 and FIG. 3, the heat treatment temperature x and the heat treatment time y in the heat treatment step satisfy the above formula (1), and the heat treatment temperature x is a glass transition temperature of −64 ° C. or higher of the PMMA plate and the PMMA plate. When the temperature was lower than the glass transition temperature (Example), cracks did not occur even when the organic solvent adhered to the fine shape transfer molded product 1 ′. On the other hand, if the heat treatment temperature x and time y in the heat treatment step do not satisfy the above formula (1), or the heat treatment temperature x is less than the glass transition temperature of the PMMA plate -64 ° C. Cracks occurred due to the adhesion of the solvent.

2.実施例および比較例(ABS板)
上述のPMMA板に関する実施例および比較例と同様に、ABS板(厚み:200mm、ガラス転移温度:116℃)の表面を、液体状の二酸化炭素で可塑化させた。そして、当該表面に金型を押し当て、微細形状転写成形品を得た。
2. Examples and Comparative Examples (ABS plate)
Similar to the above-described examples and comparative examples relating to the PMMA plate, the surface of the ABS plate (thickness: 200 mm, glass transition temperature: 116 ° C.) was plasticized with liquid carbon dioxide. Then, a mold was pressed against the surface to obtain a fine shape transfer molded product.

その後、表2に示す熱処理温度x(℃)および熱処理時間y(時間)、熱処理工程を行った。その後、微細形状転写成形品の表面にエタノールを付着させた。このとき、二酸化炭素で可塑化させた領域に、クラックが生じたか否かを、目視で観察した。結果を表2に示す。なお、表2において、熱処理工程における熱処理時間y(時間)および熱処理温度x(℃)が、下記式(1)を満たす場合を実施例、下記式(1)を満たさない場合を比較例とした。
y≧6E+09e−0.427x (1)
また、熱処理時間y(時間)および熱処理温度x(℃)が、上記式(1)を満たしたとしても、熱処理温度xが、ABS板のガラス転移温度−64℃未満、もしくはABS板のガラス転移温度超である場合にも、比較例とした。
Thereafter, the heat treatment temperature x (° C.) and the heat treatment time y (hour) shown in Table 2 were performed. Thereafter, ethanol was allowed to adhere to the surface of the fine shape transfer molded product. At this time, it was visually observed whether or not cracks occurred in the region plasticized with carbon dioxide. The results are shown in Table 2. In Table 2, the heat treatment time y (time) and heat treatment temperature x (° C.) in the heat treatment step satisfy the following formula (1) as an example, and the case where the following formula (1) is not satisfied is a comparative example. .
y ≧ 6E + 09e −0.427x (1)
Even if the heat treatment time y (time) and the heat treatment temperature x (° C.) satisfy the above formula (1), the heat treatment temperature x is less than the glass transition temperature of the ABS plate −64 ° C. or the glass transition of the ABS plate. Also when it was over temperature, it was set as the comparative example.

上記表2に示されるように、熱処理工程における熱処理温度xおよび時間yが、上記式(1)を満たし、熱処理温度xが、ABS板のガラス転移温度−64℃以上かつABS板のガラス転移温度以下である場合(実施例)には、微細形状転写成形品に有機溶媒が付着しても、クラックが生じなかった。これに対し、熱処理工程における熱処理温度xおよび熱処理時間yが上記式(1)を満たさない場合、もしくは熱処理温度xがABS板のガラス転移温度−64℃未満である場合には、長時間加熱したとしても、有機溶媒の付着によってクラックが生じた。   As shown in Table 2, the heat treatment temperature x and time y in the heat treatment step satisfy the above formula (1), the heat treatment temperature x is not less than the glass transition temperature of the ABS plate -64 ° C., and the glass transition temperature of the ABS plate. In the following cases (Examples), cracks did not occur even when the organic solvent adhered to the fine shape transfer molded product. On the other hand, when the heat treatment temperature x and the heat treatment time y in the heat treatment step do not satisfy the above formula (1), or when the heat treatment temperature x is less than the glass transition temperature of the ABS plate -64 ° C., it was heated for a long time. Even so, cracks occurred due to the adhesion of the organic solvent.

本発明の方法によれば、有機溶媒と接触しても、クラックが生じ難い、微細形状を有する成形品が得られる。したがって、各種光学部品や、電子部品等、各種成形品の製造方法に適用することができる。   According to the method of the present invention, it is possible to obtain a molded article having a fine shape, which does not easily generate cracks even when contacted with an organic solvent. Therefore, it can be applied to a method for manufacturing various molded products such as various optical components and electronic components.

