JP2019006642A - Crystalline glass composition - Google Patents

Crystalline glass composition Download PDF

Info

Publication number
JP2019006642A
JP2019006642A JP2017124827A JP2017124827A JP2019006642A JP 2019006642 A JP2019006642 A JP 2019006642A JP 2017124827 A JP2017124827 A JP 2017124827A JP 2017124827 A JP2017124827 A JP 2017124827A JP 2019006642 A JP2019006642 A JP 2019006642A
Authority
JP
Japan
Prior art keywords
glass composition
crystalline glass
content
heat treatment
fluidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017124827A
Other languages
Japanese (ja)
Inventor
聡子 此下
Satoko Konoshita
聡子 此下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2017124827A priority Critical patent/JP2019006642A/en
Publication of JP2019006642A publication Critical patent/JP2019006642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Glass Compositions (AREA)
  • Fuel Cell (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

To provide a crystalline glass composition which has fluidity suitable for adhesion, has a high thermal expansion coefficient after heat treatment and is excellent in heat resistance after adhesion.SOLUTION: There is provided a crystalline glass composition which comprises, by mol%, 10 to 18% of SiO, 8 to 25% of BO, 50 to 60% of MgO, 0 to 15% of CaO, 0 to 15% of SrO, 5 to 15% of BaO, 0 to 15% of ZnO, 0.5 to 5% of TiO+ZrO, 0 to 5% of RO (R is at least one selected from Li, Na, K and Cs) and 0 to 15% of PO.SELECTED DRAWING: Figure 1

Description

本発明は、結晶性ガラス組成物に関し、より具体的にはSUSやFeといった金属や、フェライトやジルコニアといった高膨張なセラミックスを接着する目的で用いられる結晶性ガラス組成物に関するものである。   The present invention relates to a crystalline glass composition, and more specifically to a crystalline glass composition used for the purpose of bonding metals such as SUS and Fe, and high-expansion ceramics such as ferrite and zirconia.

近年、燃料電池(Fuel Cell)はエネルギー効率が高く、COの排出を大きく削減できる有力な技術として注目されてきている。燃料電池のタイプは使用する電解質によって分類され、例えば工業用途で用いられるものとして、リン酸型(PAFC)、溶融炭酸塩型(MCFC)、固体酸化物型(SOFC)、固体高分子型(PEFC)の4種類がある。中でも固体酸化物型燃料電池(SOFC)は、電池の内部抵抗が小さいため燃料電池の中では最も発電効率が高く、また触媒に貴金属を使用する必要がないため、製造コストが抑えられるといった特徴を有している。そのため、家庭用等の小規模用途から、発電所等の大規模用途まで幅広く適用可能なシステムであり、その将来性に期待が高まってきている。 In recent years, a fuel cell has been attracting attention as an effective technology that has high energy efficiency and can greatly reduce CO 2 emissions. The type of fuel cell is classified according to the electrolyte used. For example, as used in industrial applications, phosphoric acid type (PAFC), molten carbonate type (MCFC), solid oxide type (SOFC), solid polymer type (PEFC) There are four types. Among them, the solid oxide fuel cell (SOFC) has the highest power generation efficiency among the fuel cells due to the low internal resistance of the cell, and it is not necessary to use a precious metal for the catalyst. Have. Therefore, it is a system that can be widely applied from a small-scale use such as home use to a large-scale use such as a power plant.

一般的な平板型SOFCの構造を図1に示す。図1に示すように、一般的な平板型SOFCは、イットリア安定化ジルコニア(YSZ)等のセラミック材料からなる電解質1、Ni/YSZ等からなるアノード2、及び(La、Ca)CrO等からなるカソード3が積層一体化されたセルを有している。さらに燃料ガスの通り道(燃料チャネル4a)が形成され、アノード2と接する第一の支持基板4と、空気の通り道(空気チャネル5a)が形成され、カソード3と接する第二の支持基板5とがセルの上下に固着されている。なお第一の支持基板4及び第二の支持基板5はSUS等の金属で構成されており、ガスの通り道が互いに直交するようにセルに固着される。 The structure of a general flat plate type SOFC is shown in FIG. As shown in FIG. 1, a general plate-type SOFC is composed of an electrolyte 1 made of a ceramic material such as yttria stabilized zirconia (YSZ), an anode 2 made of Ni / YSZ, and (La, Ca) CrO 3 or the like. The cathode 3 has a cell in which the layers are integrated. Further, a passage for fuel gas (fuel channel 4a) is formed, and a first support substrate 4 in contact with the anode 2 and a second support substrate 5 in which an air passage (air channel 5a) is formed and in contact with the cathode 3 are formed. Fixed to the top and bottom of the cell. The first support substrate 4 and the second support substrate 5 are made of metal such as SUS, and are fixed to the cells so that the gas passages are orthogonal to each other.

上記構造を有する平板型SOFCでは、燃料チャネル4aに水素(H)や、都市ガス、天然ガス、バイオガス、液体燃料といった様々なガスを流し、同時に空気チャネル5aに空気または酸素(O)を流す。このときカソードでは、1/2O+2e → O2−の反応が生じ、アノードでは、H+O2− → HO + 2eの反応が起こる。この電気化学反応によって、化学エネルギーが直接電気エネルギーに変換され、発電することができる。なお高出力を得るために、実際の平板型SOFCでは図1の構造体が何層も積層されている。 In the flat plate type SOFC having the above-described structure, various gases such as hydrogen (H 2 ), city gas, natural gas, biogas, and liquid fuel flow through the fuel channel 4a, and at the same time, air or oxygen (O 2 ) flows through the air channel 5a. Shed. At this time, a reaction of 1 / 2O 2 + 2e → O 2− occurs at the cathode, and a reaction of H 2 + O 2− → H 2 O + 2e occurs at the anode. By this electrochemical reaction, chemical energy is directly converted into electric energy and can be generated. In order to obtain a high output, an actual flat plate type SOFC has a number of layers of the structure shown in FIG.

上記構造体を作製するに当たっては、アノード側とカソード側に流すガスが交じり合わないように各構成部材を気密シールする必要がある。その目的で、マイカやバーミキュライト、アルミナといった無機質からなるシート形状のガスケットを挟み込んで気密シールする方法が提案されているが、当該方法では微量のガスリークが発生しやすく、燃料使用効率の低下が問題となっている。当該問題を解決するため、ガラスからなる接着材料を用いて構成部材同士を融解接着する方法が検討されている。   In manufacturing the structure, it is necessary to hermetically seal each component so that the gas flowing to the anode side and the cathode side does not mix. For this purpose, a method has been proposed in which an inorganic sheet-shaped gasket such as mica, vermiculite, or alumina is sandwiched and hermetically sealed, but this method is likely to cause a small amount of gas leak, resulting in a decrease in fuel use efficiency. It has become. In order to solve the problem, a method of melting and bonding constituent members using an adhesive material made of glass has been studied.

