JP2019007951A - Method and device for inspecting wavelength conversion member - Google Patents

Method and device for inspecting wavelength conversion member Download PDF

Info

Publication number
JP2019007951A
JP2019007951A JP2018111754A JP2018111754A JP2019007951A JP 2019007951 A JP2019007951 A JP 2019007951A JP 2018111754 A JP2018111754 A JP 2018111754A JP 2018111754 A JP2018111754 A JP 2018111754A JP 2019007951 A JP2019007951 A JP 2019007951A
Authority
JP
Japan
Prior art keywords
wavelength conversion
phosphor
conversion member
inspection
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018111754A
Other languages
Japanese (ja)
Other versions
JP7068656B2 (en
Inventor
智也 岩越
Tomoya Iwakoshi
智也 岩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JP2019007951A publication Critical patent/JP2019007951A/en
Priority to JP2022072483A priority Critical patent/JP7305109B2/en
Application granted granted Critical
Publication of JP7068656B2 publication Critical patent/JP7068656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

To increase the accuracy of detection of inner defects of a wavelength conversion member having a fluorescent body.SOLUTION: The present invention relates to a method for detecting inner defects of a glass plate G containing a fluorescent body as a wavelength conversion member, the method imaging the glass plate G by an imaging unit 2 while irradiating the glass plate G with inspection light L with a wavelength of 495 nm or longer by the irradiation unit 1.SELECTED DRAWING: Figure 1

Description

本発明は、波長変換部材の検査方法及びその検査装置に関する。   The present invention relates to a wavelength conversion member inspection method and an inspection apparatus thereof.

蛍光体含有ガラス部材は、例えば、ガラス粉末と無機蛍光体粉末との混合物を加圧或いは成型し、焼成することで得られることが知られており、例えば、青色光源から発せられる青色光を白色光に変換するための波長変換部材(発光色変換部材)として用いられる。ここで、例えば、蛍光体含有ガラス部材は、青色光源から発せられた青色光の一部を蛍光体で吸収して黄色光に変換する機能を有する場合、白色光は、蛍光体で変換された黄色光と、青色光源から発せられた残りの青色光との合成により得られる。   It is known that the phosphor-containing glass member is obtained, for example, by pressing or molding a mixture of glass powder and inorganic phosphor powder, and firing the mixture. For example, blue light emitted from a blue light source is white. It is used as a wavelength conversion member (light emission color conversion member) for converting to light. Here, for example, when the phosphor-containing glass member has a function of absorbing a part of blue light emitted from a blue light source by the phosphor and converting it to yellow light, the white light is converted by the phosphor. It is obtained by the synthesis of yellow light and the remaining blue light emitted from a blue light source.

この種の蛍光体含有ガラス部材には、泡、異物等の内部欠陥が含まれる場合がある。また、蛍光体含有ガラス部材には、光の拡散性を向上させる等の目的で、蛍光体とは別に拡散材を含有させる場合、この拡散材が適正に分散せずに凝集体を形成して内部欠陥となることもある。これら泡、異物、拡散材の凝集体等の内部欠陥が存在すると、発光効率の低下や発光色のバラツキ、蛍光体含有ガラス部材の強度低下を招くおそれがある。   This type of phosphor-containing glass member may contain internal defects such as bubbles and foreign matter. In addition, when a diffusing material is contained in the phosphor-containing glass member separately from the phosphor for the purpose of improving light diffusibility, the diffusing material is not properly dispersed to form an aggregate. It can be an internal defect. If there are internal defects such as bubbles, foreign substances, and aggregates of the diffusing material, there is a risk of lowering the luminous efficiency, variation of the luminescent color, and lowering the strength of the phosphor-containing glass member.

そこで、特許文献1には、照射部から検査光を蛍光体含有ガラス部材に照射すると共に、この検査光によって蛍光体含有ガラス部材中の蛍光体を発光させながら撮像部で撮像することで、蛍光体含有ガラス部材の欠陥を検査することが開示されている。ここで、特許文献1では、蛍光体を発光させるために、検査光として、蛍光体の励起(吸収)波長域に含まれる300〜495nmの波長の光を用いることが開示されている。   Therefore, in Patent Document 1, the fluorescent material-containing glass member is irradiated with inspection light from the irradiation unit, and the fluorescent material in the fluorescent material-containing glass member is imaged by the imaging unit while emitting light with the inspection light. It is disclosed to inspect defects in a body-containing glass member. Here, Patent Document 1 discloses that light having a wavelength of 300 to 495 nm included in the excitation (absorption) wavelength region of the phosphor is used as the inspection light in order to cause the phosphor to emit light.

特開2013−164371号公報JP 2013-164371 A

特許文献1に開示のように、蛍光体含有ガラス部材中の蛍光体を励起させると、蛍光体は、例えば光源から発せられる青色光の吸収を伴いながら黄色光を発光する。この青色光の吸収により、蛍光体に対応する部分が暗くなり、撮像画像を二値化処理等した場合に黒色像として観測される。一方、泡、異物、拡散材の凝集体等の内部欠陥も、像の形状は異なる場合はあるものの、撮像画像を二値化処理等した場合に黒色像として観測される。従って、蛍光体を励起発光させると、蛍光体と内部欠陥とが共に黒色像として観測されるため、欠陥ではない蛍光体と、内部欠陥とを区別することが難しくなり、内部欠陥の検査精度が低下するという問題がある。   As disclosed in Patent Document 1, when the phosphor in the phosphor-containing glass member is excited, the phosphor emits yellow light with absorption of blue light emitted from a light source, for example. Due to the absorption of the blue light, the portion corresponding to the phosphor becomes dark and is observed as a black image when the captured image is binarized. On the other hand, internal defects such as bubbles, foreign matter, and diffuser aggregates are also observed as black images when the captured image is binarized, although the shape of the image may be different. Therefore, when the phosphor is excited to emit light, both the phosphor and the internal defect are observed as a black image. Therefore, it is difficult to distinguish between the phosphor that is not a defect and the internal defect, and the inspection accuracy of the internal defect is improved. There is a problem of lowering.

このような問題は、蛍光体を有する波長変換部材であれば、蛍光体含有ガラス部材以外の波長変換部材でも同様に生じ得る。   Such a problem can occur in a wavelength conversion member other than the phosphor-containing glass member as long as the wavelength conversion member has a phosphor.

本発明は、蛍光体を有する波長変換部材の内部欠陥の検査精度を向上させることを技術的課題とする。   This invention makes it a technical subject to improve the inspection precision of the internal defect of the wavelength conversion member which has fluorescent substance.