1 熱可塑性樹脂
1’ 微細形状転写成形品
10 微細形状転写装置
11 支持部
12 圧力容器
13 金型
DESCRIPTION OF SYMBOLS 1 Thermoplastic resin 1 'Fine shape transfer molding product 10 Fine shape transfer apparatus 11 Support part 12 Pressure vessel 13 Mold

Claims (3)

熱可塑性樹脂を可塑化用流体で可塑化して微細形状を転写した、微細形状転写成形品を準備する準備工程と、
前記微細形状転写成形品を熱処理する熱処理工程と、
を有し、
前記熱処理工程における熱処理時間y(時間)および熱処理温度x(℃)が、下記式(1)を満たす、
成形品の製造方法。
y≧6E+09e−0.427x (1)
(ただし、熱処理温度x(℃)は、前記熱可塑性樹脂のガラス転移温度−64℃以上、前記熱可塑性樹脂のガラス転移温度以下である)
A preparatory step of preparing a fine shape transfer molded article obtained by plasticizing a thermoplastic resin with a plasticizing fluid and transferring a fine shape;
A heat treatment step for heat-treating the fine shape transfer molded article;
Have
The heat treatment time y (hour) and the heat treatment temperature x (° C.) in the heat treatment step satisfy the following formula (1):
Manufacturing method of molded products.
y ≧ 6E + 09e −0.427x (1)
(However, the heat treatment temperature x (° C.) is not lower than the glass transition temperature of the thermoplastic resin −64 ° C. and not higher than the glass transition temperature of the thermoplastic resin.)
前記熱可塑性樹脂が、アクリル樹脂、アクリロニトリル・ブタジエン・スチレン共重合樹脂からなる群から選ばれる少なくとも一種の樹脂である、
請求項1に記載の成形品の製造方法。
The thermoplastic resin is at least one resin selected from the group consisting of acrylic resins, acrylonitrile / butadiene / styrene copolymer resins,
The manufacturing method of the molded article of Claim 1.
前記準備工程が、熱可塑性樹脂を可塑化用流体で可塑化する工程と、可塑化された前記熱可塑性樹脂の表面に金型を押し当て、微細形状を転写する工程と、
を含む、請求項1または2に記載の成形品の製造方法。
The preparatory step is a step of plasticizing a thermoplastic resin with a plasticizing fluid, a step of pressing a mold against the surface of the plasticized thermoplastic resin, and transferring a fine shape;
The manufacturing method of the molded article of Claim 1 or 2 containing this.
JP2017141990A 2017-07-21 2017-07-21 Method for manufacturing molding product Pending JP2019018535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017141990A JP2019018535A (en) 2017-07-21 2017-07-21 Method for manufacturing molding product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017141990A JP2019018535A (en) 2017-07-21 2017-07-21 Method for manufacturing molding product

Publications (1)

Publication Number Publication Date
JP2019018535A true JP2019018535A (en) 2019-02-07

Family

ID=65355007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017141990A Pending JP2019018535A (en) 2017-07-21 2017-07-21 Method for manufacturing molding product

Country Status (1)

Country Link
JP (1) JP2019018535A (en)

Similar Documents

Publication Publication Date Title
KR20170047282A (en) Methods of forming shaped glass articles from glass sheets
JP5266676B2 (en) Warm forming method and molded product produced by the warm forming method
KR101624418B1 (en) Method for manufacturing glassy carbon mold using press carbonizing process and glassy carbon mold using the method thereof
TW201639711A (en) Filming method and panel apparatus made thereof
JP2019018535A (en) Method for manufacturing molding product
JP6487980B2 (en) Manufacturing method of microchannel device
JP4367515B2 (en) Manufacturing method of speaker diaphragm and speaker diaphragm, speaker and electronic device formed thereby
WO2015065413A1 (en) Textured film on substrate
CN106003763B (en) The processing method of one anti-deformation TAC eyeglass
TWI641565B (en) Molded three-dimensional glass mold and mold forming method
CN106648243A (en) Preparation method of integrally molded curved touch screen
EP2250992A1 (en) Rubber plug partially coated with PET film and preparation method thereof
KR20170075998A (en) Method of manufacturing of case
KR101969807B1 (en) Method for producing diaphragm
KR20090126415A (en) Injection mold
JP2002086482A (en) Method for providing seal member to surface of base material
JP2008263417A (en) Method of manufacturing resin plate and method of manufacturing diaphragm for speaker using the same, diaphragm for speaker, speaker, and electronic apparatus
JP2008183752A (en) Resin sealing method with compression molding mold
JP2002219775A (en) Frp molding
WO2007080808A1 (en) Method for manufacturing vacuum-molded piece
JP2013253001A (en) Method for manufacturing optical element
US20090261487A1 (en) Method for making optical articles
JP2023069008A (en) Mold release film for mold forming
CN102336016B (en) Viscoelastic heat triggering thermoplastic polymer ultrasonic stamping method
JP2005111767A (en) Plastic film laminate and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190617

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191030