上記構造体の構成部材としては金属やセラミックといった高膨張材料が使用されることから、使用する接着材料についても、これらの高膨張材料に適合する熱膨張係数を有する必要がある。また、SOFCは電気化学反応が生じる温度域(作動温度域)が700〜1000℃と高温であり、しかも当該温度域で長期間に亘って運転される。よって、接着材料には、長期間高温に晒されても、接着材料層の融解による気密性や接着性の低下が起こらないように高い耐熱性が求められる。   Since a high-expansion material such as metal or ceramic is used as a constituent member of the structure, the adhesive material to be used needs to have a thermal expansion coefficient compatible with these high-expansion materials. SOFC has a high temperature range (operating temperature range) in which an electrochemical reaction occurs (700 to 1000 ° C.), and is operated for a long time in the temperature range. Therefore, the adhesive material is required to have high heat resistance so that even if it is exposed to a high temperature for a long period of time, the airtightness and the adhesiveness are not lowered due to melting of the adhesive material layer.

ガラスからなる高膨張接着材料として、熱処理するとCaO−MgO−SiO系結晶が析出して高膨張特性を示す結晶性ガラス組成物が特許文献1に開示されている。また、特許文献2には、安定したガスシール特性が得られるSiO−B−SrO系非晶質ガラス組成物が開示されている。 As a high-expansion adhesive material made of glass, Patent Document 1 discloses a crystalline glass composition exhibiting high expansion characteristics by precipitating CaO—MgO—SiO 2 -based crystals upon heat treatment. Patent Document 2 discloses a SiO 2 —B 2 O 3 —SrO-based amorphous glass composition capable of obtaining stable gas seal characteristics.

国際公開第2009/017173号公報International Publication No. 2009/0117173 特開2006−56769号公報JP 2006-56769 A

特許文献1に記載されている結晶性ガラス組成物は、高温粘性が高いため、熱処理時に軟化流動しにくく、緻密な焼結体が得られにくい。結果として、安定したシール性が得られにくいという問題がある。また、特許文献2に開示されている非晶質ガラス組成物は、ガラス転移点が600℃付近であるため、700〜1000℃程度といった高温動作環境下では、接着材料層が融解し、気密性や接着性が確保できないという問題がある。   Since the crystalline glass composition described in Patent Document 1 has a high temperature viscosity, it is difficult to soften and flow during heat treatment, and it is difficult to obtain a dense sintered body. As a result, there is a problem that it is difficult to obtain a stable sealing property. In addition, since the amorphous glass composition disclosed in Patent Document 2 has a glass transition point of around 600 ° C., the adhesive material layer melts and becomes airtight under a high-temperature operating environment of about 700 to 1000 ° C. There is a problem that the adhesiveness cannot be secured.

以上に鑑み、本発明は、接着に適した流動性を有するとともに、熱処理後に高い熱膨張係数を有し、かつ接着後の耐熱性にも優れる結晶性ガラス組成物を提供することを目的とする。   In view of the above, an object of the present invention is to provide a crystalline glass composition having fluidity suitable for bonding, a high thermal expansion coefficient after heat treatment, and excellent heat resistance after bonding. .

本発明者が種々の実験を行った結果、特定組成を有するガラス組成物により上記課題を解決できることを見出した。   As a result of various experiments conducted by the present inventor, it has been found that the above problem can be solved by a glass composition having a specific composition.

本発明の結晶性ガラス組成物は、モル%で、SiO 10〜18%、B 8〜25%、MgO 50〜60%、CaO 0〜15%、SrO 0〜15%、BaO 5〜15%、ZnO 0〜15%、TiO+ZrO 0.5〜5%、RO(RはLi、Na、K、Csから選択される少なくとも一種) 0〜5%、P 0〜15%を含有することを特徴とする。ここで、「TiO+ZrO」はTiO及びZrOの各含有量の合量を意味する。なお、本発明において、「結晶性ガラス組成物」とは、熱処理すると結晶を析出する性質を有するガラス組成物をいう。また、「熱処理する」とは、800℃以上の温度で10分間以上の条件で熱処理することを意味する。 Crystallizable glass composition of the present invention, in mol%, SiO 2 10~18%, B 2 O 3 8~25%, 50~60% MgO, CaO 0~15%, SrO 0~15%, BaO 5 -15%, ZnO 0-15%, TiO 2 + ZrO 2 0.5-5%, R 2 O (R is at least one selected from Li, Na, K, Cs) 0-5%, P 2 O 5 It contains 0 to 15%. Here, “TiO 2 + ZrO 2 ” means the total content of each content of TiO 2 and ZrO 2 . In the present invention, the “crystalline glass composition” refers to a glass composition having a property of precipitating crystals upon heat treatment. “Heat treatment” means heat treatment at a temperature of 800 ° C. or higher for 10 minutes or longer.

本発明の結晶性ガラス組成物は、熱処理後において、熱処理時に析出した結晶及びその結晶に含有されない残留ガラスからなる。TiO及びZrOは、残留ガラスを構成し、残留ガラスの軟化点を高める成分であり、これらの含有量を上記の通り規定することにより、接着材料層の耐熱性を向上させることができる。また、熱処理時に析出する高膨張結晶の構成成分であるMgO及びBaOの含有量を上記の通り規制することで、熱処理後、接着材料層が高い熱膨張係数を有し、耐熱性もさらに良好となる。そのため、長期間に亘って高温下で使用しても、接着材料層が融解し難くなり、接着箇所の気密性や接着性の低下を抑制することができる。さらに、SiO及びBは流動性を向上させる成分であり、これらの含有量を上記の通り規定することにより、接着(封着)に適した流動性を得ることができる。 The crystalline glass composition of the present invention consists of crystals precipitated during heat treatment and residual glass not contained in the crystals after heat treatment. TiO 2 and ZrO 2 are components that constitute the residual glass and increase the softening point of the residual glass. By defining these contents as described above, the heat resistance of the adhesive material layer can be improved. In addition, by regulating the content of MgO and BaO, which are constituents of the high expansion crystal that precipitates during heat treatment, as described above, the adhesive material layer has a high thermal expansion coefficient after heat treatment, and heat resistance is further improved. Become. Therefore, even if it is used at a high temperature for a long period of time, the adhesive material layer is difficult to melt, and it is possible to suppress a decrease in the airtightness and adhesiveness of the bonded portion. Furthermore, SiO 2 and B 2 O 3 are components that improve fluidity, and by defining their contents as described above, fluidity suitable for adhesion (sealing) can be obtained.