上記の課題を解決するために創案された本発明は、蛍光体を有する波長変換部材の内部欠陥を検査する波長変換部材の検査方法であって、照射部から波長変換部材に対して波長が495nm超の検査光を照射しながら、撮像部で波長変換部材を撮像することを特徴とする。すなわち、波長変換部材に用いられる蛍光体(例えば、無機蛍光体粉末)は、波長495nm以下に励起帯または励起ピークを有することが多い。そこで、上記の構成のように、波長495nm超の検査光を用いれば、蛍光体において励起(吸収)が極めて少ない又は無い状態となる。このような蛍光体における励起が実質的に生じない状態では、検査光は蛍光体に実質的に吸収されることなく透過し、蛍光体に対応する部分が暗く撮像されにくくなる。従って、蛍光体が検査の邪魔になることがなく、波長変換部材の内部欠陥を正確に検査することが可能となる。   The present invention devised to solve the above problems is an inspection method of a wavelength conversion member for inspecting an internal defect of a wavelength conversion member having a phosphor, and the wavelength from the irradiation unit to the wavelength conversion member is 495 nm. The wavelength conversion member is imaged by an imaging unit while irradiating super-examination light. That is, the phosphor (for example, inorganic phosphor powder) used for the wavelength conversion member often has an excitation band or excitation peak at a wavelength of 495 nm or less. Therefore, if inspection light having a wavelength of more than 495 nm is used as in the above configuration, excitation (absorption) is very little or not in the phosphor. In a state where excitation in such a phosphor does not substantially occur, the inspection light is transmitted without being substantially absorbed by the phosphor, and a portion corresponding to the phosphor is dark and difficult to image. Therefore, the phosphor does not interfere with the inspection, and the internal defect of the wavelength conversion member can be accurately inspected.

ここで、「蛍光体を有する波長変換部材」は、蛍光体を有する層のみからなる単一部材であっても良いし、蛍光体を有する層とその他の層とを積層してなる複合部材であっても良い。なお、「蛍光体を有する層」という用語は、層の一部に蛍光体が含まれている場合(例えば、層の内部に蛍光体が分散している場合など)と、層の全体が蛍光体のみから構成されている場合(例えば、層全体が蛍光体の単結晶体又は多結晶体から構成されている場合など)とを含むものとする。また、「層」という用語は、膜と板の両方の概念を含むものとする。   Here, the “wavelength conversion member having a phosphor” may be a single member composed only of a layer having a phosphor, or a composite member formed by laminating a layer having a phosphor and other layers. There may be. Note that the term “layer having a phosphor” means that the phosphor is contained in a part of the layer (for example, the phosphor is dispersed inside the layer) or the entire layer is fluorescent. And a case where it is composed only of a body (for example, a case where the whole layer is composed of a single crystal or a polycrystal of a phosphor). Further, the term “layer” includes the concept of both a film and a plate.

上記の構成において、照射部と撮像部とを波長変換部材を挟んで対向配置すると共に、照射部と波長変換部材との間に検査光の一部を遮断する絞り部材を配置することが好ましい。このようにすれば、絞り部材によって、波長変換部材中の狭い範囲にのみ検査光が照射される。従って、欠陥より離れた位置に存在する蛍光体や拡散材へ検査光が当たらなくなり、波長変換部材中において検査の邪魔になるような不要な不特定方向からの散乱光が生じにくく、内部欠陥の検査精度がより向上する。   In the above configuration, it is preferable that the irradiation unit and the imaging unit are disposed to face each other with the wavelength conversion member interposed therebetween, and a diaphragm member that blocks part of the inspection light is disposed between the irradiation unit and the wavelength conversion member. If it does in this way, inspection light will be irradiated only to a narrow range in a wavelength conversion member by a diaphragm member. Therefore, the inspection light does not hit the phosphor or the diffusing material located at a position away from the defect, and unnecessary scattered light from the unspecified direction that interferes with the inspection in the wavelength conversion member is less likely to be generated. Inspection accuracy is further improved.

絞り部材を配置する場合、絞り部材はスリット状の絞り開口部を有することが好ましい。このようにすれば、波長変換部材中の不要な散乱光の発生を防止しつつ、一度に検査できる検査対象領域を、絞り開口部が円形等の場合に比べ、広げることができるため、検査効率を上げることができる。   When the diaphragm member is disposed, the diaphragm member preferably has a slit-shaped diaphragm opening. In this way, the inspection target area that can be inspected at a time can be expanded as compared to the case where the aperture opening is circular or the like, while preventing the generation of unnecessary scattered light in the wavelength conversion member. Can be raised.

絞り部材を設ける場合、絞り部材と波長変換部材との間の間隔は、1mm以下、0.8mm以下、0.5mm以下、0.3mm以下、0.15mm以下、0.1mm以下であることが好ましい。ここで、絞り部材と波長変換部材との間の間隔は、零を含むものとする。このようにすれば、絞り部材を波長変換部材に近接または接触させることができる。従って、絞り部材を通過した検査光が回折で大きく広がる前に波長変換部材に照射され、絞り部材の効果を高めることができる。   When the aperture member is provided, the distance between the aperture member and the wavelength conversion member may be 1 mm or less, 0.8 mm or less, 0.5 mm or less, 0.3 mm or less, 0.15 mm or less, 0.1 mm or less. preferable. Here, the interval between the aperture member and the wavelength conversion member includes zero. In this way, the diaphragm member can be brought close to or in contact with the wavelength conversion member. Accordingly, the inspection light that has passed through the diaphragm member is irradiated onto the wavelength conversion member before it is greatly spread by diffraction, and the effect of the diaphragm member can be enhanced.

絞り部材を設ける場合、照射部、撮像部および絞り部材を定位置に配置した状態で、検査光を透過可能な支持部材の上面に波長変換部材を載置し、支持部材の下面に絞り部材を接触させながら、支持部材と共に波長変換部材を移動させるようにしても良い。このようにすれば、波長変換部材を支持部材の上面に載置させた状態で移動させることで、波長変換部材中に検査光の照射領域および撮像領域が走査されることになる。従って、波長変換部材が薄い場合や小さい場合等であっても、波長変換部材の取り扱いが容易となる。また、支持部材の下面に絞り部材が接触しているため、絞り部材を通過した検査光が回折で大きく広がる前に波長変換部材に照射され、絞り部材の効果を高めることができる。ここで、支持部材の厚み(支持部材の厚みが平面内で異なる場合は、例えば支持部材のうち波長変換部材と接触する部分の厚み)は、例えば、500μm以下、350μm以下、200μm以下、100μm以下、85μm以下であることが好ましい。   When the diaphragm member is provided, the wavelength conversion member is placed on the upper surface of the support member that can transmit the inspection light in a state where the irradiation unit, the imaging unit, and the diaphragm member are arranged at fixed positions, and the diaphragm member is disposed on the lower surface of the support member. You may make it move a wavelength conversion member with a supporting member, making it contact. If it does in this way, the irradiation area | region and imaging area | region of inspection light will be scanned in a wavelength conversion member by moving the wavelength conversion member in the state mounted in the upper surface of a support member. Therefore, even when the wavelength conversion member is thin or small, the wavelength conversion member can be easily handled. In addition, since the diaphragm member is in contact with the lower surface of the support member, the inspection light that has passed through the diaphragm member is irradiated to the wavelength conversion member before it greatly spreads by diffraction, and the effect of the diaphragm member can be enhanced. Here, the thickness of the support member (when the thickness of the support member is different in the plane, for example, the thickness of the portion of the support member that contacts the wavelength conversion member) is, for example, 500 μm or less, 350 μm or less, 200 μm or less, 100 μm or less. , 85 μm or less is preferable.

上記の構成において、波長変換部材が、ガラス中に蛍光体を含む蛍光体含有ガラス部材であることが好ましい。   Said structure WHEREIN: It is preferable that a wavelength conversion member is a fluorescent substance containing glass member which contains fluorescent substance in glass.

上記の課題を解決するために創案された本発明は、蛍光体を有する波長変換部材の内部欠陥を検査する波長変換部材の検査装置であって、波長変換部材に対して波長が495nm超の検査光を照射する照射部と、検査光が照射された波長変換部材を撮像する撮像部とを備えていることを特徴とする。このような構成によれば、上述の対応する構成と同様の作用効果を奏し得る。   The present invention devised to solve the above problems is a wavelength conversion member inspection apparatus for inspecting internal defects of a wavelength conversion member having a phosphor, and the wavelength conversion member has an inspection wavelength of more than 495 nm. An irradiating unit that irradiates light and an imaging unit that images a wavelength conversion member irradiated with inspection light are provided. According to such a configuration, the same operational effects as those of the corresponding configuration described above can be obtained.

以上のような本発明によれば、蛍光体を有する波長変換部材の内部欠陥の検査精度を向上させることができる。   According to the present invention as described above, it is possible to improve the inspection accuracy of internal defects of the wavelength conversion member having a phosphor.

実施形態に係る波長変換部材の検査装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the inspection apparatus of the wavelength conversion member which concerns on embodiment. 支持部材に載置された蛍光体含有ガラス板を示す平面図である。It is a top view which shows the fluorescent substance containing glass plate mounted in the supporting member. 絞り部材を示す平面図である。It is a top view which shows an aperture member. 蛍光体含有ガラス板のセグメントの処理画像の一例である。It is an example of the process image of the segment of a fluorescent substance containing glass plate. 蛍光体含有ガラス板のセグメントの処理画像の一例である。It is an example of the process image of the segment of a fluorescent substance containing glass plate. 蛍光体含有ガラス板のセグメントの処理画像の一例である。It is an example of the process image of the segment of a fluorescent substance containing glass plate. 蛍光体含有ガラス板のセグメントの処理画像の一例である。It is an example of the process image of the segment of a fluorescent substance containing glass plate.

本実施形態に係る波長変換部材の検査方法及びその検査装置について図面を参照しながら説明する。なお、以下では、波長変換部材として、ガラス中に蛍光体を含むガラス層からなる蛍光体含有ガラス板を例示する。   A wavelength conversion member inspection method and inspection apparatus according to the present embodiment will be described with reference to the drawings. In addition, below, the phosphor containing glass plate which consists of a glass layer which contains a fluorescent substance in glass is illustrated as a wavelength conversion member.

図1に示すように、本検査装置は、横姿勢の蛍光体含有ガラス板Gに対して検査光Lを照射する照射部1と、検査光Lが照射された蛍光体含有ガラス板Gを撮像する撮像部2と、撮像部2で撮像された蛍光体含有ガラス板Gの撮像画像を画像処理する画像処理部3とを備えている。   As shown in FIG. 1, the present inspection apparatus images an irradiation unit 1 that irradiates inspection light L onto a phosphor-containing glass plate G in a horizontal posture and a phosphor-containing glass plate G irradiated with the inspection light L. And an image processing unit 3 that performs image processing on the captured image of the phosphor-containing glass plate G imaged by the imaging unit 2.

蛍光体含有ガラス板Gは、例えば、ガラス粉末と無機蛍光体粉末とを含む混合物を加圧或いは成型し、焼成することで得られたものであり、入射光の波長の一部を別の波長に変換する機能を有する。   The phosphor-containing glass plate G is obtained, for example, by pressing or molding a mixture containing glass powder and inorganic phosphor powder, and firing the mixture, and a part of the wavelength of incident light is changed to another wavelength. It has the function to convert to.

ガラス粉末としては、例えば、ZnO−B−SiO系ガラス粉末、SiO−B−RO系ガラス粉末(Rは、Mg、Ca、Sr及びBaからなる群から選択される少なくとも一種)、SiO−TiO−Nb−R’O系ガラス粉末(R’は、Li、Na及びKからなる群から選択される少なくとも一種)およびSnO−P系ガラス粉末からなる群から選択される一種のガラス粉末が用いられる。 Examples of the glass powder include ZnO—B 2 O 3 —SiO 2 glass powder and SiO 2 —B 2 O 3 —RO glass powder (R is selected from the group consisting of Mg, Ca, Sr and Ba). SiO 2 —TiO 2 —Nb 2 O 5 —R ′ 2 O glass powder (R ′ is at least one selected from the group consisting of Li, Na and K) and SnO—P 2 O 5 system A kind of glass powder selected from the group consisting of glass powder is used.

無機蛍光体粉末としては、酸化物(YAG粉末等のガーネット系粉末を含む)、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物(ハロリン酸塩化物粉末等)およびアルミン酸塩からなる群から選択される少なくとも一種の無機蛍光体粉末が用いられる。具体的には、青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、(Y,Gd)(Al,Ga)12:Ce、LaSi11:Ce、Ca−α−サイアロン:Eu、LiSrSiO:Eu等が挙げられる。無機蛍光体粉末は、紫外〜495nmに励起帯または励起ピークを有するものが一般的である。 Inorganic phosphor powders include oxides (including garnet-based powders such as YAG powder), nitrides, oxynitrides, sulfides, oxysulfides, halides (halophosphate chloride powders, etc.) and aluminates. At least one inorganic phosphor powder selected from the group is used. Specifically, as the inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light, (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce, La 3 Si 6 N 11 : Ce, Ca-α-sialon: Eu, Li 2 SrSiO 4 : Eu, etc. Inorganic phosphor powders generally have an excitation band or excitation peak in the ultraviolet to 495 nm.