本発明の結晶性ガラス組成物は、Biを実質的に含有しないことが好ましい。Biは熱処理により揮発しやすく、SOFC構成部材の電気絶縁性を低下させる等、発電特性に悪影響を与えるおそれがある。そのため、これらの成分を実質的に含有しないことにより、不当な発電特性の低下を抑制することができる。なお、「実質的に含有しない」とは意図的に含有させないことを意味し、不可避的不純物の混入を排除するものではない。具体的には、該当する成分の含有量が0.1モル%未満であることを意味する。 It is preferable that the crystalline glass composition of the present invention does not substantially contain Bi 2 O 3 . Bi 2 O 3 is liable to volatilize by heat treatment and may adversely affect the power generation characteristics such as lowering the electrical insulation of the SOFC component. Therefore, by not containing these components substantially, it is possible to suppress an undue decrease in power generation characteristics. “Substantially not contained” means not intentionally contained, and does not exclude inevitable contamination. Specifically, it means that the content of the corresponding component is less than 0.1 mol%.

本発明の結晶性ガラス組成物は、熱処理によりMgO・SiO、2MgO・B及びBaO・2MgO・Pから選択される少なくとも一種の結晶を析出することが好ましい。当該構成により、接着箇所の高膨張化及び耐熱性向上を図ることが可能となり、金属やセラミックといった高膨張材料同士の接着または被覆の用途に好適となる。 The crystalline glass composition of the present invention preferably precipitates at least one crystal selected from MgO.SiO 2 , 2MgO.B 2 O 3 and BaO.2MgO.P 2 O 5 by heat treatment. With this configuration, it is possible to increase the bonding location and improve the heat resistance, and it is suitable for use in bonding or coating high expansion materials such as metals and ceramics.

本発明の結晶性ガラス組成物は、30〜700℃の温度範囲における熱膨張係数が70×10−7/℃以上であることが好ましい。 The crystalline glass composition of the present invention preferably has a thermal expansion coefficient of 70 × 10 −7 / ° C. or higher in a temperature range of 30 to 700 ° C.

本発明の結晶性ガラス組成物は、接着用として好適である。   The crystalline glass composition of the present invention is suitable for bonding.

本発明の結晶性ガラス組成物は、接着に適した流動性を有するとともに、熱処理後に高い熱膨張係数を有し、かつ接着後の耐熱性にも優れる。そのため、長期間に亘って高温下で使用しても、接着箇所が融解し難くなり、接着箇所の気密性や接着性の低下を抑制することができる。   The crystalline glass composition of the present invention has fluidity suitable for adhesion, has a high thermal expansion coefficient after heat treatment, and is excellent in heat resistance after adhesion. Therefore, even if it is used at a high temperature for a long period of time, the bonded portion is difficult to melt, and the deterioration of the airtightness and adhesiveness of the bonded portion can be suppressed.

SOFCの基本構造を示す模式的斜視図である。It is a typical perspective view which shows the basic structure of SOFC.

本発明の結晶性ガラス組成物は、モル%で、SiO 10〜18%、B 8〜25%、MgO 50〜60%、CaO 0〜15%、SrO 0〜15%、BaO 5〜15%、ZnO 0〜15%、TiO+ZrO 0.5〜5%、RO(RはLi、Na、K、Csから選択される少なくとも一種) 0〜5%、P 0〜15%を含有する。ガラス組成を上記のように限定した理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 Crystallizable glass composition of the present invention, in mol%, SiO 2 10~18%, B 2 O 3 8~25%, 50~60% MgO, CaO 0~15%, SrO 0~15%, BaO 5 -15%, ZnO 0-15%, TiO 2 + ZrO 2 0.5-5%, R 2 O (R is at least one selected from Li, Na, K, Cs) 0-5%, P 2 O 5 Contains 0-15%. The reason for limiting the glass composition as described above will be described below. In the following description regarding the content of each component, “%” means “mol%” unless otherwise specified.

SiOは、熱処理により析出する高膨張結晶の構成成分であり、また流動性、耐水性及び耐熱性を向上させる成分である。SiOの含有量は10〜18%であり、好ましくは11〜17%、より好ましくは12〜16%である。SiOの含有量が少なすぎると、接着に適した流動性が得にくくなる。一方、SiOの含有量が多すぎると、熱処理時に高膨張結晶が析出しにくくなる。また、溶融温度が高くなり、溶融が困難になる傾向がある。 SiO 2 is a component of highly expanded crystals that are precipitated by heat treatment, and is a component that improves fluidity, water resistance, and heat resistance. The content of SiO 2 is 10 to 18%, preferably 11 to 17%, more preferably 12 to 16%. When the content of SiO 2 is too small, fluidity suitable for bonding becomes difficult to obtain. On the other hand, if the content of SiO 2 is too large, high expansion crystal is less likely to precipitate during the heat treatment. In addition, the melting temperature tends to be high and melting tends to be difficult.

は、熱処理により析出する高膨張結晶の構成成分であり、また流動性を向上させるための成分である。Bの含有量は8〜25%であり、好ましくは10〜23%、より好ましくは14〜20%である。Bの含有量が少なすぎると、接着に適した流動性が得にくくなる。一方、Bの含有量が多すぎると、耐水性や耐熱性が低下しやすくなる。また、燃料電池の構成部材の接着材料として使用した場合に、高温下の使用でBが揮発し、発電特性が劣化しやすくなる。 B 2 O 3 is a constituent component of the high expansion crystal precipitated by heat treatment and is a component for improving fluidity. The content of B 2 O 3 is 8 to 25%, preferably 10 to 23%, more preferably 14 to 20%. If the content of B 2 O 3 is too small, fluidity suitable for bonding becomes difficult to obtain. On the other hand, when the content of B 2 O 3 is too large, water resistance and heat resistance tends to decrease. Further, when used as an adhesive material for constituent members of a fuel cell, B 2 O 3 volatilizes when used at a high temperature, and the power generation characteristics tend to deteriorate.

MgOは、熱処理により析出する高膨張結晶の構成成分である。MgOの含有量は50〜60%であり、好ましくは51〜58%、より好ましくは52〜55%である。MgOの含有量が少なすぎると、熱処理時に高膨張結晶が析出しにくくなり、耐熱性が低下しやすくなる。一方、MgOの含有量が多すぎると、ガラス化範囲が狭くなる傾向にあり、失透しやすくなる。また、流動性が低下しやすくなる。   MgO is a constituent component of a highly expanded crystal that is precipitated by heat treatment. The content of MgO is 50 to 60%, preferably 51 to 58%, more preferably 52 to 55%. When the content of MgO is too small, it becomes difficult for high-expansion crystals to precipitate during heat treatment, and the heat resistance tends to decrease. On the other hand, when there is too much content of MgO, there exists a tendency for the vitrification range to become narrow and it becomes easy to devitrify. Moreover, fluidity tends to be lowered.

CaOは、流動性を向上させるための成分である。CaOの含有量は0〜15%であり、好ましくは0〜8%、より好ましくは0〜5%である。CaOの含有量が多すぎると、熱処理によりCaO・SiO等の低膨張結晶が析出しやすくなり、高膨張特性が得られにくくなる。 CaO is a component for improving fluidity. The content of CaO is 0 to 15%, preferably 0 to 8%, more preferably 0 to 5%. When the content of CaO is too large, it low expansion crystal such as CaO · SiO 2 is likely to precipitate by heat treatment, hardly high expansion characteristics.

SrOは、流動性を向上させるための成分である。SrOの含有量は0〜15%であり、好ましくは0〜8%、より好ましくは0〜5%である。SrOの含有量が多すぎると、熱処理によりSrO・SiO等の低膨張結晶が析出しやすくなり、高膨張特性が得られにくくなる。 SrO is a component for improving fluidity. The content of SrO is 0 to 15%, preferably 0 to 8%, more preferably 0 to 5%. When the content of SrO is too large, low-expansion crystals such as SrO.SiO 2 are likely to be precipitated by heat treatment, and high expansion characteristics are difficult to obtain.

BaOは、熱処理により析出する高膨張結晶の構成成分である。BaOの含有量は5〜15%であり、好ましくは6〜14%、より好ましくは7〜12%である。BaOの含有量が少なすぎると、熱処理時に高膨張結晶が析出しにくくなり、耐熱性が低下しやすくなる。一方、BaOの含有量が多すぎると、ガラス化範囲が狭くなる傾向にあり、失透しやすくなる。また、流動性が低下しやすくなる。   BaO is a constituent component of a highly expanded crystal that is precipitated by heat treatment. The content of BaO is 5 to 15%, preferably 6 to 14%, more preferably 7 to 12%. When there is too little content of BaO, it will become difficult to precipitate a highly expanded crystal | crystallization at the time of heat processing, and heat resistance will fall easily. On the other hand, when there is too much content of BaO, there exists a tendency for the vitrification range to become narrow and it becomes easy to devitrify. Moreover, fluidity tends to be lowered.

ZnOは、流動性を向上させるための成分である。ZnOの含有量は0〜15%であり、好ましくは0〜5%、より好ましくは0〜2%である。ZnOの含有量が多すぎるとガラス化範囲が狭くなる傾向にあり、失透しやすくなる。   ZnO is a component for improving fluidity. The content of ZnO is 0 to 15%, preferably 0 to 5%, more preferably 0 to 2%. When there is too much content of ZnO, there exists a tendency for the vitrification range to become narrow and it becomes easy to devitrify.

TiO及びZrOは、残留ガラスの軟化点を高め、耐熱性を向上させる成分である。また、流動性を向上させる成分でもある。TiO+ZrOの含有量は0.5〜5%であり、好ましくは0.5〜4.5%、より好ましくは1〜4%である。TiO+ZrOの含有量が少なすぎると、残留ガラスの軟化点が低下し、耐熱性が低下しやすくなる。また、流動性が低下しやすくなる。一方、TiO+ZrOの含有量が多すぎると溶融時に失透しやすくなる。また、流動性が低下しやすくなる。 TiO 2 and ZrO 2 are components that increase the softening point of the residual glass and improve heat resistance. It is also a component that improves fluidity. The content of TiO 2 + ZrO 2 is 0.5 to 5%, preferably 0.5 to 4.5%, more preferably 1 to 4%. When the content of TiO 2 + ZrO 2 is too small, the softening point of the residual glass is lowered, the heat resistance tends to lower. Moreover, fluidity tends to be lowered. On the other hand, it tends to be devitrified when melted and the content of TiO 2 + ZrO 2 is too high. Moreover, fluidity tends to be lowered.

なお、TiO及びZrOの含有量の好ましい範囲は以下の通りである。 A preferable range of the content of TiO 2 and ZrO 2 are as follows.

TiOの含有量は、好ましくは0〜5%、より好ましくは0〜3%、さらに好ましくは0〜1%である。 The content of TiO 2 is preferably 0 to 5%, more preferably 0 to 3%, and still more preferably 0 to 1%.

ZrOの含有量は、好ましくは0.3〜5%、より好ましくは0.5〜4.5%、さらに好ましくは1〜4%である。 The content of ZrO 2 is preferably 0.3 to 5%, more preferably 0.5 to 4.5%, and still more preferably 1 to 4%.

O(RはLi、Na、K、Csから選択される少なくとも一種)は、ガラス化範囲を拡げてガラス化しやすくする成分である。ROの含有量は、0〜5%であり、好ましくは0〜3%、より好ましくは0〜1%である。ROの含有量が多すぎると、燃料電池の構成部材の接着材料として使用した場合に、高温下の使用でROが揮発し、発電特性が劣化しやすくなる。なお、LiO、NaO、KO及びCsOの含有量はそれぞれ、好ましくは0〜5%、より好ましくは0〜3%、さらに好ましくは0〜1%である。 R 2 O (R is at least one selected from Li, Na, K, and Cs) is a component that widens the vitrification range and facilitates vitrification. The content of R 2 O is 0 to 5%, preferably 0 to 3%, more preferably 0 to 1%. When the content of R 2 O is too large, when it is used as an adhesive material for a constituent member of a fuel cell, R 2 O volatilizes when used at a high temperature, and power generation characteristics are likely to deteriorate. The contents of Li 2 O, Na 2 O, K 2 O and Cs 2 O are each preferably 0 to 5%, more preferably 0 to 3%, and still more preferably 0 to 1%.