図1及び図2に示すように、本実施形態において、検査対象となる蛍光体含有ガラス板Gは複数の矩形状セグメントG1に分割されており、各セグメントG1の間には所定の隙間Sが形成されている。蛍光体含有ガラス板Gは、支持部材4に載置されている。支持部材4は、金属製の枠部材5と、枠部材5に張設された粘着性の透明フィルム(ここでは、検査光が透過可能なフィルムを意味する)、例えば透明UVフィルム6とを備えている。蛍光体含有ガラス板Gの各セグメントG1は、透明フィルムに貼着されている。各セグメントG1の間の隙間Sは、各セグメントG1の間に隙間が無い状態から透明UVフィルム6を引き伸ばすことによって形成される。透明UVフィルム6が引き伸ばされた状態は、枠部材5によって透明UVフィルムの周縁部を保持することで維持されるようになっている。なお、蛍光体含有ガラス板Gは、各セグメントG1の間に隙間Sを有さないものであっても良いし、セグメントG1に分割されていない一枚のガラス板であっても良いし、一枚のガラス板をダイシング等の切削加工によって分割されたものであっても良い。また、支持部材4は適宜省略しても良い。   As shown in FIGS. 1 and 2, in the present embodiment, the phosphor-containing glass plate G to be inspected is divided into a plurality of rectangular segments G1, and a predetermined gap S is provided between each segment G1. Is formed. The phosphor-containing glass plate G is placed on the support member 4. The support member 4 includes a metal frame member 5 and an adhesive transparent film (herein, a film through which inspection light can pass) stretched on the frame member 5, for example, a transparent UV film 6. ing. Each segment G1 of the phosphor-containing glass plate G is attached to a transparent film. The gap S between the segments G1 is formed by stretching the transparent UV film 6 from a state where there is no gap between the segments G1. The state in which the transparent UV film 6 is stretched is maintained by holding the peripheral edge of the transparent UV film by the frame member 5. The phosphor-containing glass plate G may be a glass plate that does not have a gap S between the segments G1, a single glass plate that is not divided into segments G1, or a single glass plate. The glass plate may be divided by cutting such as dicing. Further, the support member 4 may be omitted as appropriate.

図1に示すように、蛍光体含有ガラス板Gは、X軸方向に可動する可動機構、例えばベルトコンベア7に搭載されている。ベルトコンベア7は、支持部材4の枠部材5の周縁部、例えばY軸方向(紙面直交方向)の両端部を支持しており、支持部材4と共に蛍光体含有ガラス板GがX軸方向に移動可能となっている。   As shown in FIG. 1, the phosphor-containing glass plate G is mounted on a movable mechanism that can move in the X-axis direction, for example, a belt conveyor 7. The belt conveyor 7 supports the peripheral edge of the frame member 5 of the support member 4, for example, both ends in the Y-axis direction (the direction orthogonal to the paper surface), and the phosphor-containing glass plate G moves in the X-axis direction together with the support member 4. It is possible.

照射部1及び撮像部2は、蛍光体含有ガラス板Gを挟んで同軸(例えば、Z軸方向に延びる軸)上で対向配置されている。本実施形態では、照射部1は蛍光体含有ガラス板Gの下方側の定位置に配置され、撮像部2は蛍光体含有ガラス板Gの上方側の定位置に配置されている。   The irradiation unit 1 and the imaging unit 2 are disposed opposite to each other on the same axis (for example, an axis extending in the Z-axis direction) with the phosphor-containing glass plate G interposed therebetween. In the present embodiment, the irradiation unit 1 is arranged at a fixed position on the lower side of the phosphor-containing glass plate G, and the imaging unit 2 is arranged at a fixed position on the upper side of the phosphor-containing glass plate G.

照射部1としては、例えばハロゲンランプや半導体レーザー(LD)等の光源を使用可能であるが、本実施形態では、発光ダイオード(LED)をY軸方向に配列したライン光源を使用している。照射部1から発せられた検査光Lは、蛍光体含有ガラス板Gの下面側から蛍光体含有ガラス板Gに照射される。   As the irradiation unit 1, for example, a light source such as a halogen lamp or a semiconductor laser (LD) can be used. In this embodiment, a line light source in which light emitting diodes (LEDs) are arranged in the Y-axis direction is used. The inspection light L emitted from the irradiation unit 1 is applied to the phosphor-containing glass plate G from the lower surface side of the phosphor-containing glass plate G.

照射部1から発せられる検査光Lの波長は、495nm超であり、520nm以上、550nm以上、600nm以上であることが好ましく、900nm以下、850nm以下、800nm以下、750nm以下、700nm以下であることが好ましい。このような波長とする理由は、蛍光体含有ガラス板G中の蛍光体における励起(吸収)が極めて少ない又は無い状態にするためである。なお、検査光Lは、赤外光であっても良いが、照射部1の光量や撮像部2の感度を高め、露光時間(検査時間)を短くするという観点からは可視光であることが好ましい。   The wavelength of the inspection light L emitted from the irradiation unit 1 is more than 495 nm, preferably 520 nm or more, 550 nm or more, and 600 nm or more, and 900 nm or less, 850 nm or less, 800 nm or less, 750 nm or less, or 700 nm or less. preferable. The reason for setting such a wavelength is to make the excitation (absorption) in the phosphor in the phosphor-containing glass plate G very small or absent. The inspection light L may be infrared light, but may be visible light from the viewpoint of increasing the light amount of the irradiation unit 1 and the sensitivity of the imaging unit 2 and shortening the exposure time (inspection time). preferable.

撮像部2は、例えばCCDカメラで構成されており、蛍光体含有ガラス板Gを鉛直方向上方から撮像できる位置に配置されている。撮像部2としては、蛍光体含有ガラス板GのY軸方向の全幅W1を撮像領域に含むエリアカメラやラインカメラを用いることが好ましい。本実施形態では、撮像部2の撮像領域は、蛍光体含有ガラス板GのY軸方向の全幅W1に亘って形成されている。また、照射部1から発せられる検査光Lも撮像領域に対応する領域(蛍光体含有ガラス板Gの全幅W1)に照射されるようになっている。このようにすれば、ベルトコンベア7で支持部材4と共に蛍光体含有ガラス板GをX軸方向に移動させるだけで、蛍光体含有ガラス板Gに含まれる全てのセグメントG1の検査を行うことができる。   The imaging unit 2 is configured by a CCD camera, for example, and is arranged at a position where the phosphor-containing glass plate G can be imaged from above in the vertical direction. As the imaging unit 2, it is preferable to use an area camera or a line camera that includes the entire width W1 of the phosphor-containing glass plate G in the Y-axis direction in the imaging region. In the present embodiment, the imaging region of the imaging unit 2 is formed over the entire width W1 in the Y-axis direction of the phosphor-containing glass plate G. In addition, the inspection light L emitted from the irradiation unit 1 is also irradiated onto a region corresponding to the imaging region (full width W1 of the phosphor-containing glass plate G). In this way, all the segments G1 included in the phosphor-containing glass plate G can be inspected by simply moving the phosphor-containing glass plate G together with the support member 4 in the X-axis direction on the belt conveyor 7. .