は、熱処理により析出する高膨張結晶の構成成分であり、流動性を向上させるための成分である。Pの含有量は、好ましくは0〜15%、より好ましくは1〜13%、さらに好ましくは2〜11%である。Pの含有量が多すぎると、耐水性や耐熱性が低下しやすくなる。また、燃料電池の構成部材の接着材料として使用した場合に、高温下の使用でPが揮発し、発電特性が劣化しやすくなる。 P 2 O 5 is a constituent component of the high expansion crystal precipitated by heat treatment and is a component for improving fluidity. The content of P 2 O 5 is preferably 0 to 15%, more preferably 1 to 13%, and further preferably 2 to 11%. When the content of P 2 O 5 is too large, water resistance and heat resistance tends to decrease. Further, when used as an adhesive material for constituent members of a fuel cell, P 2 O 5 volatilizes when used at high temperatures, and power generation characteristics are likely to deteriorate.

本発明の結晶性ガラス組成物には、上記成分以外にも下記の成分を含有させることができる。   In addition to the above components, the crystalline glass composition of the present invention may contain the following components.

Alは粘性を調整するための成分である。Alの含有量は、好ましくは0〜2%、より好ましくは0〜1.5%、さらに好ましくは0〜1%である。Alの含有量が多すぎると、熱処理により2SiO・Al・BaO等の低膨張結晶が析出しやすくなり、高膨張特性が得られにくくなる。 Al 2 O 3 is a component for adjusting the viscosity. The content of Al 2 O 3 is preferably 0 to 2%, more preferably 0 to 1.5%, and still more preferably 0 to 1%. When the content of Al 2 O 3 is too large, heat treatment by 2SiO 2 · Al 2 O 3 · becomes low expansion crystal BaO or the like is likely to precipitate, hardly high expansion characteristics.

Laは流動性を向上させるための成分である。また、ガラス化範囲を拡げてガラス化しやすくする成分である。Laの含有量は好ましくは0〜15%、より好ましくは0〜10%、さらに好ましくは0〜6%である。Laの含有量が多すぎると、溶融中や熱処理時に失透しやすくなり、接着に適した流動性が得られにくくなる。 La 2 O 3 is a component for improving fluidity. Moreover, it is a component which expands the vitrification range and facilitates vitrification. The content of La 2 O 3 is preferably 0 to 15%, more preferably 0 to 10%, and still more preferably 0 to 6%. When the content of La 2 O 3 is too large, easily devitrified when melted or during the heat treatment, the fluidity becomes difficult to obtain suitable adhesion.

SnOは耐水性を向上させるための成分であり、その含有量は0〜3%、0〜2.5%、特に0.1〜2%であることが好ましい。SnOの含有量が多すぎると、溶融中や接着時に失透しやすくなり、接着に適した流動性が得られにくくなる。 SnO 2 is a component for improving water resistance, and its content is preferably 0 to 3%, 0 to 2.5%, particularly preferably 0.1 to 2%. When the content of SnO 2 is too large, easily devitrified or when the molten adhesive, the fluidity becomes difficult to obtain suitable adhesion.

上記以外の成分としてY、Gd、Nb、Ta、WO等をそれぞれ2%まで含有させることができる。Biは熱処理により揮発しやすく、SOFC構成部材の電気絶縁性を低下させる等、発電特性に悪影響を与えるおそれがあるため、実質的に含有しないことが好ましい。 As components other than the above, Y 2 O 3 , Gd 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and the like can be contained up to 2% each. Bi 2 O 3 is preferably not substantially contained because it tends to volatilize by heat treatment and may adversely affect power generation characteristics such as lowering the electrical insulation properties of the SOFC component.

以上のような組成を有する結晶性ガラス組成物は、熱処理すると高膨張結晶を析出する性質を有する。高膨張結晶としては、MgO・SiO、2MgO・B及びBaO・2MgO・Pから選択される少なくとも一種が挙げられる。熱処理後の結晶性ガラス組成物の30〜700℃の温度範囲における熱膨張係数は、70×10−7/℃以上、80×10−7/℃以上、特に90×10−7/℃以上であることが好ましい。上限は特に限定されないが、現実的には150×10−7/℃以下である。なお、本発明の結晶性ガラス組成物は、熱処理後に高い結晶化度が得られやすく、また残留ガラスの軟化点が高くなりやすい。そのため、長期間燃料電池を駆動させても熱膨張係数が変化しにくい。具体的には、熱処理後の結晶性ガラス組成物を700〜1000℃で50〜1000時間保持した際に、保持前後の30〜700℃の温度範囲における熱膨張係数の差が20×10−7/℃以下、15×10−7/℃以下、10×10−7/℃以下、特に5×10−7/℃以下であることが好ましい。保持前後の30〜700℃の温度範囲における熱膨張係数の差が大きすぎると、結晶性ガラス組成物と接合部材との熱膨張係数の差が大きくなり、結晶性ガラス組成物にかかる応力が大きくなり、割れや剥離が生じやすくなる。 The crystalline glass composition having the above composition has the property of precipitating highly expanded crystals upon heat treatment. Examples of the highly expanded crystal include at least one selected from MgO · SiO 2 , 2MgO · B 2 O 3 and BaO · 2MgO · P 2 O 5 . The thermal expansion coefficient in the temperature range of 30 to 700 ° C. of the crystalline glass composition after the heat treatment is 70 × 10 −7 / ° C. or higher, 80 × 10 −7 / ° C. or higher, particularly 90 × 10 −7 / ° C. or higher. Preferably there is. The upper limit is not particularly limited, but is practically 150 × 10 −7 / ° C. or lower. In the crystalline glass composition of the present invention, a high crystallinity is likely to be obtained after the heat treatment, and the softening point of the residual glass is likely to be high. Therefore, the coefficient of thermal expansion hardly changes even when the fuel cell is driven for a long period of time. Specifically, when the crystalline glass composition after heat treatment is held at 700 to 1000 ° C. for 50 to 1000 hours, the difference in thermal expansion coefficient in the temperature range of 30 to 700 ° C. before and after holding is 20 × 10 −7. / ° C. or less, 15 × 10 −7 / ° C. or less, 10 × 10 −7 / ° C. or less, and particularly preferably 5 × 10 −7 / ° C. or less. If the difference in thermal expansion coefficient in the temperature range of 30 to 700 ° C. before and after holding is too large, the difference in thermal expansion coefficient between the crystalline glass composition and the joining member becomes large, and the stress applied to the crystalline glass composition is large. It becomes easy to produce a crack and peeling.

本発明の結晶性ガラス組成物は、流動性、熱膨張係数の調整のために、マグネシア(MgO)、亜鉛華(ZnO)、ジルコニア(ZrO)、チタニア(TiO)、アルミナ(Al)等の粉末をフィラー粉末として添加して用いても良い。フィラー粉末の添加量は、結晶性ガラス組成物100質量部に対して0〜10質量部、0.1〜9質量部、特に1〜8質量部であることが好ましい。フィラー粉末の添加量が多すぎると、流動性が低下しやすくなる。なおフィラー粉末の粒径はd50で0.2〜20μm程度のものを使用することが好ましい。 The crystalline glass composition of the present invention is prepared by adjusting magnesia (MgO), zinc white (ZnO), zirconia (ZrO 2 ), titania (TiO 2 ), alumina (Al 2 O) in order to adjust fluidity and thermal expansion coefficient. You may add and use powders, such as 3 ), as a filler powder. The addition amount of the filler powder is preferably 0 to 10 parts by mass, 0.1 to 9 parts by mass, particularly 1 to 8 parts by mass with respect to 100 parts by mass of the crystalline glass composition. When there is too much addition amount of filler powder, fluidity | liquidity will fall easily. In addition, it is preferable to use a filler powder having a d50 particle size of about 0.2 to 20 μm.

次に本発明の結晶性ガラス組成物の製造方法、及び本発明の結晶性ガラス組成物を接着材料として使用する方法の一例について説明する。   Next, an example of a method for producing the crystalline glass composition of the present invention and a method of using the crystalline glass composition of the present invention as an adhesive material will be described.

まず、上記組成を有するように調合した原料を1300〜1500℃で0.5〜2時間程度、均質なガラスが得られるまで溶融する。次いで、溶融ガラスをフィルム状等に成形した後、粉砕し、分級することにより本発明の結晶性ガラス組成物からなるガラス粉末を作製する。なお、ガラス粉末の粒径(d50)は2〜20μm程度であることが好ましい。必要に応じて、ガラス粉末に各種フィラー粉末を添加する。   First, the raw material prepared to have the above composition is melted at 1300-1500 ° C. for about 0.5-2 hours until a homogeneous glass is obtained. Next, the molten glass is formed into a film or the like, and then pulverized and classified to produce a glass powder made of the crystalline glass composition of the present invention. In addition, it is preferable that the particle size (d50) of glass powder is about 2-20 micrometers. Various filler powders are added to the glass powder as necessary.

次いで、ガラス粉末(あるいは、ガラス粉末とフィラー粉末との混合粉末)にビークルを添加して混練することによりガラスペーストを調製する。ビークルは例えば有機溶剤、樹脂の他、可塑剤、分散剤等を含有する。   Next, a glass paste is prepared by adding a vehicle to glass powder (or a mixed powder of glass powder and filler powder) and kneading. The vehicle contains, for example, a plasticizer, a dispersant and the like in addition to an organic solvent and a resin.

有機溶剤はガラス粉末をペースト化するための材料であり、例えばターピネオール(Ter)、ジエチレングリコールモノブチルエーテル(BC)、ジエチレングリコールモノブチルエーテルアセテート(BCA)、2,2,4−トリメチル−1,3−ペンタジオールモノイソブチレート、ジヒドロターピネオール等を単独または混合して使用することができる。その含有量は10〜40質量%であることが好ましい。   The organic solvent is a material for pasting glass powder, such as terpineol (Ter), diethylene glycol monobutyl ether (BC), diethylene glycol monobutyl ether acetate (BCA), 2,2,4-trimethyl-1,3-pentadiol. Monoisobutyrate, dihydroterpineol and the like can be used alone or in combination. The content is preferably 10 to 40% by mass.

樹脂は、乾燥後の膜強度を高め、また柔軟性を付与する成分であり、その含有量は、0.1〜20質量%程度が一般的である。樹脂は熱可塑性樹脂、具体的にはポリブチルメタアクリレート、ポリビニルブチラール、ポリメチルメタアクリレート、ポリエチルメタアクリレート、エチルセルロース等が使用可能であり、これらを単独あるいは混合して使用する。   The resin is a component that increases the film strength after drying and imparts flexibility, and the content is generally about 0.1 to 20% by mass. As the resin, a thermoplastic resin, specifically, polybutyl methacrylate, polyvinyl butyral, polymethyl methacrylate, polyethyl methacrylate, ethyl cellulose and the like can be used, and these are used alone or in combination.

可塑剤は、乾燥速度をコントロールするとともに、乾燥膜に柔軟性を与える成分であり、その含有量は0〜10質量%程度が一般的である。可塑剤としてはブチルベンジルフタレート、ジオクチルフタレート、ジイソオクチルフタレート、ジカプリルフタレート、ジブチルフタレート等が使用可能であり、これらを単独あるいは混合して使用する。   The plasticizer is a component that controls the drying speed and imparts flexibility to the dry film, and the content thereof is generally about 0 to 10% by mass. As the plasticizer, butylbenzyl phthalate, dioctyl phthalate, diisooctyl phthalate, dicapryl phthalate, dibutyl phthalate and the like can be used, and these are used alone or in combination.

分散剤としては、イオン系またはノニオン系の分散剤が使用可能であり、イオン系としてはカルボン酸、ジカルボン酸系等のポリカルボン酸系、アミン系等の分散剤、ノニオン系としてはポリエステル縮合型や多価アルコールエーテル型の分散剤が使用可能である。その使用量としては0〜5質量%が一般的である。   As the dispersant, an ionic or nonionic dispersant can be used. As the ionic type, a carboxylic acid, a dicarboxylic acid type polycarboxylic acid type, an amine type dispersant, and the nonionic type as a polyester condensation type. Alternatively, a polyhydric alcohol ether type dispersant can be used. The amount used is generally 0 to 5% by mass.

次いで、ペーストを金属やセラミックからなる第一の部材の接着箇所に塗布し、乾燥させる。さらに金属やセラミックからなる第二の部材をペースト乾燥膜に接触させた状態で固定して800〜1050℃で熱処理する。この熱処理により、ガラス粉末が一旦軟化流動して第一及び第二の部材を固着するとともに、結晶が析出する。このようにして、第一の部材及び第二の部材が本発明の結晶性ガラス組成物からなる接着材料層により接着されてなる接合体を得ることができる。   Next, the paste is applied to the bonding location of the first member made of metal or ceramic and dried. Further, the second member made of metal or ceramic is fixed in a state where it is in contact with the dry paste film, and heat-treated at 800 to 1050 ° C. By this heat treatment, the glass powder once softens and flows to fix the first and second members, and crystals precipitate. In this way, it is possible to obtain a joined body in which the first member and the second member are bonded by the adhesive material layer made of the crystalline glass composition of the present invention.