撮像部2で撮像された蛍光体含有ガラス板Gの画像データは画像処理部3に入力され、画像処理部3で二値化等の適宜の画像処理が施される。本実施形態では、ガンマ補正によって輝度値を調整する。画像処理部3で画像処理された蛍光体含有ガラス板Gの処理画像は、ディスプレイ(図示省略)に表示され、表示された処理画像から泡(空隙)、異物(有機物の燃殻等)、拡散材の凝集体といった蛍光体含有ガラス板Gの内部欠陥の有無、大きさ、種類を判別することができる。あるいは、処理画像から各種欠陥の情報(大きさ等)を抽出する演算処理と、各種欠陥の大きさ等の許容基準値を記憶する記憶機能と、演算によって抽出した各種欠陥の情報(大きさ等)と許容基準値とを比較して欠陥に関する良否を判定する良否判定機能とを画像処理部3に設け、蛍光体含有ガラス板Gの欠陥に関する良否判定を画像処理部3で自動的に行う構成としても良い。   The image data of the phosphor-containing glass plate G imaged by the imaging unit 2 is input to the image processing unit 3, and appropriate image processing such as binarization is performed by the image processing unit 3. In the present embodiment, the luminance value is adjusted by gamma correction. The processed image of the phosphor-containing glass plate G subjected to image processing by the image processing unit 3 is displayed on a display (not shown), and bubbles (voids), foreign matters (organic combustion shells, etc.), diffusion from the displayed processed image The presence / absence, size, and type of internal defects of the phosphor-containing glass plate G such as aggregates of materials can be determined. Alternatively, a calculation process for extracting information (size, etc.) of various defects from the processed image, a storage function for storing an allowable reference value such as the size of various defects, and information (size, etc.) of various defects extracted by the calculation ) And an acceptable reference value to determine whether the defect is acceptable or not is provided in the image processing unit 3, and the image processing unit 3 automatically determines the quality of the phosphor-containing glass sheet G. It is also good.

本実施形態では、さらに蛍光体含有ガラス板Gの下面側の定位置に、照射部1から発せられた検査光Lの一部を遮断する絞り部材8が配置されている。図1及び図3に示すように、絞り部材8は、板状を呈し、中央部にY軸方向に細長いスリット状の絞り開口部8aを有している。絞り部材8は、支持部材4の透明UVフィルム6と接触しており、ベルトコンベア7によって支持部材4と共に蛍光体含有ガラス板GをX軸方向に移動させると、絞り部材8の上面を透明UVフィルム6が摺動するようになっている。なお、透明UVフィルム6と絞り部材8との間に僅かに隙間が形成されていても良い。また、絞り部材8は、配置しなくても良い。   In the present embodiment, a diaphragm member 8 that blocks a part of the inspection light L emitted from the irradiation unit 1 is further arranged at a fixed position on the lower surface side of the phosphor-containing glass plate G. As shown in FIGS. 1 and 3, the diaphragm member 8 has a plate shape and has a slit-shaped diaphragm opening 8a that is elongated in the Y-axis direction at the center. The diaphragm member 8 is in contact with the transparent UV film 6 of the support member 4. When the phosphor-containing glass plate G is moved in the X-axis direction together with the support member 4 by the belt conveyor 7, the upper surface of the diaphragm member 8 is transparent UV. The film 6 slides. A slight gap may be formed between the transparent UV film 6 and the diaphragm member 8. Further, the diaphragm member 8 may not be arranged.

絞り部材8は、例えば、樹脂板や金属板等から形成される。絞り部材8は、絞り開口部8a以外で検査光Lを遮断するために有色(例えば、黒色)であることが好ましい。   The diaphragm member 8 is formed from, for example, a resin plate or a metal plate. The diaphragm member 8 is preferably colored (for example, black) in order to block the inspection light L other than the diaphragm opening 8a.

絞り部材8の大きさは、X軸方向の寸法が、蛍光体含有ガラス板GのX軸方向の寸法の1/4以上であることが好ましく、1/3以上であることがより好ましく、1/2以上であることがさらに好ましい。より具体的には、絞り部材8のX軸方向の寸法は、2mm以上であることが好ましく、4mm以上であることがより好ましい。絞り部材8のY軸方向の寸法は、蛍光体含有ガラス板Gの全幅W1よりも大きいことが好ましい。スリット状の絞り開口部8aは蛍光体含有ガラス板Gの全幅W1よりも長いことが好ましい。照射部1から発せられる検査光Lは、絞り部材8の範囲内にのみ照射されることが好ましい。すなわち、検査光Lが、絞り部材8のX軸方向の先端よりも前方側や後端よりも後方側から、蛍光体含有ガラス板Gに照射されないようにすることが好ましい。   As for the size of the diaphragm member 8, the dimension in the X-axis direction is preferably 1/4 or more, more preferably 1/3 or more of the dimension in the X-axis direction of the phosphor-containing glass plate G. More preferably, it is / 2 or more. More specifically, the size of the diaphragm member 8 in the X-axis direction is preferably 2 mm or more, and more preferably 4 mm or more. The size of the diaphragm member 8 in the Y-axis direction is preferably larger than the full width W1 of the phosphor-containing glass plate G. The slit-shaped aperture opening 8a is preferably longer than the full width W1 of the phosphor-containing glass plate G. The inspection light L emitted from the irradiation unit 1 is preferably irradiated only within the range of the diaphragm member 8. That is, it is preferable not to irradiate the phosphor-containing glass plate G with the inspection light L from the front side of the aperture member 8 in the X-axis direction or the rear side of the rear end.

絞り開口部8aの幅(X軸方向の寸法)W2は、10μm以上、30μm以上、50μm以上であることが好ましく、300μm以下、200μm以下、150μm以下、100μm以下であることが好ましい。絞り開口部8aの幅W2が小さくなるほど、絞り開口部8aを透過する検査光Lの光量は減少するが、蛍光体含有ガラス板G中の欠陥とその他の部分とのコントラストが良好になる傾向にある。   The width (dimension in the X-axis direction) W2 of the aperture 8a is preferably 10 μm or more, 30 μm or more, and 50 μm or more, and preferably 300 μm or less, 200 μm or less, 150 μm or less, or 100 μm or less. As the width W2 of the aperture opening 8a decreases, the amount of the inspection light L that passes through the aperture opening 8a decreases, but the contrast between defects in the phosphor-containing glass plate G and other portions tends to be favorable. is there.

絞り部材8の厚みは、0.1mm以上、0.2mm以上、0.5mm以上、1mm以上であることが好ましく、2mm以下、1.5mm以下であることが好ましい。絞り部材8の厚みは、検査光Lを適切に遮断できる範囲で薄い方が好ましい。   The thickness of the diaphragm member 8 is preferably 0.1 mm or more, 0.2 mm or more, 0.5 mm or more, and 1 mm or more, and preferably 2 mm or less and 1.5 mm or less. The thickness of the diaphragm member 8 is preferably as thin as possible so that the inspection light L can be appropriately blocked.