本発明の結晶性ガラス組成物は、接着以外にも被覆、充填等の目的で使用できる。またペースト以外の形態、具体的には粉末、グリーンシート、タブレット等の状態で使用することができる。例えば、金属やセラミックスからなる円筒内にリード線とともにガラス粉末を充填して熱処理し、気密封止を行う形態が挙げられる。またグリーンシート成形されたプリフォームや、粉末プレス成型により作製されたタブレット等を金属やセラミックからなる部材上に載置し、熱処理して軟化流動させることで被覆することもできる。   The crystalline glass composition of the present invention can be used for purposes such as coating and filling in addition to adhesion. Further, it can be used in a form other than paste, specifically in the form of powder, green sheet, tablet or the like. For example, the form which fills glass powder with a lead wire in the cylinder which consists of metal or ceramics, heat-processes, and performs airtight sealing is mentioned. Further, a green sheet molded preform, a tablet produced by powder press molding, or the like is placed on a member made of metal or ceramic, and can be coated by heat treatment and softening and flowing.

以下に、本発明の結晶性ガラス組成物を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Below, although the crystalline glass composition of this invention is demonstrated based on an Example, this invention is not limited to these Examples.

表1及び2は、本発明の実施例(試料No.1〜6)及び比較例(試料No.7〜9)を示している。   Tables 1 and 2 show Examples (Sample Nos. 1 to 6) and Comparative Examples (Sample Nos. 7 to 9) of the present invention.

各試料は次のようにして作製した。   Each sample was produced as follows.

表中の各組成になるように調合した原料を1300〜1500℃で約2時間溶融した後、一対のローラー間に流し出してフィルム状に成形した。得られたフィルム状成形物をボールミルにて粉砕し、分級して、粒度(d50)が約10μmの試料(結晶性ガラス組成物粉末)を得た。   The raw materials prepared so as to have the respective compositions in the table were melted at 1300 to 1500 ° C. for about 2 hours, and then poured out between a pair of rollers to form a film. The obtained film-like molded product was pulverized with a ball mill and classified to obtain a sample (crystalline glass composition powder) having a particle size (d50) of about 10 μm.

各試料について、熱膨張係数、耐熱性、軟化点、結晶化温度、析出結晶、流動性について、測定または評価した。結果を表1及び2に示す。   Each sample was measured or evaluated for thermal expansion coefficient, heat resistance, softening point, crystallization temperature, precipitated crystal, and fluidity. The results are shown in Tables 1 and 2.

各特性の測定及び評価は以下のようにして行った。   Each characteristic was measured and evaluated as follows.

熱膨張係数は、各ガラス粉末試料をプレス成形し、850℃で3時間熱処理した後、直径4mm、長さ20mmの円柱状に研磨加工して得られた測定用試料を用いて、JIS R3102に基づき、30〜700℃の温度範囲における値を求めた。   The coefficient of thermal expansion was determined according to JIS R3102 using a measurement sample obtained by press-molding each glass powder sample, heat-treating it at 850 ° C. for 3 hours, and polishing it into a cylindrical shape having a diameter of 4 mm and a length of 20 mm. Based on this, a value in a temperature range of 30 to 700 ° C. was obtained.

耐熱性は次のようにして評価した。熱膨張係数測定に用いた試料を800℃で1000時間保持し、保持後の試料の熱膨張係数をJIS R3102に基づき求めた。保持前後の熱膨張係数の差が小さいほど、耐熱性が高いと判断することができる。   The heat resistance was evaluated as follows. The sample used for the measurement of the thermal expansion coefficient was held at 800 ° C. for 1000 hours, and the thermal expansion coefficient of the sample after the holding was determined based on JIS R3102. It can be determined that the smaller the difference between the thermal expansion coefficients before and after the holding, the higher the heat resistance.

軟化点、結晶化温度はマクロ型示差熱分析計を用いて測定した。具体的には、各ガラス粉末試料につき、マクロ型示差熱分析計を用いて1050℃まで測定して得られたチャートにおいて、第四の変曲点の値を軟化点、強い発熱ピークを結晶化温度とした。   The softening point and crystallization temperature were measured using a macro type differential thermal analyzer. Specifically, for each glass powder sample, in the chart obtained by measuring up to 1050 ° C. using a macro-type differential thermal analyzer, the fourth inflection point value is the softening point and the strong exothermic peak is crystallized. It was temperature.

流動性は次のようにして評価した。比重分のガラス粉末試料を直径20mmの金型に入れてプレス成形した後に、SUS430板上で800〜1000℃にて15分間熱処理した。熱処理後の成形体の流動径が18mm以上であるものを「◎」、16mm以上、18mm未満のものを「○」、16mm未満のものを「×」として評価した。   The fluidity was evaluated as follows. A glass powder sample having a specific gravity was put into a mold having a diameter of 20 mm and press-molded, followed by heat treatment at 800 to 1000 ° C. for 15 minutes on a SUS430 plate. The molded product after the heat treatment having a flow diameter of 18 mm or more was evaluated as “◎”, 16 mm or more and less than 18 mm as “◯”, and less than 16 mm as “x”.

析出結晶は、800〜1000℃で3時間熱処理されたガラス粉末試料についてXRD測定を行い、JCPDSカードとの対比にて同定した。このとき同定された析出結晶種としてMgO・SiOを「A」、2MgO・Bを「B」、BaO・2MgO・Pを「C」として表中に示した。 The precipitated crystals were identified by comparison with the JCPDS card by performing XRD measurement on a glass powder sample heat treated at 800-1000 ° C. for 3 hours. In the table, MgO.SiO 2 was identified as “A”, 2MgO.B 2 O 3 as “B”, and BaO.2MgO.P 2 O 5 as “C” as the precipitated crystal seeds identified at this time.

表から明らかなように、実施例であるNo.1〜6の試料は、熱処理時の流動性に優れていた。また、熱処理により高膨張結晶が析出したため、熱膨張係数が100〜121×10−7/℃と高かった。さらに、保持前後の熱膨張係数の差が6×10−7/℃以下と小さく、耐熱性にも優れていることが分かった。 As is apparent from the table, Examples No. Samples 1 to 6 were excellent in fluidity during heat treatment. Moreover, since the high expansion | swelling crystal | crystallization precipitated by heat processing, the thermal expansion coefficient was as high as 100-121 * 10 < -7 > / degreeC. Furthermore, it was found that the difference in coefficient of thermal expansion before and after holding was as small as 6 × 10 −7 / ° C. or less, and the heat resistance was excellent.

一方、比較例であるNo.7の試料は、熱処理時の流動性に劣っていた。No.8の試料は熱処理により結晶が析出しなかったため、熱膨張係数が57×10−7/℃と低かった。No.9の試料は、保持前後の熱膨張係数の差が24×10−7/℃と大きいため、耐熱性に劣っていた。 On the other hand, No. which is a comparative example. Sample 7 was inferior in fluidity during heat treatment. No. In the sample No. 8, no crystal was precipitated by the heat treatment, so that the thermal expansion coefficient was as low as 57 × 10 −7 / ° C. No. Sample 9 was inferior in heat resistance because the difference in thermal expansion coefficient before and after holding was as large as 24 × 10 −7 / ° C.

本発明の結晶性ガラス組成物は、SUSやFeといった金属、フェライトやジルコニアといった高膨張セラミックスの接着材料として好適である。特に、SOFCを作製する際に使用される支持体基板や、電極の部材等を気密封止するための接着材料として好適である。また、本発明の結晶性ガラス組成物は、接着用途以外にも被覆、充填等の目的で使用できる。具体的には、サーミスタ、ハイブリッドIC等の用途に使用することができる。   The crystalline glass composition of the present invention is suitable as an adhesive material for metals such as SUS and Fe, and high expansion ceramics such as ferrite and zirconia. In particular, it is suitable as an adhesive material for hermetically sealing a support substrate, an electrode member, and the like used in manufacturing an SOFC. Moreover, the crystalline glass composition of the present invention can be used for purposes such as coating and filling in addition to adhesive applications. Specifically, it can be used for applications such as thermistors and hybrid ICs.

1 電解質
2 アノード
3 カソード
4 第一の支持体基板
4a 燃料チャネル
5 第二の支持体基板
5a 空気チャネル
DESCRIPTION OF SYMBOLS 1 Electrolyte 2 Anode 3 Cathode 4 1st support substrate 4a Fuel channel 5 2nd support substrate 5a Air channel

Claims (5)

モル%で、SiO 10〜18%、B 8〜25%、MgO 50〜60%、CaO 0〜15%、SrO 0〜15%、BaO 5〜15%、ZnO 0〜15%、TiO+ZrO 0.5〜5%、RO(RはLi、Na、K、Csから選択される少なくとも一種) 0〜5%、P 0〜15%を含有することを特徴とする結晶性ガラス組成物。 In mol%, SiO 2 10~18%, B 2 O 3 8~25%, 50~60% MgO, CaO 0~15%, SrO 0~15%, BaO 5~15%, 0~15% ZnO, TiO 2 + ZrO 2 0.5 to 5%, R 2 O (R is at least one selected from Li, Na, K, Cs) 0 to 5%, P 2 O 5 0 to 15% A crystalline glass composition. Biを実質的に含有しないことを特徴とする請求項1に記載の結晶性ガラス組成物。 The crystalline glass composition according to claim 1, which does not substantially contain Bi 2 O 3 . 熱処理により、MgO・SiO、2MgO・B及びBaO・2MgO・Pから選択される少なくとも一種の結晶を析出することを特徴とする請求項1または2に記載の結晶性ガラス組成物。 3. The crystalline glass according to claim 1, wherein at least one crystal selected from MgO · SiO 2 , 2MgO · B 2 O 3 and BaO · 2MgO · P 2 O 5 is precipitated by heat treatment. Composition. 30〜700℃の温度範囲における熱膨張係数が70×10−7/℃以上であることを特徴とする請求項1〜3のいずれか一項に記載の結晶性ガラス組成物。 4. The crystalline glass composition according to claim 1, wherein a thermal expansion coefficient in a temperature range of 30 to 700 ° C. is 70 × 10 −7 / ° C. or more. 接着用であることを特徴とする請求項1〜4のいずれか一項に記載の結晶性ガラス組成物。   It is an object for adhesion, The crystalline glass composition according to any one of claims 1 to 4 characterized by things.
JP2017124827A 2017-06-27 2017-06-27 Crystalline glass composition Pending JP2019006642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017124827A JP2019006642A (en) 2017-06-27 2017-06-27 Crystalline glass composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017124827A JP2019006642A (en) 2017-06-27 2017-06-27 Crystalline glass composition

Publications (1)

Publication Number Publication Date
JP2019006642A true JP2019006642A (en) 2019-01-17

Family

ID=65027468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017124827A Pending JP2019006642A (en) 2017-06-27 2017-06-27 Crystalline glass composition

Country Status (1)

Country Link
JP (1) JP2019006642A (en)

Similar Documents

Publication Publication Date Title
JP6032014B2 (en) Crystalline glass composition
JP5999297B2 (en) Crystalline glass composition and adhesive material using the same
JP5928777B2 (en) High expansion crystalline glass composition
JP5787928B2 (en) Barium and strontium-free vitreous or glass-ceramic bonding materials and their use
JP2014096277A (en) Seal material for solid oxide type fuel battery use
DK178886B1 (en) Glass ceramic joint material and its use
JP2008516881A (en) Glass and glass ceramic sealant composition
KR102651661B1 (en) crystalline glass composition
JP2013203627A (en) Glass composition
JP2015513512A (en) Composition for the production of glass solder for high temperature applications and its use
US20120065049A1 (en) Crystallizing glass solders and uses thereof
JP2014156377A (en) Crystalline glass composition
JP6031872B2 (en) Sealing material for solid oxide fuel cells
JP5656044B2 (en) High expansion crystalline glass composition
JP4266109B2 (en) Glass frit for sealing
WO2018190056A1 (en) Crystalline glass composition
JP2019006642A (en) Crystalline glass composition
JP2003238201A (en) Sealing material, joined body, electrochemical apparatus, and crystallized glass
WO2017169308A1 (en) Crystalline glass composition
JP2020083662A (en) Crystalline glass composition
JP2019034876A (en) Crystalline glass composition
JP2019116397A (en) Crystalline glass composition
JP2018177629A (en) Crystalline glass composition
JP2016126974A (en) Method of manufacturing solid oxide fuel cell
JP2016115554A (en) Seal glass for solid oxide fuel cell