絞り部材8と蛍光体含有ガラス板Gとの間の間隔S2は、1mm以下、0.8mm以下、0.5mm以下、0.3mm以下、0.15mm以下、0.1mm以下であることが好ましい。絞り部材8は、蛍光体含有ガラス板Gにできるだけ近接させると良い。なお、透明UVフィルム6の下面に絞り部材8を接触させる場合には、間隔S2は透明UVフィルム6の厚みに相当する。支持部材4を省略する場合、間隔S2は零が最近接となる。その場合は例えば蛍光体含有ガラス板Gの端部を把持するなどして支持する。   The distance S2 between the diaphragm member 8 and the phosphor-containing glass plate G is preferably 1 mm or less, 0.8 mm or less, 0.5 mm or less, 0.3 mm or less, 0.15 mm or less, 0.1 mm or less. . The diaphragm member 8 is preferably as close to the phosphor-containing glass plate G as possible. When the diaphragm member 8 is brought into contact with the lower surface of the transparent UV film 6, the interval S2 corresponds to the thickness of the transparent UV film 6. When the support member 4 is omitted, the interval S2 is closest to zero. In that case, for example, the end of the phosphor-containing glass plate G is supported by supporting it.

次に、以上の構成を備えた検査装置を用いた本検査方法の一例を説明する。   Next, an example of this inspection method using the inspection apparatus having the above configuration will be described.

まず、図1に示すように、蛍光体含有ガラス板Gが透明UVフィルム6の上面に貼着された支持部材4を、ベルトコンベア7の上に作業者或いはロボットにより載置する。本実施形態では、この載置状態で透明UVフィルム6の上面側に枠部材5が位置する。   First, as shown in FIG. 1, a support member 4 having a phosphor-containing glass plate G bonded to the upper surface of a transparent UV film 6 is placed on a belt conveyor 7 by an operator or a robot. In the present embodiment, the frame member 5 is positioned on the upper surface side of the transparent UV film 6 in this placement state.

その後、ベルトコンベア7によって支持部材4と共に蛍光体含有ガラス板GをX軸方向に移動させる。これにより、蛍光体含有ガラス板Gの全てのセグメントG1に対して、照射部1から発せられて絞り部材8の絞り開口部(スリット)8aを通過した検査光Lが順に照射される。この際、透明UVフィルム6の下面が、定位置に配置された絞り部材8の上面を接触しながら滑動するが、枠部材5は透明UVフィルム6の上面側に位置しているので、枠部材5と絞り部材8とが互いに干渉することはない。   Thereafter, the phosphor-containing glass plate G is moved in the X-axis direction together with the support member 4 by the belt conveyor 7. Thereby, all the segments G1 of the phosphor-containing glass plate G are sequentially irradiated with the inspection light L emitted from the irradiation unit 1 and passed through the aperture opening (slit) 8a of the aperture member 8. At this time, the lower surface of the transparent UV film 6 slides in contact with the upper surface of the diaphragm member 8 disposed at a fixed position, but the frame member 5 is positioned on the upper surface side of the transparent UV film 6. 5 and the diaphragm member 8 do not interfere with each other.

このようなX軸方向の蛍光体含有ガラス板Gの移動により、検査光Lの照射範囲および撮像部2の撮像範囲が順に移動し、最終的には蛍光体含有ガラス板Gの全てのセグメントG1の撮像画像が画像処理部3に送られる。画像処理部3では、各撮像画像を画像処理し、各処理画像に基づいて、各セグメントG1の泡、異物、拡散材の凝集体等の内部欠陥を検査する。   By such movement of the phosphor-containing glass plate G in the X-axis direction, the irradiation range of the inspection light L and the imaging range of the imaging unit 2 sequentially move, and finally all the segments G1 of the phosphor-containing glass plate G. The captured image is sent to the image processing unit 3. The image processing unit 3 performs image processing on each captured image, and inspects internal defects such as bubbles, foreign substances, and aggregates of the diffusing material in each segment G1 based on each processed image.

検査光Lの波長は、495nm超(例えば、赤色光)であるため、セグメントG1中の蛍光体において励起(吸収)が極めて少ない又は無い状態となる。このような蛍光体における励起が実質的に生じない状態では、検査光Lは蛍光体に実質的に吸収されることなく透過し、蛍光体に対応する部分が暗く撮像されにくくなる。従って、蛍光体が検査の邪魔になることがなく、泡、異物、拡散材の凝集体等の内部欠陥を正確に検出することが可能となる。   Since the wavelength of the inspection light L is more than 495 nm (for example, red light), excitation (absorption) is very little or not in the phosphor in the segment G1. In a state where excitation in such a phosphor does not substantially occur, the inspection light L is transmitted without being substantially absorbed by the phosphor, and a portion corresponding to the phosphor is dark and difficult to image. Therefore, the fluorescent substance does not interfere with the inspection, and it is possible to accurately detect internal defects such as bubbles, foreign matter, and aggregates of the diffusing material.

具体的には、セグメントG1中に泡が含まれている場合には、泡は球体であるため、泡の界面における検査光Lの屈折や散乱により、図4に示すように、処理画像において、泡の界面に対応する部分が黒色を呈するリング像P1として観察される。また、処理画像の例示は省略するが、セグメントG1中に光を透過しない炭化物等の黒色異物が含まれている場合には、黒色異物で光の吸収が生じて黒色異物に対応する部分に黒色像が観察され、セグメントG1中に拡散材の凝集物が含まれる場合には、凝集体で強い散乱が生じて検査光Lが減衰して凝集体に対応する部分に黒色像が観察される。なお、図5に示すように、検査光Lの波長が495nm未満(例えば、青色光)であると、セグメントG1中の蛍光体において励起(吸収)が生じ、蛍光体に対応する部分に黒色像P2が観察され、例えば、泡に対応するリング像P1等の内部欠陥の検査の邪魔になる。   Specifically, when a bubble is included in the segment G1, the bubble is a sphere, and therefore, due to refraction and scattering of the inspection light L at the bubble interface, as shown in FIG. A portion corresponding to the interface of the bubbles is observed as a ring image P1 that is black. In addition, although illustration of the processed image is omitted, if the segment G1 contains black foreign matter such as carbide that does not transmit light, the black foreign matter absorbs light, and the portion corresponding to the black foreign matter is black. When an image is observed and the aggregate of the diffusing material is included in the segment G1, strong scattering occurs in the aggregate, the inspection light L attenuates, and a black image is observed in a portion corresponding to the aggregate. As shown in FIG. 5, when the wavelength of the inspection light L is less than 495 nm (for example, blue light), excitation (absorption) occurs in the phosphor in the segment G1, and a black image is formed in a portion corresponding to the phosphor. P2 is observed and interferes with the inspection of internal defects such as a ring image P1 corresponding to bubbles.

また、本実施形態では、絞り部材8の絞り開口部8aを通して検査光LをセグメントG1に照射しているため、検査位置に対応する狭い範囲にのみ検査光Lが照射される。従って、欠陥より離れた位置に存在する蛍光体粒子や拡散材へ検査光Lが当たらなくなり、セグメントG1中において検査の邪魔になるような不要な不特定方向からの散乱光が生じにくくなる。その結果、図6に示すように、絞り部材8を配置した場合には、処理画像において例えば泡に対応するリング像P1が鮮明に観察されるが、図7に示すように、絞り部材8を配置しない場合には、処理画像において泡に対応するリング像P1が不鮮明に観察される場合が生じ得る。従って、絞り部材8を配置すれば、内部欠陥の検出精度がより向上する。   In the present embodiment, since the inspection light L is applied to the segment G1 through the stop opening 8a of the stop member 8, the inspection light L is applied only to a narrow range corresponding to the inspection position. Therefore, the inspection light L does not hit the phosphor particles or the diffusing material present at a position away from the defect, and it becomes difficult to generate unnecessary scattered light from an unspecified direction that interferes with the inspection in the segment G1. As a result, when the diaphragm member 8 is arranged as shown in FIG. 6, a ring image P1 corresponding to, for example, bubbles is clearly observed in the processed image, but as shown in FIG. When not arranged, the ring image P1 corresponding to the bubble may be observed unclearly in the processed image. Therefore, if the diaphragm member 8 is arranged, the accuracy of detecting internal defects is further improved.

なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   In addition, this invention is not limited to the structure of the said embodiment, It is not limited to an above-described effect. The present invention can be variously modified without departing from the gist of the present invention.

上記の実施形態では、蛍光体含有ガラス板Gを横姿勢(好ましくは水平姿勢)で送りながら欠陥の検査を行う場合を説明したが、蛍光体含有ガラス板Gの姿勢は特に限定されない。例えば、蛍光体含有ガラス板Gを縦姿勢(好ましくは鉛直姿勢)で送りながら欠陥を検査するようにしても良い。   In the above embodiment, the case where the defect inspection is performed while feeding the phosphor-containing glass plate G in a horizontal posture (preferably a horizontal posture) has been described, but the posture of the phosphor-containing glass plate G is not particularly limited. For example, the defect may be inspected while feeding the phosphor-containing glass plate G in a vertical posture (preferably a vertical posture).

上記の実施形態では、照射部1、撮像部2及び絞り部材8を定位置に配置した状態で、蛍光体含有ガラス板GをX軸方向に移動させながら欠陥の検査位置を変更する場合を説明したが、このような移動態様に限定されない。例えば、蛍光体含有ガラス板GをXY軸方向(又はXYZ軸方向)に可動な可動テーブル等に載置し、蛍光体含有ガラス板GをX軸方向とY軸方向に移動させることで欠陥の検査位置を変更するようにしても良い。この場合、絞り部材8の絞り開口部8aは、例えばホール状(例えば、真円や楕円等)であっても良い。また、照射部1、撮像部2及び絞り部材8からなる検査光学系と、蛍光体含有ガラス板Gとの間に相対的な移動があれば良い。すなわち、蛍光体含有ガラス板Gを定位置に配置した状態で、検査光学系を移動させても良いし、蛍光体含有ガラス板Gと検査光学系の両方を移動させても良い。   In the above embodiment, a case where the inspection position of the defect is changed while the phosphor-containing glass plate G is moved in the X-axis direction in a state where the irradiation unit 1, the imaging unit 2, and the diaphragm member 8 are arranged at fixed positions. However, it is not limited to such a movement mode. For example, the phosphor-containing glass plate G is placed on a movable table or the like movable in the XY-axis direction (or XYZ-axis direction), and the phosphor-containing glass plate G is moved in the X-axis direction and the Y-axis direction. The inspection position may be changed. In this case, the aperture opening 8a of the aperture member 8 may be, for example, a hole (for example, a perfect circle or an ellipse). Further, it is sufficient that there is a relative movement between the inspection optical system including the irradiation unit 1, the imaging unit 2, and the diaphragm member 8 and the phosphor-containing glass plate G. That is, the inspection optical system may be moved in a state where the phosphor-containing glass plate G is disposed at a fixed position, or both the phosphor-containing glass plate G and the inspection optical system may be moved.

上記の実施形態では、蛍光体含有ガラス板Gを検査対象とした検査装置および検査方法を説明したが、本検査装置及び本検査方法は、蛍光体含有ガラス板G以外の透光性を有する波長変換部材にも適用することができる。ここで、蛍光体含有ガラス板G以外の波長変換部材としては、例えば、多結晶YAGセラミックス、蛍光体含有セラミックス、蛍光体含有樹脂、ガラス板と蛍光体含有層(例えば、蛍光体含有樹脂層)との複合部材などが挙げられる。   In the above-described embodiment, the inspection apparatus and the inspection method in which the phosphor-containing glass plate G is an inspection target have been described. However, the inspection apparatus and the inspection method have wavelengths that have translucency other than the phosphor-containing glass plate G. It can also be applied to a conversion member. Here, as wavelength conversion members other than the phosphor-containing glass plate G, for example, polycrystalline YAG ceramics, phosphor-containing ceramics, phosphor-containing resin, glass plate and phosphor-containing layer (for example, phosphor-containing resin layer) And a composite member.

1 照射部
2 撮像部
3 画像処理部
4 支持部材
5 枠部材
6 透明UVフィルム
7 ベルトコンベア
8 絞り部材
8a 絞り開口部
G 蛍光体含有ガラス板(波長変換部材)
G1 セグメント
L 検査光
DESCRIPTION OF SYMBOLS 1 Irradiation part 2 Imaging part 3 Image processing part 4 Support member 5 Frame member 6 Transparent UV film 7 Belt conveyor 8 Diaphragm member 8a Diaphragm opening part G Phosphor containing glass plate (wavelength conversion member)
G1 Segment L Inspection light

Claims (7)

蛍光体を有する波長変換部材の内部欠陥を検査する方法であって、
照射部から前記波長変換部材に対して波長が495nm超の検査光を照射しながら、撮像部で前記波長変換部材を撮像することを特徴とする波長変換部材の検査方法。
A method for inspecting an internal defect of a wavelength conversion member having a phosphor,
An inspection method for a wavelength conversion member, wherein the wavelength conversion member is imaged by an imaging unit while irradiating the wavelength conversion member with inspection light having a wavelength exceeding 495 nm from an irradiation unit.
前記照射部と前記撮像部とを前記波長変換部材を挟んで対向配置すると共に、前記照射部と前記波長変換部材との間に前記検査光の一部を遮断する絞り部材を配置することを特徴とする請求項1に記載の波長変換部材の検査方法。   The irradiation unit and the imaging unit are disposed to face each other with the wavelength conversion member interposed therebetween, and a diaphragm member that blocks a part of the inspection light is disposed between the irradiation unit and the wavelength conversion member. The method for inspecting a wavelength conversion member according to claim 1. 前記絞り部材が、スリット状の絞り開口部を有することを特徴とする請求項2に記載の波長変換部材の検査方法。   The wavelength conversion member inspection method according to claim 2, wherein the diaphragm member has a slit-shaped diaphragm opening. 前記絞り部材と前記波長変換部材との間の間隔が、1mm以下であることを特徴とする請求項2又は3に記載の波長変換部材の検査方法。   The method for inspecting a wavelength conversion member according to claim 2 or 3, wherein an interval between the aperture member and the wavelength conversion member is 1 mm or less. 前記照射部、前記撮像部および前記絞り部材を定位置に配置した状態で、前記検査光を透過可能な支持部材の上面に前記波長変換部材を載置し、前記支持部材の下面に前記絞り部材を接触させながら、前記支持部材と共に前記波長変換部材を移動させることを特徴とする請求項2〜4のいずれか1項に記載の波長変換部材の検査方法。   In a state where the irradiation unit, the imaging unit, and the diaphragm member are arranged at fixed positions, the wavelength conversion member is placed on the upper surface of the support member that can transmit the inspection light, and the diaphragm member is disposed on the lower surface of the support member. The wavelength conversion member inspection method according to any one of claims 2 to 4, wherein the wavelength conversion member is moved together with the support member while contacting each other. 前記波長変換部材が、ガラス中に蛍光体を含む蛍光体含有ガラス部材であることを特徴とする請求項1〜5のいずれか1項に記載の波長変換部材の検査方法。   The said wavelength conversion member is a fluorescent substance containing glass member which contains fluorescent substance in glass, The inspection method of the wavelength conversion member of any one of Claims 1-5 characterized by the above-mentioned. 蛍光体を有する波長変換部材の内部欠陥を検査する装置であって、
前記波長変換部材に対して波長が495nm超の検査光を照射する照射部と、前記検査光が照射された前記波長変換部材を撮像する撮像部とを備えていることを特徴とする波長変換部材の検査装置。
An apparatus for inspecting an internal defect of a wavelength conversion member having a phosphor,
A wavelength conversion member comprising: an irradiation unit that irradiates the wavelength conversion member with inspection light having a wavelength exceeding 495 nm; and an imaging unit that images the wavelength conversion member irradiated with the inspection light. Inspection equipment.
JP2018111754A 2017-06-26 2018-06-12 Inspection method of wavelength conversion member and its inspection device Active JP7068656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022072483A JP7305109B2 (en) 2017-06-26 2022-04-26 Inspection method for wavelength conversion member, inspection apparatus for wavelength conversion member, and method for manufacturing wavelength conversion member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017124078 2017-06-26
JP2017124078 2017-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022072483A Division JP7305109B2 (en) 2017-06-26 2022-04-26 Inspection method for wavelength conversion member, inspection apparatus for wavelength conversion member, and method for manufacturing wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2019007951A true JP2019007951A (en) 2019-01-17
JP7068656B2 JP7068656B2 (en) 2022-05-17

Family

ID=65026815

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018111754A Active JP7068656B2 (en) 2017-06-26 2018-06-12 Inspection method of wavelength conversion member and its inspection device
JP2022072483A Active JP7305109B2 (en) 2017-06-26 2022-04-26 Inspection method for wavelength conversion member, inspection apparatus for wavelength conversion member, and method for manufacturing wavelength conversion member

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022072483A Active JP7305109B2 (en) 2017-06-26 2022-04-26 Inspection method for wavelength conversion member, inspection apparatus for wavelength conversion member, and method for manufacturing wavelength conversion member

Country Status (1)

Country Link
JP (2) JP7068656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210509A1 (en) * 2021-03-29 2022-10-06 富士フイルム株式会社 Inspection method, inspection device, manufacturing method, and manufacturing device for light wavelength conversion sheet, light wavelength conversion sheet, backlight device, liquid crystal panel, and liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156337A (en) * 2000-11-16 2002-05-31 Toshiba Corp Inspection method of light transmissive body, inspection device, inspection program and recording medium
JP2013164371A (en) * 2012-02-13 2013-08-22 Nippon Electric Glass Co Ltd Inspection device and inspection method for phosphor-containing glass member
WO2016055352A1 (en) * 2014-10-07 2016-04-14 Philips Lighting Holding B.V. Color control for luminescent light guide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657930B2 (en) * 2002-07-05 2005-06-08 パイオニアプラズマディスプレイ株式会社 Plasma display panel manufacturing method, phosphor layer inspection method, and phosphor layer inspection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156337A (en) * 2000-11-16 2002-05-31 Toshiba Corp Inspection method of light transmissive body, inspection device, inspection program and recording medium
JP2013164371A (en) * 2012-02-13 2013-08-22 Nippon Electric Glass Co Ltd Inspection device and inspection method for phosphor-containing glass member
WO2016055352A1 (en) * 2014-10-07 2016-04-14 Philips Lighting Holding B.V. Color control for luminescent light guide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210509A1 (en) * 2021-03-29 2022-10-06 富士フイルム株式会社 Inspection method, inspection device, manufacturing method, and manufacturing device for light wavelength conversion sheet, light wavelength conversion sheet, backlight device, liquid crystal panel, and liquid crystal display device

Also Published As

Publication number Publication date
JP7305109B2 (en) 2023-07-10
JP7068656B2 (en) 2022-05-17
JP2022090138A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5419304B2 (en) Light emitting element inspection apparatus and inspection method thereof
US7667834B2 (en) Method and configuration for detecting material defects in workpieces
US20190302025A1 (en) Defect investigation device simultaneously detecting photoluminescence and scattered light
TWI476400B (en) Substrate testing device and transparent illuminating device for the same
US10495804B2 (en) Optical plate, light irradiation device, light measurement device, light irradiation method, and light measurement method
JP2006292419A (en) Defect inspection device and ptp packaging machine
TW201200864A (en) Chip LED inspection apparatus
JP6623711B2 (en) Inspection device
KR20060053847A (en) Method for inspecting defects of glass plate and apparatus thereof
JP7305109B2 (en) Inspection method for wavelength conversion member, inspection apparatus for wavelength conversion member, and method for manufacturing wavelength conversion member
TW201910791A (en) Optical inspection system
JP5830229B2 (en) Wafer defect inspection system
JP2009036710A (en) Inspection apparatus
JP5854370B2 (en) Inspection apparatus and inspection method for phosphor-containing glass member
JP6616658B2 (en) Inspection method of conveyed object
JP5616193B2 (en) Honeycomb structure defect inspection method and honeycomb structure defect inspection apparatus
JP2009162492A (en) Inspection apparatus
JP6863350B2 (en) Metal strip surface inspection method and metal strip surface inspection equipment
JP7167641B2 (en) Work manufacturing method and work inspection method
JP3505655B2 (en) Glass container inspection equipment
TWI730681B (en) Apparatus for determining an orientation of a die
JP7465425B2 (en) Inspection method and apparatus for inspection wafer, and inspection wafer
JP2010175558A (en) Inspection device
TW202246763A (en) Inspection method, inspection device, manufacturing method, and manufacturing device for light wavelength conversion sheet, light wavelength conversion sheet, backlight device, liquid crystal panel, and liquid crystal display device
TW202242213A (en) Laser processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220414

R150 Certificate of patent or registration of utility model

Ref document number: 7068656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150